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Abstract 

The broad portfolio of technologies delivering negative emissions calls for integrated 

analyses to explore the synergies between them and the power sector, with which they 

display strong links. These analyses, encompassing carbon removal and power generation, 

should be conducted at a regional level, considering system uncertainties, to assess local 

benefits and the impact on carbon removal potential. This study investigates how electricity 

demand uncertainty affects the optimal design of integrated carbon removal and power 

generation systems using multi-stage stochastic programming. Given the model complexity, 

we propose a tailored decomposition approach that reduces the computational time by 90% 

enabling insights into various European scenarios. We find that a combination of 12 

technologies and biomass could achieve up to 9 Gt of CO2 of net removal from the 

atmosphere. Omitting uncertainties leads to an underestimation of the total cost and the 

selection of different technologies that might lead to suboptimal performance. 
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Nomenclature 

Abbreviations 

BECCS bioenergy with carbon capture and storage 
CCS carbon capture and storage 
CO2 carbon dioxide 
CDR carbon dioxide removal 
DACCS direct air capture with carbon capture and storage 
EU European Union 
EV expected value problem  
GHG greenhouse gas 
IAMs Integrated assessment models  
LP linear programming model 
MILP mixed-integer linear programming model 
MSS multistage stochastic programming model 
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NETPs negative emissions technologies and practices 
NACs non-anticipativity constraints 
RAPIDU RemovAl oPtImization model under Uncertainty 
SAA sample average approximation 
RP solution to the fully stochastic problem 
2SS two-stage stochastic programming model 
VSS value of the stochastic solution 

 

Sets 

𝐼 {𝑖 | 𝑖 is a technology} 
𝐽 {𝑗 | 𝑗 is a country} 
𝒮 {𝑠 | 𝑠 is a scenario} 
𝒮𝒫𝐹 {𝑠 | 𝑠 is a scenario included in the first period NACs} 
𝒮𝑃𝑋 {𝑠 | 𝑠 is a scenario included in the exogenous period NACs} 
𝑆𝑟𝑒𝑑 {𝑠 | 𝑠 is a scenario included in the solution of step 1} 
𝒯 {t | t is a time period} 

 

Variables 

𝑦𝑖𝑗𝑡
𝑠  first-stage investment decisions for technology 𝑖, country 𝑗 and time period 𝑡 in 

scenario 𝑠 
𝑏𝑖𝑗𝑡

𝑠  first-stage binary decisions for technology 𝑖, country 𝑗 and time period 𝑡 in scenario 𝑠 

𝑥𝑖𝑗𝑡
𝑠  second-stage operation decisions for technology 𝑖, country 𝑗 and time period 𝑡 in 

scenario 𝑠 

 

Parameters 

N number of exogenous scenarios 𝑠 

𝐴 
𝑦

𝑖𝑗𝑡
𝑠  parameters matrix, dependent on the variable and scenario 𝑠, for technology 𝑖, 

country 𝑗 and time period 𝑡 
𝑝𝑠 probability of occurrence of scenario 𝑠 

 

1. Introduction 

The urgent need to mitigate the adverse effects of climate change has led to a growing 

emphasis on reducing greenhouse gas (GHG) emissions, whose rising concentration is 

primarily attributed to anthropogenic activities (Daggash and Mac Dowell, 2019). Among all 

the economic industries, the energy sector, which includes heat and electricity, contributed 

to 57% of global emissions in 2016 (Ritchie et al., 2020), making it a key player in meeting 

the climate targets.  

The European Union (EU), responsible for roughly 10% of global emissions and one major 

leader in climate policies (Meckling et al., 2017), published in 2019 the European Green Deal 

to push a political shift toward a carbon-neutral society in 2050 (European Commission, 

2019; Schenuit et al., 2021). This includes efforts to decarbonize the energy sector through 
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renewable energy deployment (amounting to 32% of the gross final energy consumption) 

and energy efficiency measures to cut GHG emissions by 55% (Victoria et al., 2020).  

While these actions, already included in Integrated assessment models (IAMs), are 

underway, there is also the need to explore comprehensive strategies that not only reduce 

emissions but also actively reduce the concentration of GHG in the atmosphere (IPCC, 2022). 

This could be accomplished via carbon dioxide (CO2) removal (CDR) strategies or negative 

emissions technologies and practices (NETPs). Some of these, namely bioenergy (Solano 

Rodriguez et al., 2017) and direct air capture with carbon capture and storage (CCS) (BECCS 

and DACCS, respectively), are already included in the IAMs (Realmonte et al., 2019). Yet, 

IAMs do not incorporate social or political dimensions (Doukas et al., 2018) and do not have 

the technological or spatial resolution for detailed energy systems planning. Moreover, 

when assessing multiple key performance indicators of these technologies, trade-offs 

appear, suggesting that a regionalized portfolio of NETPs integrated into the energy systems 

should be evaluated to exploit their complementary strengths (Cobo et al., 2023). However, 

only a few studies model this coupling explicitly (Bistline and Blanford, 2021; Creutzig et al., 

2019). A few regional studies were carried out by Daggash et al. (2019) in the context of the 

United Kingdom and by Sagues et al. (2019) in the United States. Recently, a model that 

integrates the EU power system together with BECCS and DACCS was developed to shed 

light on the consequences of delaying the deployment of CDR options (Galán-Martín et al., 

2021). Despite this work providing valuable insights into the optimal deployment pathways, 

the conclusions were drawn based on a deterministic model, which should be reevaluated at 

each time period due to the change in data, such as energy demand and technology learning 

rate, as explored by Rathi and Zhang (2022), and lacks the possibility of incorporating 

uncertain parameters. 

Uncertainty is an inherent characteristic of energy systems, as they are influenced by a 

complex interplay of factors such as technological advancements, policy frameworks, 

economic fluctuations, and societal behaviors. Incorporating uncertainty analysis in energy 

system models is crucial for robust decision-making, particularly in the context of evaluating 

carbon removal options. Specifically for BECCS and DACCS, since they are often evaluated 

within long-term energy plans, the results are affected by a considerable degree of 

uncertainty (Fajardy et al., 2019), which is usually neglected, while in practice their large-

scale deployment in the EU energy system is subject to numerous challenges. These 

challenges include technological readiness, high costs, land availability for biomass 

cultivation, scalability of the modularity of DACCS technologies, and social acceptance. 

Moreover, the variability and uncertainty in electricity demand pose additional complexities 

for the integration of these technologies into the energy system. Indeed, these CDR options 

are interconnected with the system because they either provide or require electricity. Thus, 

it is important to address the uncertain nature of the EU energy system, highlighted 

especially in recent years, due to the COVID-19 pandemic and the Ukraine invasion. 

Traditional deterministic energy system models often overlook the uncertain nature of 

electricity demand, potentially leading to suboptimal or even infeasible decisions and 

unrealistic outcomes (Li and Grossmann, 2021). Hence, here we argue that optimization 

under uncertainty and, particularly, multistage stochastic programming, is essential to 
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comprehensively assess the potential role of BECCS and DACCS in the EU energy system 

under uncertainty. 

We refer to a recent review of stochastic programming published by Li and Grossmann 

(2021) for a list of selected articles on stochastic problems, where it became evident that the 

Process Systems Engineering literature on stochastic models is quite rich. Yet, the literature 

on sustainability problems under uncertainty is scarce, despite CCS being recognized in the 

field as pivotal to the future transition (Hasan et al., 2022). In particular, to our knowledge, 

energy system models that include CDR options and exogenous uncertainty are yet to be 

explored. Along these lines, Grant and co-authors (2021) carried out a pioneering work 

evaluating the policy implications of uncertain removal potential at a global scale using the 

TIAM-Grantham model in stochastic scenarios.  

Analyzing the CDR-power nexus including uncertainty leads to much more complex problems 

than their deterministic counterparts. Despite recent developments in hardware and 

software, stochastic problems might still be intractable and require decomposition 

approaches to speed up the solution time to get insights from different case studies with 

reduced computational time. Traditional decomposition methods to solve large stochastic 

models include Benders and Lagrangean decomposition, sequential scenario decomposition 

(Apap and Grossmann, 2017), and shrinking and rolling horizon (Balasubramanian and 

Grossmann, 2004). Tailored approaches have also been developed, as a combination of 

these methods (Fusco et al., 2023; Lee et al., 2023; Meersman et al., 2023). 

Here, we evaluate the impact of electricity demand uncertainty on the deployment of BECCS 

and DACCS in the EU energy system via multistage stochastic programming. A tailored 

algorithm is introduced to decompose the problem, reducing the computational time 

significantly. This allows us to generate insights into the optimal integration of these 

technologies within the EU energy system by investigating different scenarios of carbon 

removal by BECCS and DACCS. 

The rest of the article is organized as follows. The problem statement is given next, followed 

by the optimization methods, including the multistage stochastic model and the 

decomposition algorithm. The results section includes a comparison of the computational 

performance of the stochastic model without and with the decomposition algorithm for 

different case studies. Lastly, the conclusions and outlook for future work are presented. 

2. Problem statement 

Given are 15 state-of-the-art power technologies and the most prominent CDR-engineered 

options. These technologies are divided into dispatchable, which can produce heat, 

electricity, or both, at demand, and non-dispatchable, which require a backup capacity of 

dispatchable technologies to account for the time they cannot be operated. Among these, 

we also consider conventional fossil technologies, i.e., coal and natural gas, and their retrofit 

with carbon capture and storage. Among the CDR options, we include biomass-based 

energy, which also acts as a dispatchable energy source, and direct air capture. We consider 

learning cost curves and realistic diffusion rates limiting all technologies' deployment. The 

region of interest of this study is the EU with the United Kingdom, where its member states 
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are considered potential locations for the installation of power technologies. These 28 

countries are modeled as load nodes with specific energy demands and resource availability. 

The goal is to determine the optimal planning of the EU energy system under electricity 

demand uncertainty that satisfies the energy demand in each country, minimizing the 

system's total cost subject to a given cumulative CDR target at the end of the time horizon of 

30 years. The decisions to be made include the capacity and location of the power 

technologies and the electricity, heat required by DACCS, and CO2 flows between the EU 

states. The problem statement is presented graphically in Figure 1. 

 
Figure 1. RAPIDU problem statement. We are given a set of power technologies and two carbon dioxide removal 
technologies already commercially available, namely BECCS and DACCS. We model the 27 EU countries and the UK as load 
nodes with specific energy demands and resource availability. The goal is to determine the optimal deployment pathway 
under electricity demand uncertainty (exogenous uncertainty) that meets a given CDR target at the end of the time horizon 
of 30 years, minimizing the system's total cost. 

3. Methods 

3.1 Deterministic model 

We build on the RAPID model, previously proposed to understand the implications of 

delaying the deployment of CDR options at a regional level, focusing on BECCS and DACCS 

within the EU power system (Galán-Martín et al., 2021). RAPID was developed to investigate 

two scenarios: maximization of carbon removal and minimization of total cost subject to a 

carbon removal target. Perfect foresight for the input parameters was assumed in the time 
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horizon 2020 – 2100, modeled as a set of discrete time periods. The carbon removal is 

computed as the difference between the positive CO2 emissions and the CO2 removed from 

the atmosphere by BECCS and DACCS. In essence, given a set of power technologies and 

BECCS and DACCS that can be deployed in each country of the EU, the goal is to find the 

optimal capacity installed and the removal by the two NETPs, so as to meet the CDR target at 

the end of the time horizon and the energy demand in each country.  

In this work, we include binary variables (𝑏𝑡
𝑠) that account for the installation of the 

technologies at the beginning of each time period following (Guillén-Gosálbez et al., 2010; 

Sahinidis et al., 1989). We shorten the time horizon to 30 years, from 2020 to 2050, for a 

more realistic evaluation of the uncertainty within a net zero emissions target of the EU. 

Therefore, we impose a cumulative CDR target equal to zero in the year 2050, which is 

achieved jointly by all the countries in a cooperative strategy, and we solve for the minimum 

total cost of the system. 

3.2 Uncertainty definition 

Next, we consider exogenous uncertainty in the electricity demand by formulating a 

multistage stochastic mixed-integer linear programming (MSS - MILP) model (Apap and 

Grossmann, 2017). We consider that the electricity demand varies ± 20% from the nominal 

deterministic value. The choice of the demand as an uncertain parameter is justified by the 

fact that this parameter is dependent on multiple external factors, and hence can be highly 

uncertain. Some of the factors that affect demand are seasonality, economic growth and 

contraction, population growth and urbanization, technological innovation, e.g., increased 

efficiency, natural disasters, and even political and socio-cultural landscape changes. 

Depending on how the uncertainty reveals, it can be characterized as exogenous or 

endogenous (Gupta and Grossmann, 2011). The former is decision independent and it is 

revealed automatically at each time period, e.g., market prices. In contrast, the latter is 

decision dependent; therefore, it is not associated with a particular time period, e.g., the size 

of an oil field, which is revealed only when the drilling starts (Grossmann et al., 2016). 

Multiple approaches to deal with uncertainty in optimization problems have been 

developed, including stochastic programming (Birge and Louveaux, 2011), chance-

constrained (Li et al., 2008), and robust optimization (Lappas and Gounaris, 2016), which 

differ in the way uncertainty is characterized and the degree of risk aversion. Stochastic 

programming is a risk-neutral approach, where the uncertainty is characterized by a given 

probability distribution and in which the expected value of the objective function is 

optimized. In contrast, in chance-constrained there is the possibility to deal with reliability 

and risk management. In essence, it requires solving a stochastic programming problem with 

some probabilistic constraints. Robust optimization is also a risk-averse approach, which 

tries to find an optimal solution to the “worst-case scenario” that satisfies given constraints 

over a defined uncertainty set. The method of choice depends, among others, on the 

information available on the uncertain data, whether the emphasis is on feasibility or 

optimality, and if corrective actions can be taken. For more details on approaches for 

decision-making under uncertainty, we refer the reader to Apap and Grossmann (2017) and 

Li and Grossmann (2021). 
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3.3 Multistage stochastic model 

In two-stage stochastic programming with exogenous uncertain parameters, we distinguish 

between first-stage and second-stage decision variables. The former are also called “here 

and now” variables, and are fixed at the beginning of the time period before knowing how 

the uncertainty will unfold. The latter, also known as recourse actions (“wait-and-see”), 

perform a corrective action after the uncertainty is revealed. In a multistage stochastic 

problem decisions, realizations, and recourse actions occur sequentially as represented in 

Figure 2, and multiple recourse actions can be taken as uncertainties are gradually revealed.  

 

Figure 2. Sequence of events in stochastic programming with one endogenous uncertain parameter (Apap and Grossmann, 
2017). 

In what follows, we first describe the general modeling approach, and then provide the 

stochastic formulation taken as a basis. In stochastic programming, uncertainty is assumed 

to be described via scenario trees obtained from discretized probability distribution 

functions. Let us consider three time periods and two realizations of one uncertain 

parameter, high and low. For these assumptions, the standard scenario tree is represented 

in Figure 3a. Hereafter the following notation is used. A node is a possible state in a time 

period 𝑡. An arc is a possible transition from a state in 𝑡 to a new state in 𝑡+1. A scenario is 

the complete path from the root node to a leaf node. We refer to the scenario probability as 

the probability of reaching a leaf node from the root node. 

The number of exogenous scenarios (N) is equal to the product of the number of realizations 

for each exogenous parameter. If we consider two realizations of the uncertain parameter at 

each time period, the cardinality of the scenarios set is computed as 2𝑡 and the number of 

nodes is 2𝑡+1 − 1. 

An alternative form of the scenario tree in Figure 3b proposed by Ruszczyński (1997) gives 

each scenario a unique set of nodes. When moving from the standard to the alternative 

representation we create several copies of the same states that contain the same 

information at that point in time. Scenarios with the same information at time 𝑡 are said to 

be indistinguishable at that time. Therefore, in indistinguishable scenarios, we must make 

the same decisions. This behavior is enforced through non-anticipativity constraints (NACs) 

represented by the red horizontal lines in Figure 3b. 
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Figure 3. Exogenous uncertainty representation: standard (A) and alternative scenario tree (B). t represent the time 
periods, within tstart and tend, each dot is a node and the black lines connecting the dots are called arc, which represent a 
possible transition between two states from time t to time t+1. The node at the top is the root node and the ones at the 
bottom are the leaf nodes. A complete path from the root node to a leaf node corresponds to a scenario, which occurs with 
a given probability. 

We report in Eqs. ((1) – ((5) the general mathematical formulation of RAPIDU (RemovAl 

oPtImization model under Uncertainty), hereafter referred to as MSS1. The stochastic model 

is represented in the deterministic-equivalent form using non-anticipativity constraints ((3a)-

(4c)). 

𝑚𝑖𝑛
𝑏,𝑦,𝑥

𝜙 = ∑ 𝑝𝑠

𝑠∈𝒮

∑( 𝑐 
𝑦

𝑡
𝑠𝑦𝑡

𝑠 + 𝑐 
𝑥

𝑡
𝑠𝑥𝑡

𝑠 + 𝑐 
𝑏

𝑡
𝑠𝑏𝑡

𝑠)

𝑡∈𝒯

 (1) 

s. t. 𝐴 
𝑦

𝑡
𝑠𝑦𝑡

𝑠 + 𝐴 
𝑥

𝑡
𝑠𝑥𝑡

𝑠 + 𝐴 
𝑏

𝑡
𝑠𝑏𝑡

𝑠 ≤ 𝑎𝑡
𝑠    ∀ 𝑡 ∈ 𝒯,   𝑠 ∈ 𝒮 (2) 

𝑏1
𝑠 = 𝑏1

𝑠′
 ∀ (𝑠, 𝑠′) ∈ 𝒮𝒫𝐹 (3a) 

𝑦1
𝑠 = 𝑦1

𝑠′
 ∀ (𝑠, 𝑠′) ∈ 𝒮𝒫𝐹 

(3b) 

𝑥1
𝑠 = 𝑥1

𝑠′
 ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝒮𝑃𝑋  

(4a) 

𝑏𝑡+1
𝑠 = 𝑏𝑡+1

𝑠′
 ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝒮𝑃𝑋 

(4b) 

𝑦𝑡+1
𝑠 = 𝑦𝑡+1

𝑠′
 ∀ (𝑡, 𝑠, 𝑠′) ∈ 𝒮𝑃𝑋  

(4c) 

𝑏𝑡
𝑠 ∈ {0,1},   𝑦𝑡

𝑠 ∈ 𝒴𝑡
𝑠,   𝑥𝑡

𝑠 ∈ 𝒳𝑡
𝑠   𝑡 ∈ 𝒯,   𝑠 ∈ 𝒮 (5) 

The objective function in Eq. (1) is the total expected cost, computed as the weighted sum of 

the costs in each scenario multiplied by the probability in each scenario, 𝑝𝑠. The general 

techno-economic constraints correspond to Eq. (2). Eqs. (3a) represent the first-period NACs, 

and Eqs. (4a) the exogenous NACs. These constraints enforce that the same decisions are 

taken in all the nodes that are indistinguishable. Lastly, in Eq. (5) the variables' bounds and 

integrality restrictions are specified.  

Here, we adopt the same nomenclature used in Apap and Grossmann (2017) for the 

mathematical formulation. The multistage stochastic optimization model includes 𝑦𝑡
𝑠 first-

stage investment decisions at the beginning of each time period, e.g., power technology 

capacity installed; 𝑥𝑡
𝑠 second-stage operation decisions that follow the investment decisions, 

e.g., the electricity generated from the installed capacity. These decisions are optimized over 

every country j ∈ 𝐽 considering a set of technologies i ∈ 𝐼 whose sets are omitted in the 
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mathematical formulation for clarity (i.e., 𝑦𝑡
𝑠 corresponds to 𝑦𝑖𝑗𝑡

𝑠 ). Each variable is scenario-

dependent, identified by the set 𝒮, indicated by the superscript on the right of each variable. 

MSS1 is presented in its most general form, where the left superscript of the 𝐴 matrix 

indicates to which variable the parameters refer and even the cost parameters are indexed 

for s to allow for different values according to the scenario. E.g.,  𝐴 
𝑦

𝑡
𝑠 means that the 

parameters included in 𝐴 refer to the 𝑦𝑡
𝑠 decision variable at time period 𝑡 in scenario 𝑠. We 

refer to Apap and Grossmann (2017) for the mathematical definition of the sets 𝒮𝒫𝐹 and 

𝒮𝑃𝑋. 

The number of scenarios, corresponding to the cardinality of set 𝒮, is 64 (2𝑡) given two 

realizations of the uncertainty, high and low, at each time period. The realization of the 

uncertainty is the same for each country, i.e., in all EU countries and the United Kingdom the 

electricity demand either increases or decreases, which is a sensible assumption given the 

strong political ties in the region and assuming that the extent to which the economy will be 

electrified, particularly concerning transportation but also in hard-to-abate sectors like 

petrochemicals production, will be similar across countries. Therefore, here we do not 

consider the combination of all the scenarios, which would increase the complexity of the 

problem substantially. 

The time horizon 2020 - 2050 is divided into six time periods 𝑡 ∈ 𝒯. We first consider all the 

time periods to be of equal length, and then we differentiate the lengths depending on the 

time period, with shorter time periods closer to the beginning of the time horizon and a 

rougher discretization towards the end. We adjust the input data accordingly to account for 

CAPEX and OPEX to match the new definition of the time periods. 

A detailed description of the general techno-economic model constraints that are included 

in Eq. (2) can be found in the supplementary material of Galán-Martín et al. (2021). In 

essence, load-meeting and operation constraints are defined in Eqs. 1 – 31, and account for 

the distinction between dispatchable and non-dispatchable technologies, and make sure 

that the electricity demand is fulfilled. We note that in this work the electricity demand is 

met as an equality constraint. The modeling of the supply chain of biomass is also included, 

regarding land use, availability of residues, etc. CO2 emission constraints include Eqs. 32 – 

42, and model the carbon balance regarding positive emissions and negative emissions, as 

well as the trade, capture, and storage of CO2 and its sequestration underground. Finally, 

cost equations include Eqs. 43 – 48, and model how the CAPEX and OPEX of the different 

power energy sources are obtained, as well as the cost of negative technologies. 

3.4 Decomposition algorithm 

The full space multistage stochastic programming in Eqs. (1) - (5) leads to large-scale 

problems that quickly become intractable. For example, for six periods and 28 countries, the 

MILP has more than 8.2 million variables and 4.2 million constraints. Hence, we propose the 

decomposition algorithm sketched in Figure 4 for its efficient solution. 
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Figure 4. Decomposition algorithm steps. In the first 
step, we decompose the original problem into 
scenarios and we solve them individually. 
Afterward, we extract relevant information from 
the single scenarios. We use this information to 
obtain a reduced form of the original problem that 
we can solve faster by solving two-stage stochastic 
(2SS) problems in a rolling horizon approach. 
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The decomposition algorithm comprises two steps. First, we decompose the problem into 

single scenarios dualizing the first-period and exogenous NACs. This step is equivalent to the 

first iteration of the Lagrangean decomposition where the NACs constraints are transferred 

to the objective function using penalty terms multiplied by Lagrange multipliers (Apap and 

Grossmann, 2017). We note that for the problem presented in Section 2, the conventional 

Lagrangean decomposition algorithm proved to be not efficient, leading to high 

computational times to close the gap between the lower and upper bound as described in 

Apap and Grossmann (2017). This can be caused by the relatively low number of scenarios, 

as already observed in Apap and Grossmann (2017), which led to the same oscillatory 

behavior reported by Uribe-Rodríguez et al. (2023) for the convergence. 

For simplicity, let us consider only the decision variables 𝑦𝑡
𝑠. Then, after dualizing the NACs, 

Eq.(1) becomes 

𝑚𝑖𝑛
𝑦

𝜙𝐿𝑅(𝜆) = ∑ 𝑝𝑟𝑠

𝑠∈𝒮

∑ 𝑐 
𝑦

𝑡
𝑠𝑦𝑡

𝑠

𝑡∈𝒯

+  ∑ 𝜆 
𝐹

1
𝑠,𝑠′

(𝑦1
𝑠 − 𝑦1

𝑠′)
(𝑠,𝑠′)∈𝒮𝒫𝐹

+  ∑ 𝜆 
𝑋

𝑡
𝑠,𝑠′

(𝑦𝑡+1
𝑠 − 𝑦𝑡+1

𝑠′ )
(𝑡,𝑠,𝑠′)∈𝒮𝒫𝑋

 

(6) 

We rearrange the equations of MSS1 for all the variables as in Eq.(6) to obtain a number of 

problems equal to the cardinality of 𝒮. 

At this point, we can explore the solutions of the scenarios to collect information about the 

technology deployment. In particular, we want to know which technologies are not selected 

in any scenario or the technologies selected in every scenario in all countries in a given time 

period for capacity expansion. We note that if the binary variable that indicates the capacity 

expansion of a given technology is zero, it does not imply that that technology is not 

deployed at all. We then use the information gathered in step 1 to reduce the size of the 

original problem by eliminating elements from the set of technologies, i.e., setting the binary 

variables to zero or fixing investment decisions. However, this problem, which we call MSS1-

red, might still be very large. Therefore, we decompose it further using heuristics.  

In the second step of our approach, we approximate the multistage stochastic problem with 

a series of two-stage stochastic problems (2SS) that we solve iteratively in a shrinking 

horizon approach, as described in Balasubramanian and Grossmann (2004). Moreover, in the 

first iteration, which corresponds to the first node over the entire time horizon, we solve for 

a subset of scenarios. The number of scenarios and the method for their selection can be 

chosen depending on the application. In our case studies, we use a heuristic approach 

dependent on the shape of the decision tree. Out of |𝑆|, we select ten representative 

scenarios of the whole set. 

An alternative approach, although computationally more expensive, is to use sample 

average approximation (SAA). In SAA, a sample of scenarios N < |𝑆| that best represents the 

initial problem is selected to form a reduced set 𝑆𝑟𝑒𝑑. The probability of each scenario is 

adjusted to sum up to one by dividing the probability of each scenario in 𝑆𝑟𝑒𝑑 by the sum of 

the probabilities of all scenarios in 𝑆𝑟𝑒𝑑 (Ehrenstein et al., 2019). Since the probability 
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distribution of the uncertainty is known a priori, here we choose N scenarios such that they 

are representative of the full set 𝑆. This set is used to solve an approximation of MSS1. 

We then store the decision variables from each scenario (𝑦𝑡
𝑠) and fix the ones at the first 

time period (𝑦1
𝑠) according to the values of the solution obtained in the first iteration. From 

the second iteration onward, we solve one problem that considers all the scenarios of the 

corresponding 2SS problems. At each iteration, we fix the decision variables at the beginning 

of the time period until no more time periods are to be fixed. Notably, all the integer 

variables are fixed when solving the leaf nodes. Therefore, the last 64 iterations are linear 

programming (LP) problems, which can be solved efficiently. Lastly, we compute the total 

expected cost as a probability-weighted sum of the costs at the final nodes. 

At each iteration, a 5% optimality gap is enforced as termination criteria and convergence is 

checked before solving the next node. 

To speed up the algorithm further, priorities on the discrete variables are also used. We 

expect that BECCS is deployed before DACCS, because of its lower cost, until there is not 

enough capacity to meet the CDR target. This translates into heuristic-based constraints 

involving binary variables that reduce the combinatorial complexity of the problem. 

RAPIDU is solved using GAMS 41.5.0 on an Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz with 

32.0 GB RAM using 16 parallel threads with the solver CPLEX 22.1.  

3.5 Value of the stochastic solution for multistage stochastic models 

To quantitatively assess the additional value of adding uncertainty to the optimization 

problem, we compute the value of the stochastic solution (VSS) (Birge and Louveaux, 2011). 

Indeed, a decision-maker might argue that including recourse decisions in the model might 

not be worth the additional computational effort, to which the VSS provides insights into the 

potential value left on the table when not considering uncertainty in the decision-making 

process. 

In the case of two-stage stochastic problems, the procedure to calculate VSS is 

straightforward and widely used. Firstly, the solution to the model with a mean value of the 

uncertain parameter is computed. This is called the expected value problem or mean value 

problem (EV). Once the solution to this problem is known, it is used to solve the stochastic 

model by fixing the first stage “here and now” variables. This is known as the expected result 

of using the EV solution. 

For a minimization problem, the VSS is computed as the difference between EEV and RP (Eq. 

(7)), where RP is the solution to the fully stochastic problem. A small VSS denotes that the 

deterministic model is a good approximation of the stochastic one. 

VSS = EEV − RP (7) 

In the case of multistage problems, however, computing the VSS is not as simple because 

each time period has “here and now” decision variables and it is not clear which variables 

should be fixed. Therefore, obtaining EEV would require solving a sequence of models. The 

issues in computing the values above and an approach to calculate the VSS for multistage 

stochastic problems are discussed in Escudero et al. (2007). 
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In this work, we use an approximation of the procedure to calculate the VSS, also reported in 

Escudero et al. (2007), where we fix only the first stage decisions in all time periods to obtain 

EEV. Then, the VSS is calculated as the difference between EEV and RP as in Eq. ((7). 

4. Computational results and discussion 

4.1 Homogeneous discretization of the time horizon 

First, we analyze the case for time periods of equal lengths. The results are discussed in this 

section comparing the full space model to the decomposed version. 

Hereafter, we refer to the full space model, i.e., the problem which includes all equations 

and variables and is solved at once, as MSS1, and the version solved by applying a 

decomposition algorithm as MSS1-D. 

4.1.1 Net zero target 

We impose a net-zero cumulative CDR target, i.e., the positive emissions are fully balanced 

by the CO2 removed by BECCS and DACCS, at the end of the time horizon. 

The number of variables, equations, and solution time of MSS1 are summarized in Table 1. 

Notably, the computational time to solve MSS1 in its full form to a 5% optimality gap is 

considerable (around 13 hours). The total cost of the system is 10.7 trillion Euros calculated 

as the weighted average of each scenario objective function value, and computed according 

to a net present value calculation, accounting for fixed and variable costs (see (Galán-Martín 

et al., 2021) for more information on the cost calculation). Compared to the deterministic 

solution (9.9 trillion Euros) it represents an increase of 7.2%, which is not negligible. In the 

context of the EU, this economic burden is borne by all the Members according to some 

fairness principle. 

Table 1. Model statistic of the multistage stochastic problem MSS1 for the minimization of the expected cost. 

 MIP - MSS 64 scenarios 

Number variables [millions] 7.9 
Number binary variables [thousands] 300.7 
Number equations [millions] 4.2 
Resource usage (solution + generation time) [hr] ~13 
Solver CPLEX 22.1 
Termination criteria: opt. gap [%] 5 
Optimal objective function value [trillion Eur] 10.7 

Given the large computational time, we apply our decomposition approach and solve the 

problem again as MSS1-D. 

From step 1, which is based on the first iteration of the Lagrangean decomposition, we find 

that many technologies are not selected for capacity expansion in any country at any time 

period. We group all these technologies in a set and we force their decision binary variables 

to be zero when solving step 2. In order to further reduce the size of the model, we identify 

technologies that are selected for capacity expansion in the first time period in specific 

countries in all time scenarios. Again, we define a set for these technologies and we impose 
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that the decision variable in the first period is equal to one. Both sets of technologies are 

reported in Table 2. 

Notably, many technologies are not selected because the time horizon is relatively short and 

the target is not very ambitious compared to what it is possible to achieve (Galán-Martín et 

al., 2021).  

Table 2. Information on technology expansion from the Lagrangean decomposition (step 1) for a net-zero CDR target in 
2050. 

Technologies not selected in any scenario 
for capacity expansion at any time period 𝒕 

Technologies selected (country) in all the 
scenarios for capacity expansion at 𝒕=t1  

•Coal  •Geothermal (Germany) 
•Coal with CCS •Natural gas (Denmark) 
•Hydropower •Forest residue with CCS (Poland) 
•Hydropower reservoir •Woody residues with CCS (Greece) 
•Nuclear •Solar PV open (Luxembourg and Malta) 
•Concentrated solar power  
•Solar PV roof  
•Switchgrass  
•Wind offshore  

We make use of the information obtained in step 1 as described above and proceed with 

step 2. We solve step 2 iterating over the number of nodes (127). At the first iteration, we 

use heuristics to determine the subset of scenarios used to solve MSS1-red. Indeed, MSS1-

red is still very large.  

We obtain a 90% reduction in the computational time while achieving the same objective 

function value (10.7 trillion Euros). The latter is calculated as a probability-weighted sum of 

the leaf nodes, as explained in Section 3.3. We compare in Table 3 the solutions between the 

full space model and the decomposed one in terms of computational time and optimal 

objective function value. The time reported in the table includes step 1 and 2 where the 

Lagrangean decomposition step is approximately 14 minutes. The precise resource usage of 

generation and solution time in seconds is reported in Table A5. 

Table 3. Comparison of full space and decomposed multistage stochastic models for the minimization of the expected cost. 
A reduction in computational time of 83% is achieved by implementing the decomposition algorithm. * probability-
weighted sum at final nodes 

 MIP - MSS 64 
scenarios 

Decomposed 
MIP - MSS 

Resource usage (generation + solution time) [hr] ~13 ~1.2 
Optimal objective function value [trillion Eur] 10.7 10.7* 

Despite reaching the same expected total cost while meeting the electricity demand, there 

are differences in the decisions taken during the time horizon. For example, in MSS1 forest 

residues and natural gas with CCS capacities are also chosen and expanded at the first time 

period (Table A1). Additionally, comparing the information in Table 2 and Table A1, we 

notice that the algorithm only selects a few countries 𝑗 where a technology 𝑖 is selected in all 

the scenarios. In other words, in the decomposed problem, it is preferred to increase the 
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capacity installed in selected countries 𝑗 by 100% or more, while in MSS-1 the capacity of 

more technologies is increased less but across different countries. 

Lastly, we compare the stochastic results with the deterministic ones.  

First, we fix the binary decision variables from the solution of the deterministic problem in 

all time periods of the stochastic problem to obtain EEV (Table 4). We find that the cost of 

EEV is 10.98 trillion Eur. Compared to the value of RP in Table 3, the VSS is 285 billion Eur, 

which is roughly 3% of the RP, on the same order of magnitude as the examples presented in 

Birge and Louveaux (2011) and Li and Grossmann (2021).  

Table 4. Objective function value for different case studies. Given the solution of the deterministic problem, we find the 
EEV value to later compute the VSS.  

Deterministic variables to be fixed Time period Value of objective function [B Eur] 

Binary decisions Up to t5 10791.2 
Binary decisions Up to t6 10982.6 
Binary and capacity decisions Up to t5 Infeasible 
Binary and capacity decisions Up to t6 Infeasible 

Then, we provide a graphical summary of the two sets of solutions. Let us assume that the 

deterministic model is run only one time at the beginning of the time horizon, although in 

practice it would be run in a rolling horizon fashion. Then, the solution that we obtain can be 

outside of the range of all the possible solutions obtained considering uncertainty. 

In Figure 5 we show the electricity generated per country (subplot A) and per technology 

type (subplot B). We notice that the majority of the total electricity generated comes from a 

reduced set of countries (subplot A), i.e., France, Germany, Italy, Spain, and the United 

Kingdom, and also affected by the greatest variability among all the countries. Additionally, 

the deterministic solution lies outside of the range observed for the given scenarios in some 

countries such as the Netherlands, where the point lies outside of the boxplot of stochastic 

solutions. 

Subplot B represents the same information, this time aggregated by technology. Here it is 

even more evident that the deterministic solution is not included within the stochastic 

values, in particular, in the case of wind onshore and solar PV open. Wind onshore and 

nuclear follow natural gas in production volume. Among all the technologies, natural gas is 

the main source of electricity and has also the highest variability while the capacity of wind 

offshore does not change across the scenarios. 
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Figure 5. Total electricity generated aggregated by country (subplot A) and technology (subplot B). Stochastic range vs 
deterministic value. The box and whiskers plots are generated using the solution of all 64 scenarios of the stochastic model 
and they show ±25 the median value. 

4.1.2 CDR scenarios 

The decomposition algorithm presented in Section 3.3 allows us to more easily explore a 

range of case studies. We can do so by imposing a different CDR target at each iteration. In 

particular, our interest lies in assessing the feasibility of a carbon balance beyond the net 

zero target and proving that it is possible to attain such levels by mid-century. This would 

imply that the electricity sector would be responsible for offsetting emissions from hard-to-

abate industries, such as cement and steel. Considering that the electricity sector accounted 

for approximately 30% of the total CO2 emissions in the EU in 2021 (Statista, 2021), it seems 

reasonable for it to contribute significantly to the overall reduction in CO2 emissions. 
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Our findings demonstrate that the deployment of BECCS and DACCS can potentially enable 

the removal of up to 9 Gt of CO2 by 2050 by deploying BECCS and DACCS within the 

constraints of our model. In other words, the global carbon balance of the integrated sector, 

i.e., including in the system boundaries the power technologies in addition to NETPs, would 

result in the net removal of 9 Gt. Figure 6 illustrates the expected total cost of implementing 

solutions for the various CDR scenarios explored. A negative sign of emissions indicates that 

more CO2 is removed via BECCS and DACCS than the amount emitted from all the 

technologies, i.e., natural gas, solar, and wind, resulting in negative emissions. We observe 

that the steepest increase in total cost occurs when we push the system to achieve more 

ambitious targets, ranging from 0 to ─9 Gt of CO2, while the cost does not decrease 

significantly for different positive targets, where the deployment of NETPs is minimal. 

Additionally, we find that DACCS, powered by electricity and heating, is only selected and 

deployed starting at the ─9 Gt CO2 target. 

It is important to note that even in scenarios where the emissions balance is positive, there 

is still a deployment of bioenergy and BECCS (Table A2). This is because the advantage of 

bioenergy is twofold: it removes CO2 from the atmosphere while simultaneously generating 

electricity. Thus, it serves as a valuable technology for achieving emissions reductions. This 

matches previous observations made by the authors (Negri et al., 2021) where even 

considering the impacts of a highly detailed BECCS supply chain, negative emissions were 

achieved in the EU. 

Our analysis reveals that achieving a target beyond 10 Gt CO2 removal is not feasible 

(considering the assumptions and technologies in our analysis) within the computational 

time limit allowed (12 hours). This limitation is primarily driven by the rate of technology 

deployment rather than the availability of CO2 storage. The high electricity demand in the 

most uncertain scenarios poses a significant challenge in achieving higher levels of CO2 

removal within the given timeframe. 

 

Figure 6. Expected total cost and technology deployed for different CDR targets. The icons of BECCS (green plant) and 
DACCS (gray box) indicate which CDR option is proving the required removal. Only in the case of 9 GtCO2 removal, both 
technologies are deployed. 

We report in Appendix A.1 the information relative to the technology selection in the 

decomposition algorithm step 1 and the computational time. We see that as the target 

becomes less ambitious, and eventually the system is even allowed to reach a positive 

emissions balance, fewer technologies are installed.  
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4.2 Inhomogeneous discretization of the time horizon with net-zero target 

As a last step, we are interested in the implications of discretizing the time horizon in time 

periods of different lengths (see Figure 7 A and B). This modeling decision is driven by the 

fact that the consequences of the years closer to the start of the horizon have greater 

economic and social impacts over the ones of the years further in time.  

 

Figure 7.Discretization of the time periods. In the analysis presented in Section 4.1 (subplot A), the time horizon is divided 
into six time periods of equal length corresponding to five years. In this Section 4.2 we present the results for a non-
homogenous discretization of the time horizon: six total time periods of length 2-4-4-5-5-10 years. 

We report the results of the inhomogeneous time horizon discretization in Table 5 for the 

minimization of the expected total cost at a net zero target. First, we highlight that in the full 

space problem we were able to reach a solution within the specified optimality gap although 

infeasibilities on the original MIP problem were not resolved. On the other hand, our 

decomposition algorithm can reach a solution within the given tolerance without any 

numerical challenges highlighting the robustness of the proposed solution method. The total 

expected cost, calculated as the probability-weighted average of the last nodes, is 2% higher 

than the full space objective function, within the optimality gap. Lastly, we mention that the 

total expected cost in this case study is higher than the previous (10.7 trillion Eur, see Table 

3) due to the duration of the periods being different. 

The underlying assumption in the original model (Galán-Martín et al., 2021) is that the 

demand is maintained constant within the years of the first time period, and only updated at 

the start of the following period according to the following equation 𝑑𝑡 = 𝑑𝑡−1 ∗ F, where F 

is a constant factor greater than one. Therefore, it is updated more frequently when there 

are shorter periods. For example, since in the case of identical time periods the first time 

period comprises five years while here only two, the demand at the end of the time horizon 

is higher in the case presented in this section. We provide a clarifying example in the time 

horizon 2020 – 2025 with reference to Figure 7. In case A, it is assumed that there is no 

increase in the first five years, meaning that the cumulative final demand is equal to five 

times the one in 2020. In the inhomogeneous time period case (B), the first time period of 

two years follows the same assumption and therefore the cumulative demand in 2022 is two 

times the one in 2020, while the remaining years are updated according to the given 

correlation.  
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Table 5. Comparison of full space and decomposed multistage stochastic models with inhomogeneous time horizon 
discretization for the minimization of the expected cost to meet the net zero target in 2050. Reduction in computational 
time given by the decomposition algorithm: 43%. * probability-weighted sum at final nodes. ** GAMS output: Fixed MIP 
status (5): optimal with unscaled infeasibilities 

 MIP - MSS 64 
scenarios 

Decomposed 
MIP - MSS 

Number variables [Millions] 7.9 7.9 
Number binary variables [Thousands] 300.7 300.7 
Number equations [Millions] 4.2 4.2 
Resource usage (generation + solution time) [hr] ~3.2 ~2 
Solver Cplex 22.1 Cplex 22.1 
Termination criteria: Opt. gap [%] 5 5 
Objective function value [Trillion Eur] 12.3** 12.5* 

Next, we look into the technology deployment to meet the energy demand (Table A3 and 

Table A4). In this case, since the first time period is shorter, a reduced set of technologies is 

selected in all the scenarios, comprising wind onshore (Germany), solar PV open 

(Luxemburg), and forest residues with CCS (Poland). Additional capacity of solar PV open is 

installed in Belgium at t3 and t5. The capacity of solar PV open and forest residues with CCS is 

expanded at the beginning of t4 in 50% of the countries included in our model. This happens 

because the length of time periods t1 and t2 are 2 and 4 years, respectively, while in p4 it is 

five years and more capacity is needed to cover the increase in electricity demand. 

Overall, the net zero target is achieved by deploying the same set of technologies shown in 

Figure 5 B. 

5. Conclusions 

In this study, we have highlighted the importance of considering uncertainty in energy 

system planning, particularly in relation to the implications on the total cost and technology 

capacity installed arising from the variability in electricity demand. The consequent 

complexity of the multistage stochastic programming model required the development of a 

tailored decomposition approach, which reduces the computational time significantly up to 

90%. We observed that in the case of inhomogeneous time periods, which lead to numerical 

challenges to solve the full-space model, our algorithm provides a numerically robust 

solution within the optimality tolerance while still providing a significant speedup with 

respect to the monolithic model. 

We found that among all the countries in the European Union, France, Germany, Italy, Spain, 

and the United Kingdom, provide the majority of the electricity with the greatest variability 

across all the scenarios solutions. The technologies with the highest capacity deployed for 

electricity production include natural gas, nuclear, wind onshore, solar PV and BECCS. 

Biomass emerged as a crucial component within the model, where its deployment was not 

only selected to achieve negative emission targets but also in scenarios where overshooting 

was allowed with capacity expansion at each time period for selected feedstocks. 

Overall, effectively managing uncertainties is paramount for the successful implementation 

of projects, particularly in the context of climate action. Further research and attention to 

these uncertainties will contribute to the advancement and realization of sustainable energy 
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systems, especially focusing on the learning curves of carbon removal options. While our 

analysis focused on the technical aspects, it is important to acknowledge that successful 

implementation of BECCS and DACCS technologies requires addressing additional 

considerations such as public acceptance, community engagement, policy incentives, and 

economic viability, which are beyond the scope of this study. 

CRediT authorship contribution statement 

Valentina Negri: Conceptualization, Data curation, Formal Analysis, Investigation, 

Methodology, Software, Validation, Visualization, Writing – original draft, Writing – review & 

editing. Daniel Vázquez: Methodology, Software, Writing – original draft, Writing – review & 

editing. Ignacio Grossmann: Conceptualization, Methodology, Project administration, 

Resources, Supervision, Writing – original draft, Writing – review & editing. Gonzalo Guillén-

Gosálbez: Conceptualization, Funding acquisition, Methodology, Project administration, 

Resources, Supervision, Writing – original draft, Writing – review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper. 

Acknowledgments 

This research did not receive any specific grant from funding agencies in the public, 

commercial, or not-for-profit sectors. 

  



21 
 

References 

Apap, R.M., Grossmann, I.E., 2017. Models and computational strategies for multistage 
stochastic programming under endogenous and exogenous uncertainties. Computers 
& Chemical Engineering 103, 233–274. 
https://doi.org/10.1016/J.COMPCHEMENG.2016.11.011 

Balasubramanian, J., Grossmann, I.E., 2004. Approximation to Multistage Stochastic 
Optimization in Multiperiod Batch Plant Scheduling under Demand Uncertainty. 
Industrial & Engineering Chemistry Research 43, 3695–3713. 
https://doi.org/10.1021/IE030308 

Barbaro, A., Bagajewicz, M.J., 2004. Managing Financial Risk in Planning under Uncertainty. 
AIChE Journal 50, 963–989. https://doi.org/10.1002/aic.10094 

Birge, J.R., Louveaux, F., 2011. Introduction to Stochastic Programming. Springer Science & 
Business Media. 

Bistline, J.E.T., Blanford, G.J., 2021. Impact of carbon dioxide removal technologies on deep 
decarbonization of the electric power sector. Nature Communications 2021 12:1 12, 
1–12. https://doi.org/10.1038/s41467-021-23554-6 

Cobo, S., Negri, V., Valente, A., Reiner, D.M., Hamelin, L., Mac Dowell, N., Guillén-Gosálbez, 
G., 2023. Sustainable scale-up of negative emissions technologies and practices: 
where to focus. Environ. Res. Lett. 18, 023001. https://doi.org/10.1088/1748-
9326/acacb3 

Creutzig, F., Breyer, C., Hilaire, J., Minx, J., Peters, G.P., Socolow, R., 2019. The mutual 
dependence of negative emission technologies and energy systems. Energy and 
Environmental Science 12, 1805–1817. https://doi.org/10.1039/c8ee03682a 

Daggash, H.A., Heuberger, C.F., Mac Dowell, N., 2019. The role and value of negative 
emissions technologies in decarbonising the UK energy system. International Journal 
of Greenhouse Gas Control 81, 181–198. https://doi.org/10.1016/j.ijggc.2018.12.019 

Daggash, H.A., Mac Dowell, N., 2019. Higher Carbon Prices on Emissions Alone Will Not 
Deliver the Paris Agreement. Joule 3, 2120–2133. 
https://doi.org/10.1016/j.joule.2019.08.008 

Doukas, H., Nikas, A., González-Eguino, M., Arto, I., Anger-Kraavi, A., 2018. From Integrated 
to Integrative: Delivering on the Paris Agreement. Sustainability 10, 2299. 
https://doi.org/10.3390/su10072299 

Ehrenstein, M., Wang, C.H., Guillén-Gosálbez, G., 2019. Strategic planning of supply chains 
considering extreme events: Novel heuristic and application to the petrochemical 
industry. Computers & Chemical Engineering 125, 306–323. 
https://doi.org/10.1016/J.COMPCHEMENG.2019.03.020 

Escudero, L.F., Garín, A., Merino, M., Pérez, G., 2007. The value of the stochastic solution in 
multistage problems. TOP 15, 48–64. https://doi.org/10.1007/s11750-007-0005-4 

European Commission, 2019. The European Green Deal. European Commission. 
Fajardy, M., Patrizio, P., Daggash, H.A., Mac Dowell, N., 2019. Negative Emissions: Priorities 

for Research and Policy Design. Frontiers in Climate 1, 6. 
https://doi.org/10.3389/fclim.2019.00006 

Fusco, A., Gioffrè, D., Francesco Castelli, A., Bovo, C., Martelli, E., 2023. A multi-stage 
stochastic programming model for the unit commitment of conventional and virtual 
power plants bidding in the day-ahead and ancillary services markets. Applied Energy 
336, 120739. https://doi.org/10.1016/j.apenergy.2023.120739 



22 
 

Galán-Martín, Á., Vázquez, D., Cobo, S., Dowell, N.M., Caballero, J.A., Guillén-Gosálbez, G., 
2021. Delaying carbon dioxide removal in the European Union puts climate targets at 
risk. Nature Communications 12, 6490. https://doi.org/10.1038/s41467-021-26680-3 

Grant, N., Hawkes, A., Mittal, S., Gambhir, A., 2021. The policy implications of an uncertain 
carbon dioxide removal potential. Joule 5, 2593–2605. 
https://doi.org/10.1016/J.JOULE.2021.09.004 

Grossmann, I.E., Apap, R.M., Calfa, B.A., García-Herreros, P., Zhang, Q., 2016. Recent 
advances in mathematical programming techniques for the optimization of process 
systems under uncertainty. Computers & Chemical Engineering, 12th International 
Symposium on Process Systems Engineering & 25th European Symposium of 
Computer Aided Process Engineering (PSE-2015/ESCAPE-25), 31 May - 4 June 2015, 
Copenhagen, Denmark 91, 3–14. 
https://doi.org/10.1016/j.compchemeng.2016.03.002 

Guillén-Gosálbez, G., Mele, F.D., Grossmann, I.E., 2010. A bi-criterion optimization approach 
for the design and planning of hydrogen supply chains for vehicle use. AIChE Journal 
56, 650–667. https://doi.org/10.1002/AIC.12024 

Gupta, V., Grossmann, I.E., 2011. Solution strategies for multistage stochastic programming 
with endogenous uncertainties. Computers & Chemical Engineering 35, 2235–2247. 
https://doi.org/10.1016/J.COMPCHEMENG.2010.11.013 

Hasan, M.M.F., Zantye, M.S., Kazi, M.K., 2022. Challenges and opportunities in carbon 
capture, utilization and storage: A process systems engineering perspective. 
Computers & Chemical Engineering 166, 107925. 
https://doi.org/10.1016/j.compchemeng.2022.107925 

IPCC, 2022. Climate Change 2022. Mitigation of Climate Change. Working Group III 
contribution to the Sixth Assessment Report of the Intergovernmental Panel on 
Climate Change. IPCC. 

Lappas, N.H., Gounaris, C.E., 2016. Multi-stage adjustable robust optimization for process 
scheduling under uncertainty. AIChE Journal 62, 1646–1667. 
https://doi.org/10.1002/aic.15183 

Lee, J., Bae, S., Kim, W.C., Lee, Y., 2023. Value function gradient learning for large-scale 
multistage stochastic programming problems. European Journal of Operational 
Research 308, 321–335. https://doi.org/10.1016/j.ejor.2022.10.011 

Li, C., Grossmann, I.E., 2021. A Review of Stochastic Programming Methods for Optimization 
of Process Systems Under Uncertainty. Frontiers in Chemical Engineering 0, 34. 
https://doi.org/10.3389/FCENG.2020.622241 

Li, P., Arellano-Garcia, H., Wozny, G., 2008. Chance constrained programming approach to 
process optimization under uncertainty. Computers and Chemical Engineering 32, 
25–45. https://doi.org/10.1016/j.compchemeng.2007.05.009 

Meckling, J., Sterner, T., Wagner, G., 2017. Policy sequencing toward decarbonization. Nat 
Energy 2, 918–922. https://doi.org/10.1038/s41560-017-0025-8 

Meersman, T., Maenhout, B., Van Herck, K., 2023. A nested Benders decomposition-based 
algorithm to solve the three-stage stochastic optimisation problem modeling 
population-based breast cancer screening. European Journal of Operational Research 
310, 1273–1293. https://doi.org/10.1016/j.ejor.2023.04.027 

Negri, V., Galán-Martín, Á., Pozo, C., Fajardy, M., Reiner, D.M., Mac Dowell, N., Guillén-
Gosálbez, G., 2021. Life cycle optimization of BECCS supply chains in the European 
Union. Applied Energy 298, 117252. 
https://doi.org/10.1016/J.APENERGY.2021.117252 



23 
 

Oliveira, F., Gupta, V., Hamacher, S., Grossmann, I.E., 2013. A Lagrangean decomposition 
approach for oil supply chain investment planning under uncertainty with risk 
considerations. Computers & Chemical Engineering 50, 184–195. 
https://doi.org/10.1016/J.COMPCHEMENG.2012.10.012 

Rathi, T., Zhang, Q., 2022. Capacity planning with uncertain endogenous technology learning. 
Computers & Chemical Engineering 164, 107868. 
https://doi.org/10.1016/J.COMPCHEMENG.2022.107868 

Realmonte, G., Drouet, L., Gambhir, A., Glynn, J., Hawkes, A., Köberle, A.C., Tavoni, M., 2019. 
An inter-model assessment of the role of direct air capture in deep mitigation 
pathways. Nat Commun 10, 3277. https://doi.org/10.1038/s41467-019-10842-5 

Ritchie, H., Roser, M., Rosado, P., 2020. CO₂ and Greenhouse Gas Emissions. Our World in 
Data. 

Ruszczyński, A., 1997. Decomposition methods in stochastic programming. Mathematical 
Programming 79, 333–353. https://doi.org/10.1007/BF02614323 

Sagues, W.J., Park, S., Jameel, H., Sanchez, D.L., 2019. Enhanced carbon dioxide removal 
from coupled direct air capture-bioenergy systems. Sustainable Energy and Fuels 3, 
3135–3146. https://doi.org/10.1039/c9se00384c 

Sahinidis, N.V., Grossmann, I.E., Fornari, R.E., Chathrathi, M., 1989. Optimization model for 
long range planning in the chemical industry. Computers & Chemical Engineering 13, 
1049–1063. https://doi.org/10.1016/0098-1354(89)87046-2 

Schenuit, F., Colvin, R., Fridahl, M., McMullin, B., Reisinger, A., Sanchez, D.L., Smith, S.M., 
Torvanger, A., Wreford, A., Geden, O., 2021. Carbon Dioxide Removal Policy in the 
Making: Assessing Developments in 9 OECD Cases. Frontiers in Climate 3. 

Shapiro, A., 2021. Tutorial on risk neutral, distributionally robust and risk averse multistage 
stochastic programming. European Journal of Operational Research 288, 1–13. 
https://doi.org/10.1016/j.ejor.2020.03.065 

Solano Rodriguez, B., Drummond, P., Ekins, P., 2017. Decarbonizing the EU energy system by 
2050: an important role for BECCS. Climate Policy 17, S93–S110. 
https://doi.org/10.1080/14693062.2016.1242058 

Statista, 2021. EU-27: energy sector GHG emission shares [WWW Document]. Statista. URL 
https://www.statista.com/statistics/1000061/ghg-emissions-sources-energy-sector-
european-union-eu/ (accessed 7.5.23). 

Uribe-Rodríguez, A., Castro, P.M., Guillén-Gosálbez, G., Chachuat, B., 2023. Assessment of 
Lagrangean decomposition for short-term planning of integrated refinery-
petrochemical operations. Computers & Chemical Engineering 174, 108229. 
https://doi.org/10.1016/j.compchemeng.2023.108229 

Vespucci, M.T., Bertocchi, M., Zigrino, S., Escudero, L.F., 2013. Stochastic optimization 
models for power generation capacity expansion with risk management, in: 
International Conference on the European Energy Market. IEEE. 
https://doi.org/10.1109/EEM.2013.6607352 

Victoria, M., Zhu, K., Brown, T., Andresen, G.B., Greiner, M., 2020. Early decarbonisation of 
the European energy system pays off. Nat Commun 11, 6223. 
https://doi.org/10.1038/s41467-020-20015-4 



24 
 

Appendix A 

We report in this appendix additional results and analyses related to the studies presented 

in the main manuscript. In Section A1 the insights obtained from the decomposition 

algorithm are given, while in Section A2 we discuss the risk-averse model. 

A.1 Additional results 

The following tables include detailed information referring to time period p1 on the solution 

obtained from the multistage stochastic model in its full-space form (Table A1) and the 

decomposed one for different CDR targets (Table A2). Table A3 includes the technologies not 

selected at any time period and Table A4 the technologies selected for capacity expansion at 

p1 for the case study with inhomogeneous time periods. 

Table A1. Technology expansion and respective location at t1 in the solution of MSS-1. 

Technology Country 

Forest residues Estonia, Finland 
Forest residues with CCS Bulgaria, Croatia, Germany, Hungary, Luxembourg, Poland, Sweden 
Geothermal Germany, Portugal 
Natural gas Denmark, Germany, Luxembourg, Poland 
Natural gas with CCS Denmark 
Solar PV open Hungary, Luxembourg, Malta, Poland, Slovakia 

Table A2. Technology information obtained from the decomposition algorithm step 1, and computational time of step 1. 

CDR 
target 
[GtCO2] 

Computational 
time [min] 

Technologies not selected in 
any scenario for capacity 
expansion at any time period 

Technologies selected in all the 
scenarios in (country) for 
capacity expansion at t1  

─9 21 •Coal  •Forest residues with CCS 
(Poland) 

•Hydropower •Solar PV open (Luxembourg) 
•Nuclear  
•Solar PV roof  
•Switchgrass  
•Switchgrass with CCS  

─6 16 •Wind offshore •Solar PV open(Luxembourg, 
Malta) 

•Hydropower •Natural gas (Luxembourg) 
•Hydropower reservoir •Forest residues with CCS 

(Poland) 
•Solar PV roof  
•Coal  
•Nuclear  
•Switchgrass  

─3 15 •Wind offshore •Geothermal (Germany) 
•Hydropower •Natural gas (Denmark, 

Luxembourg) 
•Hydropower reservoir •Solar PV open(Luxembourg, 

Malta) 
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•Solar PV roof •Forest residues with CCS 
(Poland) 

•Concentrated solar power  
•Coal  
•Nuclear  
•Coal with CCS  
•Switchgrass  

+3 14 •Wind offshore •Geothermal (Germany) 
•Hydropower •Natural gas (Denmark) 
•Hydropower reservoir •Woody residues with CCS 

(Greece) 
•Solar PV roof •Solar PV open(Luxembourg) 
•Concentrated solar power •Forest residues with CCS 

(Poland) 
•Coal  
•Nuclear  
•Coal with CCS  
•Natural gas with CCS  
•Miscanthus  
•Switchgrass  
•Miscanthus with CCS  
•Switchgrass with CCS  

+6 14 •Wind offshore •Geothermal (Germany) 
•Hydropower •Woody residues with CCS 

(Greece) 
•Hydropower reservoir •Solar PV open(Luxembourg) 
•Solar PV roof •Forest residues with CCS 

(Poland) 
•Concentrated solar power  
•Coal  
•Nuclear  
•Coal with CCS  
•Natural gas with CCS  
•Miscanthus  
•Switchgrass  
•Miscanthus with CCS  
•Switchgrass with CCS  
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Table A3. Technologies not selected for capacity expansion in any county, any scenario and any time period for the 
minimization of the total cost with inhomogeneous time periods under a net-zero target. 

Technologies not selected  

Wind offshore 
Hydropower 
Hydropower reservoir 
Solar PV roof 
Concentrated solar power 
Coal 
Nuclear 
Coal with CCS 
Natural gas with CCS 
Miscanthus 
Switchgrass 
Willow 
Straw residues 
Woody residues 
Forest residues 
Miscanthus with CCS 
Switchgrass with CCS 

Table A4. Technology selection at time period p1 in step 1 using a time horizon with inhomogeneous time periods. No 
expansion occurs at p6. 

Time 
period 

Technology expanded Country 

t1 Wind onshore Germany 
 Solar Luxembourg 
 Forest residues with CCS Poland 
t2   
t3 Solar PV open Belgium 
t4 Solar PV open Austria, Bulgaria, Spain, Estonia, Finland, Hungary, 

Italy, Lithuania, Luxembourg, Poland, Portugal, 
Slovakia 

 Forest residues with CCS Denmark, Sweden 
t5 Solar PV open Belgium 
t6   

Lastly, we report in Table A5 the precise resource usage time in seconds with reference to 

Table 1, Table 3 and Table 5. 

Table A5. Resource usage of model generation and solution time in seconds for the case studies investigated, i.e., with 
homogeneous and inhomogeneous time periods. The resource usage reported does not include  

Case study/ resource usage time [s] Full-space Decomposed 

Homogeneous time horizon discretization 46597 4444 

Inhomogeneous time horizon discretization 11490 7815 
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A.2 Risk management 

Among the possible frameworks to include uncertainty in optimization problems, stochastic 

programming is a risk-neutral approach, because it optimizes the expectation of the 

objective function by neglecting that some of the scenarios might incur high costs (Oliveira 

et al., 2013). 

Risk management is most widely explored in two-stage stochastic problems (Barbaro and 

Bagajewicz, 2004; Oliveira et al., 2013; Vespucci et al., 2013), although applications to 

multistage have also been explored (Shapiro, 2021). The reason for richer literature in two-

stage stochastic models with risk metrics is that including in the model a term that 

represents the risk leads to a considerable increase in the model complexity. Different 

metrics to manage risk have been defined in the literature: downside risk, value at risk, and 

conditional value at risk. 

Following Oliveira et al. (2013), we calculate the expected shortage risk (ES). The latter has 

the advantage of adding only one constraint and one continuous variable in the model. 

Nonetheless, given the complexity of our problem, we decide to explore the risk-averse case 

by replacing our model with a two-stage stochastic model where we include the formulation 

of ES. The mathematical formulation is given in Eq. (A8) and (A9), which adopts the same 

nomenclature as Oliveira et al. (2013). 

min
𝑥,𝑦,𝛿

(𝑐𝑥 + ∑ 𝑃𝑢𝑞𝑦𝑢

𝑢

+ PEN ∑ 𝑃𝑢𝛿𝑢

𝑢

) (A8) 

𝑠. 𝑡. 𝐴𝑥 + 𝑏 ≤ 0 
𝑇𝑥 + 𝑊𝑦𝑢 ≤ ℎ𝑢   ∀ 𝑢 ∈ 𝑈 

𝑦𝑢 ∈ 𝑌 
𝑐𝑥 + 𝑞𝑦𝑢 − 𝜔 ≤ 𝛿𝑢 

𝛿𝑢 ≥ 0   ∀ 𝑢 ∈ 𝑈 

(A9) 

ES is calculated as in Eq.(A10). 

𝐸𝑆(𝜔,  𝑥) =
1

∑ 𝑃𝑢
𝑢|𝛿𝑢≥0

 ∑ 𝑃𝑢𝛿𝑢

𝑢

 (A10) 

We observe that a small trade-off of cost vs. risk can be observed because the model is 

highly constrained. Indeed, the electricity demand has to be met as an equality constraint. In 

the case of adding a slack variable, increasing the demand uncertainty, e.g., ±50% instead of 

20%, and a longer time horizon would allow us to observe more significant trade-offs. 

However, this would lead to a computationally intractable model with the evaluated solution 

method. 


