
Title
A.B. Editor et al. (Editors)
© 2005 Elsevier B.V./Ltd. All rights reserved. 1

Efficient MILP-based solution strategies for large-
scale industrial batch scheduling problems
Pedro Castroa, Carlos Méndezb, Ignacio Grossmannc, Iiro Harjunkoskid, Marco
Fahld
aDMS/INETI, 1649-038 Lisboa, Portugal
bChemical Engineering Department-CEPIMA, UPC, E-08028 Barcelona, Spain
cDep. Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
dABB Corporate Research Center, Ladenburg, Germany

Abstract
This paper presents two alternative decomposition approaches for the efficient solution
of multistage, multiproduct batch scheduling problems comprising hundreds of batch
operations. Both approaches follow the principle of first obtaining a good schedule
(constructive stage), by considering only a subset of the full set of orders at a time, and
then improving it (improvement stage) by applying a rescheduling technique. The core
of both approaches consists on the solution of mixed integer linear programming
problems that, on each step, are variations of the scheduling model with global
precedence sequencing variables of Harjunkoski & Grossmann (2002). The results for
the solution of a 30-order problem show that the proposed decomposition methods are
able to obtain solutions that are 35% better than those obtained by the solution of the
full problem, on a fraction of the computational time.

Keywords: Decomposition methods, short-term scheduling, rescheduling.

1. Introduction
The increasingly large literature in the scheduling area highlights the successful
application of different optimization approaches to an extensive variety of challenging
problems (Méndez et al., 2005). This important achievement comes mainly from the
remarkable advances in modeling techniques, algorithmic solutions and computational
technologies that have been made in the last decade or so. However, there is still a
significant gap between theory and practice. New academic developments are mostly
tested on relatively small problems whereas real-world applications consist of hundreds
of batches, dozens of pieces of equipments and long scheduling periods. In order to
make the use of exact methods more attractive for real-world applications, increasing
effort has been oriented towards the development of systematic techniques that allow
maintaining the number of decisions at a reasonable level, even for large scale
problems. Manageable model sizes may be obtained by applying heuristic model
reduction methods, decomposition or aggregation techniques. Once an initial solution is
generated with reasonable CPU time, gradual improvement through optimization-based
techniques can be achieved with modest computational effort. Although these
techniques can no longer guarantee optimality, this may not be so critical in practice due
to the following: i) very short time is available to generate a solution; ii) optimality is
easily lost due to the dynamic nature of industrial environments; iii) implementing the
schedule as such is often limited by the real process; iv) only a subset of the actual
scheduling goals are taken into account.

2 Castro et al.

Recent work by Castro & Grossmann (2005) compared the performance of five
different approaches for the solution of multistage batch scheduling problems. The
results showed that all, besides a uniform time grid continuous-time formulation, can be
a valid option depending on the objective function. However, the study was performed
for relatively small problems and sequence-dependent changeovers were not considered.
Handling industrial-sized problems may quickly lead to an intractable model size. Also,
the inclusion of sequence-dependent changeover times may substantially reduce the
efficiency of most of the existing models. Following a preliminary evaluation of the
most adequate formulation, this paper presents two alternative decomposition strategies
that are able to efficiently deal with multistage, multiproduct scheduling problems
involving large number of batches, many processing units and substantial cleaning
requirements, typically found in the pharmaceutical and fine chemical industry.

2. Problem definition
The industrial multiproduct plant under consideration has the following characteristics:
• 17 machines and 6 stages, allocated in the following way: 2+3+3+3+3+3.
• Unlimited intermediate storage between stages is assumed
• Sequence dependent changeovers in most stages, all of them machine independent.

Changeovers are usually of the same order of magnitude or even larger than the
processing times.

• Some orders may skip some processing stages.
• Two sets of problem data are considered: i) a 30-order and ii) a 50-order problem.
• The objective is the minimization of the makespan.

3. Selection of the most appropriate formulation
Discrete-time formulations are not appropriate for this specific problem. On the one
hand, the objective of makespan minimization can only be achieved through an indirect
procedure that involves solving several problems (Maravelias & Grossmann, 2003). On
the other hand, sequence dependent changeovers lead to a significant increase in the
model size, both directly and indirectly. Directly, due to the increase in the number of
constraints to account for the cleaning times. Indirectly, as a result of the larger number
of time intervals and the consideration of a finer time grid for an exact representation of
the problem data, while keeping the model sensitive to different changeovers.
Continuous-time formulations based on a uniform time grid are generally inefficient for
multistage problems without shared resources (Castro & Grossmann, 2005).
Continuous-time formulations relying on multiple time grids have more flexibility and
have proved to be more competitive for this type of problem. However, sequence
dependent changeovers make them less efficient. Continuous-time formulations using
explicit sequencing variables are more valid approaches since they hardly require any
changes to handle sequence dependent changeovers. The model used in this paper is the
one by Harjunkoski & Grossmann (2002), which relies on global precedence
sequencing variables. The authors also presented a constraint programming (CP) model,
which can be easily adapted to the case of sequence dependent changeovers. One just
needs to assign to each unary resource (the machines), the corresponding changeover
matrix (using ILOG’s OPL Studio).
Table 1 shows the computational statistics for the solution of the 30-order problem with
the continuous-time formulation (MILP) and the CP model. As can be seen, the size of
the problem is already too large to be handled efficiently. While the MILP finds a fair
solution in 1 h (maximum computational limit), it has many binary variables and

Efficient MILP-based Solution Strategies for Large-Scale Industrial Batch Scheduling
Problems 3

features a very large integrality gap (the best possible solution at the time of interruption
is still only 13.325, which translates into an absolute gap of 34.657 and a relative
integrality gap above 72%). CP, one the other hand, was also tested but it was only able
to generate a very poor solution at the beginning of the search (in the very first second
of calculation). No further improvements were observed in the remaining hour. Hence,
the continuous-time MILP will be the only one considered next.

Table 1. Computational statistics for the solution of the full 30-order problem

Model Bin. vars. Cont. vars. Cons. RMIP MIP Best possible CPUs Nodes

MILP 2521 2708 10513 7.449 47.982 13.325 3600 62668

CP - 1050 1300 - 79.989 - 3600 1432

4. Solution Strategy
Since it is impractical to solve the full problem simultaneously, effective decomposition
techniques need to be developed. Of a few alternatives tested, two have shown to
produce very good results in a relatively small amount of computational time. Both
approaches follow a two-step approach. The first, is a constructive step, where the goal
is to obtain a good schedule with low computational effort. The second, is an
improvement step, where the previous solution is gradually enhanced by applying a
rescheduling technique with low computational effort. Bear in mind that the
improvement step is common to both approaches.
4.1. Constructive approach 1 (AP1)
The first approach follows a two step decomposition method consisting of a design
model and a schedule refinement model. For the design model, we need to define a
priori the number of orders to be considered (up to the full set of orders) and the number
of orders to be selected, which will be typically around 5 (i.e. for 30 orders, 6 iterations
will be required) to ensure a small integrality gap and reaching a good solution very fast
in the refinement model. It is very similar to the original model of Harjunkoski &
Grossmann (2002) but minor changes were required: i) Introduction of a new set of
binary variables, to identify the selection of a particular order from the subset of orders
considered in the design problem; ii) Introduction of a new set of constraints, to enforce
an even distribution of the most difficult orders (these are high-processing-time orders
that can only be assigned to a single machine on a given stage) through the several
iterations instead of getting them all in the last iteration, thus avoiding a significant
increase in the value of the objective function, the minimization of the makespan.
While the design model generally provides a good solution, it is usually unable to prove
optimality within the specified computational limit. If we deal only with the selected
orders, a better solution can typically be found. The objective function will minimize
the makespan plus a term that accounts for the completion times in all stages, since we
need to link two consecutive iterations efficiently. By doing this, we ensure that the
resulting schedule is tight for all machines and not just for the ones belonging to the
bottleneck path(s) that define the makespan. Following the solution from one iteration,
the times at which the several machines end their processing can be determined and
used to fix the machines release dates for the subsequent iteration. Furthermore, the last
order to be processed can be identified and the information used to account for the
correct changeover time.

4 Castro et al.

4.2. Constructive approach 2 (AP2)
The second approach also divides the full set of orders into smaller subsets. Here, the
process of assigning orders to iterations does not require any special method, since there
is much more freedom to link consecutive iterations. We can choose the set of order(s)
to be considered in each iteration by following the lexicographic sequence. Besides the
elimination of the design step, there are two important conceptual differences to AP1. i)
Orders that have been scheduled in previous iterations (typically 1 or 2 per iteration) are
no longer removed from further consideration. Instead, they will be considered over and
over again, although with fewer degrees of freedom, until the last iteration; ii) Unit
availability is no longer limited in time by using release dates. Previously assigned
orders can be left- or right-shifted in time in order to insert the new order(s) to be
scheduled. While sequencing and allocation decisions are made for the latter set of
orders, for orders belonging to the former set, the binary assignment (they remain
allocated to the same machine) and sequencing variables (they maintain their relative
position in the sequence) are fixed but the continuous timing variables may change.
This simple method can be illustrated by a simple example. Suppose that the previous
iterations resulted in order sequence 4, 3, 2, at a given machine, and that a new order
needs to be scheduled (order number 6). Fig. 1 shows that there are only 4 allowed
sequences.

Allowed sequences Some forbidden sequences

6 4 3 2

4 6 3 2

4 3 6 2

4 3 2 6

6 4 2 3

3 6 2 4

3 4 6 2

2 3 4 6
Figure 1. Illustration of the scheduling step whenever a new order (6) is being considered

4.3. Improvement step
The proposed improvement technique is based on the main ideas of the rescheduling
model proposed by Roslöf et al. (2001) and Méndez & Cerdá (2003) and can be
combined with either of the two previous alternative constructive methods. It involves
several iterations, with each being identical to the last iteration of AP2, where all orders
except a very small subset of them (e.g. a single order) have fixed assignments and
fixed relative positions. The selection of orders among iterations can be made following
some kind of sequence or be made randomly. Every time a better makespan is achieved,
the allocation (equipment) and position (sequence) tables are updated. The stopping
criteria for the rescheduling algorithm can be either a maximum predefined
computational limit or a maximum number of iterations without improving the objective
function value.

5. Computational results
The computational studies were performed on a Pentium 4-2.8 GHz running
GAMS/CPLEX 9.0. Both methods have several parameters that can affect the final
result. In AP1, the number of orders to be considered (NPD) and selected (NPS) in the
design problem are critical. For AP2, NPS defines the number of orders scheduled
simultaneously. Common parameters include the maximum CPU-time for the
scheduling (actually in AP1 two values are specified, one for the design step and other

Efficient MILP-based Solution Strategies for Large-Scale Industrial Batch Scheduling
Problems 5

for the schedule refinement step) and rescheduling phases and the method of order
selection in the latter (direct or random sequence). Table 2 presents some of the most
successful runs. The results show that both approaches lead to very good solutions when
compared to those obtained using the full MILP (see Table 1). Usually, a better solution
from the scheduling phase (6th column), leads to a better final solution after the
rescheduling step (7th column for the direct sequence and 8th column for the random
sequence). Also, for a given phase, the more the computational time the better the
solution (compare rows 3 and 4, and 10 and 11). It was found that AP2 is more robust
since the solution obtained is less dependent on the model parameters and is often
better. However, the number of orders to be considered increases steadily with the
number of iterations, contrary to AP1, so while the first iterations take little time, the
last ones can have significantly large integrality gaps when the resource limit is reached,
which may eventually compromise the quality of the final solutions. Despite this fact,
AP2 performs better for the 50-order problem than for the 30-order problem.

Table 2. Computational results

 CPU-limit (s) Makespan (h) CPUs

Orders Ap. NPD NPS Per phase Sch. Res. Dir. Res. Ran. Sch. Total

30 AP1 30 6 (25;15);(10) 32.439 30.480 30.562 176 276

30 AP1 30 5 (20;10);(10) 33.592 31.811 32.316 161 266

30 AP1 30 5 (10;10);(10) 35.578 33.084 33.610 112 212

30 AP1 10 5 (10;10);(10) 34.229 32.192 32.898 110 217

30 AP2 - 1 (10);(10) 33.149 31.175 31.676 86.4 188

30 AP2 - 2 (20);(10) 32.523 31.007 31.678 175 275

30 AP2 - 3 (30);(10) 34.447 31.787 32.485 255 355

50 AP1 30 6 (25;15);(10) 56.082 51.997 54.269 322 422

50 AP1 30 5 (20;10);(10) 53.740 53.409 52.800 283 391

50 AP1 30 5 (10;10);(10) 56.228 53.684 55.131 194 295

50 AP1 30 3 (10;5);(10) 53.453 51.466 51.581 173 275

50 AP2 - 1 (10);(10) 52.911 51.275 50.721 240 342

50 AP2 - 2 (15);(10) 52.964 51.080 51.019 321 429

50 AP3 - 3 (20);(10) 55.705 52.960 52.668 306 407

The best solution to the 30-order problem, featuring a makespan of 30.480 h, is given in
Fig. 2. Note that the completion times of the last-stage machines (M15-M17) are very
similar, with M16 setting the makespan. It is hardly a trivial schedule due to the
following reasons: i) the length of changeover periods and idle times exceed by far the
lengths of the production times, in the last three stages of production; ii) the order
sequence changes often from one stage to the other (e.g. order 17 is processed prior to
27 in stage 1, M1, while the opposite is true in the last stage, M16); iii) despite the plant
consisting of the same number of machines per stage after stage 1 (i.e. 3), it is
unreasonable to consider independent parallel production lines since the subset of orders
assigned to a machine in a particular stage does not remain constant throughout the

6 Castro et al.

subsequent stages (e.g. of the 8 orders assigned to M13 in stage 5, 1 (20) goes to M15, 2
(25 and 29) go to M16 and 5 go to M17); iv) even after a thorough examination of the
schedule, there is not a clear limiting stage, which means that the bottleneck probably
shifts repeatedly between different stages and even between machines of the same stage.

0 5 10 15 20 25 30

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

M16

M17

Time (h)

9 16 15 28 3 19 21 18 29 17 12 27 1 24 14 5

13 25 10 8 20 22 23 11 4 6 26 30 7 2

9 10 28 19 21 29 27 6 11 18 30

25 15 16 3 4 20 22 7 2 24 14 5

13 8 23 12 17 26 1

8 23 12 26

13 21 27 1

16 20 17 24

15 3 29 6 17
14

5

25 13 8 21
20

12 26 30

9
10

28 19
16

23 4 22 27 11 2 18 24 1 7

9 19 8 23 4 22
27 11 16 18 24

1

25
13

29 20 12 2 26 30

10
28

15 3 21 6 17 14 5 7

10 15 9
21

3
20

11 16 18 5

25 8 29 27 17
14

24 7

28
13

19 23 4 22 6 12 2 26 1 30

Figure 2. Best solution found for the 30-order problem

6. Conclusions
This paper has described two alternative decomposition approaches for the efficient and
fast solution of large industrial scheduling problems. Both use the concept of
decomposing the full problem into several subproblems, each featuring a subset of the
orders. The main difference lies in linking the consecutive subproblems. While the first
approach completely freezes the schedule of the pre-assigned orders and ensures
feasibility for the remaining through machine release dates, the second approach allows
for more flexibility by only fixing the assignments and relative positions of the
previously scheduled orders. The second approach was found to be more robust and
seems better suited for the solution of this specific type of problem.

References
Castro, P., Grossmann, I., 2005. New Continuous-Time MILP Model for the Short-Term

Scheduling of Multistage Batch Plants. Ind. Eng. Chem. Res. In press.
Harjunkoski, I., Grossmann, I., 2002. Comp. Chem. Eng., 26, 1533.
Maravelias, C., Grossmann, I., 2003. Ind. Eng. Chem. Res., 42, 6252.
Méndez, C., Cerdá, J., 2003. Comp. Chem. Eng., 27, 1247.
Méndez, C., Cerdá, J., Grossmann, I., Harjunkoski, I., Fahl, M., 2005. State-of-the-art Review of

Optimization Methods for Short-Term Scheduling of Batch Processes. Submitted to Comp.
Chem. Eng.

Roslöf, J., Harjunkoski, I., Björkqvist, J., Karlsson, S., Westerlund, T., 2001. Comp. Chem. Eng.,
25, 821.

