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Abstract. 

In this paper we address the synthesis and design of chemical processes using Chemical 
Modular Process Simulators – that include state of the art models- including discontinuous cost 
and sizing equations. Equations are divided into ‘implicit’ ones which include all the equations in 
the process simulators with an input-output black box structure, and other third party equations 
(i.e. sizing and costing correlations for any database) and ‘explicit’ constraints in form of 
equalities or inequalities like in any regular equation based optimization environment.  

Using this modular framework the problem is formulated as a Generalized Disjunctive 
Programming problem and reformulated and solved as an Mixed-Integer Nonlinear 
Programming Problem. Different algorithms (Branch and Bound, Outer Approximation and 
LP/NLP based Branch and Bound) have been adapted to deal with implicit equations and their 
capabilities have been studied. Several examples are presented in order to illustrate the 
performance of the algorithms. 

 

TOPICAL HEADING : Process Systems Engineering 

KEYWORDS: MINLP, Process Simulators; Process Synthesis; Process Design; Disjunctive 

Programming. 

* Author to whom all correspondence should be addressed.  

Jose A. Caballero. University of Alicante. Chemical Engineering Department. 

Apartado de Correos 99. 03080. Alicante Spain. E-mail: caballer@ua.es 



Introduction 

Optimal Process Synthesis is one of the most challenging problems in Chemical Engineering1. 
The goal of conceptual design (process synthesis) is the identification of the best flowsheet 
structure (process system) that must carry out a specific task, such as conversion of raw 
material into a product, or separation of a multi-component mixture. In order to accomplish this 
goal many alternative designs must be considered. Usually the flowsheet is divided into 
subsystems such as reaction, separation and heat integration. These subsystems can, in turn, 
be divided into smaller ones, either at the level of the paths between unit operations, or choices 
of different technologies among them. Along the history of process system engineering there 
has been different alternatives approaches to the Process Synthesis problem. Some of them 
are: a) Total enumeration that is limited to problems with a reduced number of alternatives. b) 
Graphical methods through physical insights c) Heuristic evolutionary search2 that uses 
heuristics to generate a good base case design, and then modifies the flowsheet until no 
improvement is possible. However, the two more widely used approaches are d) Hierarchical 
decomposition developed by Douglas3,4, and superstructure optimization5 In the first, the 
problem is addressed through hierarchical decisions and short cut models at various levels: 
batch versus continuous, input output structure of the flowsheet, recycle structure of the 
flowsheet, general structure of the separation system, (vapor and liquid recovery), and heat 
integration. If the process becomes unprofitable as the design proceeds, the search is 
terminated. In the case of superstructure optimization, a systematic representation is postulated 
in which all the alternatives of interest are embedded. The problem is then modeled and solved 
as a Generalized Disjunctive Programming Problem (GDP) or as a Mixed Integer (non)Linear 
Programming Problem (MINLP). 

While hierarchical decomposition can address complex problems, it cannot guarantee to obtain 
the best solution because it is a sequential decomposition strategy, and therefore it does not 
take into account the interactions between the different levels of decomposition. As an example, 
Duran and Grossmann6  and Lang et all7 have shown that the simultaneous optimization and 
heat integration of process flowsheets generally produces improvements compared to the 
sequential approach. The GDP or MINLP techniques have shown to be powerful in the 
synthesis of subsystems: heat exchanger networks, mass exchanger networks, distillation 
sequencing, utility systems, etc8. Nowadays, however, process synthesis does not use a single 
strategy but a combination of hierarchical decomposition together with graphical techniques 
based on physical insights, and everything assisted by mathematical programming tools. 

When applied to Process Synthesis, GDP and MINLP are limited to moderated size problems. 
The reasons are that the number of equations implied in chemical process models can be very 
large with hundreds or even thousands of integer (binary, Boolean) variables and with a large 
number of nonlinear and non convex equations that can prevent not only to finding the optimal 
solution but even finding a feasible point. The advances in the development of algorithms for 
MI(N)LP and GDP, global optimization, software and hardware have significantly increased the 
size of the problems and reduced the CPU time required in the solution and have produced 
interesting tools that allow the synthesis of chemical process plants using mathematical 
programming tools9,10,11. However, a rigorous modeling approach requires further advances in 
fields like global optimization, GDP algorithms and so on. In order to mitigate those problems, in 
conceptual design it is common to use shortcut or aggregated models that capture the 



essentials of the process with moderate numerical complexity. Also in some cases specially 
tailored algorithms have been developed to solve some specific problems12. The drawback of 
the shortcut models is that they have limited accuracy, and hence may predict unreliable 
results. 

On the other hand, modular chemical process simulators include state of the art models for the 
most important units in chemical process industry with numerical methods especially tailored for 
each one of the unit operations together with large databases of physico-chemical 
thermodynamic and transport properties. Process simulators are also robust and reliable tools 
that are used extensively in process engineering. 

Although nowadays most process simulators have optimization capabilities, they are able to 
deal only with problems involving continuous variables and smooth constraints with continuous 
domains. Optimization capabilities involving integer variables or discontinuous domains for the 
equations are, if any, very limited. Therefore, complex cost models or detailed size models 
included in some simulators can only be used ‘a posteriori’ after the simulation has been 
converged. In other words, the flowsheet was synthesized using approximate size and cost 
models as well as shortcut or aggregated models, and the further optimization of the operational 
conditions does not use the rigorous sizing or cost models due to their complex discontinuous 
nature.  

In this paper we investigate different algorithms to integrate GDP and MINLP algorithms with 
existing process simulators in order to include complex cost and/or size functions, or in general 
complex equations defined over discontinuous domains. These functions can be in the form of 
explicit equations or implicit blocks (input-output black box relations). The structural optimization 
of process flowsheets –topology optimization- will be developed in future papers. Some works in 
this area can be found in references13,14,15, although the most important theoretical aspects 
related with structural optimization will be addressed in next sections as well. 

 

GDP formulation with implicit models. Application to a Modular Process Simulator 

To get a clear representation of the different solution strategies it is convenient to differentiate 
the distinct kinds of variables present in an optimization problem in which there are implicit 
equations involved: 

Design or independent variables (xI). In a chemical process simulator these are the variables 
that must be specified to converge the flowsheet. The number of such variables matches the 
degrees of freedom in the flowsheet.  

Variables calculated by the simulator (xD) (or in general by any implicit model). The user has no 
direct control over these variables. In some process simulators it is possible to force some of 
these variables to take specific values through “auxiliary calculation blocks” –the name changes 
depending on the simulator-. These calculation blocks change some of the design variables 
until the specification is met. However, if the system is optimized, it is faster and usually 
numerically more reliable to introduce these specifications as constraints to the model. 

Variables that must be fixed in a given topology of the flowsheet (u), for example number of 
trays in a distillation column, integer, binary (or Boolean) variables, etc. It is worth mentioning 



that we are referring to a subset of variables that must be fixed in a given iteration when solving 
a NLP problem with a given topology and a given set of fixed binary (Boolean or integer) 
variables. However, these variables can change from an iteration to another. The ways in which 
these variables are modified depend on the algorithm used to solve the problem. Due to the 
characteristics of some equipment, in some cases specially tailored algorithms are required as it 
is the case in distillation columns. Special algorithms for design distillation columns using 
process simulators were previously presented by Lang and Biegler16 and by Caballero and 
Grossmann17  

Variables that do not appear at the flowsheet level (or in other implicit block of equations) (z) but 
appear in explicit external constraints. No special treatment of these variables is required. 

In a similar way, we can differentiate two classes of equations: 

Implicit equations, These are all the equations solved by each of the modules in the process 
simulator, or any other third party module added to the model. These equations are usually 
considered “black box input-output” relationships because we have no access to the explicit 
equations.  

A well known danger hidden in the implicit equations introduced in a gradient based 
optimization environment is that can have points in which some of these equations are non 
differentiable. Therefore, we must have a general knowledge of the system of equations in order 
to anticipate this behavior and correctly model it. For instance, a module developed to calculate 
the cost of a vessel could use different correlations depending on the value of the pressure 
design. This is not a problem in ‘a posteriori’ cost estimation, but in a gradient based 
optimization algorithm introduces discontinuities and therefore, unpredictable numerical 
behavior. The model must explicitly capture this behavior and correctly model the cost 
equations. 

External or explicit equations, These are equations over which we have complete control. These 
equations can include dependent and independent variables. When the equations involve 
independent variables exact derivatives can be obtained, When they involve variables 
calculated by the simulator finite differences must be used which are not exact. 

The disjunctive formulation of the problem can then be written as follows: 
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In equation (1) the index ‘I’ makes reference to the implicit equations, either in the process 
simulator or in a third party program; and the index ‘E’ to the explicit ones. J is a set of 
disjunctions and i makes reference to each one of the terms in the disjunction Dj. 

The general disjunctive formulation given by equation (1) includes some particular cases of 
interest by themselves, or because they appear as subproblems in some solution algorithms. 

If there are no disjunctions, or the value of the binary variables is fixed, the problem becomes in 
a non-linear programming problem with implicit equations. This is the case of optimizing a 
flowsheet with a fixed topology and smooth functions. Even though, the problem of solving a 
nonlinear optimization problem in a process simulator has been successfully addressed by 
different researchers 18, 19,20,21,22,23,24, it is worth mentioning some relevant aspects. In 
modular simulators the equations are grouped in modules according to the physical process 
they represent; then these modules are solved sequentially, usually in the same way material 
flows through the process (HYSYS.Plant©25  is a remarkable exception in which information is 
propagated through the systems as soon as it is generated). To solve the optimization problem 
the complete system is converged before calculating the constraints and objective function. 
However, because the flowsheet consists of black-box modules, simulation is usually performed 
by slow convergence techniques. Moreover, for optimization gradients can only be computed for 
independent variables in explicit equations while numerical approximations are used for the 
calculated variables. 

In the three most common process simulation codes (ASPEN, PRO/II and HYSYS) the 
optimization problem is solved first calculating the process models before evaluating the 
constraints and objective function . The optimization problem is solved in an outer loop while the 
model equations are converged in an inner loop. Therefore, at least a single process model 
evaluation is required every time the objective and constraint functions are evaluated for 
optimization.  

If there are no implicit equations inside the disjunctions, then the problem can be reformulated 
as a MINLP using a big M or a convex hull reformulation. If a pure branch and bound algorithm 
is used then no especial care is needed. However, if a decomposition algorithm, like outer 
approximation26  or the LP-NLP based branch and bound27 (an intermediate situation between 
pure BB and outer approximation), is used then generating the master MILP problem is not 
trivial. 

If there are implicit equations inside the disjunctions we can differentiate two cases. First, the 
implicit equation makes reference to some block (unit operation) that could eventually produce 
numerical problems or to implicit equations, calculated by the process simulator or by another 
third party program. A small example will illustrate this point: A typical disjunction in process 
synthesis is: 



 ⎥⎦
⎤

⎢⎣
⎡

=
¬

∨⎥⎦
⎤

⎢⎣
⎡

0vaiablesRelevant
Y

equationsUnit
Y unitunit     (2) 

The left term in the previous disjunction states that if the unit operation is selected, then we 
must calculate all the equations associated with it. The right term states that if the unit operation 
is not selected a subset of variables (we have called them the relevant variables) must be set to 
zero. Among these variables are the inlet and outlet flows. However, if we try to set to zero the 
inlet flows in a unit operation the process simulator is likely to stop with warning messages due 
to convergence failure. Fixing the variables to a small value can work in some situations, but 
again depending on the simulator and on the unit operation, unexpected results can be 
obtained. Even more, fixing the output flows to zero can affect parts of the rest of the flowsheet. 
Therefore, this situation must be anticipated and zero flows avoided. As a second point, if the 
implicit equations make reference to blocks that will not produce numerical problems then no 
special care is needed. 

Adapted Algorithms. 

In this work we have adapted some algorithms that represent the state of the art in solving 
MINLP problems: A Regular and a Disjunctive Branch and Bound (BB) 28 ,29; Outer 
Approximation (OA) with MINLP reformulation;,30,31 LP-NLP based Branch and Bound 
(LP/NLP-BB). 

In all the branch and bound based algorithms we have to reformulate the problem (or parts) as 
a regular MI(N)LP using a big M or a convex hull reformulation. In any case, we have to solve a 
series of NLP problems in which a subset of binary (Boolean) variables are fixed and the rest 
are relaxed to be between 0 and 1. The NLPs solved take the general form given by the next 
equation: 
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Where equation 3.a refers to the implicit equations (i.e. at the level of process simulators). 

Usually, but not always, this equations come in the form ),( uxx ID Θ=  and can be explicitly 

removed –recycles in a flowsheet is an example in which those equations cannot be removed-. 
Equations 3.b and 3.c are the rest of explicit equations that do not depend on the disjunction. 
Equations 3.d and 3.e are the convex hull, big M or any other valid MINLP reformulation. 



Equation 3.f refers to the big M reformulation for implicit equations inside the disjunctions, if 

those equations cannot be explicitly removed by ),( uxx IID Θ= . The set B makes reference 

to those binaries that are not fixed in a given iteration. 

The OA and LP/NLP-BB algorithms iterate between two different problems, an NLP like that in 
equation (3) with fixed yi,j and a Master (MILP) problem that is obtained from the linearizations 
of the constraints and the objective function , 30 31: 
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where λ is a vector formed by the signs of the Lagrange multipliers of equality constrains in the 
solution of last NLP subproblem. s1, s2 and s3 are positive vectors of slacks variables introduced 
to minimize the effect of non-convexities, and Π  is a vector of penalty parameters. 

It is worth mentioning that in the previous formulation all implicit equations have been removed 
since the Master problem does not depends on dependent variables. Linearizations of 
dependent variables can be done applying the chain rule through the entire flowsheet or the 
implicit equations and therefore all the problem depends only on independent, slacks, variables 
that do not appear in the flowsheet (z) and the variable α, used to transfer the objective 
function to the constraints. 
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As commented in a previous section a critical step is to obtain accurate derivatives and all 
precautions previously commented must also be taken into account here. 

Both, the OA and LP/NLP-BB algorithms start by transforming the problem into a MINLP using a 
Big M or a convex hull reformulations and solving an initial NLP problem in which the binary 
variables are relaxed to continuous variables that lie between 0 and 1. This approach can 
eventually produce numerical problems with the implicit blocks inside disjunctions if the user 
does not have complete control over those blocks of equations (i.e. a unit operation 
disappearing from the superstructure). In this case logic based algorithms must be adapted. 
However, in this paper, as commented before, we focus only on the case in which there are no 
implicit equations inside the disjunctions (i.e. disappearing units) or in the case in which we 
have control over those equations and then eventual numerical problems are avoided 
(discontinuous size and cost correlations). From the solution of this first NLP a Master problem 
is generated.  

OA solves the Master to optimality (or to a given pre-specify tolerance). Then, a new NLP is 
solved with the values of the binaries obtained from the last Master fixed, that is a solution to 
the problem and then an upper bound to the optimal solution. A new Master is generated by 
accumulation of linearizations (constraints of previous Masters plus the linearizations of the last 
NLP). The procedure continues until in two consecutive iterations there is no improvements in 
the upper bound .  

In the LP/NLP-BB algorithm the idea is no re-starting the MILP from the beginning. Therefore, 
when an integer solution is found a NLP, with the binaries fixed to the integer solution, is solved. 
The solution of this NLP is an upper bound to the optimal one. All the open nodes in the MILP-
Master are updated with new linearizations obtained from the last NLP and the branch and 
bound continues without re-starting the tree search. The trade-off, however, is that the number 
of NLP problems may increase, but computational experience indicates that the number of NLP 
problems remains unchanged   

Implementation Details 

In this work we have used the public version of HYSYS.Plant for performing the simulations. 
The NLP subproblems were solved using external to HYSYS, state of the art NLP, solvers 
(CONOPT32, SNOPT33) through an activeX client-server application. All the process is 
controlled by MATLAB34. Cost and size models were also developed in MATLAB as third party 
implicit models or through explicit equations. Although it would be possible to use the HYSYS 
internal NLP solvers we obtain a large degree of flexibility dealing with explicit constraints, 
master problem generation, etc, when using external solvers.  

Figure 1 shows an scheme of the implementation. The first step is at the level of process 
simulator. Here we have to set up the flowsheet (or the superstructure if it was the case), 
determine the degrees of freedom and decide which are the independent variables in the 
flowsheet among the options available. In this point HYSYS has an important advantage over 
other process simulators due to the way in which the flowsheet is calculated. In general, 
modular simulators implement a rigid input-output structure, in other words, the user must 
provide information of the inputs to a unit operation and internal specifications and the simulator 
calculates the outputs. However, in HYSYS, as soon as all the degrees of freedom of a unit are 
satisfied that unit is calculated, and the information propagated forward and backward . So it is 



possible calculate inputs in terms of outputs, or any feasible input-output combination. Of 
course, there are exceptions like distillation columns where the usual approach is followed. It is 
convenient to start with a converged flowsheet, even though the other external constrains were 
initially violated. We let the optimizer to converge all those constraints as the same time that is 
searching for the optimum. 

The second step consists of writing the mathematical programming model, that includes explicit 
constraints (sizing and cost models), third party implicit models (other input-output models not 
included in the process simulator), etc. these new constraints could be only in terms of the 
independent and/or dependent variables that previously appear in the flowsheet and also in 
terms of new external variables. The second case is the usual one. In order to deal with those 
new variables there are two approaches: divide the variables into dependent and independent, 
like in the variables at the flowsheet level, or simply let the optimizer to deal with the variables 
like in any other optimization problem. The latter approach is usually more efficient because it 
avoids eliminating constraints. If the problem has also third party blocks of implicit equations 
that cannot be removed – a subset of variables, equal to the number of equations, written in 

terms of the rest  ),( uxx IID Θ= - then the same approach followed with equations at process 

flowsheet level must be used. 

If the model is solved using an MINLP solver, as is the case in this paper, a valid reformulation 
using a big M or a convex hull must be used. For linear equations a convex hull reformulation is 
used, in the case of nonlinear equations, that include all the implicit equations, we use a big M 
reformulation. Although it would be possible to use a non-linear convex hull reformulation it 
introduces numerical difficulties when some of the binaries take zero values. A correct 
implementation of the non-linear convex hull was introduced by Sawaya & Grossmann35  but it 
is not easy to apply in the case of implicit blocks of equations. Therefore, to avoid numerical 
problems in nonlinear equations or implicit blocks we implement only a big M reformulation. The 
equations below show a general disjunction an valid MINLP reformulation: 
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In the equations above the superscript ‘L’ refers to the subset of independent and/or z variables 
that are linear inside the disjunction. The superscript ‘N’ refers to the subset of independent 
and/or z variables that are nonlinear in the disjunction. Note that if there is no further information 
all dependent variables should be considered nonlinear because they are calculated through a 
black box relation. Superscripts ‘LO’ and ‘UP’ make reference to the lower and upper bounds of 
the variables. Note that the convex hull reformulation for the linear constraints requires bounds 
on the linear variables inside the disjunction but it is not necessary for the big M reformulation. 
Finally ‘v’ and ‘w’ are the disaggregated variables. 

The two first steps, model formulation at the level of flowsheet and model formulation of the 
explicit external constraints and other implicit blocks, are the only that are not completely 
automated. The rest have been implemented in a way that the user only has to select among 
the available options. 

Once the model has been specified, the next step is connecting the process simulator with the 
rest of the model. In this work we used a client-server application through the windows 
Component Object Model (COM) interface. All the process is controlled from MATLAB where 
the different algorithms were implemented. Derivatives calculation, master generation, etc are 
performed by MATLAB automatically in our current implementation. NLP subproblems and 
Master problems are solved using TOMLAB-MATLAB36 –an interface for accessing state of the 
art NLP or MILP solvers. In this paper we have used Conopt and Snopt as NLP solvers and 
CPLEX as MILP solver. 

The most time consuming task in all the process is the convergence of the flowsheet each time  
that the objective function and constraints are evaluated. In order to speed up the calculations it 
is necessary to optimize the number of calls to the flowsheet. The major number of flowsheet 
evaluations is required when derivatives are calculated. There are two aspects to take into 
account: separating variables that affect the flowsheet from those that only appear in explicit 
constraints to avoid unnecessary calls to the flowsheet, and second if the perturbation 
parameter to calculate derivatives numerically are compatible (same order of magnitude) try to 
take advantage of the sparsity pattern of the model and calculate some columns of the Jacobian 
matrix simultaneously. A good option is the CPR algorithm 37 . 

 

Examples 

Example 1. Three heat exchangers network. 

The first example is an adaptation of an example by Turkay and Grossmann38. It consists of a 
small heat exchangers network. There are two streams in the network: a hot stream to be 
cooled from 500 to 430 K and a cold stream to be heated from 350 to 560 K. Cooling water and 
High pressure steam at 600 K are available as cooling and heating utilities. All necessary data 
for the example is given in Table 1. As shown in Figure 2 the network consist of three heat 
exchangers; the first one (E-101) exchanges heat between the hot and cold streams, the 
second one (E-102) cools the hot stream with cooling water, and the third one (E-103) heats the 
cold stream with steam to the exit temperature. Since the network structure is fixed, the 
variables to be determined are heat loads, areas of the heat exchangers and unknown 
temperatures (HotStream T1 and ColdStream T2, in Figure 2). The objective function includes 



both the investment and utility costs. The cost of each heat exchanger is given by a 
discontinuous cost function in terms of the heat transfer area of each heat exchanger.  

The first step is to do a degree of freedom analysis at the level of flowsheet. Although in most 
situations this analysis is not easy, in general is very straightforward when using a process 
simulator. Once all the data from the problem has been introduced, the degrees of freedom are 
equal to the number of extra specifications we need to introduce to converge the flowsheet. 
Process simulators usually include tools to detect over-specifications, inconsistencies and so 
forth which facilitates a lot this stage. In this first small example there is only one degree of 
freedom, and we decided that the heat exchange area in the first heat exchanger to be the 
independent variable. A disjunctive formulation of this problem is then as follows 
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    (7) 

In equations (7), W is the heat load needed of steam or water (kW). IC is the annualized 
investment cost of each heat exchanger and �(·)makes reference to the flowsheet equations to 
calculate all the other variables needed in the model (Areas, heat loads, and unknown stream 
temperatures).  

In the disjunctive model given in equation (7) there are no implicit equations inside the 
disjunctions. The problem was transformed into an MINLP using a big M reformulation and 
solved using BB, OA and LP/NLP-BB algorithms. In all cases the final results were the same, 
but the performance of the algorithms was very different. Since the bottleneck is the time spent 
calculating NLP subproblems, the BB algorithms produces the worst results in terms of CPU 
time (49.2 s for solving 37 NLPs –Nodes-). Both OA and LP/NLP-BB have similar performance 
OA take 5.2 seconds and 4 major iterations, while LP/NLP-BB takes 4 seconds and solved 
three NLP subproblems. One characteristic of this problem, that is also common to problems 
with discontinuous size regions, is that there is a relatively large number of combinations for the 



binary variables that produce infeasible solutions, even more if the relaxed solution is not very 
tight. Therefore, the master can predict combinations of binary variables that produce infeasible 
NLPs. –This is the case in the second major iteration in OA. Curiously, In the LP/NLP-BB 
algorithm this effect is not observed, maybe because the continuous update of the master as 
soon as an integer solution is found tend to minimize this effect because the Master 
approximate faster than with OA the feasible region. Table 2 gives some statistics of the 
problem using the different algorithms. 

The optimal solution yields a total annual cost of 150322 $/year. Table 3 shows a summary of 
the optimal results. The initial relaxed NLP gave an initial objective function of 49259 $/year. In 
this case the relaxation gap is not very tight (67.2%) -although the fact that the three algorithms 
produce the same result indicates that it is likely the global optimal solution-. In general, 
improvements in the model formulation that reduce the relaxation gap tend to reduce the CPU 
time and, if the initial point is good enough, it increases the probability of obtaining the global 
optimum. In this example, since the cost equations are separable, it is possible to reformulate 
them using a piecewise linear approximation. Approximating each term in each disjunction by 
three linear terms is then possible to use a convex hull of the linear approximations. With this 
approach the initial relaxed NLP gives a total cost of 126779 $/year (gap 15.6%), much better 
that with the big M reformulation. However, the total CPU time was greater than with the original 
formulation. The reason is because the number of variables is considerably larger due to the 
piecewise linear approximation and the disaggregated variables in the convex hull 
reformulation, and also because the initial problem is small and relatively easy to solve. 

Example 2 

This example is a modification of a problem proposed by Seider et al39 and consists of the 
design of a natural gas plant. It is required to process a natural gas stream at 5000 kmol/h, 20ºC 
and 1000 kPa. The gaseous product is required at 1500 kPa with at least 4900 kmol/h of nC4 
and lighter products and a combined mole percentage of at least 99.5%. The flowsheet is 
shown in Figure 3. The feed initially at 1000 kPa is compressed. The final pressure is one of the 
optimization variables. In the compressor we can choose between an electric engine or a 
combustion engine using fuel oil. The compressed stream (S0) is cooled in two stages using 
Coolers 1 and 2. Cooler 1 could be an air cooler or a shell and tubes heat exchanger using 
either water or cool water (see Table 4). In Cooler 2 the stream is cooled at temperatures under 
0ºC and we can choose between three different refrigeration systems (R1, R2 or R3 in Table 4). 
The stream is flashed in Flash1 and the vapor and liquid streams heated using Heaters 1 and 2 
respectively. In Heater 1 we can use hot water or Low Pressure steam. In Heater 2 we use hot 
water. This last stream (S5) is flashed again in the Flash 2 unit. The liquid stream exiting from 
the flash is sent to a distillation column. In the condenser of the distillation column we can use 
water, or refrigerants R1, R2 or R3. In the reboiler we can choose between medium pressure or 
high pressure steam. The distillate is mixed with the vapor streams from the flash units (streams 
S6 and S8) to form the final product. 

Again, in this example the process simulator, HYSYS.Plant©, performs the basic calculations at 
the flowsheet level, including all mass and energy balances and properties estimation. 
However, size and cost calculations, that depend on the type of equipment, are calculated as 
implicit external functions developed in Matlab©, but with all basic data extracted from HYSYS 
through its COM communication capability.  



Note, that although in the process simulator some equipments are represented by a general unit 
operation (i.e. heat exchanger), the cost and size of those equipments depends on the actual 
equipment; an air cooler is different from a floating head tube and shell exchanger. Therefore 
there are two kinds of implicit equations over which we have different control. The implicit 
equations associated to the basic flowsheet and solved by the process simulator and the size 
and cost equations over which we have full control. The reasons of using these equations as 
implicit are : a) They decrease the dimensionality of the problem at the optimization level, and b) 
the numerical behavior is better when the model is solved with a decomposition algorithm 
because linearizations are constrained to the input-output variables and not to all the 
intermediate non-convex equations reducing the possible effects of cutting parts of the feasible 
region due to linearizations.  

Reducing the number of equations in a Master problem has always been an issue in MINLP 
optimization. Therefore, to take advantage of the physical structure of the problem, defining it in 
terms only of the independent variables for each unit operation is a natural way of reducing the 
dimensionality of the master while it assures that the reduced master is a valid one, without 
taking into account any other mathematical consideration. 

Table 5 shows all the data needed in the problem specification. The objective in this example is 
minimize the total annualized cost that includes the annualized investment and the utilities 
costs. A disjunctive conceptual representation of the model showing the different alternatives is 
as follow: 
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External specifications to the problem: 
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where  0.08; 8interest rate i plant life PL= =

In equation 8.ESP T is the temperature in Celsius. Stream L1 is the liquid stream leaving the 

condenser in the distillation column. V2 is the vapor stream leaving the reboiler in the distillation 

column. GAS is the final product stream. The previous equations comes from problem 

specifications or constraints to assure feasible heat exchange. 

The implicit blocks of equations that are not at the level of process simulator are calculated as a 

MATLAB functions. All physical properties are extracted from the process simulator: 
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Equations calculated by the process simulator: 

          (8.I) ( ID xx Θ= )

In equation 8.I xD makes reference to all the dependent variables calculated by the process 

simulators. This includes physical properties of streams, heat loads, some pressures, some 

temperatures, compositions, etc. In this example there are 7 independent variables at flowsheet 

level: Pressure in stream S0 (PS0); Temperatures in streams S1, S2, S8 and S5 (TS1, TS2, 

TS8, TS5) and recoveries of key components in distillation column (REC1, REC2) 

Disjunctions related with each one of the discrete decisions. Inside the disjunctions there are 

implicit equations calculated by blocks of equations in MATLAB. The models have been written 

to allow zero flows without numerical errors. However, since cost correlations are only valid for 

some size intervals, if any variable is out of bounds the module produces a warning message. It 

is possible to introduce explicitly a constrain in order to assure that all the variables are inside 

the valid limits, but in our examples it has not been necessary. 
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Disjunctions 8.D1-8.D6 make reference to the different alternatives considered : D1 compressor 

engine; D2 Cooler 1; D3 Cooler 2; D4 Heater 1: D5 Condenser and D6 Reboiler. 

The previous equations were written as an MINLP problem using a big M reformulation, for 

nonlinear equations and implicit blocks, and convex hull for the linear equations inside the 

disjunctions. 

As commented in example 1, the bottleneck in the solving procedure is the time consumed in 

communications between Matlab and Hysys. Therefore, to reduce the number of NLP 

subproblems, this example and the next one have been solved using only the OA and LP/NLP-

BB algorithms.  

Results for the best obtained solutions are shown in Table 6. Some statistics about the 

reformulated problem are given in Table 7. It is worth mentioning that besides all the equations 

solved by the process simulator there are 40 implicit blocks of equations, most of them inside 

the disjunctions. 

The most remarkable result is that even though the problem is reformulated using a big M 

approach the relaxation gap is only about 13% (Initial relaxed NLP 1015 103 $/year and optimal 

solution 1170.5 103 $/year). A similar behavior appears in example 3 that we will comment in 

next paragraphs. This is a very interesting result. A possible explanation could be the following: 

In a pure equation oriented environment, when a problem is reformulated using a big M 

approach, the effect of the relaxation is that some mass and/or energy balances, equilibrium 

equations, etc can be violated. However, in our examples all the mass balances, equilibrium 

equations, cost and size correlations, etc must hold. In other words, we relax blocks of 

equations but inside each block (and this includes the entire flowsheet) all the equations are 

satisfied. Although a couple of examples are not significant, and further studies are needed, 

some previous results show that previous explanation could be correct. i.e. Karuppiah and 

Grossmann40 noted that simply adding a global mass balance in a superstructure optimization 

the relaxation gap is significantly reduced. In our examples mass and energy balances are 

always satisfied.  

Example 3 

This example is for the synthesis of Dimethylether (DME). DME is produced by 

dehydrogenation over a catalytic zeolite. The main reaction is: 

       (9) OHOCHOHCH 2233 )(2 +⎯→⎯



The reaction temperature can vary between 225 and 400 ºC and is carried out in an adiabatic 

reactor. Methanol is introduced to the system at 25 ºC mixed with some water (Table 8 shows 

all data for the example), compressed to 1500 kPa and then mixed with the recycle stream 

coming from the separation. This mixture is vaporized in the heater (See Figure 4) and pre-

heated in the heat exchanger (HE) before coming into the reactor. The reactor exit stream is 

cooled (Cooler), partially decompressed and introduced in the separation train. The DME is 

obtained in the distillate of the first column with a purity higher than 99.5% (molar basis). The 

bottoms of the first column are decompressed again and introduced in a second distillation 

column that separates water from methanol. Water is sent to a treatment section to remove 

traces of organic compounds (not represented in the flowsheet) and the methanol recycled. 

The discrete options considered in this example are the following: 

• For the Heater, the heat exchanger (HE) and the condensers of both columns we can 

choose between a double pipe heat exchanger, a multiple pipe and a floating head. Costs 

and sizing equations are both implicit.  

• For the Cooler there are two options using an Air Cooler or a Tube and pipes heat 

exchangers. 

• For the Reboilers of both columns it is possible to choose between a Kettle reboiler and a 

floating head heat exchanger. 

• The columns can be packed or with sieve trays.  

The objective is to minimize the total annualized cost. Data of utilities are the same as in 

example 2 (Table 4). The independent variables at the flowsheet level are inlet temperature to 

the Heat Exchanger (HE), inlet temperature to the reactor; Pressures at the exists of valves; 

Recoveries of DME by head and methanol in bottoms in column 1; Recoveries of Methanol and 

Water in column 2; Temperature, Flow and compositions in stream S2 to converge the recycle. 

An important difference with the previous example is related with the recycle stream. In example 

2 all dependent variables at the flowsheet level could be calculated in a single flowsheet 

evaluation. In other words it was possible to write ( )ID xx Θ= . However, with the variables 

associated with the recycle it is not possible to do this variable elimination. To deal with recycle 

streams there are two possible approaches: a) Let the process simulators converge the 

flowsheet including the recycles, or b) Let the optimizer converge the recycles while solving the 

rest of the NLP problem. The first approach has the advantage of a smaller number of variables 

(all those variables related with the recycle) but has two important drawbacks. Each flowsheet 

evaluation is much slower due to the convergence of the recycles and the recycle streams 

increases the noise in the variables inside the cycle when estimating derivatives, with the 

undesirable effect of increase the CPU calculation time. In the second approach the number of 

variables and constraints increases in the NLP problem, but avoids the drawbacks of the 



previous approach. In general, the second alternative has better numerical performance and it 

is the alternative we used in this example. 

A Disjunctive conceptual representation of the model showing the different alternatives is as 
follow: 
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External specifications and other explicit equations: 
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Where x refers to mol fractions and T to temperatures, and 

. The last four equations in (10.ESP) are used to 

converge the recycle stream. 

0.08; 8interest rate i plant life PL= =

)

Implicit blocks of equation of fixed equipment which are not calculated by the process simulator: 
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Equations calculated by the process simulator: 

         (10.I) ( ID xx Θ=



Note that in equation (10.I) the convergence of the recycle streams are excluded because those 

equations are written in explicit form in equation (10.ESP). 

The disjunctions for the discrete decisions are: 
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           (10.D) 

The above model was, like in example 2, converted in a MINLP using a big M formulation for all 

the implicit blocks and a convex hull formulation for the linear equations that could appear inside 

the disjunctions.  

Table 9 and 10 show the most significant results and some statistics related with the model. The 

most remarkable aspect is related with the small relaxation GAP only around 5.9% (0.942 106 



$/year in the initial relaxed NLP problem 1.002 106 $/year in the best obtained solution), like in 

example 2, the simultaneous convergence of blocks of equations produce a better relaxation 

than it could be expected if each one of the equations was individually relaxed. 

Conclusions and final Remarks 

This paper has introduced a methodology for solving disjunctive programming problems in 

which most of the equations are given by blocks of equations with an input-output structure 

(implicit blocks of equations). It has been specialized to the optimization process flowsheets, 

using commercial simulators in which the sizing and cost functions are given by discontinuous 

relations or even the selection of different equipments given in a set of alternatives. However, 

the methodology is not constrained to this kind of systems and it can be directly applied to any 

system in where some relations are given in form of implicit blocks of equations.  

Three different algorithms have bee studied and adapted using an MINLP reformulation of the 

original Disjunctive problem: BB, OA and LP/NLP-BB. The bottleneck of all the procedure is in 

the time spent by NLP solvers, that is directly related with two aspects, the time consumed in 

the communication between different programs (process simulator and external solver) and the 

time consumed in estimating accurate derivatives. However, the entire methodology can be 

eventually integrated in a process simulator and then derivatives estimated during the 

convergence and then all the procedure considerably speeded up. Note that the total number of 

major iterations performed by the NLP solvers does not increase (typically 10-20 major 

iterations). 

One major contribution of this paper is showing that is possible to use process simulators in 

rigorous optimization involving discrete decisions, with all the advantages of using rigorous 

models (when these are needed) instead of the shortcut models that are usually used, and at 

almost no extra cost.  

Two interesting results that are of great interest and that could extend the use of implicit 

models, are as follows: 

 The size of the master problem using implicit equations (in the decomposition 

algorithms) is reduced in comparison with an equation oriented approach. The reason is 

that the Master problem is written in terms of independent variables. If the Master is a 

bottleneck, then merging blocks of equations following the physical meaning of the 

system (i.e. joining all the equations defining a unit operation) is a valid form of getting a 

valid reduced master problem without further mathematical considerations. 

 Relaxing blocks of equations, instead of each equation individually, (i.e. by a big M 

reformulation) seems to produce better relaxation gaps. A possible explanation is that 

although we relax blocks of equations, those equations continue to be given a feasible 

solution (mass and energy balances, equilibrium, etc inside the block cannot be 



violated) which is not true if we relax individual equations. However, more detailed study 

of this last point must be carried out.  
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Table 1. Data for example 1. 

Stream Composition 
Flow 

(kmol / h) 

T in  

(K) 

T out  

(K) 

Cost  

($/kW-year) 

Hot DiPhenylC3 120 500 340  

Cold Glycerol 100 350 560  

Cooling Utility Water  323 363 20 

Heating Utility Steam  557 557 80 

 
Heat Exchangers 

    

Name U (W / m2 K)     

E-101 500     

E-102 1500     

E-103 1000     

Nominal Pressure in all streams = 1 atm 

Thermodynamics: Extended-NRLT (liquid); ideal (vapor) 

 



 

Table 2: Computational results for the solution of example 1. 

Algorithm Branch and Bound 
Outer 

Approximation 
LP/NLP-BB 

Best Objective 

($/year) 
150322 150322 150322 

Objective in initial 

relaxed NLP 
49259 49259 49259 

Total NLP nodes or 

NLP sub-problems 
37 4 3 

CPU time (s) 49.2 5.18 4.01 

Solver(s) SNOPT7 SNOPT7/CPLEX 
SNOPT7 + 

proprietary BB. 

 



 

Table 3. Results for example 1. 

 Area (m2) Investment Cost ($/year) 

Heat Exchanger (E-101) 25.0 25347 

Heater (E-102) 21.1 24339 

Cooler (E-103) 28.9 51018 

 Power (kW) Cost ($/year) 

Heat utility (Steam) 374.3 29940 

Cold Utility (Water) 983.8 19676 

Total annualized cost  150322 

 Temperature (ºC)  

Hot_Stream_T1 150.0  

Cold_Stream_T2  220.2  

 



Table 4. Utility data for examples 2 and 3.  

Cooling 
Tin  
(ºC) 

Tout  
(ºC) 

ΔTmin 

(ºC) 

U  
(W/m2ºC) 

Cost 
 ($/kW·year) 

Air 30 35 10 100 0 

Water 20 25 10 800 6.7 

Cold Water 8 15 5 800 15.0 

R1 -25 -24 3 300 86.3 

R2 -40 -39 3 300 106.1 

R3 -65 -64 3 300 185.3 

Heating      

Hot Water 80 60 10 800 15.0 

Vapor LP 125 124 10 1600 59.9 

Vapor MP 175 174 10 1600 69.4 

Vapor HP 250 249 10 1600 78.8 

Other      

Electricity     480.0 

Fuel     115.2 

 



Table 5. Data for example 2, except data related with utilities that are reported in Table 4. 

 Composition (molar fraction) 

Nitrogen 

Methane 

Ethane 

Propane 

n-Butane 

n-Pentane 

n-Hexane 

0.0211 

0.8276 

0.0871 

0.0411 

0.0141 

0.0057 

0.0033 

Pressure 1000 kPa 

Temperature 20 ºC 

Feed Stream 

Flow 5000 kgmole / h 

Product 

Composition: Combined molar fractionf 

n_Butane and lighters  0.995 ≥
Flow  4900 kgmole/h ≥
Temperature ≥  20ºC 

Thermodynamics: Peng Robinson Equation of State 

 



Table 6. Results of example 2 

Equipment Size Parameters 
Utility 

Name / Power (kW) 
Investment Cost  

($) 
Utilities Cost 

($ / year) 

Compressor Engine ---- Fuel oil / 1842 421381 212176 

Compressor ---- ---- 3222085 ---- 

Cooler 1 Area = 156.4 m2 Cold Water / 2322 61899 34823 

Cooler 2 Area = 235.8 m2 R1 / 1741 80924 150338 

Flash 1 
Diameter = 2.10 m 

Height = 6.30 m 
---- 161253 ---- 

Flash 2 
Diameter = 0.66 m 

Height = 1.98 m 
---- 27274 ---- 

Heater 1 Area = 45.6 m2 Hot Water / 1819 31028 27289 

Heater 2 Area 0 1.72 m2 Hot Water / 65.4 6351 980 

Column: Condenser Area = 8.78 m2 R3 / 87.7 11467 16247 

Column: Reboiler Area = 6.17 m2 MP Steam / 231.5 9934 16060 

Column Shell 
Diameter = 0.21 m 

Height = 7.30 m 
---- 58713 ---- 

Column Internals Random polyethylene ---- 2495 ---- 

Sub-total 4094805 4979155 

  Total annual cost* =  1170472 $/year 

* Note that the total annualized cost is calculated as CostUtilitiesCostInvestmentiiiTAC PLPL +−++= _·)1)1(()1(



 

Table 6. (Cont). Result of example 2. Flowsheet Independent variables and final products 

Independent variables in Flowsheet 
Name Parameter (units) Value 

PS0 Pressure Stream S0 (kPa) 1500 

TS1 Temperature Stream S1 (ºC) 15.0 

TS2 Temperature Stream S2 (ºC) -10.7 

TS8 Temperature Stream S8 (ºC) 21.0 

TS5 Temperature Stream S5 (ºC) 28.9 

REC1 Butane Recovery (%) 90.01 

REC2 n-Pentane Recovery (%) 99.44 

Final Product (GAS Stream)  

Flow (kgmol/h) 4972.98  

Temperature (ºC) 20.02  

Composition  

(molar fraction) 

Nitrogen = 0.021215 

Methane = 0.832096 

Ethane = 0.087573 

Propane = 0.041214 

n-Butane = 0.012902 

n-Pentane = 0.003849 

n-Hexane = 0.001151 

 

 



Table 7. Computational results for the solution of example 2. 

Algorithm 
Outer 

Approximation 
LP/NLP-BB 

Best Objective ($/year) 1170472 $/year 1170472 $/year 

Objective in initial relaxed NLP 1015334 $/year 1015334 $/year 

Total NLP sub-problems 3 2 (23 LP nodes) 

CPU time (s) 708 300 

Solvers  SNOPT/CPLEX 
SNOPT/ 

proprietary BB 

Explicit Linear equations1 12 

Explicit Non-linear equations1 22 

Binary variables 16 

Independent variables (flowsheet level) 1 7 

Other explicit variables 1 12 

Implicit blocks of equations excluding flowsheet1 40 

1 The number of equations and variables make reference to the initial MINLP problem 

formulation, in Master problems the number of variables and constraints change in each 

iteration 



Table 8. Data for example 3, except data related with utilities that are reported in Table 4. 

 

 Composition (molar fraction) 

Methanol 

Water 

0.8 

0.2 

Pressure 101.3 kPa 

Temperature 25ºC 

Feed Stream 

Flow 261.5 kgmole / h 

DME Stream Molar fraction (DME)  0.995 ≥

Water Stream Molar fraction (Water) ≥  0.995 

Thermodynamics: Liquid UNIQUAC;  Vapor Ideal. 

 



Table 9. Results of example 3. 

Equipment 
Investment 

Cost ($) 
Utility Cost 

($/year) 
Power / Duty 

(kW) 
Other 

Pump 1 18398 3045.2 6.344 Centrifuge 

Pump 2 15251 1439.4 2.999 Centrifuge 

Heater 15818 413260 4549 

Multi-pipe  

HP Steam 

Area = 16.6 m2

Heat exchanger 16590 ---- ---- 
Multi-pipe  

Area = 18.2 m2

Cooler 139829 0.000 4668 
Air Cooler 

Area = 374.7 m2

Reactor 118295 0.000 0 (adiabatic) 
Diam. = 0.72 m 

Length = 10 m 

Column 1     

Condenser 32248 6325 944 

Tubes and Shell 

Floating Head 

Water 

Area = 46.4 m2

Reboiler 58048 120360 1735 

Kettle Reboiler 

HP Steam 

Area = 54.7 m2

Vessel 104270 ---- ---- 
D = 0.93 m 

H = 8.4 m 

Internals 5374 ---- ---- Packed 

Column 2     

Condenser 28263 17481 2609 

Tubes and Shell 

Floating Head 

Area = 37.8 m2

Reboiler 12543 280690 3090 

Tubes and Shell 

HP Steam 

Area = 10.78 m2

Vessel 262738 ---- ---- 
D = 2.9 m 

H = 11.0 m 

Internals 23710 ---- ---- 
Tray 

21 Trays 

Total cost 1002202 $/year   



 

Table 9. (Cont). Result of example 3. Flowsheet Independent variables and final products 

Independent variables in Flowsheet 
Name Parameter (units) Value 

TS4 Temperature Stream S4 (ºC) 100.00 

TS5 Temperature Stream S5 (ºC) 246.25 

PS10 Pressure Stream S10 (kPa) 469.2 

RECL1 Recovery DME Column 1 (%) 99.633 

RECH1 Recovery MeOH Column 1 (%) 98.995 

RECL2 Recovery MeOH Column 2 (%) 99.507 

RECH2 Recovery Water Column 2 (%) 98.087 

TS2 Temperature Stream S2 (ºC) 108.68 

XS2DME Molar fraction DME Stream S2 0.0039 

XS2MeOH Molar fraction MeOH Stream S2 0.9774 

XS2Water Molar fraction Water Stream S2 0.0187 

FS2 Molar Flow Stream S2 (kgmole/h) 130.28 

Final Product (DME Stream)  

Flow (kgmol/h) 135.3  

Temperature (ºC) 47.14  

Composition  

(molar fraction) 

DME =  0.995 

MeOH = 0.005 

Water = 0.000 

 

Final Byproduct (Water Stream)  

Flow (kgmol/h) 126.19  

Temperature (ºC) 148.5  

Composition  

(molar fraction) 

DME = 0.000 

MeOH = 0.005 

Water = 0.995 

 

 



Table 10. Computational results for the solution of example 2. 

Algorithm 
Outer 

Approximation 
LP/NLP-BB 

Best Objective ($/year) 1.002 106 1.002 106

Objective in initial relaxed NLP 0.945 106 0.945 106

Total NLP sub-problems 4 9 (111 LP nodes) 

CPU time (s) 2219 2423 

Solvers  SNOPT/CPLEX 
SNOPT/ 

proprietary BB 

Explicit Linear equations1 12 

Explicit Non-linear equations1 63 

Binary variables 22 

Independent variables (flowsheet level) 1 12 

Other explicit variables 1 38 

Implicit blocks of equations excluding flowsheet1 39 

1 The number of equations and variables make reference to the initial MINLP problem 

formulation, in Master problems the number of variables and constraints change in each 

iteration 

 



 

Figure 1. Scheme of the actual implementation of the algorithms using Matlab- Hysys. 

 

Figure 2. Flowsheet for example 1. The graphic shows the cost regions considered for the 

example in terms of the heat exchanger area. 



Figure 3. Flowsheet and alternatives for example 2. 

Figure 4. Flowsheet and alternatives for example 3. 


