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Abstract 

In this work, we address the scheduling problem under uncertainties in electricity price 
and product demand in an air separation plant. The operation of the plant is represented 
by an efficient discrete-time MILP model as a process state transition network in order 
to deal with short-term production scheduling. On the one hand, uncertainties in 
electricity are addressed with stochastic programming techniques to find a schedule that 
minimizes expected cost over a proposed set of scenarios. On the other hand, 
uncertainties in product demand are tackled as flexibility constraints in order to ensure 
flexible operation over the entire range of variation of this uncertain parameter. 

Keywords: Optimal schedule under uncertainty, power-intensive processes, two-stage 
stochastic programming, flexibility analysis. 

1. Introduction 

Demand side management is critical for maintaining profitability, especially in 
industrial power intensive processes where operating cost can be reduced by adjusting 
the production schedule to time-dependent electricity pricing schemes. However, 
uncertainty in these systems not only arises from electricity price but also from product 
demand.  

Stochastic programming is the framework that models mathematical programs with 
uncertainty by optimizing the expected value over the possible realizations (Birge and 
Louveaux, 2011). The expected value is computed by integrating over the set of 
uncertain parameters. A simplification of this calculation involves a discretization of the 
uncertainty sets, where the realizations can be characterized with a finite number of 
scenarios. The most common stochastic programs that consider recourse is the Mixed-
Integer Linear Programming (MILP) with continuous recourse in a second stage. The 
two-stage stochastic programming formulation considers two types of decisions: first 
stage, made before uncertainty reveals, and second stage, independent for each scenario.  

Stochastic programming has found applications in process synthesis. For example, 
Halemane and Grossmann (1983) presented a two-stage approach for the design of 
flexible processes under uncertainty. The design problem is formulated to minimize a 
cost function and to guarantee feasible operation over a polyhedral uncertainty set. 

The design of robust or flexible chemical processes under uncertainty has been 
dominated by the concept of flexibility analysis, which was first proposed and then 
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further developed by Grossmann and co-workers, a description of its historical 
development can be found in Grossmann et al. (2016). Recently, Zhang et al. (2016) 
presented insights on the strong connection between flexibility analysis and robust 
optimization. 

The basic idea of flexibility analysis is to consider explicitly uncertainties in chemical 
processes. In general, the study of the flexibility can be performed at different stages. 
First at the design stage, where the optimization models for process design explicitly 
include flexibility constraints. Then with fixed design variables, to evaluate if certain 
design can tolerate the uncertainties in a specified range, known as the flexibility test 
problem. Finally, to quantify the range of uncertainties that the design can tolerate, 
called the flexibility index problem. 

In this work, we propose a novel approach for the optimal production schedule with 
flexibility constraints, an analogous approach for the design of flexible processes under 
uncertainty proposed by Halemane and Grossmann (1983). We deal with uncertainties 
in electricity price and product demand in a production scheduling model of an air 
separation plant (Basán et al., 2017). Operation is represented by a discrete-time MILP 
model as a process state transition network, a scheme of the states can be seen in Fig. 1. 
We propose to explore the use of stochastic programming to account for uncertainties in 
electricity price in order to find the optimal production schedule that minimizes 
expected cost over a given set of scenarios. A two-stage stochastic programming 
problem is formulated considering the plant state binary variables as first-stage and the 
operation variables, such as power consumption, production and inventory levels, as 
second-stage. 

Moreover, we address uncertainty in product demand so as to achieve robustness. We 
consider flexibility constraints to ensure flexible operation over the entire range of this 
parameter values. To obtain a flexible schedule with respect to product demand, the 
two-stage stochastic model evaluated at discrete electricity price scenarios with 
flexibility constraints need to satisfy the flexibility test. The test is evaluated with two 
different methodologies: affinely adjustable robust optimization and an iterative 
framework based on a dual-based flexibility analysis (Zhang et al., 2016). Once a 
flexible schedule is obtained, we calculate the flexibility index with both approaches to 
obtain a measure of the flexibility that can actually be achieved. We illustrate the 
application of the proposed models with a number of examples that show the 
effectiveness of the proposed approach for handling the uncertainties. 

 

Figure 1. Process Transition Network (Basán et al., 2017). 
 



Optimal Production Scheduling of Gases under Uncertainty with Flexibility Constraints  3 

2. Problem Statement and Methodology 

The main objective is to minimize the expected value of the optimal cost function by 
selecting schedule variable s over the entire region T, which is the uncertainty set. First, 
the scheduling model corresponds to a MILP of the general form (see Basán et al., 
2017):  

min	்ܿݔ   ݕ்݀

s.t.             Ax  By  d	, x  0, y ൌ ሼ0,1ሽ 

(1) 

(2) 

In order to represent the feasible region of operation, the model is expressed as:   
݂ሺs, ,ݖ ሻߠ  0, where s correspond to the 0-1 scheduling variables, z are the control 
variables and ߠ the uncertain parameters. The problem of optimal schedule under 
uncertainty corresponds to a two-stage programming problem, leading to an infinite 
programming problem because the feasibility constraint must be satisfied for the whole 
range of variation of θ. 

min
ௌ

E
	ఏ	∈	்

ቄቀmin
௭
ܿሺs, ,ݖ ሻߠ ቚ݂ሺs, ,ݖ ߠ  0ሻቁቅ 

s.t.             ∀	ߠ	 ∈ ܶ	൛∃	ݖ	൫∀	݆	 ∈ ܬ ൣ ݂ሺݏ, ,ݖ ሻߠ  0൧൯ൟ 

(3) 

(4) 

The flexibility test problem states that for every point θ ∈	T there must exist at least one 
value of the vector control variable z that gives rise to non-positive values for all the 
individual constraint functions j. This means that irrespective of the actual values taken 
by the bounded parameters θ, the plant schedule s has the flexibility of operating to 
satisfy the specifications. A first simplification involves the discretization over the 
parameter space in order to approximate the expected cost by a weighted cost function. 
By using global maximum and minimum operators and inductive reasoning Halemane 
and Grossmann (1983), derived an equivalent multilevel optimization for the logical 
condition (4):maxఏ	∈	் 	 min	௭ max	∈ ݂ሺݏ, ,ݖ   .ሻߠ
The optimal schedule with flexibility analysis is then: 

min
ௌ,௭భ,௭మ,…,௭

߮ ∙ ܿሺݏ, ,ݖ ሻߠ



ୀଵ

 

s.t.            ݂ሺݏ, ,ݖ ሻߠ  0, ݅ ൌ 1, 2, … , ݊ 

max
ఏ	∈	்

	 min	
௭

max
	∈ ݂ሺݏ, ,ݖ ሻߠ  0 

(5) 

(6) 

(7) 

where φi are discrete probabilities or weights for the selected finite number of parameter 
points θi. To solve the optimal schedule for the air separation plant with flexibility 
demand constraints we address two approaches: dual-based flexibility analysis (DFA) 
and adjustable robust optimization (AARO) following Zhang et al. (2016). 

2.1. Schedule with Flexibility Constraints 
Consider a set of m inequality constraints 

݂ሺݏ, ,ݖ ሻߠ ൌ ܽݏ  ܾݖ  ܿߠ  0  ∀ ݆ ∈  (8) ܬ
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where ݏ ∈ 	Թೞ  are schedule variables, ݖ ∈ 	Թ are control variables and ߠ ∈ 	Թഇare 
uncertain parameters,	 ܽ,	 ܾ 	and ܿ are row vectors, and ܬ is the set of constraints. 

Table 1. DFA and AARO formulation for the scheduling problem under uncertainty and for 
flexibility index. 
Schedule problem with Dual-based Formulation Schedule problem with AARO Formulation 

߯ሺܵሻ ൌ max
ఒ,ఒഥ,௫

ߣ்ܣ்ݏ				  ܿൣߣ൫ߠே െ ି൯ߠ∆
	∈௵∈

 ାߠ∆൫ߣ̅   ି൯൧ߠ∆

ߟ ൌ min
߭,ߤ,ܳ	,,ݖ̅,݀

ොܿܶݏ ߮݅ܿ̅
݅ݖ̅ܶ

ܫ߳݅

 

s.t.             ்݁ߣ ൌ 1 
ߣ்ܤ ൌ 0 
ߣ̅  ሺߣ െ 1ሻ  	∀								ݔ ∈ ,߆ 	݆ ∈  ܬ
	ߣ̅  	∀						ߣ ∈ ,߆ 	݆ ∈  ܬ
ߣ̅  	∀						ݔ ∈ ,߆ 	݆ ∈  ܬ

ߣ  0, ߣ̅  0, x ∈ ሼ0,1ሽ

s.t. ݏܣ  ̅ݖܤ  ߠ̅ܥ  0 ∀ ݅ ∈  ܫ
        ܽݏ  ܾ  
        ൛ሺߠሻ்ߤ െ ሺߠሻ் ߭ൟ  	݆	∀		ݑ ∈  ܬ

ߤ െ ߭ ൌ ൫ ܾܳ  ܿ൯
்
	∀	݆	 ∈  ܬ

Flexibility Index with DFA Flexibility Index with AARO
ሻݏሺܫܨ ൌ min

ఒ,ఒഥ,	௫
ሺെݏܣ െ ேሻ்ߠܥ ߣ ሻݏሺܫܨ ൌ maݔ

, ொ,ఓ,ఋ
ߜ

s.t.        ߣ்ܤ ൌ 0 

 ܿൣߣߠ߂ି  ାߠ߂൫ߣ̅  ି൯൧ߠ߂
∈௵∈

 1 

ߣ̅  ൫ߣ  1൯  		∀	ݔ ∈ ,߆ 	݆	 ∈  ܬ
ߣ̅  		∀ ߣ ∈ ,߆ 		݆	 ∈  ܬ
ߣ̅  		∀ ݔ ∈ ,߆ 		݆	 ∈  ܬ
ߣ̅  0, ߣ  0, ݔ ∈ ሼ0,1ሽ 

s.t.        ߜ  0 
            ܽݏ  ܾ  ܿሺߠே െ ሻିߠ߂ߜ  ߤ்݁  0 

∀	݆	 ∈  ܬ

ߤ														  ൫ ܾܳ  ܿߜ(ߠ߂+ିߠ߂ା) ൯
்
	    ∀	݆	 ∈  ܬ

 

DFA is derived using LP duality theory, considering that solution must lie in the 
vertices, and then applying exact linearization to bilinear terms, leading to a MILP 
problem. Whereas, in the AARO approach the control actions are considered affine 
functions of ߠ, i.e. ݖሺߠሻ ൌ    which allow some degree of recourse, but leading to ,ߠܳ
a restricted problem. In this reformulation, it is also assumed that the solution lies in the 
vertices, which is true when the constraints are jointly convex. To obtain finally the 
affinely adjustable robust counterpart, a constraint-wise worst-case approach and LP 
duality theory are applied. An advantage of this approach is that it does not add any 
binary variable. The final formulation of both approaches is described in Table 1. 
Details of the reformulation steps for both approaches can be found in Zhang et al. 
(2016). 

The flexibility function ߯ሺݏሻ	of schedule s with respect to the uncertainty set T represent 
the projection of the feasible region. If T is inscribed in the projection, then ߯ሺݏሻ 	 0 
meaning that a feasible schedule is obtained. When T is not completely constrained in 
the projection, then	߯ሺݏሻ  0. 

The algorithm for the DFA is based on an iterative column-and-constraint generation 
approach, which relies on the fact that a schedule is feasible for all ߠ ∈ ܶ if it is feasible 
for the worst-case realization of the uncertainty, which lies at one of the vertices of T. It 
includes the following steps: 

1) Set k=0. Choose an initial set T of  N critical points 
2) Solve: 

ߟ ൌ ݉݅݊
ௌ,௭,ഥ௭̂

߮ݏ்̂ܿ ∙ పഥݖ்	̅ܿ



ୀଵ

 
(9) 

(10) 
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	s.t:  						 ݏܣ			  పഥݖܤ  పഥߠܥ  0, ∀ ݅ ∈ ܫ  Electricity Price Scenarios  
ݏܣ  ௧ෝݖܤ  ௧ߠܥ  0, ∀ ݐ ∈ ܶ Product Demand Vertices

(11) 

To obtain ݏ 
3) Solve Problem: Dual-based Flexibility Analysis with	S ൌ S୩, Obtain critical point  θ୩

ୡ  
If χሺsሻ  0, Stop. Else go to step 4. 

4) Set θ୩ାଵ ൌ θ୩
ୡ , 	N୩ାଵ ൌ N୩  1, T୩ାଵ ൌ ሼ1,2, … , N୩ାଵሽ, 	k ൌ k  1. Go to Step 2. 

The algorithm converges in a finite number of iterations, since there is a finite number 
of vertices. Another difference between both approaches is that AARO does not require 
an iterative framework. 

2.2. Flexibility Index 
Consider the uncertainty set as ܶሺߜሻ ൌ ሼߠ: ேߠ െ ିߠ߂ߜ  ߠ  ேߠ   ାሽ, where δ isߠ߂ߜ
a positive scalar, ିߠ߂ and ߠ߂ା negative and positive deviation from the nominal value. 
The flexibility index is a measure of how much flexibility can actually be achieved in 
the given schedule. The objective is to find the largest δ such that by proper adjustment 
of control variables z, the inequalities ݂ሺݏ, ,ݖ ሻߠ  0 ݆ ∈ ߠ hold for all ܬ ∈ ܶሺߜሻ. 

Following a similar reasoning as in the flexibility test, the flexibility index problem can 
be reformulated into the problems described in Table 1. If the value of FI>1, then 
schedule exceeds the flexibility target, whereas when FI < 1, it does not meet the target. 

3. Numerical Results 

The presented methodology is applied to scheduling model of an air separation plant 
with a time horizon of 168 hours, proposed by Basán et al. (2017). First, the two-stage 
stochastic programming is applied considering the plant state (binary variables) as the 
first stage decision. Second stage decision are production level, inventory and power 
consumption. The different electricity price scenarios profiles proposed are shown in 
Fig. 2, together with the nominal demand profile. We should notice that vector ߠ is 
partitioned into two subset, ߠଵ for electricity prices and ߠଶ	 for demand uncertainty. 

 
Figure 2. Proposed electricity price scenarios and nominal product demand profile. 
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Figure 3. Optimal and flexible production schedule 

Table 2. Scheduling under uncertainty with flexibility constraints and flexibility index results. 

Problem Approach 
# of bin. 
variables

# of cont. 
variables 

# of constraints Result 
Gap 
(%)

Solution Time 
 (s) 

Schedule 
under 

uncertainty 

Dual-based 168 116,948 348,355 
Cost 

40814* 
0 46 

AARO  247,218 116,779 40814  10.6 

Flexibility 
Index 

Dual-based 168 116,948 348,355 FI=1.083 0 10,739 

AARO  131,131 116,780 FI=1.083  135.6 

(*) The DFA problem converges in the first iteration.  

DFA and AARO formulations lead to the same production schedule, shown in Fig. 3. In 
addition to, both approaches provide the same flexibility index value for the uncertain 
demand. This implies that the same level of flexibility can be achieved even when 
considering a restricted control variable as in the case of AARO. The solution time 
required by the AARO LP models is less compared to the DFA, especially in the case of 
the flexibility index with two orders of magnitude of difference, as detailed in Table 2.  

4. Conclusion 

In this paper, we have addressed the scheduling problem under uncertainty. We 
proposed to deal with the uncertainty in electricity price stochastically and in product 
demand in a robust way by considering it as the uncertain parameter set of the flexibility 
constraint. We solved the problem with the dual-based flexibility analysis and affinely 
adjustable robust optimization formulations. 

The proposed approach has allowed the efficient calculation of the optimal schedule for 
the expected value of electricity price profiles and feasible operation for the range of 
variation of product demand over a time horizon of 168 hours. In addition, flexibility 
indices were computed successfully with both formulations, providing a measure of 
feasibility of the obtained schedule. Both formulations led to the same results for the 
different problems, with shorter solution times for the AARO approach, in line with the 
results obtained by Zhang et al. (2016). 
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