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Abstract

In this paper we present a strategy to improve the relaxation for the global optimization of

nonconvex MINLPs. The main idea consists in recognizing that each constraint or set of

constraints has a meaning that comes from the physical interpretation of the problem. When

these constraints are relaxed part of this meaning is lost. Adding redundant constraints that

recover that physical meaning strengthens the relaxation. We propose a methodology to find

such redundant constraints based on engineering knowledge and physical insight.
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1 Introduction

Mixed-integer Nonlinear Programming (MINLP) has been widely used in the
Process Systems area to represent discrete and continuous optimization prob-
lems [1]. In general, the continuous relaxation of these problems are nonconvex.
As a result, the direct application of algorithms such as Generalized Benders
Decomposition (GBD) [2] [3], Outer Approximation (OA) [4], Extended Cut-
ting Plane [14], may fail to find the global optimum since the solution of the
NLP subproblem may correspond to a local optimum and the cuts in the master
problem may not be valid. Therefore, specialized algorithms should be used to
find the global optimum [5] [6] [7]. In the last decade, many global optimization
algorithms have been proposed. However, most of them can be regarded as some
particular implementation of the spatial branch and bound framework [6] [8].
The efficiency of these methods heavily relies on having tight relaxations and
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that is why many of the contributions in this area have been related to this sub-
ject. Most of the current approaches to obtain convex relaxations for nonconvex
problems are based on the use of predefined convex envelopes [5], leading to for-
mulations where some of the physical meaning is lost. For example, physical
laws like mass and energy balances may not be satisfied. Hence, adding con-
straints that are redundant in the original formulation and which enforce such
laws while keeping the program convex, can strengthen the relaxation. Redun-
dancy is usually not considered a good practice in process modeling. However,
we show that this often has a great impact in the tightness of the final relaxation
in nonconvex problems without incurring in significant increase in the problem
size. The explanation behind this behavior can be obtained by realizing that
even when alternative nonconvex representations may contain the same infor-
mation (i.e. keep the same physical meaning), their relaxations do not.

Sherali and Alameddine [9] proposed the RLT procedure to improve the
representation of the problem when it is relaxed through the generation of re-
dundant constraints in bilinear nonconvex programs. This is accomplished by
using pairwise products of the linear inequalities originally present, previous to
their linearization. Based on a similar idea Liberti [10] and Liberti and Pan-
telides [11] proposed a method using reduction constraints, which improves the
efficiency of the implementation. However, for the general case, the problem of
systematically finding useful redundant constraints remains a major challenge.
Revisiting the physical meaning behind the problem may still be required. Pre-
vious results in this respect were reported by Quesada and Grossmann [12] in
process networks design and Tawarmalani and Sahinidis [5] in the p-q pooling
problem. However, to the best of our knowledge, no systematic methodology
based on this approach for more general nonconvex problems has been proposed.

It is the aim of this work to formalize and extend the idea outlined above to
any nonconvex MINLP problem whose physical meaning is well defined. The pa-
per is organized as follows. In section 2 we present the theoretical framework of
the methodology proposed. We recognize that for a given problem many formu-
lations can be developed based on engineering knowledge and physicial insight.
The combination of these formulations give rise to a composite model whose re-
laxation proves to dominate the relaxation of any of the individual formulations.
This idea is illustrated in section 3. In section 4 we use the theory developed
in section 2 to come up with an efficient implementation of the method giving
rise to a set of strong cuts (i.e. Generalized Reduction Constraints) that can be
added to the original formulation to strengthen its relaxation. We show with a
number of examples how these cuts can be obtained from the composite model.
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In section 5 we present a set of examples to illustrate the application of the
methodology. Finally, in section 6 we compare the proposed relaxation with the
ones obtained from traditional modeling approaches that rely on the selection
of a single monolithic nonconvex model.

2 Theoretical Framework

The main philosophy of this methodology lies on viewing the relaxation of a
nonconvex problem as a process in which some of its physical meaning is lost
rather than just a mathematical reformulation that aims at finding a convex
set that contains the original feasible region. As we argue in this section, this
different way of looking at relaxations, naturally leads to a general framework
that can be used to obtain tighter relaxations for nonconvex problems.

The first step before trying to find the optimal solution of a problem con-
sists of understanding its physical meaning from which a high abstraction level
representation (HALR) can be generated. This representation is nothing but
a collection of all the assumptions, parameters, physical laws that describe the
problem accurately. As a second step, a mathematical program (often non-
convex) is developed which captures all the information contained in (HALR).
Finally, in order to globally optimize the problem using a spatial branch and
bound framework, a relaxation is produced. It is in this step, where the phys-
ical meaning, ultimately held in the original (HALR), is lost. In Figure 1 the
information flow from the higher abstraction level representation of a problem
to its relaxation is presented.

Figure 1: Information flow in modeling and relaxation

Traditional approaches find a relaxation by replacing the nonconvex func-
tions with convex over and underestimators. In order to do so, different strate-

3



gies that take advantage of the particular nature of the functions have been
proposed. For example, McCormick [13] proposed to replace nonconvex bilinear
functions defined in a bounded domain by a set of four half spaces leading to a
linear, hence convex, relaxation. In the last years, methodologies for more gen-
eral set of functions have been presented [5] [19]. The strength of the relaxations
will, of course, depend on what specific technique is used for the relaxation and
that is why a lot of effort is put on improving these techniques. For instance,
Sherali and Alamedine [9] exploited the interaction of the constraints in the orig-
inal formulation for deriving tighter relaxations using the RLT procedure, while
Liberti [10] and Liberti and Pantelides [11] proposed an alternative method to
find these redundant constraints more efficiently. Even though the last two
approaches mentioned improve the relaxations, the way they generate cuts is
based on the use of the nonconvex formulation. In this work we will show how
to use instead the (HALR) to generate useful cuts.

A more accurate representation of the information flow diagram is given in
Figure 2.

Figure 2: Information flow with multiple formulations

Note that for a given (HALR) based on engineering knowledge and phys-
ical insight, a plethora of different nonconvex formulations can be developed.
However, it is easy to show that during the relaxation different portions of the
physical meaning are lost, ultimately leading to different relaxations. Moreover,
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as proved in the theorem below, these relaxations are often not dominated by
the others. As a result, a model that combines all these formulations will lead
to a stronger relaxation. We call this representation, composite model. The
following theorem, which formalizes this idea, is crucial in the development of
this work.

Theorem 2.1 Given a problem in (HALR) form and a set of valid alternative
formulations Fn, n ∈ N , with relaxations Rel(Fn), n ∈ N , we can generate a
valid formulation F (i.e. composite model) by intersecting Fn, ∀n ∈ N , leading
to a relaxation Rel(F ) such that:

Rel(F ) ⊆ Rel (Fn) ∀n ∈ N

Proof Let us consider the (HALR) form with |N | possible formulations where
the formulation Fn for a given n ∈ N is described as:

min Z = f (x)
s.t. g(x) ≤ 0 (Fn)

hn(x) ≤ 0
xlo ≤ x ≤ xup

where f : Rk → R1 , g : Rk → Rm and hn : Rk → Rpn, n ∈ N , a subset of the
variable x are discrete and hn(x) ≤ 0 is the set of constraints that only appear
in formulation Fn.

We can generate a formulation F for (HALR) as follows:

min Z = f (x)
s.t. g(x) ≤ 0 (F )

hn(x) ≤ 0 ∀n ∈ N

xlo ≤ x ≤ xup

for which a valid relaxation (Rel(F )) is given by:

Rel(F ) = ∩n∈NRel (Fn)

Since ∩n∈NRel (Fn) ⊆ Rel (Fn) , ∀n ∈ N , then Rel(F ) ⊆ Rel (Fn) , ∀n ∈ N .

2

Moreover, we can establish the following Corollary.
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Corollary 2.2 If each Rel (Fn), n ∈ N , is not dominated by any other in the
set N, then the Rel(F ) dominates all relaxations in the set N.

This corollary provides a sufficient condition for which the proposed relax-
ation is strictly tighter than Rel (Fn), n ∈ N .
Remark 1: For convenience in the presentation of the formulations we have
presented all the functions in every formulation as a function of the vector of
variables x, even though different formulations Fn may actually only involve a
subset of these variables. The composite model, however, is defined fully over
all variables x.
Remark 2: Note that since any equality constraint can be represented as the
intersection of two inequalities, without loss of generality we considered the set
of constraints given only by inequalities.

3 Illustrative Example

The following is an illustration of how different formulations may lead to differ-
ent relaxed feasible regions.

Let us consider the model of a splitter shown in Figure 3. This unit is fre-
quently used in process network models and its simple purpose is to split a main
stream into substreams while keeping the same compositions. We call f j the
inlet flow of component j to the splitter and f j

k the flow of the k − th split
stream of component j. Based on engineering knowledge the (HALR) of this
problem can be described through a set of assumptions as seen in Table 1 (note
that some of the information indeed may be redundant).

Table 1: High abstraction level representation for illustrative example
Assumption 1 The mass of every component j must be preserved as a

result of the law of conservation of mass.

Assumption 2 For each outlet stream k the ratio between fj
k

fj is the same
and equal to ζk for all components j as defined by the
splitter characteristics.

Assumption 3 The summation of the split fractions ζk for all k must be
one and each split fraction ζk is greater than zero and
less than one.

Assumption 4 The inlet flow is bounded below and above by physical
constraints.
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Figure 3: Splitter

Remark: Note that in this example, for illustrative purposes, we have mod-
eled the splitter in the space of split fractions and individual flows for each
component. Alternatively, as noted by Quesada and Grossmann [12], a repre-
sentation in the total flow-composition space can also be developed.

The above mentioned (HALR) can be represented by at least two alternative
formulations.

Formulation I:

ζkf j = f j
k ∀k, j (1)

∑

k

f j
k = f j ∀j (2)

f jlo ≤ f j ≤ f jup ∀j (3)

0 ≤ ζk ≤ 1 ∀k (4)

Formulation II:

ζkf j = f j
k ∀k, j (5)

∑

k

ζk = 1 (6)

f jlo ≤ f j ≤ f jup ∀j (7)

0 ≤ ζk ≤ 1 ∀k (8)
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Note that in Formulation I equation (6) is implied, and therefore, it is re-
dundant. Similarly, in Formulation II equation (2) is implied, and therefore
redundant.

The relaxation of Formulation I is traditionally achieved by replacing the
bilinear terms with the McCormick convex envelopes [13] :

f j
k ≤ f jζlo

k + f jupζk − f jupζlo
k ∀k, j (9)

f j
k ≤ f jζup

k + f jloζk − f jloζup
k ∀k, j (10)

f j
k ≥ f jζup

k + f jupζk − f jupζup
k ∀k, j (11)

f j
k ≥ f jζlo

k + f jloζk − f jloζlo
k ∀k, j (12)

∑

k

f j
k = f j ∀j (13)

where ζup
k and ζlo

k are 1 and 0 respectively. Note that this relaxation does not
preserve the information in assumption 2 and assumption 3, in other words, the
sum of the split fractions is not enforced to be 1 as well as the mass ratio of
each component in each split.

Similarly, the relaxation of Formulation II is traditionally achieved by re-
placing the bilinear terms with the McCormick convex envelopes [13]:

f j
k ≤ f jζlo

k + f jupζk − f jupζlo
k ∀k, j (14)

f j
k ≤ f jζup

k + f jloζk − f jloζup
k ∀k, j (15)

f j
k ≥ f jζup

k + f jupζk − f jupζup
k ∀k, j (16)

f j
k ≥ f jζlo

k + f jloζk − f jloζlo
k ∀k, j (17)

∑

k

ζk = 1 (18)

However, note that in this case, the relaxation does not preserve the infor-
mation in assumption 1 and assumption 2, in other words, the mass balance per
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component is not enforced as well as the mass ratio in each split stream.
To summarize, we have shown that different formulations may lead to the

loss of different portions of the physical meaning when they are relaxed.
In order to consider the effect on the relaxations, let us consider the case

in which there are only two outlet streams k = 1, 2 for a given component j.
Figures 4 and 5 show the projections onto sets of 2 and 3 dimensions for the
feasible region defined in the relaxation of the Formulation I and Formulation

II, respectively. Clearly, the feasible region of both relaxations is different.
For example, note that for the relaxation of Formulation II, the projection
onto the split fraction ζ1,2 space is a segment, but a three sided polytope in
the projection of the relaxation of Formulation I. Also, the projection of the
relaxation of Formulation I onto the flow space is a plane, which is different
from the projection of the relaxation of Formulation II onto the same space.

Figure 4: Projections of the relaxation for formulation I

Figure 5: Projections of the relaxation for formulation II

To illustrate Theorem 2.1 we will find a relaxation for the illustrative exam-
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ple presented. The composite model reads:

ζkf j = f j
k ∀k, j (19)

∑

k

f j
k = f j ∀j (20)

f jlo ≤ f j ≤ f jup ∀j (21)

∑

k

ζk = 1 (22)

0 ≤ ζk ≤ 1 ∀k (23)

and its relaxation is:

f j
k ≤ f jζlo

k + f jupζk − f jupζlo
k ∀k, j (24)

f j
k ≤ f jζup

k + f jloζk − f jloζup
k ∀k, j (25)

f j
k ≥ f jζup

k + f jupζk − f jupζup
k ∀k, j (26)

f j
k ≥ f jζlo

k + f jloζk − f jloζlo
k ∀k, j (27)

∑

k

ζk = 1 (28)

∑

k

f j
k = f j ∀j (29)

As shown in Figure 6, the relaxed feasible region is tighter than the relaxation
of Formulation I and Formulation II.
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Figure 6: Projections of the relaxation for composite model

4 Implementation

Theorem 2.1 provides a theoretical tool for generating formulations that lead to
stronger relaxations. However, its direct implementation may not be of practical
use for many reasons. Firstly, the Rel (Fn) may be the same for every n ∈
N . Secondly, only a subset of hn ≤ 0 might be useful (i.e. their relaxations
will tighten the final relaxation). Finally, adding “non-useful” constraints will
increase the size of the problem without tightening the relaxation.

To overcome these potential shortcomings, we propose to consider what in-
formation is lost in the relaxation of a particular formulation and reconstruct
it by using contraints from the composite model. We call this set of added
constraints Generalized Reduction Constraints since they are a generalization
of the work proposed by Liberti and Pantelides [11].

For example, let us consider the following formulation for a given j ∈ N :

min Z = f (x)
s.t. g(x) ≤ 0 (Fj)

hj(x) ≤ 0
xlo ≤ x ≤ xup

where the constraints g(x) ≤ 0 and hj(x) ≤ 0 have associated a given physical
meaning described in the (HALR). Let us assume that the relaxation leads to a
loss of part of that meaning. If we add a constraint hi ≤ 0, hi : Rk → Rpi, where
i ∈ N and i 6= j that carries that information it will strengthen the relaxation.

This leads to the following formulation:
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min Z = f (x)
s.t. g(x) ≤ 0 (Fj −RC)

hj(x) ≤ 0
hi(x) ≤ 0
xlo ≤ x ≤ xup

where hi(x) ≤ 0 is called a “Generalized Reduction Constraint”

5 Examples

In this section we illustrate the application of the concept of Generalized Re-
duction Constraints in four examples.

5.1 Process Networks

One of the most frequent units that arises in process networks is the splitter
(see Figure 3) whose main purpose is to take a stream and split it into a set of
many streams as described in section 3.

When the streams are characterized through individual flows to represent
compositions we can establish the following composite model.

ζkf j = f j
k ∀k, j (30)

∑

k

ζk = 1 (31)

∑

k

f j
k = f j ∀j (32)

A particular valid formulation for the system is given by equations (30) and
(31). Since (30) are nonconvex they will need to be relaxed (e.g. by using
the McCormick envelopes [13] for the bilinear terms). After this step the mass
balance is not enforced anymore. Hence, adding (32) from the composite model

to the formulation will strengthen the relaxation.

5.2 Batch Reactors

One of the optimization problems associated to batch reactors (see Figure 7) is
the determination of optimal conditions for which the composition of a given
component is maximized (e.g. determine the optimal time of the reaction).
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Figure 7: Batch

The relationships that often arise consist of the representation of composi-
tions as a function of time or compositions as a function of compositions. For the
particular case of two species A and B with exponential decay, we can establish
the composite model as follows:

[A] = e−k1t (33)

[B] = e−k2t (34)

[B] = [A]k2/k1 (35)

A particular valid formulation for the system is given by equations (33) and
(34). Since (33) and (34) are nonconvex they will be relaxed. In this step the
relationship between [A] and [B] is lost. Hence, adding (35) from the composite

model will strengthen the relaxation.

5.3 Electric Power distribution networks (EPDN)

One of the major assumptions in the models of Electric Power Distribution
Networks is the conservation of the relationships between Active (P), Reactive
(Q) and Apparent Power (S), given by the corresponding Power Phasor Diagram
presented in Figure 8.

A composite model for the system can be given as:

Ssin (φ) = Q (36)

Scos (φ) = P (37)

S2 = P 2 + Q2 (38)
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Figure 8: Power Phasor Diagram

A traditional formulation to represent this problems is given by (36) and
(37). However, since they are nonconvex, they should be relaxed. After this
step, the relationship between active, reactive and aparent power is lost. Adding
(38) from the composite model to the formulation will strengthen the relaxation.

5.4 Flash Units

Separation systems that exploit the different relative volatilities of the compo-
nents to be separated are often modeled by using a set of flash units (See Figure
9).

Figure 9: Flash Unit

14



A composite model for a flash unit separating i components from a stream
of flow F can be given by:

F = V + L (39)

Fzi = V yi + Lxi ∀i (40)

Kixi = yi ∀i (41)

∑

i

xi =
∑

i

yi =
∑

i

zi = 1 ∀i (42)

F, V, L ≥ 0, zi, xi, yi ≥ 0 ∀i (43)

∑

i

zi(Ki − 1)
1 + φ(Ki − 1)

= 0 (44)

where φ = V/F and Ki the equilibrium constants. A traditional formulation to
represent this problems is given by (39), (40), (41), (42) and (43) . However,
since some of them are nonconvex, they should be relaxed. After this step, the
relationship between the compositions and flows is lost. Hence, adding (44)
from the composite model to the formulation will strengthen the relaxation.

6 Numerical Results

In this section we present seven examples that correspond to engineering design
models with the structures presented in the previous section. These examples
were chosen to represent different source of nonconvexities. The parameters
used for the models are given in the Appendix.

6.1 Example 1 - Process Networks [16]

This problem considers the selection of the optimal separation scheme to be
used to separate a multicomponent process stream into a set of product streams
with given purity specifications. The two components considered are A and B
and they enter to the system by the feed-streams f1 and f2 as can be seen in
Figure 10. The compositions of these streams are 55% A, 45% B and 50%A,
50% B, respectively and the desired product streams are p1 and p2. Purity
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specifications are a minimum of 80% A in product p1 and a minimum of 75% B
in p2. Upper bounds are specified for the amounts of these products. Figure 10
shows a superstructure of alternative separation schemes which can be used to
obtain the product. The alternatives embedded in this superstructure include:
flash separation with blending, distillation with blending, flash separation and
distillation in parallel, or the elimination of the complete separation process.
The objective function to be maximized is the profit which is given as revenues
minus costs. Revenues include the sales of p1 and p2, while costs include pur-
chase costs for f1 and f2 as well as costs for the flash separator and distillation
column which are assumed to be linear with fixed cost charges. The model
(PN) used for this problem can be seen below.

Figure 10: Process Network

min Z = −35p1
a − 30p2

b + 10f1 + 8f2 + f4
a + f4

b + 4f5
a + 4f5

b + 2yf + 50yd

s.t. f3
a = 0.55f1 + 0.50f2 (PN)

p1
a = f8

a + f10
a + f6

a

p2
a = f9

a + f11
a + f7

a
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f3
b = 0.45f1 + 0.50f2

p1
b = f8

b + f10
b + f6

b

p2
b = f9

b + f11
b + f7

b

f6
a = ξ6f3

a , f7
a = ξ7f3

a

f4
a = ξ4f3

a , f5
a = ξ5f3

a

f6
b = ξ6f3

b , f7
b = ξ7f3

b

f4
b = ξ4f3

b , f5
b = ξ5f3

b

ξ4 + ξ5 + ξ6 + ξ7 = 1
p1

a ≥ 4.0p1
b , p1

a + p1
b ≤ 15

p2
b ≥ 4.0p2

a, p2
a + p2

b ≤ 18
f4

a + f4
b ≤ 25yf

f4
a + f4

b ≥ 2.5yf

f8
a = 0.85f4

a , f8
b = 0.20f4

b

f9
a = 0.15f4

a , f9
b = 0.80f4

b

f5
a + f5

b ≤ 25yd

f5
a + f5

b ≥ 2.5yd

f10
a = 0.975f5

a , f10
b = 0.050f5

b

f11
a = 0.025f5

a , f11
b = 0.950f5

b

0 ≤ f1, f2 ≤ 25
0 ≤ ξ4ξ5ξ6ξ7 ≤ 1, yf , yd ∈ {0, 1}

The bilinear terms that arise in the splitters lead to a nonconvex formula-
tion. In order to solve it, a relaxation needs to be developed. In this process,
the mass balance around the splitters is lost. As described in section 5.1. we
propose to add the following Generalized Reduction Constraints (i.e. the mass
balance per component around each splitter) to recover such information:

f3
a = f4

a + f5
a + f6

a + f7
a (45)

f3
b = f4

b + f5
b + f6

b + f7
b (46)

6.2 Example 2 - Optimal Operation of Batch Reactor

This is a typical problem found in processes with batch reactors where reactions
in series take place. In this particular case, the reactant A is converted into the
component I which is subsequently converted into the component P following
the reaction path shown below:
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Table 2: Nomenclature for Example 1

V ariable Description

f i Total molar flow of stream i, i = 1, 2..., 11
f i

a Total molar flow of component a in stream i, i = 1, 2..., 11
f i

b Total molar flow of component b in stream i, i = 1, 2..., 11
ξj Split fraction to stream f j , j = 4, 5, 6, 7
p1

a Molar flow of product a

p2
b Molar flow of product b

yf 0-1 variable describing the existance/non-existance of flash unit
yd 0-1 variable describing the existance/non-existance of distillation column

A
k1−→ I

k2−→ P

The following set of equations represent a differential mass balance carried
out around the batch reactor considering first order kinetics for each reaction:

d[A]
dt = −k1[A]

d[I]
dt = k1[A]− k2[I]

d[P ]
dt = k2[I]

The main goal of the optimization problem is to find the time necessary for
the batch reactor to achieve a composition of A, I and P with maximum value
considering also a cost in the operating time. By integrating the set of differen-
tial equations presented above we can obtain a representation of the problem,
which is explicit in time, as follows in model (PB):

max Z = pA [A] + pI [I] + pP [P ]− ctt

[A] = [A]0 e−k1t (PB)
[I] = k1

k2−k1
[A]0 (e−k1t − e−k2t)

[P ] = [A]0 1−
[

k2
k2−k1

e−k1t − k1
k2−k1

e−k2t
]

t ≥ 0

It is clear that when the exponential functions are relaxed the information
that relates the concentration of the different components is lost. Hence, as
described in section 5.2. we can add the following Generalized Reduction Con-
straints that will recover that information:
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[I] =
k1

k2 − k1
[A] (

[A]
[A]0

− (
[A]
[A]0

)k2/k1) (47)

[P ] = [A]0 − [I]− [A] (48)

Table 3: Nomenclature for Example 2

V ariable Description

[A] Concentration of component A at time t

[B] Concentration of component B at time t

[C] Concentration of component C at time t

t Reaction time

6.3 Example 3 - OPF Problem

This example was taken from Debs [21] and is a particular case of an Optimal
Power Flow problem which considers the minimization of the cost associated to
power generation. More precisely, given two interconnected buses (see Figure
11) with predefined loads PD1, PD2, QD1 and QD2 we aim at finding the power
to generate at each bus PG1, PG2 to minimize the total cost while satisfying
the demand. A mathematical representation for this problem is given in model
(POPF ):

Figure 11: Electric Power Distribution Network
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min C = (1 + PG1 + 3P 2
G1) + (2 + 2PG2 + P 2

G2) (POPF )

s.t. PG1 − PD1 − v2
1 + v1v2(cos(δ2 − δ1) + 10sin(δ2 − δ1) = 0

PG2 − PD2 − v2
2 + v1v2(cos(δ2 − δ1)− 10sin(δ2 − δ1) = 0

QG1 −QD1 − 10v2
2 + v1v2(sin(δ2 − δ1)− 10sin(δ2 − δ1) = 0

QG2 − PD2 − v2
2 + v1v2(−sin(δ2 − δ1)− 10cos(δ2 − δ1) = 0

P12 = v2
1 − v1v2(cos(δ2 − δ1)− 10sin(δ2 − δ1))

0.95 ≤ v1 ≤ 1.05, 0.95 ≤ v2 ≤ 1.05
0.5 ≤ PG1 ≤ 4, 0.5 ≤ PG1 ≤ 3.5
−0.5 ≤ QG1 ≤ 0.5, 0.6 ≤ QG1 ≤ 0.6
−3 ≤ P12 ≤ 3

PD1 = 3, QD1 = 0.3, PD2 = 2, QD2 = 0.2

The nonconvexities come from the trigonometric functions that arise when
establishing the reactive and active power flow balances at each node. It is clear
that a relaxation of these functions leads to the loss of the information that re-
lates both powers. As described in section 5.3 the added Generalized Reduction
Constraints that keep this information are:

sin(δi − δj)2 + cos(δi − δj)2 = 1 ∀i, j (49)

Table 4: Nomenclature for Example 3

V ariable Description

PGi, QGi Active and Reactive power generated at Bus i

PDi, QDi Active and Reactive power loads at Bus i

vi, δi Voltage and Phase at Bus i

Pij Active Power in Line from Bus i to Bus j

6.4 Example 4 - Data Reconciliation of an Isothermal Flash

Unit Network

This example corresponds to a data reconciliation problem applied to a process
network with isothermal flash units. The optimization, control or operation of
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a process often relies on having measurements (e.g. flows, compositions) that
can be used to adjust models. In general, the number of sensors in a plant is
larger than the degrees of freedom of the models. However, the information
they provide is often not accurate due to noise of measurements or failures
in the sensors. In order to infer better values for the measurements, a data
reconciliation is necessary previous to their use for optimization or control. As
shown in Figure 12 the process network we are aiming at reconciling consists of
a set of three flash units separating a stream with three components, propane,
butane and pentane. The goal is to minimize the sum of the square of the
differences between the measured values and the values calculated by the model.
A mathematical representation of the problem can be found in model (PDR).

Figure 12: Flash Unit Network

21



min Z =
∑

i

∑
j((x

∗
ij − xij)2 + (y∗ij − xij)2) + (z∗ij − zij)2+∑

i((v
∗
i − vi)2 + (l∗i − li)2) + (f∗ − f)2

s.t. f = v2 + l2

f2zj = v2y2j + l2x2j ∀j (PDR)
v2 = v1 + l1

v2y2j = v1y1j + l1x1j ∀j
l2 = v3 + l3

l2x2j = v3y3j + l3x3j ∀j∑
j xij =

∑
j yij =

∑
j zj = 1 ∀i

Kijxij = yij ∀i, j
f, vi, li ≥ 0 ∀i
xij , yij , zj ≥ 0 ∀i, j

As described in section 5.4 a Generalized Reduction Constraint suitable for
this system comes from the Rachford-Rice equation [20] which keeps the rela-
tionship between the vaporized fraction and the inlet compositions, as shown
below:

∑

j

zj(K2j − 1)
1 + φ2(K2j − 1)

= 0 (50)

∑

j

y2j(K1j − 1)
1 + φ1(K1j − 1)

= 0 (51)

∑

j

x2j(K3j − 1)
1 + φ3(K3j − 1)

= 0 (52)

where φ1 = v1/v2 , φ2 = v2/f and φ3 = v3/l2

Table 5: Nomenclature for Example 4

V ariable Description

f , zj Feed molar flow and molar fraction of component j to flash tank 2
vi , xij Vapor flow and molar fraction of component j from flash tank i

li , yij Liquid flow and molar fraction of component j from flash tank i
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6.5 Example 5 - Water Treatment Networks

In the Water Treatment Network Design Problem [22], we are given a set of
contaminated water streams for which the composition of contaminants and
molar flows are perfectly defined. The goal of this problem is to find a set of
treatment units with known treating performances and interconnections which
will minimize the cost of the network while satisfying maximum concentrations
of contaminants in the outlet stream. In this particular case study we only
consider two contaminants. A general scheme of the system is shown in Figure
13. A mathematical representation for the problem is given by model (PTR).

Figure 13: Water Treatment Superstructure for Example 5

min z =
∑

k CTUk

s.t.

fijk = ξk
i fij i ∈ I, j ∈ J, k ∈ K (PTR)

f0
ij = ξ0

i fij i ∈ I, j ∈ J

ξ0
i +

∑
k ξk

i = 1 i ∈ I

fkjk′ = ξk′
k fokj k′, k ∈ K, j ∈ J

f0
kj = ξ0

kfokj j ∈ J, k ∈ K

ξ0
k +

∑
k′ ξ

k′
k = 1 j ∈ J, k ∈ K

fokj = (1− Ckj)fikj j ∈ Jk ∈ K∑
k f0

kj +
∑

i f0
ij ≤ Tj j ∈ J∑

j fikj ≥ LkYk k ∈ K

CTUk = βk

∑
j fikj + γkYk + θk(

∑
j fikj)∑

j fikj ≤
∑

j fiup
kj Yk

fijk ≥ 0, i ∈ I, j ∈ J, k ∈ K

ξk′
k ≥ 0 k, k′ ∈ K

ξk
i ≥ 0 i ∈ I, k ∈ K
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fkjk′ ≥ 0 k, k′ ∈ K, j ∈ J

Yk ∈ {0, 1} k ∈ K

As in Example 1 the bilinear terms that arise in the splitters lead to a
nonconvex formulation. In order to solve it a relaxation needs to be developed.
In this process, the mass balance around the splitters is lost. As described in
section 5.1, we propose to add the following Generalized Reduction Constraints,
which corresponds to mass balances for each component around each splitter
from treatment unit K, to recover such information.

∑

k′∈K

fkjk′ + f0
kj = fokj j ∈ J, k ∈ K (53)

It is important to note that surrogates of these constraints can be added to
reduce the increase in the size of the formulation as we will present in Example
6 and 7.

Table 6: Nomenclature for Example 5

V ariable Description

CTUk Cost of treatment unit k

fijk Molar flow of component j from splitter i going to mixer k

fkjk′ Molar flow of component j from splitter k going to mixer k′

ξk
i Split fraction of splitter i going to mixer k

ξk
k′ Split fraction of splitter k′ going to outlet stream mixer

ξo
i Split fraction of splitter i going to outlet stream mixer

ξo
k′ Split fraction of splitter k′ going to mixer k

fokj Molar flow of component j leaving treatment unit k

fikj Molar flow of component j entering treatment unit k

fi0kj Molar flow of component j from splitter k leaving system
yk 0-1 variable describing the selection/no-selection of treatment unit k
Sets Description

I Set of all the splitters receiving contaminated water from the process
K Set of treatment units
J Set of components of the streams
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6.6 Example 6 and Example 7 - Integrated Process Net-

works

Given is a set of process units that generate contaminants and a set of treat-
ment units that selectively remove these contaminants. The problem is to find
an integrated network of the process units with the water treatment units in-
terconnected by mixers and splitters in order to minimize the freshwater and
wastewater flows, or more generally the total cost of constructing and operating
the network. In order to address this problem, a superstructure is developed
as shown in Figures 14 and 15. Here, a freshwater source is present at the
inlet of the network, from which freshwater is fed to the process units. These
process units, in turn, are interconnected in all possible ways and also to the
treatment units by making use of mixers and splitters. Similarly, the treatment
units, which are treated simply with fixed recoveries, are also interconnected
in all possible ways and with a final single stream that is discharged into the
environment. There is also an option of bypassing wastewater generated in the
process units directly to the discharge without any treatment. For this synthesis
problem, the water flow demands of the process units are assumed to be fixed.
As described in Karuppiah and Grossmann [17], a formulation for this system
is given by model (PWN).

Figure 14: Water Treatment Superstructure for example 6
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Figure 15: Water Treatment Superstructure for example 7

min Z = HCFCFW + AR
∑

t∈TU INV t + AR
∑

d∈CN PINV d+
H

∑
t∈TU OP t + H

∑
d∈CN POP d

s.t.

F k =
∑

i∈min
F i ∀m ∈ MU,∀k ∈ mout (PWN)

F kCk
j =

∑
i∈min

F iCi
j ∀j, ∀m ∈ MU,∀k ∈ mout

F k =
∑

i∈sout
F i ∀s ∈ SU,∀k ∈ sin

Ci
j = Ck

j ∀j, ∀s ∈ SU,∀i ∈ sout, ∀k ∈ sin

F k = F i = P p ∀p ∈ PU,∀i ∈ pin, ∀k ∈ pout

P pCi
j + Lp

j × 103 = P pCk
j ∀j, ∀p ∈ PU,∀i ∈ pin, ∀k ∈ pout

F k = F i ∀t ∈ TU,∀i ∈ tout,∀k ∈ tin

Ci
j = βt

jC
k
j ∀j, ∀t ∈ TU,∀i ∈ tout,∀k ∈ tin

TINV t = γt(F i)α ∀t ∈ TU,∀i ∈ tout

TOP t = θtF i ∀t ∈ TU,∀i ∈ tout

PINV d = ωpip(F d)α + ωinstypd ∀d ∈ CN

POP d = ωpumF d ∀d ∈ CN

F dLypd ≤ F d ≤ F dUypd∀d ∈ CN

CL ≤ C ≤ CU

FL ≤ F ≤ FU

ypd ∈ {0, 1}∀d ∈ CN

ytt ∈ {0, 1}∀t ∈ TU

As in Examples 1 and 5, the non-convexities lead to a violation of the mass
balance in the relaxation. A Generalized Reduction Constraint that recovers
this information for the global mass balance is as follows:
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∑

p∈PU

Lp
j × 103 =

∑
t∈T U
i∈tin

(1− βt
jF

iCi
j) + F outCout

j ∀j (54)

Note that this constraint can be thought as a surrogate of all the constraints
that would arise if we enforced the mass balance around each unit operation.

Table 7: Nomenclature for Example 6 and 7

V ariable Description

Ci
j Concentration of contaminant j in stream i

f i
j Flow of contaminant j in stream i

fout
j Flow of contaminant j in the outlet stream to the environmnet

F i Flowrate of stream i

FW Fresh water intake into the system
TINV t Investment cost for treatment unit t

TOP t Operating cost for treatment unit t

PINV d Investment cost for pipe and pump d

POP d Operation cost for pump and pipe d

Table 8: Nomenclature for Example 6 and 7

Sets Description

min Set of inlet streams into mixer m

mout Outlet stream from mixer m

MU Set of mixers
pin Inlet stream into process unit p

pout Outlet stream from process unit p

PU Set of process units
sin Inlet stream into splitter s

sout Outlet streams from splitter s

SU Set of splitters s

tin Inlet stream into treatment unit t

tout Outlet streams from treatment unit t

TU Set of treatment units
CN Set of all connections between units
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6.7 Computational Results

In order to assess the performance of the method we solve the problems using
the commercial global optimization solver BARON [15] version 9.0.3 and analyse
the lower bounds obtained at the root node, number of nodes generated in the
search process and computational times. This analysis is carried out in both,
the formulation with and without Generalized Reduction Constraints. Note
that Example 3 requires a special treatment since BARON is not able to handle
trigonometric functions. In this case we use a customized implementation of
a spatial branch and bound algorithm which uses BARON in a lower level, to
solve the bilinear and trilinear problems resulting from the relaxation of the
trigonometric functions. All problems were solved using a Pentium(R) CPU
3.40GHz and 1GB of RAM.

Table 9: Size and Characteristics of Examples

Example Integer Continuous Constraints GeneralizedReduction

V ariables V ariables Constraints

1 2 31 22 2
2 0 4 4 2
3 0 8 6 1
4 0 29 31 3
5 5 421 380 25
6 24 123 135 2
7 53 227 245 2

The size and main features of the 7 test problems is shown in Table 9. As
shown in Table 10, examples 1,2, 3 and 4 show a significant improvement in
the lower bound predicted at the root node as well as a significant decrease in
the number of nodes when using the proposed approach. Since these examples
are small in size (see Table 9), the tighter relaxation has little effect in the
computational times. Examples 5, 6 and 7, which are larger in size, clearly show
the benefits of using the proposed formulations by significantly decreasing the
computational requirements. Overall, more than 90% reduction in the number
of nodes visited to find the solution and more than 80% improvement in the gap
between the lower bound and upper bound at the root node is a clear indication
that the formulations proposed lead to tighter relaxations. It is also important
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Table 10: Performance of Spatial Branch and Bound using different formulation
strategies*

Traditional Approach Proposed Approach
Instance GO LB Nodes Time(s) LB Nodes Time(s)

1 -510.08 -792.2 37 < 1 -510.08 1 < 1
2 -1.49 -1.53 17 < 1 -1.49 1 < 1
3 24.05 23.5 20 30 24.05 1 1
4 22.58 21.98 91 4 22.58 1 < 1
5 348,337 291,573 3,588 174 293,318 1,444 74
6 253,676 32,486 40,000 > 3,600 250,961 138 9
7 1,347,456 987,139 33,800 > 3,600 1,208,590 3,563 209
*All examples were solved fully using BARON except for example 3 which used a

customized global optimization algorithm

to note that, in Examples 6 and 7, the lack of Generalized Reduction Constraints
leads to formulations that are unsolvable within a 1 hour limit.

7 Conclusions

In this work we have presented a methodology to generate formulations for non-
convex MINLPs that lead to stronger relaxations. The novelty of this approach
is based on the consideration that relaxations lead to a loss in the informa-
tion necessary to describe the high abstraction level representation (HALR).
The theoretical results for tighter relaxations were supported by a set of seven
examples found in different areas such as process networks, batch reactors, elec-
tric power networks, data reconciliation and water networks. Large reduction
in number of nodes and computational times were verified when applying global
optimization solvers to three large scale problems (Examples 5-7).
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8 Appendix

Table 11: Parameters for Example 2

Parameter Description V alue

[A]0 Initial concentration of A 1
k1 Kinetic constant for first reaction 0.05
k2 Kinetic constant for second reaction 0.05
pa Price of component A 1
pb Price of component B 3
pc Price of component C 4
ct Penalty on the processing time 0.05

Table 12: Values for partition coefficients Kij for example 4

i/j Propane Butane Pentane

1 2.184 1.665 0.187
2 1.927 0.514 0.155
3 1.692 0.438 0.128

Table 13: Measurements for molar fraction composition x∗ij for example 4

i/j Propane Butane Pentane

1 0.2 0.3 0.5
2 0.2 0.6 0.1
3 0.1 0.3 0.4
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Table 14: Measurements for molar fraction composition y∗ij for example 4

i/j Propane Butane Pentane

1 0.2 0.5 0.8
2 0.2 0.5 0.8
3 0.2 0.5 0.8

Table 15: Measurements for molar fraction composition z∗j for example 4

i/j Propane Butane Pentane

Flash Tank 2 0.2 0.5 0.3

Table 16: Measurements for molar flows v∗, l∗ and f∗ for example 4

stream/tank 1 2 3

v∗ 7 18 20
l∗ 10 16 5
f∗ - 36 -

Table 17: Inlet flow of the component j in the splitter i (fij) for example 5

TU/Component 1 2 3 4 5

TU 1 1.0 1.0 1.0 1.0 10.0
TU 2 2.0 0.0 0.0 1.0 15.0
TU 3 1.0 0.0 1.0 2.0 5.0
TU 4 3.0 1.0 1.0 0.0 20.0
TU 5 2.0 2.0 0.0 0.0 10.0
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Table 18: Performance coefficient for each component and unit (Ckj) for exam-
ple 5

TU/Component 1 2 3 4

TU 1 0.90 0.70 0.60 0.00
TU 2 0.85 0.90 0.60 0.00
TU 3 0.00 0.60 0.85 0.95
TU 4 0.00 0.60 0.60 0.85
TU 5 0.00 0.60 0.85 0.30

Table 19: Minimum flow limit for equipment (Lk) for example 5

TU 1 TU 2 TU 3 TU 4 TU 5

5.0 3.0 4.0 3.0 1.0

Table 20: Maximum contaminant flow limit in the outlet (Lk) for example 5

1 2 3 4

3.0 3.0 3.0 3.0

Table 21: Cost coefficients for unit k for example 5

Coefficient TU 1 TU 2 TU 3 TU 4 TU 5

θk 1000.0 1300.0 3000.0 2000.0 1000.0
βk 6000.0 6000.0 6000.0 6000.0 6000.0
γk 0.0 0.0 0.0 0.0 0.0

Table 22: Process Unit Data for Example 6
Unit Flowrate Discharge Max Inlet α

(t/h) Load (kg/h) Conc. (ppm)
A B A B

PU1 40 1 1.5 0 0 0.7
PU2 50 1 1 50 50 0.7
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Table 23: Treatment Unit Data for Example 6
Unit Removal Investment Operating

Ratio (%) Cost (γ) Cost (θ)
A B θ

TU1 95 0 16800 1
TU2 0 95 12600 0.0067

Table 24: Process Unit Data for Example 7
Unit Flowrate Discharge Max Inlet α

(t/h) Load (kg/h) Conc. (ppm)
A B A B

PU1 40 1 1.5 0 0 0.7
PU2 50 1 1 50 50 0.7
PU3 60 1 1 50 50 0.7

Table 25: Treatment Unit Data for Example 7
Unit Removal Investment Operating

Ratio (%) Cost (γ) Cost (θ)
A B

TU1 95 0 16800 1
TU2 80 90 24000 0.033
TU3 0 95 12600 0.0067

Table 26: Pump and Piping Data for Example 6-7
ωpip ωpum ωinst

100 0.006 6
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