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Abstract 
This paper presents two alternative decomposition approaches for the efficient solution 
of multistage, multiproduct batch scheduling problems comprising hundreds of batch 
operations. Both approaches follow the principle of first obtaining a good schedule 
(constructive stage), by considering only a subset of the full set of orders at a time, and 
then improving it (improvement stage) by applying a rescheduling technique. The core 
of both approaches consists on the solution of mixed integer linear programming 
problems that, on each step, are variations of the scheduling model with global 
precedence sequencing variables of Harjunkoski & Grossmann (2002). The results for 
the solution of a 30-order problem show that the proposed decomposition methods are 
able to obtain solutions that are 35% better than those obtained by the solution of the 
full problem, on a fraction of the computational time. 
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1. Introduction 
The increasingly large literature in the scheduling area highlights the successful 
application of different optimization approaches to an extensive variety of challenging 
problems (Méndez et al., 2005). This important achievement comes mainly from the 
remarkable advances in modeling techniques, algorithmic solutions and computational 
technologies that have been made in the last decade or so. However, there is still a 
significant gap between theory and practice. New academic developments are mostly 
tested on relatively small problems whereas real-world applications consist of hundreds 
of batches, dozens of pieces of equipments and long scheduling periods. In order to 
make the use of exact methods more attractive for real-world applications, increasing 
effort has been oriented towards the development of systematic techniques that allow 
maintaining the number of decisions at a reasonable level, even for large scale 
problems. Manageable model sizes may be obtained by applying heuristic model 
reduction methods, decomposition or aggregation techniques. Once an initial solution is 
generated with reasonable CPU time, gradual improvement through optimization-based 
techniques can be achieved with modest computational effort. Although these 
techniques can no longer guarantee optimality, this may not be so critical in practice due 
to the following: i) very short time is available to generate a solution; ii) optimality is 
easily lost due to the dynamic nature of industrial environments; iii) implementing the 
schedule as such is often limited by the real process; iv) only a subset of the actual 
scheduling goals are taken into account. 
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Recent work by Castro & Grossmann (2005) compared the performance of five 
different approaches for the solution of multistage batch scheduling problems. The 
results showed that all, besides a uniform time grid continuous-time formulation, can be 
a valid option depending on the objective function. However, the study was performed 
for relatively small problems and sequence-dependent changeovers were not considered. 
Handling industrial-sized problems may quickly lead to an intractable model size. Also, 
the inclusion of sequence-dependent changeover times may substantially reduce the 
efficiency of most of the existing models. Following a preliminary evaluation of the 
most adequate formulation, this paper presents two alternative decomposition strategies 
that are able to efficiently deal with multistage, multiproduct scheduling problems 
involving large number of batches, many processing units and substantial cleaning 
requirements, typically found in the pharmaceutical and fine chemical industry. 

2. Problem definition 
The industrial multiproduct plant under consideration has the following characteristics:  
• 17 machines and 6 stages, allocated in the following way: 2+3+3+3+3+3.  
• Unlimited intermediate storage between stages is assumed 
• Sequence dependent changeovers in most stages, all of them machine independent. 

Changeovers are usually of the same order of magnitude or even larger than the 
processing times. 

• Some orders may skip some processing stages. 
• Two sets of problem data are considered: i) a 30-order and ii) a 50-order problem.  
• The objective is the minimization of the makespan. 

3. Selection of the most appropriate formulation 
Discrete-time formulations are not appropriate for this specific problem. On the one 
hand, the objective of makespan minimization can only be achieved through an indirect 
procedure that involves solving several problems (Maravelias & Grossmann, 2003). On 
the other hand, sequence dependent changeovers lead to a significant increase in the 
model size, both directly and indirectly. Directly, due to the increase in the number of 
constraints to account for the cleaning times. Indirectly, as a result of  the larger number 
of time intervals and the consideration of a finer time grid for an exact representation of 
the problem data, while keeping the model sensitive to different changeovers. 
Continuous-time formulations based on a uniform time grid are generally inefficient for 
multistage problems without shared resources (Castro & Grossmann, 2005). 
Continuous-time formulations relying on multiple time grids have more flexibility and 
have proved to be more competitive for this type of problem. However, sequence 
dependent changeovers make them less efficient. Continuous-time formulations using 
explicit sequencing variables are more valid approaches since they hardly require any 
changes to handle sequence dependent changeovers. The model used in this paper is the 
one by Harjunkoski & Grossmann (2002), which relies on global precedence 
sequencing variables. The authors also presented a constraint programming (CP) model, 
which can be easily adapted to the case of sequence dependent changeovers. One just 
needs to assign to each unary resource (the machines), the corresponding changeover 
matrix (using ILOG’s OPL Studio). 
Table 1 shows the computational statistics for the solution of the 30-order problem with 
the continuous-time formulation (MILP) and the CP model. As can be seen, the size of 
the problem is already too large to be handled efficiently. While the MILP finds a fair 
solution in 1 h (maximum computational limit), it has many binary variables and 



Efficient MILP-based Solution Strategies for Large-Scale Industrial Batch Scheduling 
Problems  3 

features a very large integrality gap (the best possible solution at the time of interruption 
is still only 13.325, which translates into an absolute gap of 34.657 and a relative 
integrality gap above 72%). CP, one the other hand, was also tested but it was only able 
to generate a very poor solution at the beginning of the search (in the very first second 
of calculation). No further improvements were observed in the remaining hour. Hence, 
the continuous-time MILP will be the only one considered next. 
 

Table 1. Computational statistics for the solution of the full 30-order problem 

Model Bin. vars. Cont. vars. Cons. RMIP MIP Best possible CPUs Nodes 

MILP 2521 2708 10513 7.449 47.982 13.325 3600 62668 

CP - 1050 1300 - 79.989 - 3600 1432 

4. Solution Strategy 
Since it is impractical to solve the full problem simultaneously, effective decomposition 
techniques need to be developed. Of a few alternatives tested, two have shown to 
produce very good results in a relatively small amount of computational time. Both 
approaches follow a two-step approach. The first, is a constructive step, where the goal 
is to obtain a good schedule with low computational effort. The second, is an 
improvement step, where the previous solution is gradually enhanced by applying a 
rescheduling technique with low computational effort. Bear in mind that the 
improvement step is common to both approaches. 
4.1. Constructive approach 1 (AP1) 
The first approach follows a two step decomposition method consisting of a design 
model and a schedule refinement model. For the design model, we need to define a 
priori the number of orders to be considered (up to the full set of orders) and the number 
of orders to be selected, which will be typically around 5 (i.e. for 30 orders, 6 iterations 
will be required) to ensure a small integrality gap and reaching a good solution very fast 
in the refinement model. It is very similar to the original model of Harjunkoski & 
Grossmann (2002) but minor changes were required: i) Introduction of a new set of 
binary variables, to identify the selection of a particular order from the subset of orders 
considered in the design problem; ii) Introduction of a new set of constraints, to enforce 
an even distribution of the most difficult orders (these are high-processing-time orders 
that can only be assigned to a single machine on a given stage) through the several 
iterations instead of getting them all in the last iteration, thus avoiding a significant 
increase in the value of the objective function, the minimization of the makespan. 
While the design model generally provides a good solution, it is usually unable to prove 
optimality within the specified computational limit. If we deal only with the selected 
orders, a better solution can typically be found. The objective function will minimize 
the makespan plus a term that accounts for the completion times in all stages, since we 
need to link two consecutive iterations efficiently. By doing this, we ensure that the 
resulting schedule is tight for all machines and not just for the ones belonging to the 
bottleneck path(s) that define the makespan. Following the solution from one iteration, 
the times at which the several machines end their processing can be determined and 
used to fix the machines release dates for the subsequent iteration. Furthermore, the last 
order to be processed can be identified and the information used to account for the 
correct changeover time. 
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4.2. Constructive approach 2 (AP2) 
The second approach also divides the full set of orders into smaller subsets. Here, the 
process of assigning orders to iterations does not require any special method, since there 
is much more freedom to link consecutive iterations. We can choose the set of order(s) 
to be considered in each iteration by following the lexicographic sequence. Besides the 
elimination of the design step, there are two important conceptual differences to AP1. i) 
Orders that have been scheduled in previous iterations (typically 1 or 2 per iteration) are 
no longer removed from further consideration. Instead, they will be considered over and 
over again, although with fewer degrees of freedom, until the last iteration; ii) Unit 
availability is no longer limited in time by using release dates. Previously assigned 
orders can be left- or right-shifted in time in order to insert the new order(s) to be 
scheduled. While sequencing and allocation decisions are made for the latter set of 
orders, for orders belonging to the former set, the binary assignment (they remain 
allocated to the same machine) and sequencing variables (they maintain their relative 
position in the sequence) are fixed but the continuous timing variables may change. 
This simple method can be illustrated by a simple example. Suppose that the previous 
iterations resulted in order sequence 4, 3, 2, at a given machine, and that a new order 
needs to be scheduled (order number 6). Fig. 1 shows that there are only 4 allowed 
sequences. 

Allowed sequences Some forbidden sequences

6 4 3 2

4 6 3 2

4 3 6 2

4 3 2 6

6 4 2 3

3 6 2 4

3 4 6 2

2 3 4 6  
Figure 1. Illustration of the scheduling step whenever a new order (6) is being considered 

4.3. Improvement step 
The proposed improvement technique is based on the main ideas of the rescheduling 
model proposed by Roslöf et al. (2001) and Méndez & Cerdá (2003) and can be 
combined with either of the two previous alternative constructive methods. It involves 
several iterations, with each being identical to the last iteration of AP2, where all orders 
except a very small subset of them (e.g. a single order) have fixed assignments and 
fixed relative positions. The selection of orders among iterations can be made following 
some kind of sequence or be made randomly. Every time a better makespan is achieved, 
the allocation (equipment) and position (sequence) tables are updated. The stopping 
criteria for the rescheduling algorithm can be either a maximum predefined 
computational limit or a maximum number of iterations without improving the objective 
function value. 

5. Computational results 
The computational studies were performed on a Pentium 4-2.8 GHz running 
GAMS/CPLEX 9.0. Both methods have several parameters that can affect the final 
result. In AP1, the number of orders to be considered (NPD) and selected (NPS) in the 
design problem are critical. For AP2, NPS defines the number of orders scheduled 
simultaneously. Common parameters include the maximum CPU-time for the 
scheduling (actually in AP1 two values are specified, one for the design step and other 
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for the schedule refinement step) and rescheduling phases and the method of order 
selection in the latter (direct or random sequence). Table 2 presents some of the most 
successful runs. The results show that both approaches lead to very good solutions when 
compared to those obtained using the full MILP (see Table 1). Usually, a better solution 
from the scheduling phase (6th column), leads to a better final solution after the 
rescheduling step (7th column for the direct sequence and 8th column for the random 
sequence). Also, for a given phase, the more the computational time the better the 
solution (compare rows 3 and 4, and 10 and 11). It was found that AP2 is more robust 
since the solution obtained is less dependent on the model parameters and is often 
better. However, the number of orders to be considered increases steadily with the 
number of iterations, contrary to AP1, so while the first iterations take little time, the 
last ones can have significantly large integrality gaps when the resource limit is reached, 
which may eventually compromise the quality of the final solutions. Despite this fact, 
AP2 performs better for the 50-order problem than for the 30-order problem. 

Table 2. Computational results 

    CPU-limit (s) Makespan (h) CPUs 

Orders Ap. NPD NPS Per phase Sch. Res. Dir. Res. Ran. Sch. Total 

30 AP1 30 6 (25;15);(10) 32.439 30.480 30.562 176 276 

30 AP1 30 5 (20;10);(10) 33.592 31.811 32.316 161 266 

30 AP1 30 5 (10;10);(10) 35.578 33.084 33.610 112 212 

30 AP1 10 5 (10;10);(10) 34.229 32.192 32.898 110 217 

30 AP2 - 1 (10);(10) 33.149 31.175 31.676 86.4 188 

30 AP2 - 2 (20);(10) 32.523 31.007 31.678 175 275 

30 AP2 - 3 (30);(10) 34.447 31.787 32.485 255 355 

50 AP1 30 6 (25;15);(10) 56.082 51.997 54.269 322 422 

50 AP1 30 5 (20;10);(10) 53.740 53.409 52.800 283 391 

50 AP1 30 5 (10;10);(10) 56.228 53.684 55.131 194 295 

50 AP1 30 3 (10;5);(10) 53.453 51.466 51.581 173 275 

50 AP2 - 1 (10);(10) 52.911 51.275 50.721 240 342 

50 AP2 - 2 (15);(10) 52.964 51.080 51.019 321 429 

50 AP3 - 3 (20);(10) 55.705 52.960 52.668 306 407 

 
The best solution to the 30-order problem, featuring a makespan of 30.480 h, is given in 
Fig. 2. Note that the completion times of the last-stage machines (M15-M17) are very 
similar, with M16 setting the makespan. It is hardly a trivial schedule due to the 
following reasons: i) the length of changeover periods and idle times exceed by far the 
lengths of the production times, in the last three stages of production; ii) the order 
sequence changes often from one stage to the other (e.g. order 17 is processed prior to 
27 in stage 1, M1, while the opposite is true in the last stage, M16); iii) despite the plant 
consisting of the same number of machines per stage after stage 1 (i.e. 3), it is 
unreasonable to consider independent parallel production lines since the subset of orders 
assigned to a machine in a particular stage does not remain constant throughout the 
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subsequent stages (e.g. of the 8 orders assigned to M13 in stage 5, 1 (20) goes to M15, 2 
(25 and 29) go to M16 and 5 go to M17); iv) even after a thorough examination of the 
schedule, there is not a clear limiting stage, which means that the bottleneck probably 
shifts repeatedly between different stages and even between machines of the same stage.  
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Figure 2. Best solution found for the 30-order problem 

6. Conclusions 
This paper has described two alternative decomposition approaches for the efficient and 
fast solution of large industrial scheduling problems. Both use the concept of 
decomposing the full problem into several subproblems, each featuring a subset of the 
orders. The main difference lies in linking the consecutive subproblems. While the first 
approach completely freezes the schedule of the pre-assigned orders and ensures 
feasibility for the remaining through machine release dates, the second approach allows 
for more flexibility by only fixing the assignments and relative positions of the 
previously scheduled orders. The second approach was found to be more robust and 
seems better suited for the solution of this specific type of problem.  
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