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Abstract 

In this paper, we present an efficient strategic/tactical planning model for offshore oilfield 

development problem that is fairly generic and can be extended to include other complexities. 

The proposed multiperiod non-convex MINLP model for multi-field site includes three 

components (oil, water and gas) explicitly in the formulation using 3
rd 

and higher order 

polynomials avoiding bilinear and other nonlinear terms. With the objective of maximizing total 

NPV for long-term planning horizon, the model involves decisions related to FPSO (floating 

production, storage and offloading) installation and expansion schedule and respective oil, liquid 

and gas capacities, connection between the fields and FPSOs, well drilling schedule and 

production rates of these three components in each time period. The resulting model can be 

solved effectively with DICOPT for realistic instances and gives good quality solutions. 

Furthermore, the model can be reformulated into an MILP after piecewise linearization and exact 

linearization techniques that can be solved globally in an efficient way. Solutions of realistic 

instances involving 10 fields, 3 FPSOs, 84 wells and 20 years planning horizon are reported, as 

well as comparisons between the computational performance of the proposed MINLP and MILP 

formulations.   
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1  Introduction  

Offshore oil and gas field development represents a very complex problem and involves multi-

billion dollar investments and profits (Babusiaux et al., 2004). The complexity comes from the 

fact that usually there are many alternatives available for installation of the platforms and their 

sizes, for deciding which fields to develop and what should be the order to develop them, and 

which and how many wells are to be drilled in those fields and in what order, which field to be 

connected to which facility, and how much oil and gas to produce from each field. The 

sequencing of these installations and connections must also be based on physical considerations, 

e.g. field can only be developed if a corresponding facility is present. The other complexities are 

the consideration of nonlinear profiles of the reservoir that are critical to predict the actual 

flowrates of oil, water and gas from each field as there can be significant variations in these 

flowrates over time, limitation on the number of wells that can be drilled each year due to 

availability of the drilling rigs, and long-term planning horizon that is the characteristics of the 

these projects. Moreover, installation and operation decisions in these projects involve very large 

investments that can lead to large profits, or losses in the worst case if these decisions are not 

made carefully.  

Therefore, based on the above, there is a clear motivation to optimize the investment and 

operations decisions for oil and gas field development problem to ensure reasonable return on the 

investments over the time horizon considered. By including all the considerations described 

above in an optimization model, this leads to a multiperiod MINLP problem.  Furthermore, the 

extension of this model to the cases where we consider the fiscal rules (Van den Heever et al. 

(2000) and Van den Heever and Grossmann (2001)) and the uncertainties, especially endogenous 

uncertainty cases (Jonsbraten et al. (1998), Goel and Grossmann (2004, 2006), Goel et al. (2006), 

Tarhan et al. (2009, 2011) and Gupta and Grossmann (2011)), can lead to a very complex 

problem to solve. Therefore, an effective model for the deterministic case is proposed that on the 

one hand captures the realistic reservoir profiles, interaction among various fields and facilities, 

wells drilling limitations and other practical trade-offs involved in the offshore development 

planning, and on the other hand can be used as the basis for extensions that include other 

complexities, especially fiscal rules and uncertainties. This paper focuses on a non-convex 

MINLP model for the strategic/tactical planning of the offshore oil and gas fields, which 
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includes sufficient details to make it useful for realistic oilfield development projects, as well as 

for extensions to include fiscal and uncertainty considerations.   

The oilfield investment and operation planning is traditionally modeled as separate LP 

(Lee and Aranofsky (1958), Aronofsky and Williams (1962)) or MILP (Frair, 1973) problems 

under certain assumptions to make them computationally tractable. Simultaneous optimization of 

the investment and operation decisions was addressed in Bohannon (1970), Sullivan (1982) and 

Haugland et al. (1988) using MILP formulations with different levels of details in these models. 

Behrenbruch (1993) emphasized the need to consider a correct geological model and to 

incorporate flexibility into the decision process for an oilfield development project.  

Iyer et al. (1998) proposed a multiperiod MILP model for optimal planning and 

scheduling of offshore oilfield infrastructure investment and operations. The model considers the 

facility allocation, production planning, and scheduling within a single model and incorporates 

the reservoir performance, surface pressure constraints, and oil rig resource constraints. To solve 

the resulting large-scale problem, the nonlinear reservoir performance equations are 

approximated through piecewise linear approximations. As the model considers the performance 

of each individual well in a reservoir independently, it becomes expensive to solve for realistic 

multi-field sites. Moreover, the flow rate of water was not considered explicitly for facility 

capacity calculations.  

Van den Heever and Grossmann (2000) extended the work of Iyer et al. (1998) and 

proposed a multiperiod generalized disjunctive programming model for oil field infrastructure 

planning for which they developed a bilevel decomposition method. As opposed to Iyer and 

Grossmann (1998), they explicitly incorporated a nonlinear reservoir model into the formulation. 

Van den Heever et al. (2000), and Van den Heever and Grossmann (2001) extended their work to 

handle complex economic objectives including royalties, tariffs, and taxes for the multiple gas 

fields site. These authors incorporated these complexities into their model through disjunctions 

as well as big-M formulations. The results were presented for realistic instances involving 16 

fields and 15 years. However, the model considers only gas production and the number of wells 

were used as parameters (fixed well schedule) in the model.  

Ortiz-Gomez et al. (2002) presented three mixed integer multiperiod optimization models 

of varying complexity for the oil production planning. The problem considers fixed topology and 

is concerned with the decisions involving the oil production profiles and operation/shut in times 
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of the wells in each time period assuming nonlinear reservoir behavior. Based on the continuous 

time formulation for gas field development with complex economics, Lin and Floudas (2003) 

presented an MINLP model and solved it with a two stage algorithm. Carvalho and Pinto (2006) 

considered an MILP formulation for oilfield planning based on the model developed by 

Tsarbopoulou (2000), and proposed a bilevel decomposition algorithm for solving large scale 

problems where master problem determines the assignment of platforms to wells and a planning 

subproblem calculates the timing for the fixed assignments. The work was further extended by 

Carvalho and Pinto (2006) to consider multiple reservoirs within the model.  

In the papers described above, one of the major assumptions is that there is no uncertainty 

in the parameters. Jonsbraten (1998) addressed the oilfield development planning problem under 

oil price uncertainty using an MILP formulation which was solved with a progressive hedging 

algorithm. Aseeri et al. (2004) introduced uncertainty in the oil prices and well productivity 

indexes, financial risk management, and budgeting constraints into the model proposed by Iyer 

and Grossmann (1998) and solved the resulting stochastic model using a sampling average 

approximation algorithm. Goel and Grossmann (2004) considered a gas field development 

problem under uncertainty in the size and quality of reserves where decisions on the timing of 

field drilling were assumed to yield an immediate resolution of the uncertainty, i.e. the problem 

involves decision-dependent uncertainty as discussed in Jonsbraten et al. (1998). Linear reservoir 

models, which can provide a reasonable approximation for gas fields, were used. In their solution 

strategy, the authors used a relaxation problem to predict upper bounds, and solved multistage 

stochastic programs for a fixed scenario tree for finding lower bounds. Goel et al. (2006) later 

proposed a branch and bound algorithm for solving the corresponding disjunctive/mixed-integer 

programming model where lower bounds are generated by Lagrangean duality.  

Ulstein et al. (2007) addressed the tactical planning of petroleum production that involves 

regulation of production levels from wells, splitting of production flows into oil and gas 

products, further processing of gas and transportation in a pipeline network.  The model was 

solved for different cases with demand variations, quality constraints, and system breakdowns. 

Tarhan et al. (2009) developed a multistage stochastic programming model for planning offshore 

oil field infrastructure under uncertainty where the uncertainties in initial maximum oil flowrate, 

recoverable oil volume, and water breakthrough time of the reservoir are revealed gradually as a 

function of investment and operating decisions. The model is formulated as a disjunctive/mixed-
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integer nonlinear programming model that consists of individual non-convex MINLP 

subproblems connected to each other through initial and conditional non-anticipativity 

constraints. The duality-based branch and bound algorithm was proposed taking advantage of the 

problem structure and globally optimizing each scenario problem independently. However, it 

considers either gas/water or oil/water components for single field and single reservoir at a 

detailed level. Hence, realistic multi-field site instances can be expensive to solve with this 

model.  

Li et al. (2010) presented a stochastic pooling optimization formulation to address the 

design and operation of natural gas production networks, where the qualities of the flows are 

described with a pooling model and the uncertainty is handled with a two-stage stochastic 

approach. The resulting large-scale nonconvex MINLP is solved with a rigorous decomposition 

method. Elgsæter et al. (2010) proposed a structured approach to optimize offshore oil and gas 

production with uncertain models which iteratively updates setpoints while documenting the 

benefits of each proposed setpoint change through excitation planning and result analysis. The 

approach is able to realize a significant portion of the available profit potential while ensuring 

feasibility despite large initial model uncertainty. 

In this paper, there are six major extensions and differences that are addressed as 

compared to the previous work:  

(1) We consider all three components (oil, water and gas) explicitly in the formulation, 

which allows to consider realistic problems for facility installation and capacity decisions.  

(2) Nonlinear reservoir behavior in the model is approximated by 3rd and higher order 

polynomials to ensure sufficient accuracy for the predicted reservoir profiles. 

 (3) Reservoir profiles are modeled as independent polynomials for each field-facility 

connections for simplicity.  

(4) The number of wells is used as a variable for each field to capture the realistic drill rig 

limitations and the resulting trade-offs among various fields. 

(5) We include the possibility of expanding the facility capacities in the future, and 

including the lead times for construction and expansions for each facility to ensure realistic 

investments.  

(6) Reservoir profiles are also expressed in terms of cumulative water and cumulative gas 

produced that are derived from WOR and GOR expressions avoiding bilinearities in the model. 
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The outline of this paper is as follows. First, we present a brief background on the basic 

structure of an offshore oilfield site and major reservoir features. Next, we introduce the problem 

statement and the MINLP model for offshore oilfield development problem. The MINLP model 

is then reformulated as an MILP problem. Furthermore, both models are reformulated with 

reduced number of binary variables. Numerical results of three realistic cases up to 10 oilfields 

and 20 years are considered to report the performance of the proposed models.  

2  Background 

An offshore oilfield infrastructure consists of various production facilities such as Floating 

Production, Storage and Offloading (FPSO), fields, wells and connecting pipelines to produce oil 

and gas from the reserves. Each oilfield consists of a number of potential wells to be drilled 

using drilling rigs, which are then connected to the facilities through pipelines to produce oil. 

There is two-phase flow in these pipelines due to the presence of gas and liquid that comprises 

oil and water. Therefore, there are three components, and their relative amounts depend on 

certain parameters like cumulative oil produced. The field to facility connection involves trade-

offs associated to the flowrates of oil and gas for a particular field-facility connection, 

connection costs, and possibility of other fields to connect to that same facility, while the number 

of wells that can be drilled in a field depends on the availability of the drilling rig that can drill a 

certain number of wells each year.  

We assume in this paper that the type of offshore facilities connected to fields to produce 

oil and gas are FPSOs with continuous capacities and ability to expand them in the future. These 

FPSO facilities costs multi-billion dollars each depending on their sizes and have the capability 

of operating in remote locations for very deep offshore oilfields (200m-2000m) where seabed 

pipelines are not cost effective. FPSOs are large ships that can process the produced oil and store 

until it is shipped to the onshore site or sales terminal. Processing includes the separation of oil, 

water and gas into individual streams using separators located at these facilities. Each FPSO 

facility has a lead time between the construction or expansion decision, and the actual 

availability. The wells are subsea wells in each field that are drilled using drilling ships. 

Therefore, there is no need to have a facility present to drill a subsea well. The only requirement 

to recover oil from it is that the well must be connected to a FPSO facility. In this paper, we 

focus on multi-field site and include sufficient details in the model to account for the various 

trade-offs involved without going into much detail for each of these fields. However, the 
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proposed model can easily be extended to include various facility types and other details in the 

oilfield development planning problem.    

The location of production facilities and possible field and facility allocation itself is a 

very complex problem. In this work, we assume that the potential location of facilities and field-

facility connections are given. In addition, the potential number of wells in each field is also 

given. Note that each field can be potentially allocated to more than one FPSO facility, but once 

the particular field-connection is selected, the other possibilities are not considered. Furthermore, 

each facility can be used to produce oil from more than one field.   

The facilities and connection involved in the offshore planning are often in operation 

over many years, and it is therefore important to take future conditions into consideration when 

designing an initial infrastructure or any expansions. This can be incorporated by dividing the 

planning horizon, for example, 20 years, into a number of time periods with a length of 1 year, 

and allowing investment and operating decisions in each period, which leads to a multi-period 

planning problem.  
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When oil is extracted from a reservoir oil deliverability, water-to-oil ratio (WOR) and 

gas-to-oil ratio (GOR) change nonlinearly as a function of the cumulative oil recovered from the 

reservoir. The initial oil and gas reserves in the reservoirs, as well as the relationships for WOR 

and GOR in terms of fractional recovery (fc), are estimated from geologic studies. Figures 1 (a) –

(c) represent the oil deliverability from a field per well, WOR and GOR versus fractional oil 

recovered from that field. We can see from these figures that there are different nonlinear field 

profiles for different field-FPSO connections to account for the variations in the flows for each 

of these possible connections.  

The maximum oil flowrate (field deliverability) per well can be represented as a 3
rd

 order 

polynomial equation (a) in terms of the fractional recovery.  Furthermore, the actual oil flowrate 

(xf ) from each of the wells is restricted by both the field deliverability   
 , (b), and facility 

capacity. We assume that there is no need for enhanced recovery, i.e., no need for injection of 

gas or water into the reservoir. The oil produced from the wells (xf ) contains water and gas and 

their relative rates depend on water-to-oil ratio (worf)  and gas-to-oil ratio (gorf) that are 

approximated using 3
rd

 order polynomial functions in terms of fractional oil recovered (eqs. (c)-

(d)). The water and gas flow rates can be calculated by multiplying the oil flowrate (xf ) with 

water-to-oil ratio and gas-to-oil ratio as in eqs. (e) and (f), respectively.  Note that the reason for 

considering fractional oil recovery compared to cumulative amount of oil was to avoid numerical 

difficulties that could arise due to very small magnitude of the polynomial coefficients in that 

case. 
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In Appendix A we derive the polynomial equations for the cumulative water and 

cumulative gas produced as a function of fractional recovery using equations (c) and (d), 

respectively, in order to avoid the bilinear terms (e)-(f) that are required in the model based on 

the above reservoir equations. In the next section, we give a formal description of the oilfield 

development problem considered in the paper that is formulated as an MINLP problem in the 

subsequent section.  

3  Problem Statement 

Given is a typical offshore oilfield infrastructure consisting of a set of oil fields F = {1,2,…f}   

available for producing oil using a set of FPSO (Floating, Production, Storage and Offloading) 

facilities, FPSO = {1,2,…fpso},  (see Fig. 2). To produce oil from a field, it must be connected to a 

FPSO facility that can process the produced oil, store and offload it to the other tankers.  
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We assume that the location of each FPSO facility and its possible connections to the 

given fields are known (Figure 2). Notice that each FPSO facility can be connected to more than 

one field to produce oil while a field can only be connected to a single FPSO facility. There can 

be a significant amount of water and gas that comes out with the oil during the production 

process that needs to be considered while planning for FPSO capacity installations and 

expansions. The water is usually re-injected after separation from the oil while the gas can be 

sold in the market. In this case for simplicity we do not consider water or gas re-injection i.e. 

natural depletion of the reserves. 

To develop and operate such a complex and capital intensive offshore oilfield 

infrastructure, we have to make the optimum investment and operation decisions to maximize the 

NPV considering a long-term planning horizon. The planning horizon is discretized into a 

number of time periods t, typically each with 1 year of duration. Investment decisions in each 

time period t include which FPSO facilities should be installed or expanded, and their respective 

installation or expansion capacities for oil, liquid and gas, which fields should be connected to 

which FPSO facility, and the number of wells that should be drilled in a particular field f given 

the restrictions on the total number of wells that can be drilled in each time period t over all the 

given fields. Operating decisions include the oil/gas production rates from each field f in each 

time period t. It is assumed that all the installation and expansion decisions occur at the 

beginning of each time period t, while operation takes place throughout the time period. There is 

a lead time of l1 years for each FPSO facility initial installation and a lead time of l2 years for the 

expansion of an earlier installed FPSO facility. Once installed, we assume that the oil, liquid (oil 

and water) and gas capacities of a FPSO facility can be expanded only once.  

Field deliverability, i.e. maximum oil flowrate from a field, WOR and GOR are 

approximated by a cubic equation, while cumulative water produced and cumulative gas 

produced from a field are represented by fourth order polynomials in terms of the fractional oil 

recovered from that field. Notice that these 4
th

 order polynomials correspond to the integration of 

the cubic equations for WOR and GOR as explained in Appendix A. The motivation for using 

polynomials for cumulative water produced and cumulative gas produced as compared to WOR 

and GOR is to avoid bilinear terms in the formulation and to allow converting the resulting 

model into an MILP formulation. Furthermore, all the wells in a particular field f are assumed to 
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be identical for the sake of simplicity leading to the same reservoir profiles, eqs. (a)-(f), for each 

of these wells.  

4  MINLP Model 

We present in this section a multiperiod MINLP model for the offshore oil and gas field 

infrastructure optimization problem. The objective function (1) is to maximize the total net 

present value (NPV) of the project. Constraint (2) represents the overall NPV as a function of the 

difference between total revenue and total cost in each time period t taking the discount factors dt 

into account.  
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)1(

 
)( tt

t

t COSTREVdNPV 
      

)2(

 The total revenues (3) in each time period t are computed based on the total amount of oil 
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The total cost incurred in (7) is the sum of capital and operating expenses in each time 

period t. The overall capital expenses (8) consist of the fixed installation costs for FPSO 

facilities, variable installation and expansion costs corresponding to the FPSOs liquid and gas 

capacities, connection costs between a field and a FPSO facility and cost of drilling the wells for 
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each field in each time period t. The total operating expenses (9) are the operation cost occurred 

corresponding to the total amount of liquid and gas produced in each time period t.  
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Constraints (10)-(13) predict the reservoir behavior for each field f in each time period t. 

In particular, constraint (10) restricts the oil flow rate from each well for a particular FPSO-field 

connection in time period t to be less than the deliverability (maximum oil flow rate) of that field 

per well where equation (11) represents the field deliverability per well at the beginning of time 

period t+1 for a particular FPSO-field connection as the cubic equation in terms of the fractional 

oil recovered by the end of time period t from that field. In particular, (11a) corresponds to the 

oil deliverability in time period 1 while (11b) represents for the rest of time periods in the 

planning horizon. Constraints (12) and (13) represent the value of water-to-oil and gas-to-oil 

ratios in time period t for a specific field-FPSO connection as cubic equations in terms of the 

fractional oil recovery by the end of previous time period, respectively.  
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The predicted WOR and GOR values in equations (12) and (13) are further used in 

equations (14) and (15) to calculate the respective water and gas flowrates from field to FPSO in 

time period t by multiplying it with the corresponding oil flow rate. Notice that these equations 

give rise to the bilinear terms in the model. 
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The total oil flow rate in (16) from each field f in time period t is the sum of the oil flow 

rates that are directed to FPSO facilities in that time period t, whereas oil that is directed to a 

particular FPSO facility from a field f is calculated as the multiplication of the oil flow rate per 

well and number of wells available for production in that field, eq. (17). 
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Eq. (18) computes the cumulative amount of oil produced from field f  by the end of time 

period t, while (19) represents the fractional oil recovery by the end of time period t. The 

cumulative oil produced is also restricted in (20) by the recoverable amount of oil from the field. 
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Eqs. (21)-(23) compute total oil, water and gas flow rates into each FPSO facility, 

respectively, in time period t from all the given fields.  
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 There are three types of capacities i.e. for oil, liquid (oil and water) and gas that are used 

for modeling the capacity constraints for FPSO facilities. Specifically, Eqs. (24)-(26) restrict the 

total oil, liquid and gas flow rates into each FPSO facility to be less than its corresponding 

capacity in each time period t respectively. These three different kinds of capacities of a FPSO 

facility in time period t are computed by equalities (27)-(29) as the sum of the corresponding 

capacity at the end of previous time period t-1, installation capacity at the beginning of time 

period t-l1 and expansion capacity at the beginning of time period t-l2. Specifically, the term 

           
   in equation (27) represents the oil capacity of a FPSO facility that started to install l1 

years earlier and is expected to be ready for production in time period t, to account for the lead 

time of l1 years for a FPSO facility installation. The term            
    represents the expansion 

decision in the oil capacity of an already installed FPSO facility that is taken l2 years before time 

period t, to consider the lead time of l2 years for capacity expansion. Similarly, the corresponding 

terms in equations (28) and (29) represent the lead times for liquid and gas capacity installation 

or expansion, respectively. Notice that due to one installation and expansion of a FPSO facility, 

           
   and            

    can have non-zero values only once in the planning horizon while 

         
    can be non-zero in the multiple time periods.  
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Inequalities (30) and (31) restrict the installation and expansion of a FPSO facility to take 

place only once, respectively, while inequality (32) states that the connection between a FPSO 

facility and a field can be installed only once during the whole planning horizon. Inequality (33) 

ensures that a field can be connected to at most one FPSO facility in each time period t, while 

(34) states that at most one FPSO-field connection is possible for a field f during the entire 

planning horizon T due to engineering considerations. Constraints (35) and (36) state that the 

expansion in the capacity of a FPSO facility and the connection between a field and a FPSO 

facility, respectively, in time period t can occur only if that FPSO facility has already been 

installed by that time period.  

1, 
Tt

tfpsob

      

fpso
  

)30(

 
1, 

Tt

ex

tfpsob

      

fpso
  

)31(

 
1,, 

Tt

c

tfpsofb

      

fpsof ,
  

)32(

 
1,, 

fpso

c

tfpsofb

      

tf ,
  

)33(

 




Tt fpso

c

tfpsofb 1,,

     

f
   

)34(



16 
 

 




t

fpso

ex

tfpso bb
1

,,




     

tfpso,
  

)35(

 



t

fpso

c

tfpsof bb
1

,,,




     

tfpsof ,,
 

)36(
 

Inequality (37) states that the oil flow rate per well from a field f to a FPSO facility in 

time period t will be zero if that FPSO-field connection is not available in that time period. 

Notice that equations (17) and (37) ensure that for production from a field in time period t there 

must be a field-FPSO connection and at-least one well available in that field at the beginning of 

time period t.  Constraints (38)-(43) are the upper-bounding constraints on the installation and 

expansion capacities for FPSO facilities in time period t corresponding to the three different 

kinds of capacities mentioned earlier.  
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The additional restrictions on the oil, liquid and gas expansion capacities of FPSO 

facilities, (44)-(46), come from the fact that these expansion capacities should be less than a 

certain fraction (µ) of the initial built capacities, respectively.  Notice that available capacitates 
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in the previous time period can be used in the expression instead of initial built FPSO capacities 

given that only one installation and expansion is allowed for each of these facilities.  
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The number of wells available for the production from a field is calculated from (47) as 

the sum of the wells available at the end of previous time period and the number of wells drilled 

at the beginning of time period t. The maximum number of wells that can be drilled over all the 

fields during each time period t and in each field f during complete planning horizon T are 

restricted by respective upper bounds in (48) and (49).   
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The non-convex MINLP model (Model 1) for offshore oilfield investment and operations 

planning involves constraint (1)-(49). In particular, constraints (11b)- (15) and (17) are nonlinear 

and non-convex constraints in the model that can lead to suboptimal solutions when solved with 

a method that assumes convexity. 

 In contrast to Model 1, the proposed MINLP model (Model 2) involves all the 

constraints as in Model 1 except (12)-(15) that are replaced with reservoir profiles based on 

cumulative water and cumulative gas produced for each field-FPSO connection. The motivation 

for using polynomials for cumulative water produced and cumulative gas produced as compared 

to WOR and GOR is to avoid bilinear terms (14)-(15) in the formulation and allow converting 

the resulting MINLP model into an MILP formulation. In particular, the cumulative water and 

cumulative gas produced by the end of time period t from a field are represented by 4
th

 order 
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polynomial equations (50) and (51), respectively, in terms of fractional oil recovery by the end of 

time period t. Notice that these 4
th

 order polynomials (50) and (51) correspond to the cubic 

equations for WOR and GOR, respectively, that are derived in Appendix A.  
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Notice that variables           
   and          

  
 will be non-zero in equations (50) and (51) 

if        is non-zero even though that particular field-FPSO connection is not present. Therefore,  

         
   and          

  
  represent dummy variables in equations (50) and (51) instead of actual 

cumulative water (            and cumulative gas              recoveries due to the fact that only 

those cumulative water and cumulative gas produced can be non-zero that has the specific FPSO-

field connection present in that time period t. Therefore, we introduce constraints (52)-(55) to 

equate the actual cumulative water produced,            , for a field-FPSO connection by the end 

of time period t to the corresponding dummy variable          
   only if that field-FPSO 

connection is present in time period t else            is set to zero. Similarly, constraints (56)-(59) 

equate the actual cumulative gas produced            , to the dummy variable          
  

 only if 

that field-FPSO connection is present in time period t, otherwise it is set to zero.        
   and 

        
  

  correspond to maximum amount of cumulative water and gas that can be produced for a 

particular field and FPSO connection during the entire planning horizon, respectively. Note that 

the motivation for using dummy variables (         
   and          

  
) for cumulative water and 

cumulative gas flows in equations (50)-(51) followed by big-M constraints (52)-(59), instead of 

using disaggregated variables for the fractional recovery in equations (50)-(51) directly, was to 

avoid large number of SOS1 variables while MILP reformulation of this model as explained in 

the next section.     



19 
 





t

c

fpsof

wc

fpsof

wc

tfpsoftfpsof bMQwc
1

,,,,,,, )1(




 

tfpsof ,,
 

)52(





t

c

fpsof

wc

fpsof

wc

tfpsoftfpsof bMQwc
1

,,,,,,, )1(




 

tfpsof ,,
 

)53(





t

c

fpsof

wc

fpsoftfpsof bMwc
1

,,,,,




    

tfpsof ,,
 

)54(





t

c

fpsof

wc

fpsoftfpsof bMwc
1

,,,,,




    

tfpsof ,,
 

)55(





t

c

fpsof

gc

fpsof

gc

tfpsoftfpsof bMQgc
1

,,,,,,, )1(




 

tfpsof ,,
 

)56(





t

c

fpsof

gc

fpsof

gc

tfpsoftfpsof bMQgc
1

,,,,,,, )1(




 

tfpsof ,,
 

)57(





t

c

fpsof

gc

fpsoftfpsof bMgc
1

,,,,,




    

tfpsof ,,
 

)58(





t

c

fpsof

gc

fpsoftfpsof bMgc
1

,,,,,




    

tfpsof ,,
 

)59(
  

Eq. (60) and (61) compute the water and gas flow rates in time period t from a field to 

FPSO facility as the difference of cumulative amounts produced by the end of current time 

period t and previous time period t-1 divided by the time duration of that period.  
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The non-convex MINLP model (Model 2) involves constraint (1)-(11) and (16)-(61) 

where constraints (11b), (50) and (51) are univariate polynomials while constraint (17) involves  

bilinear terms with integer variables. The correspondence between reservoir profiles for both the 

MINLP models and their comparison is presented in Appendixes A and B, respectively. In the 

following section, we reformulate MINLP Model 2 into an MILP problem that can be solved to 
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global optimality in an effective way. Notice that due to the presence of bilinear terms in 

equations (14) and (15), Model 1 cannot be reformulated into an MILP problem.  

5  MILP Reformulation 

The nonlinearites involved in Model 2 include univariate polynomials (11b), (50), (51) and 

bilinear equations (17). In this section, we reformulate this model into an MILP model, Model 3 

using piecewise linearization and exact linearization techniques that can give the global solution 

of the resulting approximate problem.  

To approximate the 3
rd

 and 4
th

 order univariate polynomials (11b), (50) and (51)  SOS1 

variables      
  are introduced to select the adjacent points l-1 and l for interpolation over an 

interval l. Constraints (62)-(65) represent the piecewise linear approximation for the fractional 

recovery and corresponding oil deliverability, cumulative water and cumulative gas produced for 

a field in each time period t, respectively, where   ̃ ,   ̃      
        

 ,  ̃      
    

 and  ̃      
    

  are the 

values of the corresponding variables at point l used in linear interpolation based on the reservoir 

profiles (11b), (50) and (51). Note that only      
  variables are sufficient to approximate the 

constraints (11b), (50) and (51) by selecting a specific value of the fractional recovery for each 

field in each time period t that applies to all possible field-FPSO connections for that field. This 

avoids the requirement of a large number of SOS1 variables and resulting increase in the solution 

times that would have been required in the case if constraints (50) and (51) were represented in 

terms of the disaggregated variables for fractional recovery in Model 2.    
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Equation (66) allows only one of the point l to be selected for which      
  equals 1 while 

equation (67) states that 
l

tf , can be non-zero for only two consecutive points l and l-1 that are 

used for convex combination during interpolation, eq. (68). Thus, the corresponding lth piece is 

used for linear interpolation as all other 
l

tf ,
 are zero for a field in time period t and determines 

the value of the interpolated variable as a convex combination of their values at both the end of 

this piece l in equations (62)-(65).
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The other nonlinear constraints (17) in Model 2 contain bilinear terms that can be 

linearized using exact linearization (Glover, 1975). To linearize constraint (17) we first express 

the integer variable,     
    , for the number of wells in terms of the binary variables       

      using 

eq. (69) where       
     determines the value of the kth term of the binary expansion. 
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The bilinear term in constraint (17) can then be rewritten as follows,  

 


k

well

tfpsof

well

tkf

k

tfpsof xZx ,,,,

1

,, 2

  

tfpsof ,,
 

)70(

 Constraint (70) can be reformulated as a linear constraint (71) by introducing a 

nonnegative continuous variable
well
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The reformulated MILP Model 3 involves constraints (1)-(10), (11a), (16), (18)-(69) and 

(71)-(75) which are linear and mixed-integer linear constraints and allow to solve this 

approximate problem to global optimality using standard mixed-integer linear programming 

solvers. 

Remarks           

 The previous two sections present a multiperiod MINLP model for the oilfield investment 

and operations planning problem for long-term planning horizon and its reformulation as an 

MILP model using linearization techniques. The MINLP models involve non-convexities and 

can yield suboptimal solutions when using an MINLP solver that relies on convexity 

assumptions, while the reformulated MILP model is guaranteed to be solved to global optimality 

using linear programming based branch and cut methods.  However, given the difficulties 

involved in solving large scale instances of the MINLP and MILP models, especially due to the 

large number of binary variables, we extend these formulations by reducing the number of the 

binary variables. The next section describes the proposed procedure for binary reduction for 

MINLP and MILP formulations.      

6 Reduced MINLP and MILP models 

Due to the potential computational expense of solving the large scale MINLP and MILP models 

presented in the previous sections, we further reformulate them by removing many binary 

variables, namely          
 . These binary variables represent the timing of the connections 

between fields and FPSOs and are used for discounting the connection cost in the objective 

function along with some logic constraints in the proposed models. The motivation for binary 

reduction comes from the fact that in the solution of these models the connection cost is only ~2-

3% of the total cost, and hence, this cost can be removed from the objective function as its exact 
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discounting does not has a significant impact on the optimal solution. In particular, we propose 

to drop the index t from           
  , which results in a significant decrease in the number of binary 

variables (~33% reduction) and the solution time can be improved significantly for both the 

MINLP and MILP formulations.  

Therefore, to formulate the reduced models that correspond to Model 2 and 3 we use the 

binary variables        
  to represent the connection between field and FPSOs instead of using 

         
  which results in a significant decrease in the number of binary variables in the model. 

As an example for a field with 5 possible FPSO connections and 20 years planning horizon the 

number of binary variables required can be reduced from 100 to 5. The connection cost term in 

the objective function (8) is also removed as explained above yielding constraint (76).  

Moreover, some of the constraints in the previous MINLP and MILP models that involve binary 

variables          
  are reformulated to be valid for        

  based reduced model, i.e. constraints 

(77)-(87). Notice that constraints (87) and (17) ensure that the oil flow rate from a field to FPSO 

facility in time period t,          , will be non-zero only if that particular field-FPSO connection 

is installed and there is atleast one well available in that field for production in time period t, i.e. 

       
  equals 1 and      

     is non-zero, otherwise            is set to zero. Moreover, it may be 

possible that variable          
     can take non-zero value in equation (87) if        

  equals 1 even 

though there is no well available in that field in time period t, but this will not have any effect on 

the solution given that the fractional recovery from a field and other calculations/constraints in 

the model are based on the actual amount of oil produced from the field, i.e. variable           

which is still zero in this case. Therefore, variable          
     can be considered as a dummy 

variable in the reduced model.    
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The non-convex MINLP Model 2-R for offshore oilfield investment and operations 

planning after binary reduction involves constraints (1)-(7), (9)-(11), (16)-(31), (35), (38)-(51), 

(60)-(61) and (76)-(87). The reformulated MILP Model 3-R after binary reduction involves 

constraints (1)-(7), (9)-(10), (11a), (16), (18)-(31), (35), (38)-(51), (60)-(69) and (71)-(87) which 

are linear and mixed-integer linear constraints. Similarly, Model 1-R corresponds to the non-

convex MINLP model, which is based on WOR and GOR expression after binary reduction as 

described above.  

The resulting reduced models with fewer binaries can be solved much more efficiently as 

compared to the original models. To calculate the discounted cost of connections between field 

and FPSOs that corresponds to the reduced model solution, we use the well installation schedule 

    
     from the optimal solution of reduced models to find the Field-FPSO connection timing and 

subtract the corresponding discounted connection cost from the optimal NPV of the reduced 

model. The resulting NPV represents the optimal NPV of the original models in case connection 

costs are relatively small. 



25 
 

7 Numerical Results 

In this section we present 3 instances of the oilfield planning problem where we consider from 3 

to 10 fields while the time horizon ranges from 10 to 20 years. The maximum number of possible 

FPSOs is taken 3 in all the instances. We compare the computational results of the various 

MINLP and MILP models proposed in the previous sections for these 3 instances. Table 1 

summarizes the main features of these MINLP and reformulated MILP models. In particular, the 

reservoir profiles and respective nonlinearities involved in the models are compared in the table.  

 

Table 1: Comparison of the nonlinearities involved in 3 model types 

 Model 1 Model 2 Model 3 

Model Type MINLP MINLP MILP 

Oil Deliverability 3
rd

 order polynomial 3
rd

 order polynomial Piecewise Linear 

WOR 3
rd

 order polynomial - - 

GOR 3
rd

 order polynomial - - 

wc - 4
th

 order polynomial Piecewise Linear 

gc - 4
th

 order polynomial Piecewise Linear 

Bilinear Terms N*x 

N*x*WOR 

N*x*GOR 

N*x None 

MILP Reformulation Not Possible Possible Reformulated MILP  

 

7.1 Instance 1    

In this instance (Figure 3) we consider 3 oil fields that can be connected to 3 FPSOs with 

7 possible connections among these fields and FPSOs. There are a total of 25 wells that can be 

drilled, and the planning horizon considered is 10 years, which is discretized into 10 periods of 

each 1 year of duration. We need to determine which of the FPSO facilities is to be installed or 

expanded, in what time period, and what should be its capacity of oil, liquid and gas, to which 

fields it should be connected and at what time, and the number of wells to be drilled in each field 

during each time period. Other than these installation decisions, there are operating decisions 

involving the flowrate of oil, water and gas from each field in each time period. The objective 

function is to maximize total NPV over the given planning horizon. 
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The problem is solved using DICOPT 2x-C solver for Models 1 and 2, and CPLEX 12.2 

for Model 3. These models were implemented in GAMS 23.6.3 and run on Intel Core i7 

machine. The optimal solution of this problem that corresponds to Model 2, suggests installing 

only FPSO 3 with a capacity of 300 kstb/d, 420.01 kstb/d and 212.09 MMSCF/d for oil, liquid 

and gas, respectively, at the beginning of time period 1. All the three fields are connected to this 

FPSO facility at time period 4 when installation of the FPSO facility is completed and a total of 

20 wells are drilled in these 3 fields in that time period to start production. One additional well is 

also drilled in field 3 in time period 5 and there are no expansions in the capacity of FPSO 

facility. The total NPV of this project is $6912.04 M.  

Table 2: Performance of various solvers with Model 1 and 2 for Instance 1 

  Model 1  Model 2  

Constraints 1,357 1,997 

Continuous Var. 1,051 1,271 

Discrete Var. 151 151 

 Solver 

Optimal NPV 

(million$) 

Time (s) Optimal NPV 

(million$) 

Time (s) 

DICOPT 6980.92 3.56 6912.04 3.07 

SBB 7038.26 211.53 6959.06 500.64 

BARON 6983.65 >36,000 6919.28 >36,000 

            Table 2 compares the computational results of Model 1 and 2 for this instance with 

various MINLP solvers. We can observe from these results that DICOPT performs best among 

FPSO 1 FPSO 3 

Field 1 

 

Field 3 

Field 2 

 
 Figure 3: Instance 1 (3 Fields, 3 FPSO, 10 years) for oilfield problem 

Total Oil/Gas 

Production 

FPSO 2 
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all the MINLP solvers in terms of computational time, while solving directly both Models 1 and 

2. The number of OA iterations required is approximately 3-4 in both cases, and solving Model 2 

is slightly easier than solving Model 1 directly with this solver. However, the solutions obtained 

are not guaranteed to be the global solution. SBB is also reasonable in terms of solution quality 

but it takes much longer time to solve. BARON can in principle find the global optimum solution 

to models 1 and 2, but it is very slow and takes more than 36,000s to be within ~23% and ~10% 

of optimality gap for these models, respectively. Note that we use the DICOPT solution to 

initialize in this case, but BARON could only provide a slightly better solution (6983.65 vs. 

6980.92 and 6919.28 vs. 6912.04) than DICOPT in more than 10 hours for both the cases.  

           The performance of Models 1 and 2 are compared before and after reducing the binary 

variables for connection, i.e. Models 1-R and 2-R, in Table 3. There is one third reduction in the 

number of binary variables for both models. It can also be seen that there is a significant decrease 

in the solution time after binary reduction (for e.g. 1.55s vs. 3.56s for Model 1). Moreover, the 

reduced models also yield better local solutions too for both the MINLP formulations. Notice 

that these MINLP Models are solved with DICOPT here for comparison as it is much faster as 

compared to other solvers as seen from the previous results.  

          The MILP Model 3 and its binary reduction Model 3-R that are formulated from Model 2 

and Model 2-R, respectively, solved with CPLEX 12.2 and results in Table 3 show the 

significant reduction in the solution time after binary reduction (6.55s vs. 37.03s) while both the 

models give same optimal NPV i.e. $7030.90M. Notice that these approximate MILP models are 

solved upto global optimality in few seconds while global solution of the original MINLP 

formulations is much expensive to obtain. Although the higher the number of points for the 

approximate MILP model the better will be the solution quality, but we found that beyond 5 

points for the piecewise approximation there was not much significant change in the optimal 

solution, while it led to large increases in the solution time due to increase in the SOS1 variables 

in the model. Therefore we use 5 point estimates for piecewise linearization to formulate Model 

3 and 3-R for all the instances. 
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*Model 1 and 2 solved with DICOPT 2x-C, Model 3 solved with CPLEX 12.2 

The global solution from the MILP approximation Model 3-R gives a higher NPV for this 

example as compared to solving Model 2 directly (7030.90 vs. 6912.04). Therefore, this model 

can potentially be used for finding global or near optimal solution to the MINLP formulation. 

Table 4 compares the solution of the original models 1 and 2 (MINLPs) with the one where we 

fix the discrete variables coming from Model 3-R in these two models and solve the resulting 

NLPs. We can see that the local solutions are significantly improved. Notice also that no other 

solver could find the solutions that are better than these solutions in reasonable computational 

time as can be seen from Table 1. Moreover, it is interesting to note that the discrete decisions 

that come from the MILPs that corresponds to Model 2 seems to be optimal for Model 1 too 

which ensures the close correspondence between Models 1 and 2 and its reformulations.  

Table 4: Improved solutions (NPV in million$) for the Models 1 and 2 using Model 3 solution 

Model 1 

 

 

Model 1 (fixed 

binaries from 

Model 3-R) 

Model 2 Model 2 (fixed 

binaries from 

Model 3-R) 

6980.92 7076.6177 6912.04 7004.0783 

 

7.2 Instance 2    

This is a slightly larger instance for oilfield planning problem than the previous one 

where we consider 5 oil fields that can be connected to 3 FPSO’s with 11 possible connections. 

There are a total of 31 wells that can be drilled in all of these 5 fields and the planning horizon 

considered is 20 years. Table 5 compares the results of Model 1 and 2 with various MINLP 

solvers for this example. DICOPT still performs best even for this larger instance in terms of 

solution quality and time. SBB, which relies on a branch and bound based scheme, becomes very 

slow due to the increase in the number of binary variables and problem size. BARON also 

  Model 1 Model 1-R Model 2 Model 2-R Model 3 Model 3-R 

Constraints 1,357 1,320 1,997 1,960 3,094 3,057 

Continuous Var. 1,051 988 1,271 1,208 2,228 2,165 

Discrete Var. 151 109 151 109 219 177 

SOS1 Var. 0 0 0 0 120 120 

NPV(million$) 6980.92 7049.54 6912.04 6919.28 7030.90 7030.90 

Time(s) 3.56 1.55 3.07 2.85 37.03 6.55 

Table 3: Comparison of models 1, 2 and 3 with and w/o binary reduction. 



29 
 

becomes expensive to solve this larger instance and could not improve the DICOPT solution that 

is used for its initialization for both the cases in more than 10 hours.   

Table 5: Comparison of various models and solvers for Instance 2 

  Model 1  Model 2  

Constraints 3,543 5,543 

Continuous Var. 2,781 3,461 

Discrete Var. 477 477 

 Solver 
Optimal NPV 

(million$) 

Time (s) Optimal NPV 

(million$) 

Time (s) 

DICOPT 11412.48 58.53 11204.86 18.43 

SBB 11376.57 1057.68 11222.34 3309.73 

BARON 11412.48 >36,000 11204.86 >36,000 

There are significant improvements in computational times for Model 1 and 2 after 

binary reduction as can be seen in Table 6 (5.69s vs. 58.53s and 9.92s vs. 18.43s). Moreover, 

there are possibilities to find even better local solution too from the reduced model as in the case 

of Model 2. The reduced models (Model 1-R and 2-R) should yield the same optimal solutions as 

the original models (Model 1 and 2), respectively, for small connection costs but there are slight 

differences in the NPV values reported in Table 6 as these models are solved here with DICOPT 

that gives the local solutions. The reformulated MILP after binary reduction Model 3-R becomes 

slightly expensive to solve as compared to finding local solutions for the original MINLP 

models, but the solution obtained in this case is the global one (within 2% optimality tolerance). 

Notice that the MILP solutions can be either lower (instance 1) or higher (instance 2) than the 

global optimal for MINLP models as these involves approximations of oil deliverability, 

cumulative water and cumulative gas produced all three functions and the resulting MILP could 

over or underestimate the original NPV function. We do not present the result of Model 3 here as 

it gives the same NPV as Model 3-R but at much higher computational expense since a larger 

number of binary variables is involved in the model. Note that some of the binary variables are 

pre-fixed in all of the models considered based on the earliest installation time of the FPSO 

facilities and corresponding limitations on the FPSO expansions, field-FPSO connections and 

drilling of the wells in the fields that improves the computational performance of these models.   
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    Table 6: Comparison of models 1, 2 and 3 with and w/o binary reduction 

  Model 1 Model 1-R Model 2 Model 2-R Model 3-R 

Constraints 3,543 3,432 5,543 5,432 8,663 

Continuous Var. 2,781 2,572 3,461 3,252 6,103 

Discrete Var. 477 301 477 301 451 

SOS1 Var. 0 0 0 0 400 

NPV(million$) 11412.48 11335.01 11204.86 11294.82 11259.61 

Time(s) 58.53 5.69 18.43 9.92 871.80 

     *Model 1 and 2 solved with DICOPT 2x-C, Model 3 solved with CPLEX 12.2 

The solution of Model 3-R can also be used to fix discrete variables in the MINLPs to 

obtain near optimal solutions to the original problem as done for instance 1. Table 7 presents the 

solutions of the NLPs obtained after fixing binary decisions and show that none of the solver in 

Table 5 could provide better NPV values than this case. Overall, we can say that the results for 

this larger instance also show similar trends as what is observed for instance 1. 

Table 7: Improved solutions (NPV in million$) for Models 1 and 2 using Model 3-R solution 

Model 1 Model 1 (fixed 

binaries from 

Model 3-R) 

Model 2 Model 2 (fixed 

binaries from 

Model 3-R) 

11412.48 11412.48 11204.86 11356.31 

 

7.3 Instance 3  

In this instance we consider 10 oil fields (Figure 4) that can be connected to 3 FPSOs 

with 23 possible connections. There are a total of 84 wells that can be drilled in all of these 10 

fields and the planning horizon considered is 20 years. 

 
 Figure 4: Instance 3 (10 Fields, 3 FPSO, 20 years) for oilfield problem 
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The optimal solution of this problem that corresponds to Model 2-R solved with DICOPT 

2x-C, suggests to install all the 3 FPSO facilities in the first time period with their respective 

liquid (Figure 5-a) and gas (Figure 5-b) capacities. These FPSO facilities are further expanded in 

future when more fields come online or liquid/gas flow rates increases as can be seen from these 

figures.  

 

 

 

After initial installation of the FPSO facilities by the end of time period 3, these are 

connected to the various fields to produce oil in their respective time periods for coming online 

as indicated in Figure 6. The well installation schedule for these fields Figure 7 ensures that the 

maximum number of wells drilling limit and maximum potential wells in a field are not violated 

in each time period t. We can observe from these results that most of the installation and 

expansions are in the first few time periods of the planning horizon.  
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Other than these investment decisions, the operations decisions are the production rates 

of oil and gas from each of the fields, and hence, the total flow rates for the installed FPSO 

facilities that are connected to these fields as can be seen from Figures 8 (a)-(b). Notice that the 

oil flow rates increases initially until all the fields come online and then they start to decrease as 

the oil deliverability decreases when time progresses. Gas flow rate, which depends on the 

amount of oil produced, also follows a similar trend. The total NPV of the project is 

$30946.39M. 

 

 

 

Tables 8-10 represent the results for the various model types considered for this instance. 

We can draw similar conclusions as discussed for instances 1 and 2 based on these results. 

DICOPT performs best in terms of solution time and quality, even for the largest instance 

compared to other solvers as can be seen from Table 8.  

     Table 8: Comparison of various models and solvers for Instance 3 

  Model 1  Model 2  

Constraints 5,900 10,100 

Continuous Var. 4,681 6,121 

Discrete Var. 851 851 

 Solver 
Optimal NPV 

(million$) 

Time (s) Optimal NPV 

(million$) 

Time (s) 

DICOPT 31297.94 132.34 30562.95 114.51 

SBB 30466.36 4973.94 30005.33 18152.03 

BARON 31297.94 >72,000 30562.95 >72,000 

 

There are significant computational savings with the reduced models as compared to the 

original ones for all the model types in Table 9. Even after binary reduction of the reformulated 
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MILP, Model 3-R becomes expensive to solve, but yields global solutions, and provides a good 

discrete solution to be fixed/initialized in the MINLPs for finding better solutions.   

Table 9: Comparison of models 1, 2 and 3 with and w/o binary reduction  

  Model 1 Model 1-R Model 2 Model 2-R Model 3-R 

Constraints 5,900 5,677 10,100 9,877 17,140 

Continuous Var. 4,681 4,244 6,121 5,684 12,007 

Discrete Var. 851 483 851 483 863 

SOS1 Var. 0 0 0 0 800 

NPV(million$) 31297.94 30982.42 30562.95 30946.39 30986.22 

Time(s) 132.34 53.08 114.51 67.66 16295.26 

  *Model 1 and 2 solved with DICOPT 2x-C, Model 3 with CPLEX 12.2 

We can see from Table 10 that the solutions that come from the Models 1 and 2 after 

fixing discrete variables based on MILP solution (even though it was solved within 10% of 

optimality tolerance) are the best among all other solutions obtained in Table 8. Therefore, the 

MILP approximation is an effective way to obtain near optimal solution for the original problem. 

Notice also that the optimal discrete decisions for Models 1 and 2 are very similar even though 

they are formulated in a different way. However, only Model 2 can be reformulated into an 

MILP problem that gives a good estimate of the near optimal decisions to be used for these 

MINLPs.  

Table 10: Improved solutions (NPV in million$) for Models 1 and 2 using Model 3-R solution 

Model 1 Model 1 (fixed 

binaries from 

Model 3-R) 

Model 2 Model 2 (fixed 

binaries from 

Model 3-R) 

31297.94 31329.8136 30562.95 31022.4813 

Remarks 

(a) The optimal NPV of both models 1 and 2 are very close (within ~1-3%) for all the instances. 

Moreover, the difference is even smaller when we compare the global solutions and they tend 

to have same discrete decisions at the optimal solution.  Hence, in principle we can use either 

of these models for the oilfield problem directly or with some other method. However, since 

Model 1 involves a large number of non-convexities because of the extra bilinear terms, it is 

more prone to converging to local solutions, and needs good initializations as compared to 

Model 2. Moreover, as opposed to Model 2, it is not possible to convert Model 1 to an MILP 

model that can be solved to global optimality. However, the nonlinearities and non-

convexities perform reasonably well for both of these models as seen from the computational 
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results, and few trials with DICOPT can give good quality local solutions within few seconds 

for these models.   

(b) Model 2 is more accurate in terms of physical representation of water and gas flow profiles 

than Model 1 as explained in Appendix B, especially when the length of each time period is 

large. Model 1 usually overestimates the NPV as it assumes constant GOR and WOR for a 

time period t while extracting the oil from a field during that time period, where WOR and 

GOR are calculated based on the fractional recovery by the end of time period t-1, i.e. point 

estimates are used for WOR and GOR. On the other hand, Model 2 estimates the cumulative 

water and gas flow rates at the end of time period t taking into account the amount of oil 

produced in that time period and variability of WOR and GOR during current time period t 

i.e. average values of WOR and GOR over the time period. Because of the general trend of 

increasing WOR and GOR as time progresses and hence underestimating the actual water 

and gas flow rates in Model 1 during each time period t due to point estimates for WOR and 

GOR at the end of time t-1, it gives slightly higher NPV’s as can be seen from the solutions 

obtained. In contrast, if WOR and GOR are estimated at the end of time period t instead t-1, 

the solutions from Model 1 should give lower NPV values as compared to Model 2.   

(c) The solutions from MILP model are of good quality if we use a reasonable number of point 

estimates (5 or more) for the piecewise linear approximation. Due to the increase in the 

solution time for the model as the problem size or number of point estimates increases, 

specialized decomposition strategies could be investigated to solve these MILPs in a fast and 

reliable way. 

(d) It can be seen from the results that the approximate MILPs are a good way to find discrete 

decisions that lead to global or near optimal solution for the original MINLP when fixing 

these decisions. None of the MINLP solvers could find better solutions than the ones 

obtained using the MILP solution. Furthermore, these MILP’s also give a way to estimate the 

quality of local solutions obtained from the fast MINLP local solvers either by solving these 

models till optimality if it is easier to solve or by its LP relaxation for large instances. 

8  Conclusions 

In this paper, we have proposed a new generic MINLP model for offshore oilfield infrastructure 

planning considering multiple fields, three components (oil, water and gas) explicitly in the 
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formulation, facility expansions decisions and nonlinear reservoir profiles. The model can 

determine the installation and expansion schedule of facilities and respective oil, liquid and gas 

capacities, connection between the fields and FPSO’s, well drilling schedule and production rates 

of oil, water and gas simultaneously in a multiperiod setting. The resulting model yields good 

solutions to realistic instances when solving with DICOPT directly. Furthermore, the model can 

be reformulated into an MILP using piecewise linearization and exact linearization techniques 

with which the problem can be solved to global optimality. The proposed MINLP and MILP 

formulations are further improved by using a binary reduction scheme resulting in the improved 

local solutions and more than an order of magnitude reduction in the solution times. Realistic 

instances involving 10 fields, 3 FPSO’s and 20 years planning horizon have been solved and 

comparisons of the computational performance of the proposed MINLP and MILP formulations 

are presented. Moreover, the models presented here are very generic and can either be used for 

simplified cases (e.g. linear profiles for reservoir, fixed well schedule etc.) or extended to include 

other complexities. There are various trade-offs involve in selecting a particular model for 

oilfield problem. In case that we are concerned with the solution time, especially for the large 

instances, it would be better to use DICOPT on Model 2R directly that gives good quality 

solution very fast. If fast computing times are of no much concern one may want to use MILP 

approximation model that can yield better solutions but at higher computational cost.  

Furthermore, these MILP solutions also provide a way to access the quality of suboptimal 

solutions from the MINLPs or finding better once using its solution for the original problem.  
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Nomenclature 

Indices 

t, τ          time periods,      {         } 

f          field                  

fpso  FPSO facility 

Binary Variables 

         whether or not FPSO facility fpso is installed at the beginning of time period t 

       
            whether or not FPSO facility fpso is expanded at the beginning of time period t  

         
    whether or not a connection between field f and FPSO facility fpso is installed at 

the beginning of time period t 

       
  whether or not a connection between field f and FPSO facility fpso is installed  

Integer Variables    

    
               Number of wells drilled in field f at the beginning of time period t                                                                                                                    

    
            Number of wells available in field f for production in time period t         

Continuous Variables 

NPV            net present value 

               total revenues in time period t 

             total costs in time period t 

            total capital costs in time period t 

             total operating costs in time period t 

  
               total oil flow-rate in time period t 

  
               total water flow-rate in time period t 

  
               total gas flow-rate in time period t 

                oil production rate from field f in time period t 

                 water production rate from field f in time period t 

                 gas production rate from field f in time period t 

                  cumulative oil produced from field f by the end of time period t 
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                    cumulative water produced from field f to FPSO facility fpso by the end of time  

  period t 

                    cumulative gas produced from field f to FPSO facility fpso by the end of time  

  period t 

                  fraction of oil recovered from field f by the end of time period t 

         
               oil flow rate per well from field f to FPSO facility fpso in time period t 

         
      

           field deliverability (maximum oil flow rate) per well for field f and FPSO facility 

 fpso combination in time period t  

         
            dummy variable for cumulative water produced from field f to FPSO facility fpso  

  by the end of time period t 

         
  

          dummy variable for cumulative gas produced from field f to FPSO facility fpso  

  by the end of time period t 

                    total oil flow rate into FPSO facility fpso in time period t 

                    total water flow rate into FPSO facility fpso in time period t 

                    total gas flow rate into FPSO facility fpso in time period t 

                    total oil flow rate from field f to FPSO facility fpso in time period t 

                    total water flow rate from field f to FPSO facility fpso in time period t 

                    total gas flow rate from field f to FPSO facility fpso in time period t 

       
             oil processing capacity of FPSO facility fpso in time period t                

       
   

          liquid (oil and water) capacity of FPSO facility fpso in time period t                   

       
   

             gas capacity of FPSO facility fpso in time period t                                                                     

        
             oil installation capacity of FPSO facility fpso at the beginning of time period t 

        
   

          liquid installation capacity of FPSO facility fpso at the beginning of time period t 

        
   

          gas installation capacity of FPSO facility fpso at the beginning of time period t 

        
             oil expansion capacity of FPSO facility fpso at the beginning of time period t 

        
   

          liquid expansion capacity of FPSO facility fpso at the beginning of time period t 

        
   

          gas expansion capacity of FPSO facility fpso at the beginning of time period t  
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Parameters 

                  fixed capital cost for installing FPSO facility fpso at the beginning of time period t  

                   fixed cost for installing the connection between field f and  FPSO facility fpso at 

the 

beginning of  time period t  

     
              fixed cost for drilling a well in field f at the beginning of time period t  

        
   

          variable capital cost for installing or expanding the liquid (oil and water) capacity 

of FPSO facility fpso at the beginning of  time period t 

        
   

          variable capital cost for installing or expanding the gas capacity of FPSO facility 

fpso at the beginning of  time period t 

   
   

          operating cost for per unit of liquid (oil and water) produced in time period t  

   
   

         operating cost for per unit of gas produced in time period t  

RECf                total amount of recoverable oil from field f 

       
        

           Upper bound on the oil flow rate per well from field f to FPSO facility fpso  

     
              Upper bound on the installation or expansion of oil capacity of a FPSO facility 

     
   

        Upper bound on the installation or expansion of liquid capacity of a FPSO facility                        

     
   

           Upper bound on the installation or expansion of gas capacity of a FPSO facility 

   
            Maximum number of wells that can be drilled in field f during planning horizon T                         

   
               Maximum number of wells that can be drilled during each time period t      

       
              Maximum cumulative water that can be produced for a field-FPSO connection 

       
  

            Maximum cumulative gas that can be produced for a field-FPSO connection   

l1  lead time for initial installation of a FPSO facility                              

l2  lead time for expansion of an earlier installed FPSO facility                                                                             

µ  Maximum fraction of the initial built FPSO capacities that can be expanded            

αt          price of oil in time period t                                                                                              

βt           price of gas in time period t                  

dt                   discounting factor for time period t                                                                                   

δt           number of days in time period t                     

a( ),b( ),c( ),d( )   coefficients for polynomials used for reservoir models      
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Appendix A: Derivation of the Reservoir Profiles for Model 2 from Model 1  

Model 1 involves nonlinearities in the form of three polynomials for oil deliverability, GOR and 

WOR, (A1)-(A3), and 2 bilinear equations for water and gas flow rates, (A4)-(A5).  
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To derive the reservoir profile for Model 2 from the above equations of Model 1 we consider 

the following two properties: 

1. The area under the curve GOR vs. cumulative oil produced for a field yields the 

cumulative amount of gas produced. 

2. The area under the curve WOR vs. cumulative oil produced for a field yields the 

cumulative amount of water produced. 

Explanation of Property 1 

From equation (A3) we have GOR for a field as a cubic function in terms of fractional 

recovery (or cumulative oil produced xcf and recoverable oil RECf) as follows (Model 1):  
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(A7)  

A differential change in the cumulative oil produced multiplied by the GOR yields the 

corresponding fractional change in the cumulative amount of gas produced, gc, as seen in Figure 

9 and corresponding equation (A8).  
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We should note that Figure 9 corresponds to gor vs fc but it is easy to convert it to gor vs 

xc given that the reservoir size (RECf) is known. Integrating in (A8) both sides from zero (i.e. 

area under the curve between GOR and xc), yields, 
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Figure 9: GOR profile for field (F1) and FPSO (FPSO 1) connection 
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(A14) is the desired expression for the cumulative gas produced as a function of 

fractional recovery (or cumulative oil produced), i.e. area under the curve GOR vs. fractional 

recovery (or cumulative oil produced) that is used in Model 2. We can see that the order of the 

polynomial for gc expression (4
th

 order) is 1 more than the order of the polynomial 

corresponding to the GOR expression in (A6). Also, there is a direct correspondence between the 

coefficients of the both of these polynomials. The gc vs fc curve (4
th

 order polynomial) 

corresponding to the Figure 4 (GOR vs fc) that represents expression (A14) is shown in Figure 

10.  

 

 

Similarly, we can derive the following expression (A15) for cumulative water produced 

as a function of fractional recovery (or cumulative oil produced) using WOR expression, (i.e. 

statement 2).  
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Notice that we can derive the expressions (polynomial or any other functions) from the 

existing model of GOR and WOR to gc and wc in terms of fractional recovery (or cumulative oil 

produced) respectively and vice-versa.  
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Figure 10: gc profile for field (F1) and FPSO (FPSO 1) connection 
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Appendix B: Comparisons of the Models based on (gor, wor) and (gc, wc) 

functions   

1. Model 1 (GOR and WOR as a function of cumulative oil produced) requires the bilinear 

equations (B1) and (B2) for water and gas flow rates while Model 2 does not need these 

equations as these flowrates can be expressed as equations (B3) and (B4) given that we have 

polynomials for gc and wc. Hence, Model 2 involving only univariate polynomials should 

computationally perform better.  
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2. The WOR and GOR functions in (A2) and (A3) introduce a large number of non-convexities 

in Model 1 as compared to the gc and wc functions in (A14) and (A15) that are univariate 

monotonically increasing functions. Hence, these functions will be better for approximating 

them by piecewise linearization. As an example the GOR and corresponding gc functions for 

a field are shown in Figure 11. 

 

 

3. In Model 1 we assume that the WOR and GOR equations (B5) and (B6) used in time period t 

are calculated in terms of the fractional oil recovery by the end of previous time period t-1, 
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Figure 11: GOR and gc profiles for 1 field and 2 FPSO connections 
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i.e. uses point estimate values. Therefore, GOR and WOR essentially perform as constants in 

current time period t, and the oil flowrate does not account for the variability in GOR and 

WOR values during that time period.  
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However, equations (B9) and (B10) for wc and gc explicitly predicts the cumulative amount 

of water and gas produced, respectively, by the end of period t as a function of cumulative oil 

produced by the end of period t, and hence also accounts for the variability of the GOR and 

WOR values during current period t i.e. considers average values of WOR and GOR over the 

time period t. Therefore, Model 2 is also better in terms of representing the physical reservoir 

characteristics. 
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Notice that equations (B5) and (B6) for Model 1 could also be represented as a function of 

fractional recovery by the end of time period t instead of time period t-1, however, the model 

will still consider the WOR and GOR values based on the point estimate instead average values 

over the time period t as used in Model 2.        


