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1 Introduction

In this article we present an effective mixed-integer linear programming (MILP)
formulation for design of a multi-echelon stochastic inventory system with un-
certain customer demands. In You and Grossmann [2010] a three-echelon supply
chain with inventories under uncertainty is presented. In that supply chain, the
location of the plants and the customer demand zones (CDZ) are known. Po-
tential distribution centers (DC) are given and the objective is to decide which
DCs to install in order to minimize total costs, which include transportation
cost, installation cost as well as inventory holding costs. The formulation also
determines the service times for each DC, and what the size of the safety stock
should be at all DCs and CDZs. This model uses single sourcing, which is often
the case for supply chains in industrial gases or specialty chemicals. That means
that all DCs are served by only one plant and each CDZ is served by only one
DC. The detailed model can be found in You and Grossmann [2010].

In this short note we first reformulate the mixed-integer nonlinear program-
ming (MINLP) model presented in You and Grossmann [2010] and You and
Grossmann [2011], using an alternative linearization scheme leading to a model
that is significantly smaller in size, and tighter. We also present a successive
piecewise linear approximation with which we can solve the model with a suf-
ficiently small optimality gap without the need of a global optimization solver.

∗Author to whom correspondence should be addresed: grossmann@cmu.edu
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Figure 1: Network of multiple plants, DCs and CDZs

2 Model Formulation
In You and Grossmann [2010] the original MINLP model (P0) is stated as:

Min :
∑
j∈J

fjYj +
∑
i∈I

∑
j∈J

∑
k∈K

AijkXijZjk +
∑
j∈J

∑
k∈K

BjkZjk (1)

+
∑
j∈J

q1j

√
Nj

∑
k∈K

σ2
kZjk +

∑
k∈K

q2k

√
Lk (2)

s.t.
Nj ≥

∑
i∈I

(SIi + t1ij)Xij − Sj , ∀j, (3)

Lk ≥
∑
j∈J

(Sj + t2jk)Zjk −Rk, ∀k, (4)

∑
i∈I

Xij = Yj , ∀j, (5)

∑
j∈J

Zjk = 1, ∀k, (6)

Zjk ≤ Yj , ∀j, k, (7)

Xij , Yj , Zjk ∈ {0, 1}, ∀i, j, k, (8)

Sj ≥ 0, Nj ≥ 0, ∀j, (9)

Lk ≥ 0, ∀k, (10)

with the following parameters(see section 9 for complete nomenclature):

Aijk = (c1ijχ+ θ1jt1ij) · µk,

Bjk = (gjχ+ c2jkχ+ θ2kt2jk) · µk,

q1j = λ1j · h1j ,

q2k = λ2k · h2k · σk.

In order to decrease the number of nonlinear terms, the authors linearize in
a similar way as in Glover [1975], the bilinear terms in (P0) to obtain a new
formulation, (P1), with fewer nonlinear constraints. In the objective function,
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Eq. (2), the product of two binaries XijZjk is linearized by introducing contin-
uous variables XZijk and the following constraints:

XZijk ≤ Xij , ∀i, j, k, (11)

XZijk ≤ Zjk, ∀i, j, k, (12)
XZijk ≥ Xij + Zjk − 1, ∀i, j, k, (13)

XZijk ≥ 0, ∀i, j, k, (14)
Since the objective is to minimize the cost, Eqs. (11) and (12) can be removed
without affecting the solution. In Eq. (4) the bilinear terms consisting of a
continuous variable (Sj) times a binary variable Zjk are linearized by, intro-
ducing two new continuous variables, SZjk and SZ1jk, as well as the following
constraints:

SZjk + SZ1jk = Sj , ∀j, k, (15)
SZjk ≤ Zjk · SU

j , ∀j, k, (16)

SZ1jk ≤ (1− Zjk) · SU
j , ∀j, k, (17)

SZjk ≥ 0, SZ1jk ≥ 0 ∀j, k. (18)
In a similar way, the bilinear terms between the continuous variables Nj and
the binary variables Zjk, in the objective function, are linearized as follows:

NZjk +NZ1jk = Nj , ∀j, k, (19)

NZjk ≤ Zjk ·NU
j , ∀j, k, (20)

NZ1jk ≤ (1− Zjk) ·NU
j , ∀j, k, (21)

NZjk ≥ 0, NZ1jk ≥ 0 ∀j, k. (22)
And finally, the product under the square root term in the objective function is
replaced with a variable NZVj :

NZVj =
∑
k∈K

σ2
k ·NZjk, ∀j (23)

Although these linearization schemes are correct, they can be replaced with
more effective formulations as will be shown next.

3 Alternative linearizations
In this section we show how to linearize the model P0 into an reformulated model
R1 which is more compact than the reformulated model P1. First, the bilinear
terms,

∑
i∈I

∑
j∈J

∑
k∈K AijkXijZjk, in the objective function are similar to

the objective in the quadratic assignment problem presented by Koopmans and
Beckmann [1957]. Therefore, we can use a similar approach, as in [Nyberg and
Westerlund, 2012], to rearrange the variables in the objective function. Since
the parameter µk in Aijk = (c1ijχ+θ1jt1ij) ·µk is only dependent on the index
k we can rewrite the objective function as follows:∑

j∈J

(
∑
i∈I

AijXij)
∑

k

Zjkµk, (24)
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where
Aij = (c1ijχ+ θ1jt1ij), (25)

is a new constant independent of k. According to Eq. (5) at most one of the Xij

variables in
∑

i AijXij can be nonzero. Thus, this term can now be linearized
using (|I|+ 1) · j new continuous variables, XZij , instead of 2 · |I| · |J | · |K| as
in Eq. (2). Hence, for the linearization, the objective function is written as:∑

j∈J

∑
i∈I

AijXZij , (26)

and the new constraints (instead of Eqs. (11) to (14)) as,

XZ0j +
∑

i

XZij =
∑

k

µkZjk ∀j, (27)

XZij ≤
∑

k

µkXij ∀i, j, (28)

XZ0j ≤
∑

k

µk(1− Yj) ∀j, (29)

where the last variable Yj comes from Eq. (5).
Since the objective is to minimize, and all variables are nonnegative we can

substitute the Nj in the objective function, with the right hand side (
∑

i∈I(SIi+
t1ij)Xij−Sj) of Eq. (3). Instead of having bilinear terms between the continuous
variables Nj and the binary variables Zjk, we can now linearize the expression
below as follows:

(
∑
i∈I

(SIi + t1ij)Xij − Sj) · (
∑
k∈K

Zjkσ
2
k), (30)

which can be written as:

(
∑
i∈I

(SIi + t1ij)Xij) · (
∑
k∈K

Zjkσ
2
k)− Sj · (

∑
k∈K

Zjkσ
2
k). (31)

Again, it can be noted that according to Eq. (5) at most one of the binary
Xij variables in the above equation can be nonzero. The first part of this
term can therefore be linearized analogously as in Eqs. (27) to (29). Note
that the variables are exactly the same in the bilinear terms, and therefore the
same linearizations would work in both cases if it were not for the constants
preceding the variables. However, we choose to write these linearizations with
new continuous variables ZXij as well since this formulation is tighter than the
one presented in You and Grossmann [2010].

ZX0j +
∑

i

ZXij =
∑

k

σ2
kZjk ∀j, (32)

ZXij ≤
∑

k

σ2
kxij ∀i, j, (33)

ZX0j ≤
∑

k

σ2
k(1− Yj) ∀j, (34)
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In the second half of Eq. (31), the bilinear terms in Sj · (
∑

k∈K Zjkσ
2
k) are again

exactly the same as the ones already linearized in Eqs. (15) to (17). Therefore
the bilinear terms are already defined earlier and we can write the expression
under the first square root term as:∑

i∈I

S1ij · ZXij −
∑
k∈K

σ2
k · SZjk (35)

4 Reformulated model
Based on the linearizations in the previous section, the reformulated nonlinear
model (R1) is as follows:

Min :
∑
j∈J

fjYj +
∑
j∈J

∑
i∈I

AijXZij +
∑
j∈J

∑
k∈K

BjkZjk

+
∑
j∈J

q1j

√∑
i∈I

S1ij · ZXij −
∑
k∈K

σ2
k · SZjk +

∑
k∈K

q2k

√
Lk

(36)

s.t.
Lk ≥

∑
j∈J

SZjk + t2jk · Zjk −Rk, ∀k, (37)

∑
i∈I

Xij = Yj , ∀j, (38)

∑
j∈J

Zjk = 1, ∀k, (39)

Zjk ≤ Yj , ∀j, k, (40)

XZ0j +
∑

i

XZij =
∑

k

µkZjk ∀j, (41)

XZij ≤
∑

k

µkxij ∀i, j, (42)

XZ0j ≤
∑

k

µk(1− Yj) ∀j, (43)

ZX0j +
∑

i

ZXij =
∑

k

σ2
kZjk ∀j, (44)

ZXij ≤
∑

k

σ2
kxij ∀i, j, (45)

ZX0j ≤
∑

k

σ2
k(1− Yj) ∀j, (46)

SZjk + SZ1jk = Sj , ∀j, k, (47)

SZ1jk ≤ (1− Zjk) · SU
j , ∀j, k, (48)

where all varialbes are ≥ 0. As shown later on in Table 3 this formulation is
significantly smaller in size as well as tighter than P1.

5



5 Concave nonlinear terms
In the same manner as in You and Grossmann [2010] the only remaining non-
linear terms in R1 can be underestimated to obtain an MILP formulation (R2)
of the model, which provides a good starting solution as well as a lower bound
for R1. Since we use the same variables and constraints, every feasible solu-
tion of the MILP R2 is also a feasible solution to the MINLP R1. Since we
underestimate R1, a valid lower bound for R2 is also a lower bound for R1.
In You and Grossmann [2010] (P1) is relaxed in order to obtain the MILP P2,
which is solved with CPLEX to obtain a good starting solution for the MINLP.
You and Grossmann [2010] underestimate the nonlinear square root terms

√
Lk

and
√
NZVj with their respective secants Lk√

LUB
k

and NZVj√
NZV UB

j

as proposed

by Soland [1971]. However, since one of the binary Zjk variables in Eq. (4) is
nonzero, the lower bound for Lk, when Rk is a parameter becomes:

LLB
k = min

j∈J
{t2jk −Rk} ∀k. (49)

In order to obtain a tighter underestimator, we use the following function, which
is the secant in the feasible region of Lk:√

LLB
k −

√
LUB

k )
((LLB

k )− LUB
k )

Lk +
√
LUB

k −
(
√
LLB

k −
√
LUB

k )
((LLB

k )− LUB
k )

LUB
k (50)

In Fig. 2 the difference is shown between underestimating the square root with
the provided lower bounds versus underestimating with the lower bound 0. This
is not the case when responsiveness Rk is defined as a variable as in You and
Grossmann [2011].

LLB
k LUB

k

Lk

√
L

k

√
Lk

Secant
Eq. (50)

Figure 2: Underestimators with lower bounds and with lower bound set to zero

5.1 Piecewise linear approximation
In order to tighten the underestimations for the convex square root terms, we
use a sequential piecewise linear approximation approach. Since the MILP R2
formulation gives a relatively small gap, even on larger instances, we introduce a
successive piecewise linear approximation scheme in order to obtain sufficiently
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LLB
k

L∗
k2

L∗
k3 LUB

k

Lk

√
L

k

√
Lk

˜√Lk

Figure 3: Intervals with the sequential approach after a few iterations

small gaps. We use the δ−formulation presented in Dantzig [1963] and whose
tightness has been studied by Padberg [2000]. Since there are |J |+ |K| square
root terms in the model, it is not a good idea to add too many intervals per
square root term. Therefore, we solve the underestimating MILP several times,
and only partition the terms that are greater than zero in the underestimation.
In the equations below, we show the piecewise linearization used for the term√
Lk. In the model we also partition the second square root term analogously.

Lk = LLB
k +

N∑
n=1

δn, (51)

√̃
Lk =

√
LLB

k +
N∑

n=1

√
L∗kn+1

−
√
L∗kn

L∗kn+1
− L∗kn

δn, (52)

(L∗kn+1
− L∗kn+

)wn ≤ δn ≤ (L∗kn+1
− L∗kn

)wn−1, n = 2, . . . , N − 1, (53)

(L∗k2
− L∗k1

)w1 ≤ δn ≤ L∗k2
− L∗k1

, (54)

δn ≤ (LUB
k − L∗kN

)wN−1, (55)

wn ∈ {0, 1}, n = 1, . . . , N − 1. (56)

In the sequential approach, we start by solving the MILP model R2, then we
add a grid point for each square root term that is larger than its lower bound.
The MILP will therefore be exact in the solution found. We then solve the model
again with the new grid points and if we find a better solution we again add grid
points at the new solution. Therefore, N , which is the number of grid points,
will be different for all square root terms. Most of the terms will stay at zero, and
therefore no new grid points or variables will be needed for those terms. After
no improvement is found, the final MILP with the added grid points is solved to
a predefined optimality gap. Since the piecewise underestimator is exact in the
grid points, this approach can also be used to close the gap completely. This is
a similar approach as the branch-and-refine method presented in Leyffer et al.
[2008] and You et al. [2011].
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6 Computational Results
In this section, we present computational results on the same size instances as in
You and Grossmann [2010]. All computations in this paper are conducted on an
Asus UX31E ultra book with a 2.8 GHz quad-core Intel processor and 4 Gb of
ram. As a MILP solver we used CPLEX 12.3 with the default parameters. All
constant values in the model are generated randomly with uniform distribution
within predefined values. These values can be found in section 9. In order to be
able to reproduce the runs, the default random seed in GAMS 23.7.3 was used.
The difficulty of these problems are strongly dependent on the values assigned
to the different costs.

P2 R2
|I| |J| |K| Bin. Vars. Con. Vars. Const. Bin. Vars. Cont. Vars. Const.
2 20 20 460 2,480 5,300 460 980 1,840
5 30 50 1,680 13,640 33,190 1,680 3470 6580
10 50 100 5,550 70,250 185,350 5,550 11,200 21,500
20 50 100 6,050 120,250 335,350 6,050 12,200 22,400
3 50 150 7,700 52,800 120,450 7,700 15,650 30,900
15 100 200 21,600 300,300 1,040,700 21,600 43,400 83,800

Table 1: Sizes of the old and reformulated models

In Table 1 the model sizes of P2 and R2 are compared. As can be seen, the
difference is very large, especially for the larger instances. The root node values
of the relaxed LP for the different formulations is shown in Table 2. As can be
seen from Table 1 and Table 2, R2 is both smaller in size and at least as tight
as P2.

P2 R2
|I| |J| |K| LB LB
2 20 20 1,024,834 1,026,054
5 30 50 2,087,756 2,087,756

10 50 100 3,550,280 3,550,280
20 50 100 3,234,617 3,234,617
3 50 150 4,779,460 4,779,460

15 100 200 6,468,441 6,468,441

Table 2: Comparison of the tightness in the root node of the relaxed MILPs P2
and R2

In Table 3 the computational comparisons of the reformulated MILP (R2)
and the original formulation (P2) are presented. As can be observed, P2 can
only be solved for the smallest instance within the time limit of 10 minutes. On
the other hand for the new formulation R2, all instances are solved in a few
seconds. This comparison is made with the same secant function for the square
root terms in both cases (i.e. zero lower bound in Eq. (50)). If the square
root term in R2 is relaxed with the tighter underestimator shown in section 5,
then the optimal values of the MILP will be higher and therefore closer to the
optimal value of R1. However the solution times for R2 would still be as fast as
in Table 3.

Table 4 shows the global optimum of the MILP R2, when underestimating
the square root terms with the tighter lower bound in Eq. (50) and the corre-
sponding calculated feasible solution of the problem when evaluating the square
root terms. Note that the optimal solutions for R2 are higher in Table 4 than in
Table 3 for the same problems, while the solution times are roughly the same.
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P2 R2
|I| |J| |K| UB LB Gap Time(s) UB LB Gap Time(s)
2 20 20 1,584,557 1,584,557 0.00% 1.27 1,584,557 1,584,557 0.00% 0.09
5 30 50 3,248,076 2,988,151 7.80% 600 3,169,880 3,169,880 0.00% 0.58
10 50 100 6,893,324 3,569,929 48.20% 600 5,173,888 5,173,888 0.00% 4.18
20 50 100 5,969,190 3,245,514 45.63% 600 4,602,706 4,602,706 0.00% 6.15
3 50 150 10,852,632 5,009,423 53.84% 600 7,151,942 7,151,942 0.00% 2.92
15 100 200 54,755,897 6,407,108 88.30% 600 8,816,596 8,816,596 0.00% 23.4

Table 3: Comparison of the performance of the MILPs P2 and R2, with a time
limit of 600 seconds

|I| |J| |K| MILP (R2) MINLP (R1) Gap Time(s)
2 20 20 1,708,930 1,783,540 4.18% 0.09
5 30 50 3,538,980 3,770,404 6.14% 0.67
10 50 100 5,862,307 6,215,596 5.68% 4.74
20 50 100 5,294,980 5,396,136 1.87% 6.86
3 50 150 8,161,606 8,479,354 3.75% 1.65
15 100 200 10,318,630 10,727,860 3.81% 28.2

Table 4: Gap between the optimal solution of R2 and the calculated feasible
MINLP solution

In Table 5 solution times for the sequential piecewise approach presented in
section 5.1 are shown. Even the larger instances can be solved within reasonable
computational time. However, the solution times for different instances with the
same size, can be completely different. This formulation is strongly dependent
on the values of the parameters. This is also why the solution time is longer
for the third instance in Table 5 than for the fourth, even though the fourth
instance is larger in size.

|I| |J| |K| Solution LB Gap Time(s)
2 20 20 1,776,969 1,769,882 0.40% 0.94
5 30 50 3,728,020 3,704,300 0.64 % 249
10 50 100 6,182,142 6,120,321 0.99% 9,042
20 50 100 5,396,821 5,368,078 0.53% 1,042
3 50 150 8,489,428 8,409,329 0.94% 415
15 100 200 10,704,022 10,597,052 0.99% 10,840

Table 5: Solutions for different size instances with the sequential piecewise ap-
proach

7 Conclusions

In this short note, we have showed that by reformulating the three-stage multi-
echelon inventory system with specific exact linearizations, we can solve larger
problems directly with an MILP solver without the need of decomposing the
problem. The new formulation is significantly smaller in size, both in the number
of variables as well as in the number of constraints. An MILP underestimation of
the problem can be solved very quickly in order to obtain a good feasible solution
for the MINLP. The paper shows a simple sequential piecewise approximation
scheme that can be used to solve the problem within a desired optimality gap.
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9 Notation
Models

P0, original MINLP
P1, original reformulated MINLP
P2, original underestimating MILP
R1, reformulated P1
R2, reformulated P2

Sets
I = set of suppliers
J = set of candidate DC locations
K = set of CDZs

Parameters
Below are the input parameters for the instances. All parameters are generated
randomly with a uniform distribution. The data files used are available from
the authors, upon request.
c1ij = t1ij × U [0.05, 0.1], unit transportation cost between supplier and DC
c2jk = t2jk × U [0.05, 0.1], unit transportation cost from DC to CDZ
fj = U [150, 000, 160, 000], fixed cost for installing a DC at location j
gj = U [0.01, 0.1], annual variable cost coefficient for installing DC at location j
h1j = U [0.1, 1], unit inventory holding cost at DC
h2k = U [0.1, 1], unit inventory holding cost at CDZ
Rk = 0, maximum guaranteed service time to customers at CDZ k
SIi = U [1, 5](integers), guaranteed service time of plant i
t1ij = U [1, 7](integers), order processing time of DC j if it is served by supplier i
t2jk = U [1, 3](integers), order processing time of CDZ k if it is served by DC j
µk = U [75, 150], daily mean demand at CDZ k
σ2

k = U [0, 50], daily variance of demand at CDZ k
χ = 365, days per year
θ1ij = U [0.1, 1], annual unit cost of pipeline inventory from plant i to DC j
θ2jk = U [0.1, 1], annual unit cost of pipeline inventory from DC j to CDZ k
λ1j = 1.96, safety stock factor of DC j
λ2k = 1.96, safety stock factor of CDZ k

Binary Variables
Xij = 1 if DC j is served by supplier i
Yj = 1 if a DC is installed at location j
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Zjk = 1 if the CDZ is served by DC j

Continuous Variables
Lk = net lead time of CDZ k
Nj = net lead time of DC j
Sj = guaranteed service time of DC j to the CDZs
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