
A Lagrangean Decomposition Approach for Oil Supply Chain
Investment Planning under Uncertainty with Risk

Considerations

F. Oliveiraa, V. Guptab, S. Hamachera, I.E. Grossmannb,∗

aIndustrial Engineering Department - Pontif́ıcia Universidade Católica do Rio de Janeiro, Rua
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Abstract

We present a scenario decomposition framework based on Lagrangean decomposition

for the multi-product, multi-period, supply investment planning problem considering net-

work design and discrete capacity expansion under demand uncertainty. We also consider

a risk measure that allows us to reduce the probability of incurring in high costs while

preserving the decomposable structure of the problem. To solve the resulting large-scale

two-stage mixed-integer stochastic linear programming problem, we propose a novel La-

grangean decomposition scheme. In this context, we compare different formulations for

the non-anticipativity conditions. In addition to that, we present a new hybrid algorithm

for updating the Lagrangean multiplier set, based on the combination of cutting-plane,

subgradient and trust-region strategies. Numerical results suggests that different formu-

lations of the non-anticipativity conditions have a significant effect on the performance

of the algorithm. Moreover, we observe that the proposed hybrid approach has supe-

rior performance when compared with the traditional subgradient algorithm in terms of

faster computational times for the problem addressed in this work.
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1. Introduction

Oil companies are global organizations whose decisions are related to the petroleum

production, refining, and distribution in a highly complex environment. Typically, these

companies operate with strongly diversified sources of petroleum supply, a long list of

products, and multiple markets, making vital the advanced planning of all activities along

the supply chain. Such planning includes the selection of infrastructure investments, def-

inition of production levels of oil (from oil fields and offshore platforms) and of petroleum

products (from oil refineries), as well as the distribution among these refineries and to

the final consumers of oil products.

Major oil companies are characterized by integrated and vertical structures. This is

justified by significant economies of scale, especially in the refining and transportation

activities, and also because it is a business that involves many uncertainties, and con-

sequently many risks. Moreover, the interdependence of operations in the oil industry

require that companies plan and optimize their investments on an enterprise-wide level

[10]. This requires one to consider large supply chains, including oil platforms, marine

terminals, refineries, distribution terminals, and thousands of links between them. Given

this context, careful evaluation of the investment options in the petroleum products sup-

ply chain has particular importance and the use of a tool that represents its complexity

becomes crucial.

The use of optimization techniques for supply chain design and planning has been

reported in the literature since the 1970s [9]. Melo et al. [21] present an extensive liter-

ature review on supply chain models. Although the research literature on the strategic

modeling of supply chains is quite rich, only a fraction of the studies have explicitly

included uncertainty in the formulation. According to Sahinidis [28], the incorporation

of uncertainty into planning models using stochastic optimization remains a challenge

due to the large computational requirements involved.

The most common framework for dealing with uncertainty in optimization models is

two-stage stochastic programming. Typically, two-stage stochastic programming models

comprise two types of decisions: first-stage decision that must be taken prior to knowing

the realization of the uncertainty, and second-stage decisions that represent recourse

measures that can be taken after the uncertainty unveils. The objective is then to
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minimize both first-stage and expected recourse costs. In some cases, it might also be

suitable to consider some sort of risk measure together with the expected recourse cost

in order to avoid incurring in high costs for some of the realization of the uncertainties

[32].

If some of the stage-two variables are required to be integer, we have what is known as

a stochastic integer programming (SIP) problem [7]. When this is the case, the stochastic

programming problem loses desirable properties such as convexity and continuity of the

recourse cost function. In this context, solution methods that rely on the use of dual

results from linear programming, such as the L-Shaped algorithm and its variants [31, 4],

cannot be directly applied to the stochastic problem with second-stage integer variables.

Moreover, the expected recourse function is discontinuous and the set of first-stage deci-

sions that yield second-stage solutions in known to be nonconvex in such cases.

In order to deal with this issue, several researchers have proposed approaches that

are capable of dealing with stochastic integer programming problems. These approaches

either try to adapt the L-Shaped algorithm into the context of stochastic integer pro-

gramming problems through the use of convexification techniques for the second-stage

problem (see, for example Laporte and Louveaux [17], Sherali and Fraticelli [30], Zheng

et al. [34]), enumerative branch-and-bound strategies (see for example Carøe and Schultz

[7], Norkin et al. [23], Ahmed et al. [2]), or else apply dual decomposition methods by

means of Lagrangean decomposition approaches[7]. In this case, the problem is decom-

posed into scenario subproblems through the relaxation of non-anticipativity constraints

(NAC) and the solution strategy relies on finding the optimal dual multipliers. Several

methods have been proposed in the literature for solving the dual problem associated

with the Lagrangean decomposition. The techniques available include the classical sub-

gradient method [13, 14], cutting-plane approaches [16, 25], the volume algorithm [3] ,

bundle methods [18, 33], and augmented Lagrangean methods [27, 19].

In this paper we present a comprehensive framework for the multi-product, multi-

period supply chain investment planning problem considering network design and dis-

crete capacity expansion under demand uncertainty. Although the present paper tackles

the application to a petroleum product supply chain, the proposed approach can be

easily generalized to different problems that happen to be a SIP problem. Some of the
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novel features that this paper presents include the implementation of a Lagrangean de-

composition to solve a large-scale problem from a real world case study, an algorithmic

approach for solving the dual Lagrangean problem, and a comparison between the com-

putational performance of different formulations for the NACs. Furthermore, we consider

a risk measure that allows us to reduce the probability of incurring in high costs while

preserving the decomposable characteristic of the problem.

The content of this article is organized as follows. Background of the problem consid-

ered in this paper is presented in Section 2. Section 3 describes the problem statement,

while Section 4 presents the mathematical model formulation. Section 5 presents the

scenario decomposition framework used and the proposed algorithm. Section 6 presents

some considerations about risk management in the context of the present problem. Nu-

merical results from a an example case and for a real world case study problem are

presented in Section 7. Finally, we draw some conclusions in Section 8.

2. Background

The problem approached in this paper can be defined as the strategic planning of

petroleum products distribution, where one seeks to select investments to be made in

logistics infrastructure, taking into consideration decisions regarding the distribution

of flows, inventory policies, and the level of the external commercialization of refined

products. Such decisions arise in the context of strategic and tactical planning faced by

petroleum products distribution companies operating over large geographical regions. We

consider this problem as an integrated distribution network design and binary capacity

expansion problem under a multi-product and multi-period setting.

Petroleum products from refineries are stored in tanks to be directed to distribution

bases. These bases serve as negotiation points with distributors and are considered as ag-

gregation points of demand for such products. They also might serve as an intermediate

point for other bases further away from the refineries. The bases are capable of storing

product when necessary, given that the problem is considered under a multi-period op-

eration. The storage and throughput capacities of the bases are limited. However, they

can be improved through an expansion project. The same idea holds for arcs, which

can also be expanded in the same fashion. In addition to that, we also consider the
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possibility of building new arcs and bases. The tanks of these bases are constantly being

loaded and unloaded. This process is known as the tank rotation and is subject to the

physical limitations that are inherent in the hardware associated with the tanks of the

distribution base. The rotating capacity refers to the number of times a tank can be

filled and emptied over a certain period of time.

Since we are dealing with uncertainty of the demand levels, it might be the case that

the base does not have enough tankage available to deal with unexpectedly high demand.

When this is the case, transportation ships can be used as temporary tanks in places

where marine access is available. This is only done under emergency circumstances due

to the high impact on the logistic costs.

3. Problem Statement

Given is a set of products that are supplied from several multi-product production

sites and transported to a set of bases that can be either an intermediate point, a demand

point, or both. Transportation is performed through capacitated arcs and is thus, subject

to capacity availability constraints. Let P be the set of the products considered, S the set

of suppliers and B the set of bases. Figure 1 represents a small example of the network

structure and the type of investment decisions to be taken. For the sake of illustration,

we consider one supply node (S = {S1}) and three bases (B = {B1, B2, B3}) - four after

N periods, assuming the representation of the decision of creating B4, i.e., B = B∪{B4})

One might notice that the structure changes along the time horizon, as is exemplified by

the expansion of B1, and the creation of B4 and the arcs that connect it to B1, B2, and

B3.

Figure 1: Network representation under a multi-period planning framework
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The multi-period problem is considered over a finite time horizon of size |T |, where

T represents the set of discrete time periods that can represent months, quarters or even

years.

For modeling the uncertainty we propose a two-stage mixed-integer linear stochastic

programming model. The uncertainty is considered through the consideration of |Ω|

discrete scenarios ξ ∈ Ω. These scenarios are defined by means of sampling from a

continuous distribution of the demand levels for a given product at a certain base. Further

details regarding the scenario generation process can be found in Oliveira and Hamacher

[24].

The first-stage decisions are the selection of the expansion projects for tanks and arcs,

as well as their timing. These decisions are represented by binary variables.Typically,

these investments are highly capital intensive and are built-to-order due to their technical

complexity and particular specifications. For this reason, we assume that the same

investment can only be implemented once along the time horizon. Also, we assume that

investment decisions are available for use at the beginning of the selected time period.

The second-stage decisions are those related to the flow of products, inventory, supply

levels at the sources, and the need of emergency floating tankage. Notice that, in this

case, the second-stage decisions involve both continuous and binary variables.

The objective function consists of investments costs of tanks and arcs expansion

projects and the expected costs related to freight, inventory, and emergency floating

tank acquisition. The purpose of the model is to plan the transportation and inventory

decisions that will cope with the projected (although uncertain) growth of product de-

mands, together with the possible investments that should be implemented and when,

minimizing both investment and expected logistics costs.

4. Mathematical Model

A description of the model notation is outlined in Table A.6 in Appendix A. The

mathematical model for the optimization of the aforementioned problem can be stated

as follows:

min
w,y∈{0,1}

∑
j,p,t

Wjptwjpt +
∑
i,j,t

Yijtyijt +Q(w, y) (4.1)
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s.t.:∑
t

wjpt ≤ 1 ∀j ∈ B, p ∈ P (4.2)

∑
t

yijt ≤ 1 ∀i, j ∈ N (4.3)

where wjpt represents the capacity expansion investment decisions at location j for prod-

uct p and in period t, and yijt represents the investment decisions for arcs connecting

locations i and j in period t. Q(w, y) = EΩ[Q(w, y, ξ)] represents the expectation eval-

uated for the uncertain parameters ξ over all ξ ∈ Ω for the second-stage problem, given

investment decisions (w, y). We assume in this case that the uncertain parameters are

described by a discrete probability distribution function. Constraints 4.2 and 4.3 define

that each investment can happen only once along the time horizon considered.

Q(w, y) = min
x,v∈R+,z∈{0,1}

∑
ξ

P ξ

( ∑
i,j,p,t

Cijtx
ξ
ijpt +

∑
j,p,t

Hjptv
ξ
jpt +

∑
j,t

Sjtz
ξ
jt

)
(4.4)

s.t.:∑
i

xξijpt + vξjpt−1 =
∑
i

xξjipt + vξjpt +Dξ
jpt ∀j ∈ B, p ∈ P, t ∈ T , ξ ∈ Ω (4.5)

∑
j

xξijpt ≤ Oipt ∀i ∈ S, p ∈ P, t ∈ T , ξ ∈ Ω (4.6)

∑
p

xξijpt ≤ A
0
ij +Aij

∑
t′≤t

yijt′ ∀i, j ∈ N , t ∈ T , ξ ∈ Ω (4.7)

vξjpt ≤M
0
jp +Mjp

∑
t′≤t

wjpt′ + Ujtz
ξ
jt ∀j ∈ B, p ∈ P, t ∈ T , ξ ∈ Ω (4.8)

vξjpt ≥ Ljp

M0
jp +Mjp

∑
t′≤t

wjpt′

 ∀j ∈ B, p ∈ P, t ∈ T , ξ ∈ Ω (4.9)

∑
i

xξijpt ≤ Kjp

M0
jp +Mjp

∑
t′≤t

wjpt′

+ Ujtzjt ∀j ∈ B, p ∈ P, t ∈ T , ξ ∈ Ω (4.10)

The second-stage problem Q(w, y) can be stated as shown in equations 4.4 to 4.10. The

objective function 4.4 represents freight costs between nodes, inventory costs, and costs

for hiring emergency floating capacity. Equation 4.5 comprises the material balance in

distribution bases. Constraint 4.6 limits the supply availability at sources. Constraint
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4.7 defines the arc capacities and the possibility of its expansion through the invest-

ment decisions. In a similar way, constraint 4.8 defines the storage capacities together

with their expansion possibility and the additional emergency capacity that might be

necessary. Constraint 4.9 defines minimum inventory levels, according to safety require-

ments. Constraint 4.10 sets the throughput limit for bases, defined by the product of the

available storage capacity with the throughput capacity multiplier, and the possibility of

expanding them by means of additional floating tankage.

5. Solution Algorithm

We assume that large-scale instances of the stochastic supply chain investment plan-

ning problem 4.1-4.3 presented in Section 4 cannot be solved in full space, and we con-

sider that scenario-wise Lagrangean decomposition is an alternative to overcome this

challenge. In the following Section, we detail the algorithmic strategy for solving the

aforementioned problem. Our method integrates a scenario-wise decomposition based on

Lagrangean decomposition and novel approach for updating the Lagrangean multiplier

set.

5.1. Lagrangean Decomposition Approach

In the reminder of this paper, we will consider the following compact notation for the

supply chain investment planning problem presented in Section 2.

v = min
x,y

cx+
∑
ξ

P ξqyξ

s.t.:

Ax ≤ b

Tx+Wyξ ≤ hξ ∀ξ ∈ Ω

x ∈ {0, 1}n

yξ ∈ Y ∀ξ ∈ Ω

where c is a n-dimensional vector, q is a p-dimensional vector, A is a m× n matrix, b is

a m-dimensional vector, T and W are matrices of size q × n and q × p, respectively, and
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h is m-dimensional vector. In our context, cx represents our investment costs (i.e., first-

stage costs), while
∑
ξ P

ξqyξ represents the costs with freight, inventory, and emergency

tankage acquisition. (i.e., second-stage costs). The set of constraints Ax ≤ b represents

constraints 4.2 and 4.3, while Tx+Wyξ ≤ hξ represents constraints 4.7 to 4.10. Finally,

set Y denote constraints 4.5 and 4.6, as well as restrictions regarding mixed 0-1 variable

domains.

As it is commonly known, this class of problem exhibits a block-angular structure

that can be exploited in a decomposition fashion, provided that we are able to split

it into more manageable pieces. One possible way of making it possible to decompose

the problem is to use Lagrangean Decomposition [8, 12] in the context of stochastic

optimization. Such a procedure was first proposed by Carøe and Schultz [7] allowing

the problem to be decomposed into scenario subproblems. The idea behind this scenario

decomposition approach is to create copies x1, . . . , x|Ω| of the first-stage variables and

then rewrite the problem as follows:

v = min
x,y

∑
ξ

P ξ
(
cxξ + qyξ

)
(5.1)

s.t.:

Axξ ≤ b ∀ξ ∈ Ω (5.2)

Txξ +Wyξ ≤ hξ ∀ξ ∈ Ω (5.3)

yξ ∈ Y ∀ξ ∈ Ω (5.4)

x1 = · · · = x|Ω| (5.5)

Equalities 5.5 correspond to the non-anticipativity constraints (NAC). As the name sug-

gests, these constraints state that the first-stage decisions must not depend on any par-

ticular scenario which will prevail in the second stage. In other words, it means that we

cannot have particular first-stage solutions for specific scenarios given that these solutions

must be taken prior to the uncertainty realization.

There are several ways of representing NAC. They can be expressed in aggregated

form, where a single constraint is used to express the non-anticipativity property, or

considering an disaggregated form, in which individual NAC are used to represent the

non-anticipativity between the first-stage variables in a pairwise fashion. In order to be
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able to decide between these two representations one must consider the inherent trade-

off between them. Even though the aggregate constraint yields in general weaker linear

relaxations than the conjunction of the NAC, the advantage is that fewer Lagrangean

multipliers are needed, which might make it easier to find good values. Using the disag-

gregate formulation requires a larger number of multipliers, although with the potential

benefit of having more control when it comes to the search of good multiplier values.

In our early experimentations, we observed that the disaggregated representation

of NAC provided better computational results in our context. Therefore, we will only

consider this type of representation hereinafter. Nevertheless, even the disaggregated

representation can be done in different manners. In this paper we consider two different

ways of formulating disaggregated NAC.

The first formulation assigns the scenario copy variables in a sequential fashion. In

this way, we can replace condition 5.5 by the following set of constraints:

xξ = xξ+1 ∀ξ = 1, . . . , |Ω| − 1 (5.6)

The other representation consists of associating the scenario copy variables consider-

ing one scenario (say the first scenario) as a reference to other copy variables. By doing

this, an asymmetric structure is created regarding the set of constraints that represent

the non-anticipativity conditions. In this case, the NAC are formulated as follows:

x1 = xξ ∀ξ = 2, . . . , |Ω| (5.7)

Independent of which representation one might choose, the Lagrangean relaxation

with respect to the non-anticipativity condition 5.5 is the problem of finding xξ, yξ, ξ =

1, . . . , |Ω| such that:

D(λ) = min
x,y

∑
ξ

P ξ
(
cxξ + qyξ

)
+
∑
ξ

λξsξ

s.t.:

Axξ ≤ b ∀ξ ∈ Ω

T ξξ x+Wξy
ξ ≤ hξ ∀ξ ∈ Ω

yξ ∈ Y (5.8)
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where sξ = xξ−xξ+1, ξ = 1, . . . , |Ω|−1 for the sequential representation, sξ = x1−xξ, ξ =

2, . . . , |Ω| for the asymmetric representation, and λ is (|Ω| − 1)-dimensional vector. The

Lagrangean dual then becomes the problem of finding λ such that

vLD = max
λ

D(λ) (5.9)

Duality theory establishes that v ≥ vLD [11]. In particular, for nonconvex cases such as

MILP models, we may have that v > vLD, which implies the existence of a duality gap.

This fact is a well known result and can be found in Carøe and Schultz [7].

One important property of the Lagrangian dual problem 5.9 is that it is a convex non-

smooth program, which splits into separate subproblems for each scenario ξ that can be

solved independently. Each scenario subproblem can be then stated in the following

form:

Dξ(λ) = min
x,y

P ξ
(
cxξ + qyξ

)
+ fξ(λ)xξ (5.10)

s.t.:

Axξ ≤ b (5.11)

T ξξ x+Wξy
ξ ≤ hξ (5.12)

yξ ∈ Y (5.13)

where D(λ) =
∑
ξD

ξ(λ) and fξ(λ) is given depending on the chosen formulation for the

NAC. For the sequential case we have that

fξ(λ) =


λ1, if ξ = 1

−λ|Ω|, if ξ = |Ω|

λξ − λξ−1, otherwise

and for the asymmetric formulation, we have that

fξ(λ) =


∑|Ω|
ξ=2 λ

ξ, if ξ = 1

−λξ, otherwise

Note that each one of the scenario subproblems are completely independent and, thus,

this type of decomposition could benefit from the use of parallel computation.
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5.2. Proposed strategy for solving the Lagrangean Dual

Although computationally convenient, the decomposition framework presented in Sec-

tion 5 does not solve the original full-space problem. Nevertheless, it is widely known

that the Lagrangean dual represents a relaxation of the original problem for any given

set of Lagrange multipliers [11]. In this sense, we can concentrate our efforts in finding

better multipliers sets, i.e. multipliers yielding tighter relaxations to the original problem

that approximate as much as possible the solution of the Lagrangean dual to the solution

of the full-space problem.

Typically, Lagrangean decomposition algorithms rely on successively solving the La-

grangean subproblems for sequentially improving Lagrange multipliers set that are ob-

tained based on the use of some information available after solving these subproblems.

The algorithm starts with an initial guess for the Lagrange multipliers, which can be

obtained by some problem-specific strategy, such as dual values of NAC from the linear

relaxation of the complete problem, or even set to prespecified values (e.g, zero). Then, at

each iteration the Lagrangean subproblems are solved and a relaxed solution is obtained.

The algorithm stops when some of the convergence criteria are satisfied. Otherwise, the

Lagrange multipliers are updated and the algorithm proceeds towards the next iteration.

Figure 2 schematically illustrates the proposed algorithm. As one might notice it follows

a classical iterative framework, even though it has particular features that differ from

traditional approaches.

The most common method used to obtain solutions to the Lagrangean dual is the

subgradient method [13, 14]. The method relies on the use of subgradient information

available after solving the Lagrangean relaxation to predict improvement directions for

the multipliers, as well as step sizes. Usually, this approach is preferred because of its

ease of implementation added to its capability of predicting reasonably good Lagrangean

multipliers for many cases. Nevertheless, special care must be taken in terms of selecting

good strategies for defining and updating the subgradient step size.

Unfortunately, it is sometimes reported in the literature that the subgradient ap-

proach might fail to achieve regarding its convergence. To circumvent this drawback,

many researchers have searched for improvements to this technique over the years.

One alternative considered is the use of cutting-planes for approximating the La-
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Figure 2: Algorithm schematic representation

grangean dual function. Cutting-plane strategies are available since the early 60’s after

the seminal work of Kelley [16]. Nevertheless, this approach might require a large num-

ber of iterations in order to yield good approximations of the Lagrangean dual function

and thus, good multiplier updates. This effect is mainly due to the fact that at the early

iterations of the algorithm, the number of cutting planes generated is too few to provide

good Lagrangean multipliers. One possible way of improving these kind of approaches

is to consider trust-regions for the multipliers in the early iterations, so that effect is

controlled [22].

In this paper we introduce a novel hybrid approach where we seek to combine the

ideas from the aforementioned methods into a single framework. The main idea be-

hind the algorithm is to combine cutting plane generation using the dual information

obtained from the solution of the Lagrangean dual problem with subgradients that pro-

vides approximated ascent directions. Moreover, we use the step size predicted by the

subgradient method as a trust-region for the multipliers update process. As will be

seen in the computational results section, the combination of these techniques provides
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effective Lagrangean multiplier updates, while ensuring good convergence properties.

5.3. Upper bounding procedure

One specific feature of the proposed algorithm is the particular heuristic that uses

information derived from the solution of the Lagrangean dual problem to derive a feasible

solution and a valid upper bound to the full-space problem. It should be noted that it is

not computationally demanding to calculate an upper bound for the full-space problem,

once a first-stage solution is available. This is mainly due to the fact that for a fixed

first-stage solution, the full-space problem becomes decomposable in scenarios.

The heuristic is based in the following formation rule. First, we calculate αK as

αK =
∑
ξ∈Ω

P ξxξK −
∑
ξ∈Ω

P ξ(1− xξK)

If αK > 0, the investment (i.e., a combination of location and product in the case of

capacity expansion or origin and destination, in the case of network design) is selected

to compose the feasible solution. The time period for the selected investment will be

the earliest among the scenarios where the investment was decided. We choose the

earliest time period as the one to be implemented based on the observation that the

costs incurred by recourse actions are typically larger than the increase in first-stage

costs due to investing earlier in a given project. In addition to that, one might notice

that the existence of more logistic options allows the system to possibly reach more

efficient and less costly logistics, which yields economies of scale.

Since we are using a heuristic to generating solutions based on information that comes

from scenarios individually, it might be the case that the solution generated is not feasible

for the full-space problem. If it is the case, then we use an integer cut to remove this

infeasible solution from the search space of the relaxed dual. Let X1 = {j | xj = 1} and

X0 = {j | xj = 0}. Then, we can write the integer cut as∑
j∈X0

xj +
∑
j∈X1

(1− xj) ≥ 1 (5.14)

and add it to every scenario subproblem. We then solve again the Lagrangean relax-

ation and proceed with algorithm execution.
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5.4. Multiplier updating procedure

The most common method for updating the Lagrangean multipliers is the subgradient

algorithm [13, 14]. This algorithm consists of an iterative method in which at a given

iteration K, with a current set of Lagrangean multipliers λK a step is taken along the

subgradient of D(λ). Let sK the the subgradient vector of dimension (|Ω| − 1) with

components given as sξK = xξK −x
ξ+1
K , ξ = 1, . . . , |Ω|−1 for the sequential representation

and sξK = x1
K − xξK , ξ = 2, . . . , |Ω| for the asymmetric representation, where xξK , ξ =

1, ..., |Ω| is the solution for the Lagrangean dual given λK . Then, the Lagrange multipliers

are updated using the subgradient information as follows:

λξK+1 = λξK + θK
(UB − LBK)∑

ξ(s
ξ
K)2

sξK ∀ξ ∈ Ω (5.15)

where UB is an approximation to the optimal value for v and LBK = D(λK). The term

θK ∈ (0, 2] is used to correct the error in the estimation of the true optimal value and

is usually selected using heuristic rules. The new set of Lagrangean multipliers λK+1 is

then used as an input for solving again the Lagrangean dual problem. The procedure

continues until reaching the limit in the number of iterations, or unitl some stopping

criteria is met, such as minimum improvement in the magnitude of D(λK) in some norm

(say a l2-norm) of the subgradient vector [11].

An alternative procedure for updating the Lagrangean multipliers is based on the

use of cutting planes to approximate the Lagrangean dual function. In this type of ap-

proaches, the solutions obtained from the Lagrangean dual are used to generate support-

ing hyperplanes (commonly referred as cuts in the optimization literature) that iteratively

generate an approximation for the Lagrangean dual function from which new multipliers

are then successively derived. Given a certain iteration K, the Lagrange multipliers can

be obtained solving the following auxiliary problem:

max
η,λ

η

s.t.:

η ≤
∑
ξ

P ξ
(
cxξk + qyξk

)
+
∑
ξ

λξsξk ∀k = 1, . . . ,K (5.16)

where 5.16 represents the cuts generated up to iteration K with the information available

in each iteration k = 1, . . . ,K. The main drawback associated with this type of approach
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is that it is commonly known that this problem is always unbounded during early iter-

ations of the algorithm [22], making necessary that some valid bounds are imposed on

the multipliers in order to prevent unboundedness.

In our approach we seek to combine both subgradient and cutting-plan strategies in

a hybrid approach, aiming to develop an efficient manner of updating the Lagrangean

multiplier set. In the proposed strategy, the Lagrangean multiplier updates are done by

solving the following optimization problem in a given Kth iteration:

max
η,λ

η (5.17)

s.t.:

η ≤
∑
ξ

P ξ
(
cxξk + qyξk

)
+
∑
ξ

λξsξk ∀k = 1, . . . ,K (5.18)

λξK−1 − θK
(UB − LBK)∑

ξ(s
ξ
K)2

|sξK | ≤ λ
ξ ≤ λξK−1 + θK

(UB − LBK)∑
ξ(s

ξ
K)2

|sξK | ∀ξ ∈ Ω (5.19)

The objective function 5.17 and constraint 5.18 correspond to the optimization prob-

lem for the traditional cutting plane approach for updating the Lagrange multipliers.

However, in the proposed algorithm we use a dynamically updated trust-region for the

Lagrangean multipliers in order to circumvent unboundedness issues. To construct this

trust-region, we use subgradient information available up to the current iteration to de-

fine step sizes, in the same spirit of what is done in the classical subgradient method.

However, in our case the multipliers are selected considering an optimization framework

rather than heuristically updating its values. Constraint 5.19 represents the aforemen-

tioned trust-region.

Note that we use a step length parameter θK to adjust the length of the step size.

This parameter is dynamically updated during the algorithm execution following the

ideas firstly presented in Barahona and Anbil [3]. We define three types of iterations

according to the dual solution value D(λK) obtained in the Kth iteration. The first

type is when we observe that D(λK) < D(λK−1). This is what is called a ”negative”

iteration. In this case we make θK = β−θK−1, where 0 < β− < 1. Otherwise, we

compute gK = sK−1 · sK and if gK < 0 it means that a further step in the direction of

sK would have given a smaller value for D(λK). In this case we call this iteration ”zero”

and make θK = β0θK−1, where 0 < β− < β0 < 1. Finally, if gK ≥ 0, then this iteration
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is called ”positive”. In this case we make θK = β+θK−1, where β+ > 1.

5.5. Algorithm statement

We can summarize the proposed algorithm as follows:

Step 1 : Initialization:

1.1) Set UB = ∞; LB = −∞; K = 1

1.2) Set initial Lagrangean multiplier λK values;

Step 2 : Solve Lagrangean dual Problem:

2.1) Solve each independent subproblem 5.10 to 5.13 ;

2.2) Combine subproblem solutions to get the lower bound LBK =
∑
ξD

ξ(λK);

2.3) If LBK > LB, then LB = LBK . Also store solution for generating cuts later.

Step 3 : Generate first-stage solution and derive UB

3.1) Apply the proposed heuristic for generating a first-stage solution xK ;

3.2) Obtain v(xK) evaluating xK in 5.1-5.5. If xK is not feasible, add a integer cut

of type 5.14 and return to Step 2

3.3) If v(xK) < UB, then UB = v(x);

Step 4 : If UB−LB < ε or any other criteria, such as time elapsed or number of iterations

are met, stop and return xK and UB. Otherwise, set K = K + 1 and proceed.

Step 5 Lagrange multiplier update:

5.1) Adjust the step length β;

5.2) Solve 5.17 to 5.19 and retrieve the new set of Lagrangean multipliers λK . Return

to Step 2 ;

6. Risk Management

In stochastic programming, where uncertain data are modeled as stochastic processes,

the objective function value is a random variable that can be characterized by a probabil-

ity distribution. Bearing in mind that the objective function is given as a combination of

the total first-stage cost and the expected cost of the recourse actions, we actually opti-

mize a function characterizing the distribution of this random variable (i.e., its expected

value).
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Nevertheless, despite the numerous advantages of representing a random variable by

its expected value, it is important to highlight that this is a risk-neutral approach. In

other words, it means that the remaining parameters characterizing the distribution asso-

ciated with random variables are not taken into consideration by the optimization itself.

This might lead to cases where, even though the expected cost is optimal, the distribu-

tion of the objective function cost might present a significant probability of incurring in

higher cost levels.

To control the risk of expected cost distributions with non-desirable properties, such

as a high probability of incurring in high costs, risk management constitutes an impor-

tant issue when formulating stochastic programming models. The most common way

of controlling risk is to include in the model formulation a term that represents the

measure of the risk associated with a profit distribution. Popular risk measures include

variance [20], shortfall probability [6], expected shortage [1], Value-at-Risk (VaR) [15],

and Conditional Value-at-Risk (CVaR) [26].

In this paper we chose to use the expected shortage as a risk measure. The reasoning

behind this choice is related to the inherent interpretation and computational complexity

of each risk measure. On one hand, using the variance as a risk measure is not completely

adequate in the present context since it penalizes in the same way scenarios with higher

and lower costs, since it only is concerned with deviations from the expected value.

On the other hand, risk measures such as shortfall probability, VaR, and CVaR has

the drawback of increasing the problem complexity, either by increasing the number

of binary variables (in the case of shortfall probability and VaR), or by destroying the

decomposable structure of the Lagrangian dual (in the case of VaR and CVaR) 1.

The expected shortage can be defined as the expectation of the cost in the scenarios

where the cost is higher than a pre-specified target η. The expected shortage is given by:

ES(η, x) =
1

SP (η, x)

∑
ξ

P ξ max{cx+ qyξk − η, 0} (6.1)

where SP (η, x) =
∑
ξ|cx+qyξk>η

P ξ. One can observe that expression max{cx+qyξk−η, 0}

is different from zero in all scenarios in which the cost is greater than η. In order to

1One might argue that decomposition can be restored by creating additional copy variables. Never-

theless, it would increase the size of the multipliers set, and thus, the complexity of the problem
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properly calculate the expected value of the cost over such scenarios, it is necessary not

to take into account the probability of those scenarios with a cost smaller than η. For this

reason, the expectation expression above must be divided by the sum of the probabilities

of all scenarios with a cost larger than η. The sum of these probabilities is called the

shortfall probability.

The expected shortage can be incorporated into the risk-neutral formulation given in

Section 3 as follows

min
x,y,r

cx+
∑
ξ

P ξqyξ +
∑
ξ

P ξrξ

s.t.:

Ax ≤ b

Tx+Wyξ ≤ hξ ∀ξ ∈ Ω

yξ ∈ Y

cx+ qyξ − η ≤ rξ ∀ξ ∈ Ω

rξ ≥ 0 ∀ξ ∈ Ω

where rξ,∀ξ ∈ Ω is a continuous and non-negative variable that is equal to max{cx+qyξk−

η, 0}. Once the problem above is solved and the optimal values for variables rξ,∀ξ ∈ Ω

are available, we calculate the expected shortage ES(η, x) as given by

ES(η, x) =
1∑

ξ|rξ≥0 P
ξ

∑
ξ

P ξrξ (6.2)

Note that in this case the block-diagonal structure is preserved, which allow us to use

the same ideas presented in Sections 4 and 5 as solution strategy. Moreover, only one

constraint and one continuous variable is added to each subproblem, which means that

there is not significant increase in the complexity of the subproblems. Regarding the

selection of target η, there is an inherent trade-off between the level of risk accepted

and how much optimality might be compromised in order to reach such desired risk

protection. In order to elucidate this trade-off one might successively solve the problem

for different target values and then come up with an Pareto optimal frontier considering

the objective function and different target levels.
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7. Numerical results

In this section, we present the numerical results for two different examples where the

proposed framework is applied. All the problems were modeled using AIMMS 3.11 and

solved with CPLEX 12.1 on Intel i7 1.8GHz CPU with 4GB RAM.

7.1. Example 1

The first example consists of a small instance, where a simplified version of the supply

chain investment planning problem is considered. Figure 3 gives a schematic representa-

tion of this instance. The upper row contains the supply nodes (S1, S2, and S3), while

the second and third rows represent primary (B1, B2, B3, B4, and B5) and secondary

(C1, C2, C3, and C4) bases, respectively.

This example consists of five time periods of one year each, one product, three pro-

duction sites, and 9 demand points, from which 5 are primary bases with marine access

(second row) and four are secondary bases (third row). In this case, only the primary

bases can rely on the use of emergency floating tankage if necessary. We consider twelve

options for the network design (arcs represented with dotted lines in Figure 3) and that

only primary bases are able to have investments in tankage expansion. The bases are

organized in five different regions (represented by gray rectangles) based on their geo-

graphical proximity. Sixteen demand scenarios are considered, where it is assumed that

the demand for each region can either grow or decrease 5% per year.

Figure 3: Example 1 representation

The equivalent deterministic of the two-stage stochastic problem for this example has

3,859 constraints, 2,083 continuous variables, 480 binary variables, and 13,045 non-zeros.
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Tables 1 and 2 give the optimal first-stage decisions concerning the selection and timing

of both network design and capacity expansion decision.

Bases
Periods

2 4

B1 X

B2 X

B3 X

B4 X

Table 1: Capacity expansion decisions

Arcs
Periods

1 2 5

B1-C1 X

B2-C1 X

B2-C2 X

B3-C2 X

B3-C3 X

B4-C3 X

B4-C4 X

B5-C4 X

Table 2: Network design decisions

The optimal expected cost is $ 8,718.3 million. If we optimize the problem considering

the average values of the random variables, the optimal solution of this case would be

suboptimal for the complete stochastic problem with a cost of $ 10,134.4. The Value of

the Stochastic Solution (VSS) [5], which is given by the difference between the optimal

value of the stochastic program and the objective value calculated using the solution

of the deterministic problem considering average levels for the stochastic variables, is $

1,416.1 million. The VSS can be seem as a measure of the savings in cost due to the

consideration of uncertainty, indicating in this case savings of about 16%. The large

savings in this case are related to the high cost of acquiring emergency floating tankage

and with the fact that the project selection when the demand is considered to be its

average comprises fewer projects, making the floating tankage acquisition more often.

21



Sequential Formulation Asymmetric Formulation

Subgradient Proposed Subgradient Proposed

Total Time[s] 1,800.0 1,037.4 394.4 118.0

Iterations 662 316 136 42

UB[$ million] 8,718.3 8,731.7 8,722.8 8,726.6

LB[$ million] 8,487.2 8,586.2 8,584.9 8,555.5

% gap 2.65 1.67 1.58 1.96

Table 3: Computational Times

Table 3 gives a summary of the number of iterations and the computational time

required to reach convergence. We compare 4 different cases where we combine two dif-

ferent formulations for the NAC constraints (namely asymmetric formulation as given in

5.6, and sequential formulation as given in 5.7) and two different algorithms (namely the

traditional subgradient algorithm, and our proposed hybrid approach). In this example

we used a 2% optimality gap and 1800s as stopping criteria. We consider in this example

β− = 0.8, β0 = 0.99, and β+ = 1.2.

As can be seen in Table 3 the asymmetric formulation performs better when compared

to the sequential formulation, independently of which solution technique is used (394.4

versus 1,800.0 for the subgradient algorithm and 118.0 versus 1,037.4 for our proposed

hybrid approach). In addition to that, our proposed algorithm performs better than the

traditional subgradient algorithm no matter which formulation is used (1,037.4 versus

1,800.0 for the sequential formulation and 118.0 versus 394.4 for the asymmetric formula-

tion). The best combination observed is the use of the asymmetric formulation combined

with the proposed hybrid approach (118.0s). We believe that the faster performance pre-

sented by the asymmetric formulation is related to the fact that in this formulation the

subproblem for ξ = 1 combines the multipliers from all problems, while in the other

formulation the multipliers are considered in a somewhat myopic fashion since only two

different multipliers are combined in each subproblem. It seems that for this particular

case, the penalties provided by the Lagrangean multipliers tend to be more effective in

the case of the asymmetric formulation since there are fewer iterations, thus improving

convergence. Moreover, when we compare the two different algorithms, one must bear
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in mind that the subgradients involving only binary variables provide a very limited set

of possibilities (recall that, for each dimension, it can only assume the values of 1, -1 or

0). Provided this fact, and that the subgradient is an estimation to the true ascent di-

rection, the consequences of having poor estimations can be very harmful. Our proposed

approach deals with that issue by using the magnitude of the step as a reference com-

bined with the outer-approximation of the Lagrangean dual function to decide the step

size update based on an optimization framework. As the results suggest, this strategy

tends to provide better decisions in terms of the Lagrange multiplier updates. Figures

4, 5, 6, and 7 gives the plots of the convergence profile of each combination, comparing

then between the two algorithms and the two formulations. In these pictures, ”Asym-

metric” represents the use of the asymmetric formulation, ”Sequential” represents the

use of the sequential formulation, ”Proposed” represents our proposed hybrid algorithm,

and ”Subgradient” the traditional subgradient algorithm.

Figure 4: Subgradient algorithm and sequential formulation

23



Figure 5: Proposed algorithm and sequential formulation

Figure 6: Subgradient algorithm and asymmetric formulation

Figure 7: Proposed algorithm and different algorithms
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7.2. Example 2

The second example presented in this section comes from a real world case study

petroleum product supply chain. In this case we consider four different products to

be distributed between 16 locations (13 bases, 1 refinery and 2 international suppliers).

A total of 28 projects for tankage expansion and 3 projects for network design were

considered under a planning horizon of 5 years, divided quarterly into 20 periods. All

computational experiments in this instance were solved considering 7,200s (2h) and 2%

optimality gap as stopping criteria.

In order to reduce the number of binary variables of the model, we use a multi-scale

definition for the time horizon regarding investment (first-stage) decisions and planning

(second-stage) decisions. In this sense, we aggregate the investment decisions such that

they are considered to be available at the beginning of each semester (i.e., consider-

ing a semiannually divided horizon), while the planning decisions are taken considering

the original quarterly divided horizon. Such an approach yields an upper bounding ap-

proximation to the original problem. However, in our early experimentations this was

shown to be an acceptably tight approximation, with differences in the objective function

smaller than 0.5% in our case. Figure 8 illustrates the different scales used for investment

decisions and planning decisions.

Figure 8: Multi-scale approximation representation

In order to represent the demand uncertainty, we generate scenarios by means of a

Monte Carlo sampling technique based on the following first-order auto-regressive model

Djpt = Djpt−1[1 + (ωp + σε)]

where wp is the expected average growth rate for the consumption of product p dur-

ing the planning horizon, σ represents the estimated maximum deviation for product
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consumption in the region and ε follows a standard normal distribution. The average

growth rate ωp is given by means of a forecast model that uses annual consumption

historical data from the last 40 years, while the maximum deviation σ is set also based

on the observation of the historical data behavior. Each scenario corresponds to a se-

ries of demand forecasts for every location and product. The number of scenarios to be

used is determined based on a statistical method [29] to obtain solutions within specific

confidence intervals for a desired level of accuracy. We use this method as a means of

reducing the number of scenarios given that we are sampling from a continuous limited

space. For further details on the scenario generation method and definition of sample

sizes for this problem, please refer to Oliveira and Hamacher [24].

Scenarios Constraints Binary Var. Continuous Var. Non-zeros

25 113,822 1,890 88,283 478,780

50 226,822 3,390 175,783 95,1705

100 452,822 6,390 350,783 1,897,555

200 904,822 12,390 700,783 3,789,255

Table 4: Deterministic Equivalent Sizes

Scenarios
Sequential Formulation Asymmetric Formulation

Full-Space
Subgradient Proposed Subgradient Proposed

25 1,203.2 676.5 622.0 482.7 675.5

50 2,714.3 1,260.9 908.5 507.3 7,200.0

100 7,200.0 4,625.5 4,018.7 1,061.5 Out-of-Memory

200 7,200.0 7,200.0 7,200.0 6,151.8 Out-of-Memory

Table 5: Computational Times[s]

Table 4 shows the deterministic equivalent size of the problem considered for instances

of different sample sizes, while Table 5 gives computational results in terms of solution

times. The instances were solved using the traditional subgradient and the proposed

hybrid algorithms considering the two different formulation for NAC. We also compare
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this solution times with directly solving the full-space equivalent deterministic problem

(column ”Full-space”).

As can be seem in Table 5, the hybrid approach combined with the asymmetric

formulation of the NAC, outperforms the other possible combinations in terms of com-

putational times. Indeed, for the 200 scenario instance, this is the only algorithm that

is able to reach a 2% optimality gap solution before the time limit of 7,200s. The value

”Out-of-Memory” means that the available RAM was not sufficient to deal with the de-

terministic equivalent in these cases. We used the same values for β−, β0, and β+ that

were used in the previous example.

We solve this case study with a sample size of 200 scenarios. Figure 9 shows the

results in terms of the cost distribution. The objective function of the stochastic problem

is $64,283.8 million. The solution of the deterministic problem considering the average

demand levels for the same 200 scenarios is the suboptimal solution value of $68,236.4

million. The VSS for this scenario sample is thus $3,952.6 million, which represents

savings of about 5.8%.

Figure 9: Cost distribution for 200 scenarios

In Figure 9, the distribution of costs shows that there is a non-negligible probability

of incurring in high costs due to the dispersion that the probability distribution presents
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towards its right-hand side. In order to control the risk of high costs we applied the risk

management model presented in Section 5 for minimizing the expected shortfall. We set

the target to $ 68,000 million for the following calculations based on the assumption that

we would like to avoid possible deviations that exceed the expected cost in more than 5%

. Figure 10 presents the new distribution of costs for the case when risk is incorporated

in the model.

Figure 10: Cost distribution for 200 scenarios after risk management

As can be seen in Figure 10 the risk management affects the cost distribution by

reducing the the expected shortfall (i.e., expected cost over the target), as well as the

probability of incurring in higher costs. In this case, the objective function value increases

to $65,588.7 million, or 1.3%. The expected shortfall cost is reduced from $9,433 million

to $3,850.0 million (over the target), which represents a reduction of 59.3%. Moreover the

probability of shortfall is dropped from 13.5% to %5.5. Figure 11 shows the comparison

between the objective function value distribution before and after the risk management

technique is applied.
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Figure 11: Cost distribution comparison

8. Conclusions

In this paper, we presented a two-stage mixed-integer linear stochastic programming

approach for the strategic planning of a multi-product, multi-period supply chain in-

vestment planning problem under demand uncertainty. We developed a comprehensive

framework for solving the problem based on Lagrangean decomposition, exploiting its

scenario decomposable structure. In this context, the use of decomposition presented it-

self as being imperative, due to the large size of the full-space problem. We also presented

a novel hybrid algorithmic framework for updating the Lagrangean multiplier set, based

on the combination of cutting-plane, subgradient, and trust-region strategies. Numerical

results suggests that significant savings in computational times can be achieved by using

the proposed strategy.

We also explicitly consider a risk management tool as a mean to reduce the chances

of incurring in high costs. We chose the expected shortfall as a risk measures, since

it presented itself as being more suitable for the presented context when compared to

several other risk measures. Results suggests that this risk measure can efficiently reduce

the high cost risks without increasing the complexity of the problem.
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As for future research, we believe to be imperative further evaluation the proposed

technique under a more broader context, testing these ideas for more general classes of

problems. We also believe that the development of more exhaustive sensitivity analysis

of the algorithmic performance to variations in user-specified parameters deserve further

examination in future studies.
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[27] Ruszczyński, A., 1995. On convergence of an augmented lagrangian decomposition method for

sparse convex optimization. Mathematics of Operations Research, 634–656.

[28] Sahinidis, N., 2004. Optimization under uncertainty: state-of-the-art and opportunities. Computers

& Chemical Engineering 28 (6-7), 971–983.

[29] Shapiro, A., Homem-de Mello, T., 1998. A simulation-based approach to two-stage stochastic pro-

gramming with recourse. Mathematical Programming 81 (3), 301–325.

[30] Sherali, H., Fraticelli, B., 2002. A modification of benders’ decomposition algorithm for discrete

subproblems: An approach for stochastic programs with integer recourse. Journal of Global Opti-

mization 22 (1), 319–342.

[31] Van Slyke, R., Wets, R., 1969. L-shaped linear programs with applications to optimal control and

stochastic programming. SIAM Journal on Applied Mathematics, 638–663.

[32] You, F., Wassick, J., Grossmann, I., 2009. Risk management for a global supply chain planning

under uncertainty: models and algorithms. AIChE Journal 55 (4), 931–946.

[33] Zhao, X., Luh, P., 2002. New bundle methods for solving lagrangian relaxation dual problems.

Journal of Optimization Theory and Applications 113 (2), 373–397.

[34] Zheng, Q., Wang, J., Pardalos, P., Guan, Y., 2012. A decomposition approach to the two-stage

stochastic unit commitment problem. Annals of Operations Research, 1–24.

32



Appendix A. Nomenclature

Indexes and sets

i, j ∈ N Locations

p ∈ P Products

t ∈ T Time periods

ξ ∈ Ω Scenarios

Subsets

B ⊆ N Distribution bases

S ⊆ N Suppliers

Parameters

A0
ij Current arc capacity

Aij Additional arc capacity

Cijt Transportation cost

Dξ
jpt Demand

Hjpt Inventory cost

Kjp Throughput capacity multiplier

M0
jp Current inventory capacity

Mjp Additional inventory capacity

Ojpt Supply

Pξ Scenario probability

Sjt Emergency floating tankage cost

Ujt Emergency floating tankage capacity

Wjpt Inventory investment cost

Yijt Arc investment cost

Variables

xξijpt Product flow

vξjpt Inventory level

zξjt Emergency tankage contract decision

wjpt Inventory investment decision

yijt Arc investment decision

Table A.6: Model Notation
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