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Abstract In this paper we present a methodology for finding tight convex relaxations

for a special set of quadratic constraints given by bilinear and linear terms that fre-

quently arise in the optimization of process networks. The basic idea lies on exploiting

the interaction between the vector spaces where the different set of variables are de-

fined in order to generate cuts that will tighten the relaxation of traditional approaches.

These cuts are not dominated by the McCormick convex envelopes and can be effec-

tively used in conjunction with them. The performance of the method is tested in

several case studies by implementing the resulting relaxation within a spatial branch

and bound framework.

Keywords Global Optimization · Bilinear Programs · Vector Spaces · Tight

Formulations · Process Networks

1 Introduction

The optimization of process networks is one of the most frequent problems that is

addressed in process systems engineering [1]. In general, process networks are composed

of a set of nodes (N) connected by a set of streams (S). Each stream in S is associated

with a flow F and a set of properties J whose values P j are relative to F . The flows

and properties of the set of streams leaving a node (On) are related to the flow and

properties of the set of streams entering the node (In) and the characteristics of the

node itself. The most frequent subset of equations found in these networks is represented

by the following set of quadratic and linear constraints:

∑

i∈In

(FinP j
in)− FonP j

on = 0 ∀n ∈ N , ∀j ∈ J (1)

∑

i∈In

Fin − Fon = 0 ∀n ∈ N (2)
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where Fin represents the flow of the entering stream i ∈ I at a node n ∈ N and P j
in the

value for the property j in that stream. Similarly, Fon and P j
on are the characteristic

values for the outlet stream. Without loss of generality we assume that only one stream

leaves the node, namely, |On| = 1.

The constraints in (1) and (2) typically correspond to mass or energy balances.

Although very simple in its representation, this set of constraints define a nonconvex

region, and when embedded in the final formulation, requires global optimization tech-

niques for solving the corresponding problem. Most of the practical solution methods to

solve these problems rely on some variation of a spatial branch and bound framework

[2] whose performace, in turn, heavily depends on generating tight relaxations.

In order to find a relaxation for (1) and (2), the most frequent technique is based

on the work by McCormick [3] in which each bilinear term is replaced by its con-

vex envelope [11]. Note that this approach is a particular case of the Reformulation-

Linearization Technique (RLT) [9] in which cuts are constructed by multiplying con-

straints by appropriate variables and then linearizing the resulting bilinear terms. Effi-

cient implementations of this approach for large scale problems were studied by Liberti

and Pantelides [12]. Other techniques consider the convex envelope of the summation

of the bilinear terms [4], the semidefinite relaxation of the whole set of bilinear terms

[5] or the piecewise linear relaxations [14] [13].

The major objective of this paper is to present a methodology for finding tighter

relaxations by considering the interaction between the vector space defined by the

property values with the one defined by the flow values.

This paper is organized as follows. In section 2 we present a vectorial representation

of the set of constraints (1) and (2), and introduce the concept of “minimal set” as the

building blocks of these systems. In section 3 we study the properties of the “minimal

sets”. In section 4 we introduce the traditional relaxation for bilinear terms, and in

section 5 and 6 we describe our methodology by making extensive use of the properties

presented in 3.

Finally, in section 7 we present a set of numerical results.

2 Vectorial representation

Let us consider a node n ∈ N in the network as represented in Fig. 1, with a set of

inlet streams In and an outlet stream On.

m
©©*FinP j

in
-

HHj -
FonP j

on

Fig. 1 Inlet-Outlet stream representation for node n

where FinP j
in represents the flow of property j entering the node through stream in.

As described in section 1, the system is modeled by equations (1) and (2). Without

loss of generality we will consider the analysis for a single node and a single property,

and consequently, we will not use indices n and j.
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Defining the vectors in R|I|+1, vF :=
(
F1, F2, F3, ...., F|I|, Fo

)
,

vP :=
(
P1, P2, P3, ...., P|I|,−Po

)
and vE := (1, 1, 1, ...., 1,−1) we can rewrite (1) as:

vP · vF = 0 (3)

and (2) as:

vE · vF = 0 (4)

this leads to the following compact vectorial representation:

vP ⊥ vF

vE ⊥ vF
(5)

We call this form a 3-Vector Representation, which clearly exposes the interaction

between the vector spaces of properties vP , flows vF and the unit vector vE .

In order to facilitate the analysis, we propose a decomposition of the 3-Vector

Representation by using minimal sets. We define the minimal set as the set composed

by three elements (i.e. |I|+ 1 = 3).

Lemma 1 Any system of the form (5) can be decomposed as the intersection of |I|−1

3-Vector Representation of minimal sets

Proof Given the set of vectors in R|I|+1, vF :=
(
F1, F2, F3, ...., F|I|, Fo

)
,

vP :=
(
P1, P2, P3, ...., P|I|,−Po

)
and vE := (1, 1, 1, ...., 1,−1)

we can find an equivalent representation of (5) by the application of the following

recursive operation.

Generate the kth 3-Vector Representation of minimal set by:

vk
F := (F1k, Fk+1, F1k+1)

vk
E := (1, 1,−1)

vk
P := (P1k, Pk+1,−P1k+1)

where F1k and P1k are new variables that are generated and F11 and P11 are equal

to F1 and P1 respectively, and similarly F1|I| and P1|I| are equal to Fo and Po ,

respectively.

The recursive procedure stops when k + 1 = |I| ¤

Fig. 2 presents the illustration of Lemma 1 for |I| = 4.

Fig. 2 Decomposition in minimal sets |I| = 4



4

3 Vector space properties for the minimal set

In this section we study the properties of the space defined through a minimal set (i.e.

|I|+ 1 = 3).

Given a minimal set

vP ⊥ vF

vE ⊥ vF
(6)

we can establish the following property which relates the vector spaces of vP and vF

with vE .

Lemma 2 The property vectors and flow vectors in a minimal set are related as fol-

lows:

vP ⊥ vF
∧

vE ⊥ vF ⇒ vP × vE ‖ vF (7)

or equivalently:

vE · vF = 0, vP · vF = 0 ⇒ vP × vE = αvF (8)

where the operator × represents the cross product in 3-D , α =
‖vP ‖

√
3 sin θ

‖vF ‖ and

0 ≤ θ ≤ 2π

Proof The proof trivially follows from the dot and cross product in 3-D [10] ¤

Fig. 3 is the illustration of Lemma 2 .

Fig. 3 Interaction between vector spaces in a minimal set

Although the space defined by the equation (1) is clearly nonconvex, the question

that arises is whether the space defined by (1) and (2) is still nonconvex. The following

property describes the convexity characteristics of the space defined by the minimal

set.

Lemma 3 The space defined by the 3-Vector Representation of a minimal set is non-

convex
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Proof It suffices to show that there exists a point between two points belonging to the

set that does not belong to the set.

Given the point in R3|I|+3, v1
PFE =

(
v1
P , v1

F , v1
E

)
= (1, 1,−1, 2, 1, 3, 1, 1,−1) in the

set and v2
PFE =

(
v2
P , v2

F , v2
E

)
= (3, 1,−2, 1, 1, 2, 1, 1,−1) also in the set. It is easy to

show that the point which is a convex combination of both, namely, v12
PFE = 0.5v1

PFE+

0.5v2
PFE =

(
v12
P , v12

F , v12
E

)
= (2, 1,−1.5, 1.5, 1, 2.5, 1, 1,−1) is not in the set. Note that

v12
P · v12

F 6= 0 . ¤

4 Convex relaxation of the minimal set

The traditional approach for finding a relaxation for the nonconvex set defined by

the 3-Vector Representation is by considering the set in algebraic form and using the

McCormick convex envelopes for the bilinear terms [3].

Namely, the system given by (1) and (2) can be relaxed by:

2∑

i=1

FPi − FPo = 0 (9)

2∑

i=1

Fi − Fo = 0 (10)

FPi ≤ PiF
up
i + P lo

i Fi − P lo
i Fup

i

FPi ≤ PiF
lo
i + Pup

i Fi − Pup
i F lo

i

FPi ≥ PiF
lo
i + P lo

i Fi − P lo
i F lo

i

FPi ≥ PiF
up
i + Pup

i Fi − Pup
i Fup

i

i = o, 1, 2 (11)

This strategy, which is widely used, does not fully exploit the interaction of the

different vectors in the flow and property space, but only the interactions between

individual components of these vectors.

5 Cuts to strengthen the relaxation

The convex relaxation presented in the previous section does not consider the interac-

tion between vectors defined in the different spaces. In this section we show that by

considering this interaction we can generate constraints that will tighten the relaxation.

It is clear that by following the traditional approach, the orthogonality between vF

and vP is not captured. In order to circumvent this problem, we propose to add the

following constraint.

vP × vE = αvF (12)

where α =
‖vP ‖

√
3 sin θ

‖vF ‖ and 0 ≤ θ ≤ 2π , which in algebraic form reads:

−P2 + Po = αF1

P1 − Po = αF2

P1 − P2 = αFo

(13)
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Since these constraints are nonconvex we need to relax them previous to their use

as cuts. We apply the McCormick envelopes to αF1 , αF2 and αFo in conjunction with

equations (13), yielding:

For αF1

−P2 + Po ≤ αFup
1 + αloF1 − αloFup

1

−P2 + Po ≤ αF lo
1 + αupF1 − αupF lo

1

−P2 + Po ≥ αF lo
1 + αloF1 − αloF lo

1

−P2 + Po ≥ αFup
1 + αupF1 − αupFup

1

(14)

For αF2

P1 − Po ≤ αFup
2 + αloF2 − αloFup

2

P1 − Po ≤ αF lo
2 + αupF2 − αupF lo

2

P1 − Po ≥ αF lo
2 + αloF2 − αloF lo

2

P1 − Po ≥ αFup
2 + αupF2 − αupFup

2

(15)

For αFo

P1 − P2 ≤ αFup
o + αloFo − αloFup

o

P1 − P2 ≤ αF lo
o + αupFo − αupF lo

o

P1 − P2 ≥ αF lo
o + αloFo − αloF lo

o

P1 − P2 ≥ αFup
o + αupFo − αupFup

o

(16)

REMARK: If Fup
o = Fup

1 + Fup
2 and F lo

o = F lo
1 + F lo

2 as it happens when Fo is an

intermediate flow that arises from the decomposition of a node with more than two

inlet streams, equations (16) are redundant and should not be used in the relaxation.

It is clear that the strength of the proposed cuts heavily relies on the bounds of

α. In the following section we describe how to obtain them. We also note that in this

derivation we assume ‖vF ‖ to be strictly positive.

6 Obtaining bounds for α

Note that in the previous section explicit bounds of α are necessary. A direct way to

obtain them is by considering the norm of the vector resulting from a cross product.

In other words, we can use αup = max
(‖vP ‖

√
3 sin θ

‖vF ‖
)

=
‖vP ‖max

√
3

‖vF ‖min
=

‖vP up‖√3
‖v

F lo‖ .

Similarly, αup = −αlo

Although the bounds proposed are valid, these might not be tight. In order to tighten

these bounds we can use equations (13) to infer them.

αup = min
(
max −P2+Po

F1
, max P1−Po

F2
, max −P2+P1

Fo

)

Similarly,

αlo = max
(
min −P2+Po

F1
, min P1−Po

F2
, min −P2+P1

Fo

)

Clearly, we can calculate these bounds as a function of the lower and upper bounds

of the flows and properties as follows:
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αup = min




max

(
−P lo

2 +P up
o

F up
1

,
−P lo

2 +P up
o

F lo
1

)
,

max

(
P up

1 −P lo
o

F up
2

,
P up

1 −P lo
o

F lo
2

)
,

max

(
−P lo

2 +P up
1

F up
3

,
−P lo

2 +P up
1

F lo
3

)




and,

αlo = max




min

(
−P up

2 +P lo
o

F up
1

,
−P up

2 +P lo
o

F lo
1

)
,

min

(
P lo

1 −P up
o

F up
2

,
P lo

1 −P up
o

F lo
2

)
,

min

(
−P up

2 +P lo
1

F up
3

,
−P up

2 +P lo
1

F lo
3

)




The cuts proposed differ from the ones obtained by using the traditional approach

[3], as it is proved in the following proposition.

Proposition 1 The proposed cuts (14), (15) and (16) are not dominated by the Mc-

Cormick convex envelopes (11).

Proof It suffices to show that a point lying in the relaxed region using the McCormick

envelopes is cut off when using the proposed approach. The following example demon-

strates this.

Given the minimal set:

F1P1 + F2P2 − F0P0 = 0 (17)

F1 + F2 − F0 = 0 (18)

where 0.5 ≤ F1 ≤ 2 , 1.5 ≤ F2 ≤ 2.5 , 2 ≤ F0 ≤ 4.5 0.5 ≤ P1 ≤ 1.5 , 0 ≤ P2 ≤ 2 ,

0.1 ≤ P0 ≤ 1.9

At the point F1 = 0.5, F2 = 2.3, F0 = 2.8, P1 = 1.2, P2 = 0.1, P0 varies in the

interval [0.20,0.38] using the McCormick relaxation whereas P0 varies in the interval

[0.26,0.31] when using the proposed relaxation. Note that the value obtained for P0 by

solving the original nonconvex problem is P0 = 0.30 ¤

7 Numerical performance

In this section we study the performance of the proposed relaxation with a problem

found in the Process Systems Engineering area known as the Data Reconciliation in

Process Networks. The optimization, control or operation of a process often relies on

having measurements (e.g. flows, compositions) that can be used to adjust models.

In general, the number of sensors in a plant is larger than the degrees of freedom

of the models. However, the information they provide is often not accurate due to

noise of measurements or failures in the sensors. In order to infer better values for the

measurements, previous to their use for optimization or control, a data reconciliation

is necessary [6] .

The first example (Instance 1) consists of a mixer with three inputs and one output

(see Fig. 4). Given the measurements of the inlet and outlet flows as well as their

correspondent properties, the goal is to find a set of new values that minimize the

errors while satisfying the mass and property balances.
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Fig. 4 Mixer with sensors

The model for this problem can be represented as follows:

min Z w1 (F1 − FI1)
2 + w2 (F2 − FI2)

2 + w3 (F3 − FI3)
2 + w4 (F4 − FI4)

2

w5 (P1 − PI1)
2 + w6 (P2 − PI2)

2 + w7 (P3 − PI3)
2 + w8 (P4 − PI4)

2

s.t. F1P1 + F2P2 + F3P3 = F4P4

F1 + F2 + F3 = F4

F lo
1 ≤ F1 ≤ Fup

1 , F lo
2 ≤ F2 ≤ Fup

2 , F lo
3 ≤ F3 ≤ Fup

3 , F lo
4 ≤ F4 ≤ Fup

4

P lo
1 ≤ P1 ≤ Pup

1 , P lo
2 ≤ P2 ≤ Pup

2 , P lo
3 ≤ P3 ≤ Pup

3 , P lo
4 ≤ P4 ≤ Pup

4

(19)

where FI1, FI2, FI3 and FI4 correspond to measured values of the flows and PI1,

PI2, PI3, PI4 correspond to the measured values of the property considered.

The second example consists of a network of mixers and splitters (see Fig. 5).

Given the measurements of the inlet and outlet flows of each mixer as well as their

correspondent properties, the goal is to find a set of new values that minimize the errors

with the measurements while satisfying the mass and property balances. For this case

we present three instances (Instances 2-4) with different sets of measurements 1. The

model for this problem is an extension of the model in (19).

Fig. 5 Process network with sensors

The performance of the proposed method is evaluated by implementing the pro-

posed relaxation in a branch and bound framework, and comparing the lower bound

1 Data for these instances is available upon request from the authors
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obtained at the root node, the number of nodes necessary to find the solution and

the time required by the traditional relaxation. The particular implementation of the

branch and bound method is described as follows. The first step consists of finding an

optimal or suboptimal solution of the problem to obtain an upper bound. This is accom-

plished by solving the original NLP with a local optimizer such as GAMS/CONOPT2

[8]. By using the result obtained in the previous step, a bound contraction of each

continuous variable is performed [7]. This is done by solving min/max subproblems in

which the objective function is the value of the continuous variable to be contracted

subject to the condition that the objective of the original problem is less than the up-

per bound. After the relaxed feasible region is contracted, a spatial branch and bound

search is performed in which the relaxed feasible region is split recursively into sub-

problems that are eliminated when it is established that their descendents cannot hold

a better solution than the one obtained so far. The splitting is performed according

to a branching rule, and the way to decide when to eliminate the subproblems is by

comparing the lower bound LB (i.e. the solution of the subproblem) with the upper

bound UB (i.e. the lowest feasible solution in the original problem obtained so far,

which can be accomplished by using the original NLP); if UB-LB ≤ ε , where ε is a

given tolerance, then the node (i.e. subproblem) is eliminated or pruned. The search

terminates when no more nodes remain.

In the implementation of this work we have chosen to branch on the property vari-

ables by choosing the one belonging to the bilinear term that most violates the feasible

region in the original problem (i.e. the violation to the feasible region is computed by

taking the difference between the bilinear term and the associated relaxed variable). To

generate the subproblems when branching on the continuous variables, we split their

domain by using the bisection method. To choose the node to branch next, we follow

the “Best First” heuristic, which consists in considering the subproblem with lowest

lower bound LB.

As it is shown in Table 1, when using the proposed relaxation in conjunction with

the McCormick envelopes, the lower bound obtained at the root node is closer to the

global optimum (GO) and the number of nodes needed to find the solution is smaller

compared to the traditional approach when only the McCormick envelopes are applied

to the model in (19). These results provide a clear indication of tightening. Also, it is

important to note that the increase in the size of the formulation by the addition of the

proposed cuts, which can be estimated as 8(n−1)+4 new constraints and 3(n−1)−2

new variables per node with n inlet streams, is compensated by the tightening they

produce. This can be seen by the significant decrease in the computational time re-

quired. All problems were solved using a Pentium(R) CPU 3.40GHz and 1GB of RAM,

considering an ε = 10−2 and the beginning incumbent equal to the global optimum.

Table 1 Performance of the Branch and Bound using different relaxation strategies

Traditional Approach Proposed Approach
Instance GO LB Nodes Time(s) LB Nodes Time(s)

1 151.96 142.1 35 30 144.3 17 17
2 5.19 4.86 87 109 5.05 6 22
3 9.79 8.22 650 542 8.78 365 325
4 12.60 12.48 5 19 12.60 1 17
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8 Conclusions

In this paper, we have presented a method for finding tight convex relaxations for a

special set of quadratic constraints given by bilinear and linear terms that commonly

arise in the optimization of process networks. The basic idea lies on exploiting the

interaction between the vector spaces where the different set of variables are defined to

tighten the relaxation of traditional approaches. In order to do so, we first described

the system in vectorial form exposing the interaction of the different vector spaces.

Second, we defined and characterized the elementary building blocks of the system

given by the “minimal sets”. This has allowed us to understand this interaction and

generate from its properties cuts that tighten the original relaxation. Finally, we have

assessed the performance of the proposed method by testing it in four test problems

within a spatial branch and bound framework.
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