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Abstract 
We propose a novel iterative procedure to generate hybrid models (HMs) within an optimization 

framework to solve design problems. HMs are based on first principle and surrogate models 

(SMs) and they may represent potential plant units embedded within a superstructure. We 

generate initial SMs with simple algebraic regression models and refine them by adding Gaussian 

Radial Basis Functions in three steps: initial SM refinement, domain exploration, and, after 

solving the optimal design problem, further domain exploitation, until the convergence criterion 

is fulfilled. The superstructure optimization problem is formulated with Generalized Disjunctive 

Programming and solved with the Logic-based Outer Approximation algorithm. We addressed 

methanol synthesis and propylene plant design problems. Compared to rigorous model-based 

optimal design, the proposed HMs gave the same configuration, objective function and decision 

variables with maximum relative differences of 1 and 7 %, respectively. A sensitivity analysis 

shows that the proposed strategy reduced CPU time by 33 %. 

 

Keywords: hybrid models; superstructure optimization; Logic-based Outer Approximation 

algorithm; GDP; propylene production; State equipment network 

 

1 INTRODUCTION 

The accurate modeling of a process flowsheet, including the detailed formulations of each unit, 

typically yields a large-scale nonconvex mixed-integer nonlinear programming (MINLP) problem. 

As MINLP formulations are NP-hard (Sahinidis, 2019), model developers usually have to employ 

tailored  solution strategies based on the system knowledge. On the other hand, Generalized 

Disjunctive Programming (GDP) allows a more intuitive way of formulating a mathematical 

problem by introducing specific process information through disjunctive constraints and logical 
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propositions. Furthermore, GDP formulations can be solved using powerful decompositions 

algorithms as the Logic-based Outer Approximation algorithm (L-bOA) (Chen et al., 2020; Türkay 

and Grossmann, 1996). However, in several cases, the analytical form of the objective function 

or constraints are not available since they are commonly obtained from simulators or computer 

codes (Bajaj et al., 2018). When the mathematical problem includes known and unknown 

constraints, it is referred to as hybrid or grey-box. In order to address these problems, surrogate 

models can be used. Surrogate modeling is a technique based on building an inexpensive 

function from input-output data (Bhosekar and Ierapetritou, 2018; Kim and Boukouvala, 2020). 

This approach has been successfully implemented in optimal process design problems (Caballero 

and Grossmann, 2008; Kong et al., 2016; Pedrozo et al., 2020). Further, surrogate models can 

also be used to replace rigorous unit models in large-scale nonconvex problems. In this way, the 

number of equations and problem complexity can be reduced. The approximation of 

nonlinearities and nonconvexities is a significant challenge in surrogate modeling, so the 

common basis functions are nonlinear. There are two classes of basis functions. The first one 

includes simple algebraic regression models such as polynomial and bilinear functions, while the 

second class of basis functions includes interpolating functions such as Radial Basis Functions 

(RBFs) and Kriging. These basis functions have specific mathematical properties, which can be 

appropriately exploited to generate SMs. In particular, regression functions are widely used for 

algebraic optimization since their low complexity allows their simple implementation within 

large-scale optimization problems, and RBFs show the capacity of accurate representations of 

highly nonlinear models (Fang et al., 2005). These SMs can replace complex mathematical 

models of equipment units, such as distillation columns and process reactors, reducing the 

number of equations and nonlinear terms. In this context, regression functions are suitable 

choices due to their features, but they may fail to represent the unit performance accurately. 

On the other hand, RBFs may introduce additional nonlinear terms. Therefore, the combination 

of both basis functions can be a promising option. 

Cozad et al. (Cozad et al., 2014) developed automated learning of algebraic models for 

optimization (ALAMO), which is a software package to build surrogate models based on 

regression functions such as linear, polynomial, or rational, as well as radial basis functions (RBF), 

that are globally optimized. Wilson et al.(Wilson and Sahinidis, 2017) evaluated the constrained 

regression feature in ALAMO, and showed the efficiency of error maximization sampling as an 

exploration method. Another strategy to generate surrogate models is based on Artificial Neural 

Networks (ANN), as proposed by Henao and Maravelias (Henao and Maravelias, 2011, 2010). 

This approach can be used to represent highly nonlinear functions and scales well with an 
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increasing number of output variables. Boukouvala and Floudas (Boukouvala and Floudas, 2017) 

developed Algorithms for Global Optimization of coNstrAined grey-box compUTational 

problems (ARGONAUT), which is an optimization framework to solve problems including known 

and unknown constraints. A particular feature of ARGONAUT is the selection of basis functions 

for surrogates, which can be interpolating or non-interpolating.  

In this work, we propose a novel procedure for generating surrogate models based on regression 

and interpolating functions to take advantage of the strengths of each model class within an 

optimization framework. These surrogate models are included together with first-principle 

models to represent process units in GDP problems for chemical plant optimal design. We 

propose an iterative optimization framework to solve the resulting GDP constrained with a 

hybrid model. The proposed procedure is applied to two case studies: a methanol synthesis 

problem, and a propylene production via olefin metathesis plant design problem.  

2 METHODOLOGY 

The objective in this work is to propose an iterative procedure to generate models for chemical 

plant optimal design. The main idea is to represent process units through first principles and 

surrogate models embedded within a superstructure representation.  

We propose surrogate models based on simple algebraic regression and interpolating functions.  

On the one hand, low complexity models are obtained through algebraic regression basis 

functions, which can be efficiently used in optimization approaches (Wilson and Sahinidis, 2017). 

On the other hand, interpolating functions can accurately represent every function pattern, 

giving exact outputs in interpolation points (Chen et al., 2014). In particular, we employ Gaussian 

Radial Basis Functions (GRBFs) due to their performance within optimization frameworks 

(Amouzgar and Strömberg, 2017; McDonald et al., 2007). Since a good representation of the 

analytical model is required in the entire domain, interpolation functions are suitable to fit the 

residues of the regression model, without significantly changing model predictions away from 

interpolation points. GRBFs exhibit this feature, and GRBF coefficients are obtained by solving 

linear systems of equations. 

The following function is used to build surrogate models: 

 ℎ𝑠(𝑣)  = ∑ 𝑐𝑖ℎ𝑖
𝑎(𝑣)𝑁

𝑖=1 + ∑ 𝑤𝑖′𝑒
−𝛾‖𝑣−𝑣𝑠𝑖′‖2

2𝑀
𝑖′=1  (1) 

where 𝑣  are the surrogate input variables; 𝑐𝑖  and 𝑤𝑖  are model parameters to fit; 𝑁  is the 

number of algebraic functions; 𝑀 is the number of interpolation points; 𝛾 is the form factor of 

GRBFs; 𝑣𝑠𝑖 are interpolation points; ℎ𝑖
𝑎(𝑣) are simple algebraic regression functions. 
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Both first principle and generated surrogate models are included as constraints for the optimal 

design problem, which is formulated as the following Generalized Disjunctive Programming 

(GDP) problem: 

 𝑚𝑖𝑛 𝑓(𝑥) (2.1) 

 𝑔(𝑥) ≤ 0 (2.2) 

 𝑔𝑠(𝑥) ≤ 0 (2.3) 

 ⋁ [

𝑌𝑗𝑘

ℎ𝑗𝑘(𝑥) ≤ 0

ℎ𝑗𝑘
𝑠 (𝑥) ≤ 0

]𝑘∈𝐾𝑗
  𝑗 ∈ 𝐽 (2.4) 

 𝑥 ∈ 𝑋 ⊆ ℝ𝑛 (2.5) 

 𝑌𝑗𝑘 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}𝑚 (2.6) 

where 𝑓(𝑥) in (2.1) is the objective function, 𝑔(𝑥) in (2.2) is the set of linear and nonlinear 

constraints from first principles, and 𝑔𝑠(𝑥) in (2.3) correspond to the equations of the surrogate 

models. Regarding the disjunctive equations (2.4), 𝑌𝑗𝑘 is the Boolean variable associated with 

the k-th term of the j-th disjunction, ℎ𝑗𝑘(𝑥) are algebraic constraints and ℎ𝑗𝑘
𝑠 (𝑥) are surrogate 

models.  

To solve the resulting GDP, we apply the Logic-based Outer Approximation algorithm (L-bOA). 

This strategy proceeds by decomposing the GDP into reduced NLP subproblems and Master 

MILP problems, in this way avoiding “zero-flow” units and constraints related to non-existing 

units or streams. L-bOA was implemented in LOGMIP 1.0 (Vecchietti and Grossmann, 2000, 

1999). However, since it is no longer available in LOGMIP 2.0/GAMS, we have coded a custom 

implementation of the decomposition algorithm in order to use updated versions of the NLP and 

MILP solvers. The code starts by performing a set covering step (Türkay and Grossmann, 1996) 

in which selected NLP subproblems are solved for nonlinear disjunctions in which selected units 

are fixed for a specific flowsheet structure. The solution of these NLP subproblems provide 

points to obtain linearizations for all nonlinear disjunctions in the model. Thus, a linear GDP is 

generated, whose Master MILP is in turn re-written with a Big-M reformulation.  

The proposed iterative procedure to generate and refine surrogate models within an 

optimization framework includes the following steps: initial surrogate model generation; 

exploration (adaptive sampling); solving the hybrid GDP problem; and exploitation of the NLP 

solutions.  
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2.1 Initial surrogate model generation 

As a first step, sampling points are generated through a simple filling space strategy. However, 

as most of the sampling methods were developed for hypercube spaces, there are some 

infeasible points where the feasible region is different from a hypercube. Therefore, we apply a 

filtering strategy that eliminates non-feasible sampling points from the initial sampling set in the 

next step. There are no direct sampling methods to fill the feasible region defined by the 

problem constraints to the best of our knowledge. Therefore, we perform an adaptive sampling 

strategy in the following step of the algorithm (see Section 2.2). 

Algebraic regression functions are generated with the machine learning software ALAMO (Cozad 

et al., 2014) ), which solves a global optimization problem to ε tolerance.  These functions are 

used to perform an initial fit with low complexity basis functions, including linear, quadratic, and 

cubic monomials, binomials and quadratic binomials, trinomials, and constant terms. This 

machine learning software determines model complexity through the number of terms in the 

fitness metric used as the objective function. In this work, we select the Bayesian Information 

Criterion (BIC), which is the most widely used criterion in the literature (Wilson and Sahinidis, 

2017). BIC establishes a trade-off between model errors and model complexity. Once an 

algebraic regression surrogate model is generated, the relative residuals are analyzed to decide 

if a first refinement step is to be carried out. Relative errors of sampling data are calculated and 

sampling points whose errors are larger than a tolerance (𝜀0) are included as interpolation points 

for Gaussian Radial Basis Functions (GRBFs). It should be noted that residuals are fit through 

GRBF, so the surrogate is exact in the interpolation points. An example is given in Section 3.3.4.   

 

2.2 Adaptive sampling (exploration step) 

For further refinement, adaptive sampling is carried out to find domain regions where the model 

requires additional exploration. In this step, optimization problems are formulated through the 

Error Maximization Sampling (EMS) strategy (Cozad et al., 2014; Wilson and Sahinidis, 2017), as 

follows, 

 𝑚𝑎𝑥 (
ℎ𝑟(𝑣)−ℎ𝑠(𝑣)

ℎ𝑟(𝑣)
)

2

 (3.1) 

 𝑔𝑟(𝑣) ≤ 0 (3.2) 

 𝑣𝐿 ≤ 𝑣 ≤ 𝑣𝑈  (3.3) 

Where ℎ𝑟(𝑣) is the true model output variable, and 𝑔𝑟(𝑣) are the true model constraints. The 

EMS is a mathematical problem that allows identifying the domain regions where the difference 

between the surrogate and the original model is the largest. It should be noted that in problem 
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(3), the algebraic equations of the true model are assumed to be known. However, in a black 

box case for the true model, a derivative-free optimization method can be used (Rios and 

Sahinidis, 2013). In this work, problem (3) is solved to local optimality. The adaptive sampling 

technique is extended to multivariable surrogate models since several output variables are 

estimated from the same input variable vector. For instance, input variables for the surrogate 

model of distillations columns are component molar flowrates and specific enthalpy in the feed 

stream, and top pressure, from which surrogate functions for the corresponding capital cost, 

reboiler duty, top and bottom temperatures are generated (four surrogate functions). EMS is 

applied to each surrogate function.  

The exploration step stops when the relative error is less than a tolerance, or when a maximum 

number of EMS problems is solved as proposed by Wilson and Sahinidis (Wilson and Sahinidis, 

2017). In this work, we consider a relative tolerance of 0.03, which is equivalent to an EMS 

objective value of roughly 0.01, and the maximum number of mathematical problems solved at 

each iteration is 50. 

2.3 Exploitation step 

When solving the optimal design problem as a GDP problem constrained with a hybrid model, 

NLP subproblems may be infeasible due to the lack of accuracy of the surrogate models in key 

regions of variable input domains (Kim and Boukouvala, 2020). The true unit model may also be 

infeasible when it is evaluated at the optimal solution of an NLP subproblem. In both cases, 

feasible sampling points must be obtained to exploit that region, and consequently, improve the 

surrogate model performance. Therefore, an optimization problem is formulated to minimize 

the square Euclidean norm of the difference between the NLP subproblem solution (𝑣∗) and the 

surrogate model input variables (𝑣) that satisfy the true unit model constraints, as follows,   

 𝑚𝑖𝑛‖𝑣∗ − 𝑣‖2
2 (4.1) 

 𝑔𝑟(𝑣) ≤ 0 (4.2) 

 𝑣𝐿 ≤ 𝑣 ≤ 𝑣𝑈  (4.3) 

It should be noted that 𝑣∗ are parameters for Problem (4) since their values are solutions of the 

current NLP subproblems. Problem (4) solution provides a feasible sampling point that is 

included in the training set, and consequently, it allows the region exploitation in case of 

infeasible problems. 

In the case that the true model is of black-box type, the feasibility problem could be solved using 

derivative-free optimization methods (Rios and Sahinidis, 2013). It must be noted that these 
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methods are efficient for low-dimensional models, as is the case of individual equipment unit 

models. 

It should be pointed out that we did not address any method to reduce the feasible region so as 

to maintain its original form. While strategies that ‘contract’ the feasible region could improve 

the numerical performance, the globally optimal solution could be missed during the domain 

reduction if not performed rigorously. Otherwise, the exploitation step has the potential to 

refine the regions where the optimal solution is likely to be, without reducing the feasible space. 

2.4 Solution strategy 

In this work, we propose the iterative procedure for solving optimal design problems based on 

hybrid models shown in Fig. 1.  A detailed description of this procedure is as follows: 

1. Input variables bounds selection for each surrogate model.  

2. Initial data generation with Latin Hypercube sampling (LHS) technique for function 

evaluations and determination of the corresponding output variables to build surrogate 

models.  

3. Filtering step: To deal with constrained problems and the fact that some original unit 

model evaluations may be infeasible, a filtering strategy (Boukouvala and Floudas, 2017) 

is applied to disregard sampling data points that generate infeasible simulations. 

4. Initial surrogate model (SM) generation 

4.1 SM generation with simple algebraic regression functions in the learning software 

ALAMO 

4.2 Relative residual error assessment to determine deviated sample points (DSP) in 

which these errors are larger than tolerance (𝜀0) 

4.3 SM refinement with GRBFs for each DSP 

5. Exploration step 

5.1 Error maximization sampling (EMS): Determination of the point where the SM has 

the least accuracy in the feasible region. The EMS problem is solved for each 

surrogate model output variable. 

5.2  SM update with GRBFs in the deviated sample points, which include additional 

points determined in 5.1 

5.3 Convergence criteria  

6. Solution of GDP problem constrained by hybrid model, using the Logic-based Outer 

Approximation (L-bOA) algorithm.  

7. Exploitation step 
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7.1 NLP subproblem solutions from each GDP provide feasible points for the domain 

region. Each process unit true model is simulated at these points and, in case 

feasible and low accuracy, they are included in the training set. Otherwise, a 

feasibility problem (4) is solved to obtain the nearest point to the solution to be 

included in the training set. In this way, the algorithm takes advantage of the L-bOA 

algorithm by testing and, eventually including, each NLP subproblem solution. 

7.2 Convergence criteria: relative error of each output variable, of each surrogate 

model, evaluated at each feasible NLP subproblem solution must be less than a 

given tolerance (𝜀2). If not satisfied, go to 5 (The number of major iteration of the 

algorithm is equal to the times the GDP problem is solved). 

 

Figure 1: Iterative optimization framework 
 

2.4.1 Solution strategy alternatives 

The algorithm described above is slightly modified to compare its performance when: a) using 

only regression algebraic function and b) using only Gaussian Radial Basis Functions. In the first 
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case, i.e. to solve an optimal design problem with surrogate models built exclusively with 

regression algebraic functions in ALAMO, the exploration (adaptive sampling) and the 

exploitation (from GDP solutions) are performed using ALAMO in the iterative framework (Fig. 

1), and the corresponding surrogate model is updated with new regressions in ALAMO for this 

step. It is worth noting that the incorporation of a new sampling point during exploration or 

exploitation steps, implies solving an additional optimization problem to global optimality, 

including the entire set of sampling points, so the problem becomes more complex as iterations 

proceed. In the second case; i.e., SM generation with GRBF, the solution strategy of Fig. 1 is also 

modified, and GRBFs are applied to perform the initial fit. GRBFs coefficients are determined by 

solving linear systems of equations, and surrogate models are generated through a customized 

implementation in MATLAB. 

2.5 Software integration 

In the algorithm depicted in Fig. 1, different software tools are used. We code the main 

algorithm in MATLAB (R2016a) since this software allows data processing and data transfer to 

ALAMO (Version 20.10.21) and to GAMS (32.2.0). We also generate data using the Latin 

Hypercube Sampling (LHS) technique, and solve linear systems of equations to fit customized 

GRBFs coefficients in MATLAB. We build surrogate models using the learning software ALAMO 

as it has the capability of selecting low-complexity algebraic basis functions to fit sample data 

accurately. A “.alm” file is automatically written in MATLAB, containing the possible algebraic 

basis function and the input-output variables. This file is run in ALAMO through the command 

windows from MATLAB. The “trace” option is set to generate a summary of the results, from 

where the function form is read and transferred to MATLAB. 

There are four different types of mathematical problems in GAMS, as shown in Fig. 2: 1) Process 

unit models are formulated and run to generate initial sampling data and to check each process 

unit solution from the GDP problem; 2) The Error Maximization Sampling is written as an 

optimization model (Problem 3); 3) The feasibility problem is run in the case when optimal 

solutions from NLPs subproblems turn out infeasible (Problem 4); 4) The GDP problem is solved 

to obtain the optimal design (Problem 2). GAMS files (“.gms”) are opened from MATLAB to write 

the corresponding function form and its derivatives required for the formulation of Master MILP 

problems. GDXMRW utilities (Ferris et al., 2011) are employed to write an additional “.gdx” file 

containing GRBF coefficients, to run mathematical problems in GAMS from MATLAB, and also to 

upload the most relevant results in MATLAB. The results presented herein were run 

implementation is run in an Intel(R) Core(TM) i7–4790 CPU @3.60GHz and 8 GB RAM. 
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Figure 2. Software integration 

3 CASE STUDY 1: METHANOL SYNTHESIS 

3.1 Problem description 

The first case study considered to assess the performance of the proposed optimization strategy 

(Fig. 1) is the methanol synthesis problem described in the literature (Chen and Grossmann, 

2019; Türkay and Grossmann, 1996). We consider this simplified methanol synthesis example, 

which can be solved with state-of-the-art MINLP/GDP solvers. While this optimization model 

does not intend to provide a rigorous representation of the methanol synthesis reactor, it is 

considered as a suitable test problem to illustrate the proposed methodology. The process 

flowsheet is shown in Fig. 3. The main discrete decisions are the selection of the feed stream (1 

or 2), which can be conditioned with one (3) or two compression steps (4, 5, and 6). Methanol 

conversion can be performed in a low-cost and low conversion reactor (9) or in an expensive 

reactive unit operating with higher methanol production (10). Finally, the recycle stream can be 

recompressed in one (16) or two steps (17, 18 and 19). The objective function is to maximize 

plant profit. The detailed equations of the methanol synthesis superstructure model can be 

found in https://github.com/grossmann-group/gdplib/tree/master/gdplib/methanol or 

www.logmip.ceride.gov.ar/older.html. 

 

 

Figure 3. Methanol synthesis superstructure 

 

https://github.com/grossmann-group/gdplib/tree/master/gdplib/methanol
http://www.logmip.ceride.gov.ar/older.html
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3.1.1 Reactor model original formulation 

We focus on reactor models (9 and 10), which are replaced by surrogate models in the hybrid 

plant model, to calculate the reaction conversion. The original reactor model (in this paper also 

referred to as “true model”) is as follows: 

 𝑟𝑢 = 𝜒𝑢 ∙ 𝑓𝑢,𝐻2
𝑖𝑛   𝑢 ∈ {9,10} (5.1) 

 𝜒𝑢
𝑒𝑞 = 0.415 (1 − (

26.25𝑒
−

18

𝑇𝑢
𝑜𝑢𝑡

𝑃𝑢
𝑜𝑢𝑡2 ))  𝑢 ∈ {9,10} (5.2) 

 𝜒9𝐹𝑇9
𝑖𝑛 = 𝜒9

𝑒𝑞 (1 − 𝑒−5)(𝑓9,𝐻2
𝑖𝑛 + 𝑓9,𝐶𝑂

𝑖𝑛 + 𝑓9,𝐶𝐻3𝑂𝐻
𝑖𝑛 ) (5.3) 

 𝜒10𝐹𝑇10
𝑖𝑛 = 𝜒10

𝑒𝑞 (1 − 𝑒−10)(𝑓10,𝐻2
𝑖𝑛 + 𝑓10,𝐶𝑂

𝑖𝑛 + 𝑓10,𝐶𝐻3𝑂𝐻
𝑖𝑛 ) (5.4) 

 (𝐹𝑇𝑢
𝑖𝑛𝑇𝑢

𝑖𝑛 − 𝐹𝑇𝑢
𝑜𝑢𝑡𝑇𝑢

𝑜𝑢𝑡)(35.0) = 0.01∆𝐻𝑟𝑥𝑛𝑟𝑢  𝑢 ∈ {9,10} (5.5) 

 𝑓𝑢,𝐻2

𝑜𝑢𝑡 = 𝑓𝑢,𝐻2

𝑖𝑛 − 𝑟𝑢   𝑢 ∈ {9,10} (5.6) 

 𝑓𝑢,𝐶𝑂
𝑜𝑢𝑡 = 𝑓𝑢,𝐶𝑂

𝑖𝑛 − 0.5𝑟𝑢   𝑢 ∈ {9,10} (5.7) 

 𝑓𝑢,𝐶𝐻3𝑂𝐻
𝑜𝑢𝑡 = 𝑓𝑢,𝐶𝐻3𝑂𝐻

𝑖𝑛 + 0.5𝑟𝑢   𝑢 ∈ {9,10} (5.8) 

 𝑓𝑢,𝐶𝐻4
𝑜𝑢𝑡 = 𝑓𝑢,𝐶𝐻4

𝑖𝑛   𝑢 ∈ {9,10} (5.9) 

where 𝐹𝑇𝑢
𝑖𝑛  and 𝐹𝑇𝑢

𝑜𝑢𝑡  are input and output total flowrates of unit 𝑢, respectively; 𝑓𝑢,𝑗
𝑖𝑛  and 

𝑓𝑢,𝑗
𝑜𝑢𝑡  are input and output molar flow of component 𝑗 of unit 𝑢, respectively; 𝑇𝑢

𝑖𝑛  and 𝑇𝑢
𝑜𝑢𝑡  are 

input and output stream temperatures of unit 𝑢, respectively; 𝑃𝑢
𝑜𝑢𝑡 is output stream pressure of 

unit  𝑢 ;  𝜒𝑢  is the conversion; 𝜒𝑢
𝑒𝑞  is the equilibrium conversion; and ∆𝐻𝑟𝑥𝑛  is reaction heat 

(parameter). 

 

3.1.2. Surrogate model for methanol synthesis reactor 

In this work, we generate a surrogate model to replace Eqs. (5.1)-(5.4). It calculates the reactor 

hydrogen consumption (𝑟𝑢) based on input flow rates (𝑓𝑢,𝐻2

𝑖𝑛 , 𝑓𝑢,𝐶𝑂
𝑖𝑛 , 𝑓𝑢,𝐶𝐻4

𝑖𝑛  and 𝑓𝑢,𝐶𝐻3𝑂𝐻
𝑖𝑛 ), input 

temperature (𝑇𝑢
𝑖𝑛), and operating pressure (𝑃𝑢

𝑖𝑛), as input variables, as follows 

 𝑟𝑢 = ℎ𝑢
𝑠 (𝑓𝑢,𝐻2

𝑖𝑛 , 𝑓𝑢,𝐶𝑂
𝑖𝑛 , 𝑓𝑢,𝐶𝐻4

𝑖𝑛 , 𝑓𝑢,𝐶𝐻3𝑂𝐻
𝑖𝑛 , 𝑇𝑢

𝑖𝑛, 𝑃𝑢
𝑖𝑛)  𝑢 ∈ {9,10} (5.10) 

The hybrid model for reactors is, therefore, formulated with Eqs. (5.5)-(5.10). 

 

3.2 Numerical results for GDP with original model  

Numerical results for the original (true) model for the methanol synthesis problem (Eqs. (5.1) – 

(5.9)) are shown in Table 1. As we employ a custom implementation of the Logic-based Outer 
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Approximation algorithm, we perform a set covering including two NLPs subproblems to 

initialize all nonlinear equations for the proper formulation of the Master MILP problem. NLP 1 

subproblem includes feed stream 1, two compression steps for this stream (units 4, 5, and 6), 

reactor 10 and two compression steps (units 17, 18, and 19) for the recycled steam; NLP 2 

subproblem considers feeding stream 2, compressor 3, reactor 9, and compressor 16 (see Fig. 3). 

After solving the first Master MILP problem, the optimal configuration is determined in NLP 3. 

The optimal profit value is 1,840 M$/y, and the optimal configuration includes feeding stream 

2, two compression steps (units 4, 5, and 6), reactor 9, and compressor 16 for the recycle stream. 

These results are in agreement with those reported in the literature (Türkay and Grossmann, 

1996).  

Table 1: Logic-based Outer Approximation algorithm iterations (original model) 

Iteration/subproblem 
Objective 
(M$/y) 

CPU time (s) Constraints 
Continuous 
vars. 

Binary vars. 

NLP 1 (CONOPT) -750.52 0.125 380 310 - 

NLP 2 (CONOPT) 1,645.52 0.063 363 310 - 

Master MILP 1 (Cplex) 1,156.87 0.140 690 449 17 

NLP 3 (CONOPT) 1,840.08 0.063 373 310 - 

Master MILP 2 (Cplex) -2,6734.16 0.125 742 533 17 

NLP 4 (CONOPT) 1,194.47 0.079 373 310 - 

 

3.3 Numerical results for GDP with hybrid model 

In this section, we solve the optimal design problem constrained with the hybrid model 

described by Eqs. (5.5)-(5.10) as a GDP within the novel algorithm proposed in this work and its 

alternatives. Due to the stochastic component of LHS technique in the proposed solution 

strategy (Fig. 1), the case study is solved ten times using different initial sampling points 

(obtained from LHS) for testing each analyzed technique. In all cases, the optimal solution 

process scheme is obtained with slight variations in the objective function, lower than 0.24 %. 

The comparison is usually focused on the number of major iterations and CPU time devoted to 

each main step in the proposed algorithm. 

3.3.1 Surrogate model generated with algebraic regression functions in ALAMO  

Figure 4 shows optimization results for ten different LHS initial points for the methanol synthesis 

case study when SM are generated with simple algebraic regression functions in ALAMO. The 

number of major iterations is between 1 and 4. When the problem is solved in one iteration 

(case 2), the SM after the adaptive sampling step is so accurate that it satisfies the convergence 

criteria without requiring an exploitation step (i.e., further refinement). Regarding the objective 
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function value, numerical results show that this method slightly overestimates the plant profit 

in every case, being the largest overestimation of 0.22% (the mean value for the objective 

function is 1,842.4 M$/y). CPU times are also shown in Fig. 4, and they are broken down in the 

main steps: initial fit, true simulation optimal value, adaptive sampling, and GDP problem 

solution. CPU time varies between 18 and 77 s, and its mean is 42 s. The most time-consuming 

step corresponds to adaptive sampling (around 70 % of total CPU time), which requires an 

average of 11 iterations to satisfy the accuracy criteria. This result includes solving NLPs of Error 

Maximization Sampling problems and updating the model using ALAMO, which involves solving 

additional optimization problems (as explained in Section 2.4.1). It is also observed that CPU 

time for the initial fit is negligible (1-2 s). Explicit equations obtained with ALAMO for the last 

run in Fig. 4 are provided in the Supplementary Material.  

An alternative approach would be to generate a one-shot high accuracy SM with ALAMO. 

However, some functions in the original model are highly nonlinear and cannot be appropriately 

described by using simple algebraic regression functions. Moreover, it is difficult to know 

beforehand the accuracy of the generated model in the neighborhood of the optimal solution. 

Furthermore, the main feature of ALAMO is to generate simple functions by finding a trade-off 

solution between the model complexity and model errors. For that reason, in Section 3.3.3, we 

propose to generate an initial simple SM using ALAMO, which is further refined using GRBFs.  

We also analyze the influence of the initial SM generated with ALAMO in the algorithm 

performance, considering that the accuracy of the initial SM increases with the number of 

sampling points. Thus, we solve the case studies with different numbers of initial sampling points 

in Section 3.3.3. Even in the runs with a large number of initial sampling points, the algorithm 

requires the exploration and the exploitation steps to ensure an accurate optimal solution. 
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Figure 4: Methanol synthesis problem constrained with hybrid model using surrogate models 
based on simple algebraic regression functions  

 

3.3.2 Surrogate model generated with Gaussian Radial Basis Functions 

Figure 5 shows numerical results corresponding to the methanol synthesis case study, when only 

GRBF-based surrogate models are generated. We solve the problem ten times under different 

LHS designs. In 60 % of the cases, three major iterations are required to satisfy the convergence 

criteria. The objective function is between 1,836 and 1,842 M$/y, which corresponds to both 

underestimation and overestimation of the profit relative to the true value (1840 M$), and the 

mean is 1,840.0 M$/y. The relative error is 0.24 % in the worst case. 

Regarding CPU time distribution, Fig. 5 also shows the corresponding breaking down. Total CPU 

time is between 13 and 35 s, which suggests that this solution strategy may be more time 

efficient than the one described in 3.3.1. The initial fit time is not distinguishable in Fig. 5, as it 

requires solving a linear system of equations. The adaptive sampling is the most time-consuming 

step, representing 61 % of total CPU time, in average, and requiring 18 iterations in average. 

However, CPU time is lower than the time required in the case of using algebraic regression 

functions for surrogate model formulation (see Fig. 4 and Section 3.3.1), as the interpolating 

GRBF updating is carried out by solving a linear system of equations in MATLAB. 

Furthermore, it can be seen that CPU time associated with obtaining the solution of the GDP 

problem does increase with the number of major iterations, as a GDP is solved in each major 

iteration. 

 

Figure 5: Methanol synthesis problem solved constrained with hybrid model using surrogate 
models based on GRBFs 
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3.3.3 Surrogate model generation with algebraic regression and Gaussian Radial Basis 

Functions (ALAMO and customized GRBF) 

Figure 6 shows numerical results corresponding to the case of using the iteration framework 

described in Fig. 1 to solve the methanol synthesis problem with surrogate models represented 

by Eq. (1). It shows that the number of major iterations is between two and four. The relative 

error of the objective function is 0.11 % in the worst case, suggesting that this is the most robust 

strategy to address this problem. It is also the most efficient when compared to the two previous 

strategies, requiring roughly 16 s on average per problem run; which means CPU time savings of 

26 % and 49 %, as compared to using only GRBFs or algebraic regression functions, respectively. 

This result is mainly associated with CPU time savings in the adaptive sampling step. As the initial 

fit is performed using algebraic regression functions, the number of iterations in the adaptive 

sampling step (16 as average) is often lower than in the case of using GRBF-based surrogate 

models. Furthermore, due to the function complexity in process design models, ALAMO can 

usually capture the main function patterns, and in this way, the required number of 

interpolation points is reduced, as compared to the case of GRBF-based SMs. In the “combined 

strategy” (Fig. 1), the initial fit is performed through simple algebraic regression functions and 

GRBF are only added in the exploration and exploitation steps. In this case, we also provide the 

explicit equations obtained with ALAMO as initial SM for the last run of Fig. 6 in the 

Supplementary Material. 

 

Figure 6: Methanol synthesis problem constrained with hybrid models using surrogate models 
based on simple algebraic regression functions and GRBFs  
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In order to analyze the impact of the number of sampling points on the initial surrogate model, 

the case study is solved using different sampling data sets obtained with the LHS approach. 

Furthermore, as this sampling technique has a random component, the case study is solved ten 

times in each case to analyze the performance of the proposed method. This analysis is carried 

out considering SM based on both regression functions and GRBFs, using the solution strategy 

shown in Fig. 1. Numerical results related to 100 initial sampling points (shown in Fig. 6) are 

considered the base case for comparison purposes. 

Figure 7 shows numerical results from the methanol case using 10 initial sampling points (see 

Fig. 1). It should be noted that this number of points corresponds to the initial LHS, and some of 

them could be discarded in the filtering step. As in these cases, the number of points is small 

and the objective function is the Bayesian Information Criterion (BIC); the initial SM from ALAMO 

generates interpolation functions. It is observed that the number of major iterations increases 

when the number of initial sampling points is reduced. For example, in two runs with 10 initial 

sampling points, eight iterations were required, while four iterations were necessary in the 

worst runs for the base case (i.e., with 100 initial points).  

Consequently, the mean CPU time increases 38 % with respect to the base case. Furthermore, 

it is observed that CPU times are reduced by 50 % as related to the initial fit, compared to the 

case of 100 initial sampling points (0.9 s vs. 1.8 s on average). On the other hand, CPU time 

related to the adaptive sampling step shows a 51 % increase (9.8 s vs. 6.5 s on average) since 

more exploration iterations are required to generate a model with the appropriate accuracy in 

the entire domain, as compared to the base case. 

 

Figure 7. Methanol synthesis problem constrained with hybrid models using surrogate models 
based on simple algebraic regression functions and GRBFs (10 initial sampling points) 
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The methanol synthesis problem is also solved using 1000 initial sampling points, and the 

corresponding results are shown in Fig. 8. It can be noted that in 50 % of the runs, two iterations 

are required to solve the problem when using 1000 initial sampling points, and five iterations 

are necessary in the worst case (two times), whereas four iterations are carried out in the worst 

run for the base case with 100 initial points (see Fig. 6). As a result, the average CPU time is 

marginally reduced by 6.3 % (15 s vs. 16 s). On the one hand, CPU time associated with the initial 

fit increases by 57 % (2.8 vs. 1.8 s), and this step of the algorithm represents 21 % of total CPU 

time on average. On the other hand, there is a decrease of 29 % in computational time 

associated with adaptive sampling, regarding the base case (4.6 vs. 6.5 s in average). This fact 

clearly shows that the larger the number of initial sampling points, the smaller is the number of 

iterations in the exploration stage.  

Regarding the objective function, it is observed that all approximations obtained with a different 

number of initial sampling points have errors lower than 1 % with respect to the true optimal 

solution. Furthermore, it should be pointed out that the same optimal scheme is determined in 

every case, which is in agreement with the one obtained with the true GDP model. These results 

indicate the efficiency of the exploration and exploitation stages to refine the SM. 

 

Figure 8. Methanol synthesis problem constrained with hybrid models using surrogate models 
based on simple algebraic regression functions and GRBFs (1000 initial sampling points) 
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3.3.3.1 Numerical results for GDP constrained with true model and with hybrid model 

To compare numerical results for the methanol synthesis problem by solving a GDP constrained 

with the original (true) model and the ones obtained with the proposed algorithm for hybrid 

model generation, we consider the last (fourth) GDP results in case 10 from Fig. 6. 

Table 2 shows objective function values and the number of variables in each iteration. The same 

set covering described in Section 3.2 is used to define NLP 1 and NLP 2 for the methanol synthesis 

case study (Fig. 3). As with the true model, the optimal scheme is determined in NLP 3 (see 

Section 3.2). The optimal scheme found is the same as the one obtained with the original model. 

Furthermore, the objective function value obtained with the proposed procedure has a relative 

error of less than 0.002% with respect to the true solution (1,840.05 vs. 1,840.08 M$/y). 

Additionally, and due to the refinement step of NLPs subproblems, relative errors of NLP 1 and 

NLP 2 (when compared to the true model solution) are 0.02% and 0.04%, respectively.  

The proposed methodology does not show any advantages in this case study due to its low 

complexity. As it can be seen in Tables 1 and 2 and Fig. 6, the CPU time required for the true 

model solution is lower than the required when using the hybrid model (96 %). These results are 

mainly associated with the exploration and exploitation steps to refine the SM. However, 

applying the proposed methodology to this case study is worthwhile since it helps to illustrate 

the methodology and its robustness. In Section 4, we apply the solution strategy to the design 

of a propylene production plant via olefins metathesis, where the methodology advantages are 

clearly shown. 

Table 2. Logic-based Outer Approximation algorithm iterations (hybrid model) for the 4th GDP 
problem in case 10 (Fig. 6) 

Iteration/subproblem 
Objective 
(M$/y) 

CPU time (s) Constraints 
Continuous 
vars. 

Binary vars. 

NLP 1 (CONOPT) -750.70 0.078 378 310 - 

NLP 2 (CONOPT) 1,646.17 0.047 361 310 - 

Master MILP 1 (Cplex) 1,159.21 0.265 682 451 17 

NLP 3 (CONOPT) 1,840.05 0.031 371 310 - 

Master MILP 2 (Cplex) 428.62 0.156 730 521 17 

NLP 4 (CONOPT) 1,540.76 0.047 368 310 - 

 

Regarding optimal values for input and output variables for reactor 9, a comparison is shown in 

Table 3 for the different basis functions to generate surrogate models, and Table 4 shows the 

corresponding relative differences with respect to the true model. It can be noted that relative 

errors are negligible in input variables since the highest one is 0.04 % for the methane input 
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flowrate with respect to the obtained with the GDP constrained with the original model. For the 

output variable, the relative error is higher than the latter case, but it is still negligible (0.10 %).   

Table 3. Comparison of optimal values for input and output variables in reactor 9 surrogate 
model 

SM Input variables Original model ALAMO SM GRBF SM Proposed SM 

𝑓9,𝐻2
𝑖𝑛 (𝑘𝑚𝑜𝑙/𝑠) 6.789 6.782 6.803 6.789 

𝑓9,𝐶𝑂
𝑖𝑛 (𝑘𝑚𝑜𝑙/𝑠) 1.034 1.022 1.034 1.034 

𝑓9,𝐶𝐻3𝑂𝐻
𝑖𝑛 (𝑘𝑚𝑜𝑙/𝑠) 4.486 4.488 4.500 4.487 

𝑓9,𝐶𝐻4
𝑖𝑛 (𝑘𝑚𝑜𝑙/𝑠) 4.463 4.481 4.476 4.465 

𝑇9
𝑖𝑛(100𝐾) 4.553 4.556 4.553 4.553 

𝑃9
𝑖𝑛(𝑀𝑃𝑎) 13.817 13.852 13.817 13.819 

SM Output variables     

𝑟9(𝑘𝑚𝑜𝑙/𝑠) 2.043 2.043 2.045 2.045 

 

Table 4. Relative errors of optimal values for input and output variables in reactor 9 surrogate 
model, with respect to the original model 

SM Input variables ALAMO SM  GRBF SM  Proposed SM  

𝑓9,𝐻2
𝑖𝑛 (𝑘𝑚𝑜𝑙/𝑠) 0.10% 0.21% 0.00% 

𝑓9,𝐶𝑂
𝑖𝑛 (𝑘𝑚𝑜𝑙/𝑠) 1.16% 0.00% 0.00% 

𝑓9,𝐶𝐻3𝑂𝐻
𝑖𝑛 (𝑘𝑚𝑜𝑙/𝑠) 0.04% 0.31% 0.02% 

𝑓9,𝐶𝐻4
𝑖𝑛 (𝑘𝑚𝑜𝑙/𝑠) 0.40% 0.29% 0.04% 

𝑇9
𝑖𝑛(100𝐾) 0.07% 0.00% 0.00% 

𝑃9
𝑖𝑛(𝑀𝑃𝑎) 0.25% 0.00% 0.01% 

SM Output variables    

𝑟9(𝑘𝑚𝑜𝑙/𝑠) 0.00% 0.10% 0.10% 

 

3.3.4 Contribution of simple algebraic regression and Gaussian Radial Basis functions 

In the initial surrogate model for reactor 9 hydrogen consumption of the methanol synthesis 

example, one hundred sampling points were generated via LHS. For these data, ninety 

simulations were feasible, so ten points were discarded due to infeasible simulations. ALAMO 

was used to build a simple algebraic regression surrogate model using the basis functions 

detailed in Section 2.1, including 44 terms. Sampling point relative errors are shown in Fig. 9, 

where a value of 3 % is used for tolerance 𝜀0 . It is observed that four sampling points have 

relative errors larger than the given tolerance, so these points are included in the set of 

interpolation points for the Gaussian Radial Basis Function (generation of four GRBFs). 

It should be noted that the tolerance is not always achievable using only algebraic regression 

functions. On the other hand, addressing the problem only through interpolating functions 
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results in a complex function for ninety interpolating points in this case. The proposed approach 

allows satisfying the given tolerance with a combination of basis functions that is simpler and 

may be more appropriate for optimization than using only interpolating functions.    

 

Figure 9: Relative errors of sampling points for reactor 9 surrogate model using algebraic 
regression functions 
 

In order to assess the weight of each group of basis functions in the surrogate model generated 

with Eq.(1), we build 3D plots for reactor 9 surrogate model, which calculates hydrogen 

consumption, at the end of a problem run. In particular, input variables component molar flows 

are fixed at the values shown in Table 3, while temperature and pressure are considered as 

variables. Figures 10a and 10b show the contribution of simple algebraic regression functions 

and GRBF to the output variable, respectively. Figure 10b shows that the maximum absolute 

value of GRBF is less than 2% of the value calculated with simple algebraic regression functions. 

Figure 11 shows the form of the proposed surrogate model, which is the sum of simple algebraic 

functions (Fig. 10a) and GRBF (Fig. 10b). It is observed that the form of the surrogate from 

ALAMO is retained, while GRBF refine special domain parts where the accuracy is not large 

enough as seen in Figs. 10 and 11.  
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Figure 10: Surrogate model for reactor 9.  a) contribution of simple algebraic regression 
functions in ALAMO. b) contribution of GRBF after exploration and exploitation steps 

 
 

 

Figure 11: Surrogate model for reactor 9 based on simple regression algebraic functions and 
GRBF 
 

4 CASE STUDY 2: PROPYLENE PRODUCTION VIA OLEFIN METATHESIS 

4.1 Problem description 

As a second case study, we consider the optimal design of a propylene production plant via olefin 

metathesis, whose superstructure is shown in Fig. 12. The available feed streams are ethylene 

and a butene mix. Compressors C1, C2, and C3 are conditional units that can be included in the 

optimal design. A fraction of the ethylene stream can be optionally sent to a dimerization 

process (RDIM) to produce 1-butene. The rest of the ethylene stream is sent to the metathesis 

reactor. The butene stream is fed to a hydrogenation reactor unit (C4H) to convert butadiene 

and ethyl-acetylene into butenes. Further, the butene stream is processed in an isomerization 

reactor (ISOM) to increase the trans-2-butene content. The isomerization reactor output stream 

is fed to the metathesis reactor (MTR), where propylene production takes place. The olefin 
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mixture is purified in a separation train to obtain ethylene, propylene, and C4
+. As the optimal 

distillation column sequence is unknown beforehand; we model its superstructure through a 

State Equipment Network (SEN) representation to formulate the task assignment in equipment 

units, and consequently, the separation step order (Mencarelli et al., 2020; Pedrozo et al., 2020; 

Yeomans and Grossmann, 1999). We include the deethylenizer (DC1) and the depropylenizer 

(DC2) in the SEN superstructure. The main product is propylene, while ethylene, obtained from 

the deethylenizer top stream, is recycled. Additionally, the depropylenizer bottom stream has 

C5 and C6 olefins, which are separated in DC3 column. The bottom stream of this column is sold 

as a byproduct (C5
+), while the top stream is recycled. Butane can be highly concentrated in the 

DC3 top stream since its concentration in the butene input stream is 10 %, and it is inert in the 

process. Therefore, a fraction of DC3 top stream is sold as a byproduct (butane). The objective 

function is the net present value (NPV) maximization. A detailed description of the entire plant 

model is presented in Pedrozo et al. (Pedrozo et al., 2021) and the SEN model can be found in 

the Supplementary Material. In this work, we focus on the distillation train, in which rigorous 

column models are replaced by surrogate models. Raw material, utility costs and product prices 

are shown in Table 5 (Boulamanti and Moya, 2017). 

 

Figure 12: Olefin metathesis process superstructure 
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Table 5: Raw material, utility costs and product prices (Boulamanti and Moya, 2017)  
Units USA 

Natural gas $/t 174 
Ethylene $/t 1,138 

Butenes $/t 978 

Hydrogen $/t 429 

Electricity $/MWh 41 

Propylene $/t 1,205 

Butane $/t 550 

C5
+ $/t 906 

 

4.2 Distillation column train 

4.2.1 Rigorous distillation column model  

We formulate rigorous MESH (mass-equilibrium-summation-enthalpy) models for distillation 

column units (Biegler et al., 1997; Viswanathan and Grossmann, 1993). Thus, we obtain the 

“original or true” distillation columns models in this work. Feeding stream specifications are 

described in Eqs. (6.1) and (6.2). Material balances are expressed through Eqs. (6.3)-(6.6). The 

thermodynamic equilibrium condition is formulated in (6.7) and (6.8) considering ideal gas and 

Raoult’s law. Summation equations are (6.9) and (6.10) for liquid and vapor stream, respectively, 

while enthalpy balances are in Eqs. (6.11)-(6.16). 

A linear pressure profile and a fixed pressure drop of 1 bar is set by Eqs. (6.17) and (6.18); and a 

temperature profile is constrained in (6.19). Pure component properties are calculated using 

Eqs. (6.20)-(6.22), where partial pressure is calculated with the extended Antoine equation 

(Green and Perry, 2007). Eqs. (6.23)-(6.30) are connecting equations. Operating costs due to 

condenser and reboiler duty are calculated using correlations proposed by Ulrich and Vasudevan 

(Ulrich and Vasudevan, 2006) in Eqs. (6.31) and (6.32). Capital cost is estimated using Eq. (6.33). 

 

 𝑓𝑢,𝑗
𝑖𝑛 = 𝐷𝐹𝑢,𝑛,𝑗        𝑗𝜖𝐽, 𝑛𝜖𝑁𝑢

𝐹𝑒𝑒𝑑 , 𝑢𝜖𝑈𝑑𝑐 (6.1) 

 𝐻𝑢
𝑖𝑛 = 𝐷𝐻𝑢,𝑛          (𝑢1, 𝑛)𝜖𝑁𝐹𝑒𝑢, 𝑢𝜖𝑈𝑑𝑐 (6.2) 

 𝐷𝐹𝑢,𝑛,𝑗 + 𝐷𝑓𝑙𝑢,𝑛−1,𝑗 + 𝐷𝑓𝑣𝑢,𝑛+1,𝑗 = 𝐷𝑓𝑙𝑢,𝑛,𝑗 + 𝐷𝑓𝑣𝑢,𝑛,𝑗    𝑗𝜖𝐽, 𝑛𝜖𝑁𝑢
𝐹𝑒𝑒𝑑 , 𝑢𝜖𝑈𝑑𝑐 (6.3) 

 𝐷𝑓𝑙𝑢,𝑛−1,𝑗 + 𝐷𝑓𝑣𝑢,𝑛+1,𝑗 = 𝐷𝑓𝑙𝑢,𝑛,𝑗 + 𝐷𝑓𝑣𝑢,𝑛,𝑗    𝑗𝜖𝐽, 𝑛𝜖𝑁𝑆𝑢\𝑁𝑢
𝐹𝑒𝑒𝑑 , 𝑢𝜖𝑈𝑑𝑐 (6.4) 

 𝐷𝑓𝑣𝑢,𝑛+1,𝑗 = 𝐷𝑓𝑙𝑢,𝑛,𝑗 + 𝐷𝑓𝑣𝑢,𝑛,𝑗      𝑗𝜖𝐽, 𝑛𝜖𝐶𝐷𝑢, 𝑢𝜖𝑈𝑑𝑐 (6.5) 

 𝐷𝑓𝑙𝑢,𝑛−1,𝑗 = 𝐷𝑓𝑙𝑢,𝑛,𝑗 + 𝐷𝑓𝑣𝑢,𝑛,𝑗       𝑗𝜖𝐽, 𝑛𝜖𝑅𝐵𝑢 , , 𝑢𝜖𝑈𝑑𝑐 (6.6) 
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 𝐷𝐿𝑢,𝑛 = 𝐷𝑉𝑢,𝑛𝐷𝑅𝑢,𝑛  𝑛𝜖{𝑁𝑆𝑢 ∪ 𝐶𝐷𝑢 ∪ 𝑅𝐵𝑢}, 𝑢𝜖𝑈𝑑𝑐 (6.7) 

 𝐷𝑓𝑣𝑢,𝑛,𝑗𝐷𝑅𝑢,𝑛𝐷𝐶𝑝𝑢,𝑛 = 𝐷𝑓𝑙𝑢,𝑛,𝑗exp (𝐷𝐿𝑝𝑢,𝑛,𝑗)   𝑗𝜖𝐽, 𝑛𝜖{𝑁𝑆𝑢 ∪ 𝐶𝐷𝑢 ∪ 𝑅𝐵𝑢 }, 𝑢𝜖𝑈𝑑𝑐 (6.8) 

 ∑ 𝐷𝑓𝑙𝑢,𝑛,𝑗𝑗𝜖𝐽 = 𝐷𝐿𝑢,𝑛   𝑛𝜖{𝑁𝑆𝑢 ∪ 𝐶𝐷𝑢 ∪ 𝑅𝐵𝑢}, 𝑢𝜖𝑈𝑑𝑐 (6.9) 

 ∑ 𝐷𝑓𝑣𝑢,𝑛,𝑗𝑗𝜖𝐽 = 𝐷𝑉𝑢,𝑛   𝑛𝜖{𝑁𝑆𝑢 ∪ 𝐶𝐷𝑢 ∪ 𝑅𝐵𝑢}, 𝑢𝜖𝑈𝑑𝑐 (6.10) 

 𝐷𝐻𝑢,𝑛 + 𝐷ℎ𝑙𝑢,𝑛−1 + 𝐷ℎ𝑣𝑢,𝑛+1 = 𝐷ℎ𝑙𝑢,𝑛 + 𝐷ℎ𝑣𝑢,𝑛   𝑗𝜖𝐽, 𝑛𝜖𝑁𝑢
𝐹𝑒𝑒𝑑 , 𝑢𝜖𝑈𝑑𝑐 (6.11) 

 𝐷ℎ𝑙𝑢,𝑛−1 + 𝐷ℎ𝑣𝑢,𝑛+1 = 𝐷ℎ𝑙𝑢,𝑛 + 𝐷ℎ𝑣𝑢,𝑛   𝑗𝜖𝐽, 𝑛𝜖𝑁𝑆𝑢\𝑁𝑢
𝐹𝑒𝑒𝑑 , 𝑢𝜖𝑈𝑑𝑐 (6.12) 

 𝐷ℎ𝑣𝑢,𝑛+1 − 𝑄𝑢
𝑐𝑜𝑛𝑑 = 𝐷ℎ𝑙𝑢,𝑛 + 𝐷ℎ𝑣𝑢,𝑛    𝑗𝜖𝐽, 𝑛𝜖𝐶𝐷𝑢, 𝑢𝜖𝑈𝑑𝑐 (6.13) 

 𝐷ℎ𝑙𝑢,𝑛−1 + 𝑄𝑢
𝑟𝑒𝑏 = 𝐷ℎ𝑙𝑢,𝑛 + 𝐷ℎ𝑣𝑢,𝑛    𝑗𝜖𝐽, 𝑛𝜖𝑅𝐵𝑢 , 𝑢𝜖𝑈𝑑𝑐 (6.14) 

 𝐷ℎ𝑣𝑢,𝑛 = ∑ 𝐷ℎ𝑣𝑐𝑢,𝑛,𝑗𝐷𝑓𝑣𝑢,𝑛,𝑗𝑗𝜖𝐽    𝑛𝜖{𝑁𝑆𝑢 ∪ 𝐶𝐷𝑢 ∪ 𝑅𝐵𝑢 }, 𝑢𝜖𝑈𝑑𝑐 (6.15) 

 𝐷ℎ𝑙𝑢,𝑛 = ∑ 𝐷ℎ𝑙𝑐𝑢,𝑛,𝑗𝐷𝑓𝑙𝑢,𝑛,𝑗𝑗𝜖𝐽      𝑛𝜖{𝑁𝑆𝑢 ∪ 𝐶𝐷𝑢 ∪ 𝑅𝐵𝑢}, 𝑢𝜖𝑈𝑑𝑐 (6.16) 

 𝑃𝑢
𝑡𝑜𝑝 + 1 = 𝑃𝑢

𝑏𝑜𝑡𝑡𝑜𝑚   𝑢𝜖𝑈𝑑𝑐 (6.17) 

 𝐷𝐶𝑝𝑢,𝑛−1 − 2 𝐷𝐶𝑝𝑢,𝑛 + 𝐷𝐶𝑝𝑢,𝑛+1 = 0      𝑗𝜖𝐽, 𝑛𝜖𝑁𝑆𝑢 , 𝑢𝜖𝑈𝑑𝑐 (6.18) 

 𝐷𝐶𝑡𝑢,𝑛 ≤ 𝐷𝐶𝑡𝑢,𝑛−1   𝑛𝜖𝑁𝑆𝑢 , 𝑢𝜖𝑈𝑑𝑐 (6.19) 

 𝐷ℎ𝑣𝑐𝑢,𝑛,𝑗 = 𝐻𝑗
0 + ∑

𝑐𝑗,𝑖
𝐶𝑃

𝑖
(𝐷𝐶𝑡𝑢,𝑛

𝑖 − (𝑇𝑟𝑒𝑓)𝑖)4
𝑖=1    𝑗𝜖𝐽, 𝑛𝜖{𝑁𝑆𝑢 ∪ 𝐶𝐷𝑢 ∪ 𝑅𝐵𝑢 }, 𝑢𝜖𝑈𝑑𝑐 (6.20) 

 𝐷ℎ𝑙𝑐𝑢,𝑛,𝑗 = ∑ 𝑐𝑗,𝑖
𝐻𝐿𝐷𝐶𝑡𝑢,𝑛

𝑖−15
𝑖=1     𝑗𝜖𝐽, 𝑛𝜖{𝑁𝑆𝑢 ∪ 𝐶𝐷𝑢 ∪ 𝑅𝐵𝑢 }, 𝑢𝜖𝑈𝑑𝑐 (6.21) 

𝐷𝐿𝑝𝑢,𝑛,𝑗 = 𝑐𝑗,1
𝐴𝑁 +

𝑐𝑗,2
𝐴𝑁

𝐷𝐶𝑡𝑢,𝑛
+ 𝑐𝑗,3

𝐴𝑁𝐿𝑜𝑔(𝐷𝐶𝑡𝑢,𝑛) + 𝑐𝑗,4
𝐴𝑁𝐷𝐶𝑡𝑢,𝑛

𝑐𝑗,4
𝐴𝑁

 𝑗𝜖𝐽, 𝑛𝜖{𝑁𝑆𝑢 ∪ 𝐶𝐷𝑢 ∪ 𝑅𝐵𝑢}, 𝑢𝜖𝑈𝑑𝑐 (6.22) 

 𝐷𝑓𝑙𝑢,𝑛,𝑗 = 𝑓𝑢,𝑗
𝑏𝑜𝑡𝑡𝑜𝑚   𝑗𝜖𝐽, 𝑛𝜖𝑅𝐵𝑢 , 𝑢𝜖𝑈𝑑𝑐 (6.23) 

 𝐷𝑓𝑣𝑢,𝑛,𝑗 = 𝑓𝑢,𝑗
𝑡𝑜𝑝  𝑗𝜖𝐽, 𝑛𝜖𝐶𝐷𝑢, 𝑢𝜖𝑈𝑑𝑐 (6.24) 

 𝐷ℎ𝑙𝑢,𝑛 = 𝐻𝑢
𝑏𝑜𝑡𝑡𝑜𝑚  𝑛𝜖𝑅𝐵𝑢 , 𝑢𝜖𝑈𝑑𝑐 (6.25) 

 𝐷ℎ𝑣𝑢,𝑛 = 𝐻𝑢
𝑡𝑜𝑝  𝑛𝜖𝐶𝐷𝑢, 𝑢𝜖𝑈𝑑𝑐 (6.26) 

 𝐷𝐶𝑝𝑢,𝑛 = 𝑃𝑢
𝑏𝑜𝑡𝑡𝑜𝑚  𝑛𝜖𝑅𝐵𝑢 , 𝑢𝜖𝑈𝑑𝑐 (6.27) 

 𝐷𝐶𝑝𝑢,𝑛 = 𝑃𝑢
𝑡𝑜𝑝

 𝑛𝜖𝐶𝐷𝑢, 𝑢𝜖𝑈𝑑𝑐 (6.28) 

 𝐷𝐶𝑡𝑢,𝑛 = 𝑇𝑢
𝑡𝑜𝑝 𝑛𝜖𝑅𝐵𝑢 , 𝑢𝜖𝑈𝑑𝑐 (6.29) 

 𝐷𝐶𝑡𝑢,𝑛 = 𝑇𝑢
𝑏𝑜𝑡𝑡𝑜𝑚  𝑛𝜖𝐶𝐷𝑢, 𝑢𝜖𝑈𝑑𝑐 (6.30) 

 𝐶𝑐𝑈𝑡𝑢 = 𝑓𝑐𝑢(𝑇𝑢
𝑡𝑜𝑝, 𝑄𝑢

𝑐𝑜𝑛𝑑 )    𝑛𝜖𝐶𝐷𝑢, 𝑢𝜖𝑈𝑑𝑐 (6.31) 

 𝐶ℎ𝑈𝑡𝑢 = 𝑓ℎ𝑢(𝑇𝑢
𝑏𝑜𝑡𝑡𝑜𝑚 , 𝑄𝑢

𝑟𝑒𝑏)     𝑛𝜖𝑅𝐵𝑢 , 𝑢𝜖𝑈𝑑𝑐 (6.32) 

 𝐶𝐶𝑢 = 𝑔𝐷𝐶(𝐷𝑓𝑙𝑢,𝑛,𝑗 , 𝐷𝑓𝑣𝑢,𝑛,𝑗 , 𝐷𝐶𝑝𝑢,𝑛, 𝐷𝐶𝑡𝑢,𝑛), 𝑢𝜖𝑈𝑑𝑐 (6.33) 
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where 𝐷𝐹𝑢1,𝑢,𝑛,𝑗  are input flowrates from unit 𝑢1  to column 𝑢  in stage 𝑛  of component 𝑗 ; 

𝐷𝐻𝑢1,𝑢,𝑛 is input enthalpy flow from unit 𝑢1 to column 𝑢 in stage 𝑛; 𝐷𝑓𝑣𝑢,𝑛,𝑗  and 𝐷𝑓𝑙𝑢,𝑛,𝑗  are 

the vapor and liquid molar flow of component 𝑗 at stage 𝑛 in column 𝑢, respectively; 𝐷𝑉𝑢,𝑛 and 

𝐷𝐿𝑢,𝑛 are vapor and liquid total molar flow at stage 𝑛 in column 𝑢, respectively; 𝐷𝑅𝑢,𝑛 is the 

liquid-to-vapor ratio at stage 𝑛; 𝐷𝐶𝑡𝑢,𝑛 and 𝐷𝐶𝑝𝑢,𝑛 are the temperature and pressure at stage 

𝑛 , respectively; 𝐷𝐿𝑝𝑢,𝑛,𝑗  is the logarithm of pure component 𝑗  partial pressure at stage 𝑛 ; 

𝐷ℎ𝑙𝑢,𝑛  and 𝐷ℎ𝑣𝑢,𝑛  liquid and vapor enthalpy flow from stage 𝑛 , respectively; 𝐷ℎ𝑣𝑐𝑢,𝑛,𝑗  and 

𝐷ℎ𝑙𝑐𝑢,𝑛,𝑗 are vapor and liquid enthalpy of pure component 𝑗 from stage 𝑛, respectively; 𝑄𝑢
𝑟𝑒𝑏 

and 𝑄𝑢
𝑐𝑜𝑛𝑑 are the reboiler and condenser duty in column 𝑢; 𝐶𝑐𝑈𝑡𝑢  and 𝐶ℎ𝑈𝑡𝑢  are cooling and 

heating utility of unit 𝑢, and 𝐶𝐶𝑢  is the capital cost of of unit 𝑢. 𝑁𝑢
𝐹𝑒𝑒𝑑  is the feed stage in  

column 𝑢; 𝑁𝑆𝑢  are separation stages in distillation column 𝑢; 𝐶𝐷𝑢  and 𝑅𝐵𝑢 are condenser and 

reboiler stage in unit 𝑢, respectively; 𝑈𝑑𝑐 is the set of columns; 𝐽 is the set of components. 

 

4.2.2. Hybrid model for distillation column 

In this work, we generate a hybrid model to describe the distillation column performance. 

Although shortcut models, such as Fenske-Underwood-Gilliland (FUG), are popular choices to 

represent distillation columns in order to simplify the optimization model, they may also provide 

inaccurate estimations, for instance, associated with condenser and reboiler heat duties 

(Dowling and Biegler, 2015). We found relative errors higher than 10 % in these duties when 

shortcut distillation column models are used for multicomponent separation processes. On the 

other hand, surrogate models can be refined to achieve a desirable accuracy (i.e., less than 1 %, 

in this work) as compared to a rigorous model.  

Input variables for the surrogate model are component molar flowrates and specific enthalpy 

for feed stream and column top pressure. Surrogate models are generated with Eq. (1) to 

calculate equipment capital cost, reboiler heat duty, top and bottom temperatures. These 

models are shown in Eqs. (7.1)-(7.4) (i.e., the hybrid model replaces Eqs. (6.1)-(6.33) by (7.1)-

(7.8), (6.17), (6-31)-(6.32) ). We assume sharp separation and fixed pressure drop of 1 bar in the 

columns. Furthermore, Eq. (7.5) defines the stream specific enthalpy (𝐻𝑠𝑢) and Eq. (7.6) is an 

energy balance to determine condenser duty. Eqs. (7.7) and (7.8) are top and bottom stream 

enthalpy calculation, respectively, from output flowrates and the corresponding temperatures. 

 𝐶𝐶𝑢 = ℎ1
𝑠(𝑓𝑢,𝑗

𝑖𝑛 , 𝐻𝑠𝑢 , 𝑃𝑢
𝑡𝑜𝑝

) 𝑢𝜖𝑈𝑑𝑐 (7.1) 

 𝑄𝑢
𝑟𝑒𝑏 = ℎ2

𝑠(𝑓𝑢,𝑗
𝑖𝑛 , 𝐻𝑠𝑢 , 𝑃𝑢

𝑡𝑜𝑝
) 𝑢𝜖𝑈𝑑𝑐 (7.2) 

 𝑇𝑢
𝑡𝑜𝑝 = ℎ3

𝑠(𝑓𝑢,𝑗
𝑖𝑛 , 𝐻𝑠𝑢 , 𝑃𝑢

𝑡𝑜𝑝
) 𝑢𝜖𝑈𝑑𝑐 (7.3) 
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 𝑇𝑢
𝑏𝑜𝑡𝑡𝑜𝑚 = ℎ4

𝑠(𝑓𝑢,𝑗
𝑖𝑛 , 𝐻𝑠𝑢 , 𝑃𝑢

𝑡𝑜𝑝
) 𝑢𝜖𝑈𝑑𝑐 (7.4) 

 𝐻𝑠𝑢 = 103 𝐻𝑢
𝑖𝑛 ∑ 𝑓𝑢,𝑗

𝑖𝑛
𝑗∈𝐽⁄   𝑢𝜖𝑈𝑑𝑐 (7.5) 

 𝐻𝑢
𝑖𝑛 − 𝑄𝑢

𝑐𝑜𝑛𝑑 + 𝑄𝑢
𝑟𝑒𝑏 = 𝐻𝑢

𝑡𝑜𝑝 + 𝐻𝑢
𝑏𝑜𝑡𝑡𝑜𝑚  𝑢𝜖𝑈𝑑𝑐 (7.6) 

 𝐻𝑢
𝑡𝑜𝑝 = ∑ 𝑓𝑢,𝑗

𝑡𝑜𝑝
(𝐻𝑗

0 + ∑
𝑐𝑗,𝑖

𝐶𝑃

𝑖
((𝑇𝑢

𝑡𝑜𝑝
)

𝑖
− (𝑇𝑟𝑒𝑓)𝑖)4

𝑖=1 )𝑗∈𝐽  𝑢𝜖𝑈𝑑𝑐 (7.7) 

 𝐻𝑢
𝑏𝑜𝑡𝑡𝑜𝑚 = ∑ 𝑓𝑢,𝑗

𝑏𝑜𝑡𝑡𝑜𝑚(∑ 𝑐𝑗,𝑖
𝐻𝐿(𝑇𝑢

𝑏𝑜𝑡𝑡𝑜𝑚 )𝑖−15
𝑖=1 )𝑗∈𝐽      𝑢𝜖𝑈𝑑𝑐 (7.8) 

 

4.3 Optimal propylene plant design by solving GDP constrained with rigorous model 

In this case, it is possible to select an initial process configuration that includes all equipment 

units. Therefore, one NLP subproblem (NLP 1) is enough to initialize all nonlinear equations for 

the formulation of the first Master MILP problem. Numerical results and model statistics of NLP 

and MILP subproblems are shown in Table 6 for the rigorous model (Eqs. (6.1) – (6.33)) (in this 

paper also referred to as “true model”). An optimal NPV value of 126 MM$ is found in NLP 2 in 

roughly 176 s of total CPU time. NLP subproblems have around 6300 constraints. 

The optimal scheme is shown in Fig. 13. Both feed steams are selected, ethylene and butenes 

mix. In particular, ethylene dimerization is not selected within the optimal scheme, probably due 

to the high ethylene price. Only compressor C2 is selected for DC1 top stream. Regarding the 

separation scheme, the depropylenizer column (DC2) is selected as the first one, and the 

deethylenizer (DC1) is fed with DC2 top stream. This separation train order may be due to the 

high output temperature of the metathesis reactor (506 K). 

 

Table 6: Logic-based Outer Approximation algorithm iterations for propylene production plant 
with rigorous model (Eqs. (6.1) – (6.33)) 

Iteration/subproblem 
Objective 
(MM$) 

CPU time (s) Constraints 
Continuous 
vars. 

Binary vars. 

NLP 1 (CONOPT) 85.63 6.56 6,547 6,303 - 

Master MILP 1 (Cplex) 170.67 8.23 12,615 14,758 34 

NLP 2 (CONOPT) 125.77 60.00 6,395 6,154 - 

Master MILP 2 (Cplex) 146.68 54.14 20,644 22,861 34 

NLP 3 (CONOPT) 123.34 46.73 6,390 6,148 - 
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Figure 13: Optimal scheme for propylene production via olefin metathesis 
 

4.4 Optimal propylene plant design by solving GDP constrained with hybrid model 

4.4.1. Hybrid model performance with different initial LHS designs 

The optimal design problem for a propylene production plant via olefin metathesis is solved ten 

times under different initial LHS designs. Figure 14 shows the corresponding results and the 

optimal scheme is the same as the one determined with the original model in all cases, which 

highlights the robustness of the proposed solution strategy. The algorithm requires three major 

iterations (solving three GDPs) to satisfy the convergence criteria in four cases and, in the worst 

case (9th), it requires 19 iterations. It is shown that the refinement steps allow finding the optimal 

solution in all cases. Regarding the objective function, the proposed strategy slightly 

overestimates its value by less than 1.1 %. Figure 14 also shows the CPU time breakdown of the 

ten cases. The average total CPU time is 16 minutes and the most time-consuming step is the 

adaptive sampling (74-81 %). For the generation of initial sampling data points (1000 points), 

the CPU time is around 22 minutes (not shown in Fig. 14). Explicit equations obtained with 

ALAMO are provided in the Supplementary Material for the last run in Fig. 14. 
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Figure 14: Propylene synthesis problem constrained with hybrid models based on simple 
algebraic regression functions and GRBF (1000 initial sampling points with LHS) 
 

To assess the impact of the number of data for initial sampling, the problem is solved using 2000 

initial points and results are shown in Fig. 15. In this case, three major iterations were required 

five times, while in the worst case, 10 iterations were necessary. Regarding the objective 

function value, similar values to those shown in Fig. 14 are obtained. They slightly overestimate 

the true optimum (in around 1 % in the worst case). The total CPU time distribution is also shown 

in Fig. 15, with a mean of 11 minutes, with a 27 % reduction with respect to the case of using 

1,000 initial data points. However, the CPU time associated with the initial data generation 

increases 63% (not shown in Fig. 15). 
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Figure 15: Propylene synthesis problem solved ten times using surrogate model based on both, 
simple algebraic regression functions and GRBF, considering 2000 initial sampling points 
 

4.4.2 Comparison of optimal design obtained with rigorous and hybrid models 

In this section, we report the detailed GDP iterations for the optimal design problem for the 

propylene production plant, constrained with a hybrid model, as well as a comparison of main 

variable values with those obtained in the GDP subject to the rigorous model. Table 7 shows 

iterations for the last GDP problem in Fig. 14 (10th case), which from the ten different LHS designs 

for initial sampling to generate surrogate models, shows the largest difference in the objective 

function with the rigorous model in the optimal value (1.1%). The optimal scheme corresponds, 

as stated before, to the same optimal scheme provided by the GDP subject to the rigorous 

model. An important reduction in the number of equations is obtained with the use of surrogate 

models (1,522 vs. 6,547 for the first NLP, 1,379 vs. 6,395 for the second NLP; 2,568 vs. 12,615 

for the first MILP, and 3,472 vs. 20,644 for the second Master MILP), and consequently, total 

CPU time for the GDP solution is 9 s (the solution with the rigorous model required 176 s). These 

results highlight that one important feature of the proposed procedure is to reduce the GDP 

problem complexity, while keeping its accuracy. 

Table 7: Logic-based Outer Approximation algorithm iterations for optimal design of propylene 
plant with hybrid model (last GDP in case 10, Fig.14) 

Iteration/subproblem 
Objective 

(MM$) 
CPU time (s) Constraints 

Continuous 
vars. 

Binary vars. 

NLP 1 (CONOPT) 87.36 1.68 1,522 1,423 - 

Master MILP 1 (Cplex) 172.00 0.27 2,568 2,740 34 

NLP 2 (CONOPT) 127.15 3.32 1,379 1,282 - 

Master MILP 2 (Cplex) 147.82 0.42 3,472 3,703 34 

NLP 3 (CONOPT) 126.01 3.24 1,379 1,282 - 

 

Furthermore, we compare optimal values obtained for surrogate models input and output 

variables in both GDPs, the one constrained with the rigorous model and the one with the hybrid 

model. Table 8 shows a comparison of main variables for the deethylenizer column (DC1), in 

which the largest relative difference is 6.85% in ethylene component flowrate. As the ethylene 

feed flowrate is the same in both models, this difference is associated with a higher ethylene 

conversion estimated in the hybrid model (24 %), with respect to the rigorous model (23 %). A 

0.07 % relative difference is obtained in the propylene flowrate. As DC1 is located after DC2, 

flowrates of C4
+ components ( 𝑓𝐷𝐶1,𝑡𝑟𝑎𝑛𝑠‐2‐𝐶4𝐻8

𝑖𝑛 , 𝑓𝐷𝐶1,𝑐𝑖𝑠‐2‐𝐶4𝐻8

𝑖𝑛 , 𝑓𝐷𝐶1,1‐𝐶4𝐻8

𝑖𝑛 , 𝑓𝐷𝐶1,𝐶4𝐻10

𝑖𝑛 , 𝑓𝐷𝐶1,𝐶5𝐻10

𝑖𝑛 , 

𝑓𝐷𝐶1,𝐶6𝐻12
𝑖𝑛 ) are negligible. Regarding DC1 surrogate model output variables in the optimal design, 
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relative differences of capital cost and reboiler duty are less than 5 % and can be associated with 

the lower ethylene flowrate fed to DC1 in the hybrid model. DC1 top and bottom temperatures 

present a good agreement (relative errors less than 0.1 %). Comparison of results for 

depropylenizer (DC2) and debutanizer (DC3) are provided in the Supplementary Material. 

Table 8: Comparison of GDP optimal variable values constrained with rigorous and hybrid 
models for deethylenizer (DC1), respectively 

SM input variables Original model Hybrid Relative difference 

𝑓𝐷𝐶1,𝐶2𝐻4
𝑖𝑛 (𝑚𝑜𝑙/𝑠) 677.44 631.05 6.85% 

𝑓𝐷𝐶1,𝐶3𝐻6
𝑖𝑛 (𝑚𝑜𝑙/𝑠) 417.04 416.74 0.07% 

𝐻𝑠𝐷𝐶1(𝑘𝐽/𝑚𝑜𝑙) 40.29 39.81 1.19% 

𝑃𝐷𝐶1
𝑡𝑜𝑝

(𝑏𝑎𝑟) 24.00 24.00 0.00% 

SM output variables    

𝐶𝐶𝐷𝐶1($𝑀𝑀) 4.92 4.82 2.17% 

𝑄𝐷𝐶1
𝑟𝑒𝑏 (𝑀𝑊) 4.15 3.95 4.81% 

𝑇𝐷𝐶1
𝑡𝑜𝑝(𝐾) 250.00 250.16 0.06% 

𝑇𝐷𝐶1
𝑏𝑜𝑡𝑡𝑜𝑚 (𝐾) 332.39 332.25 0.04% 

 

4.5 Sensitivity analysis 

The effect of ethylene price on the net present value (NPV) is assessed through a sensitivity 

analysis, as shown in Fig. 16. NPV decreases as ethylene price increases. There is an optimal 

scheme change from technology A to B (shown in black letters for the true model in Fig. 16). 

Process B corresponds to the one shown in Fig. 13. Process A uses only ethylene as raw material 

and includes ethylene dimerization (RDIM), preheater (HXV1) and no butene input stream, so 

no C4 hydrogenation is selected (C4H). The configuration change from A to B is associated with 

increasing ethylene cost (higher than 1,000 $/t). It must be noted that the GDP subject to the 

rigorous model determines alternative configurations that seem to be suboptimal solutions, 

maybe due to the high nonlinearities in the process model. Process A1 includes an additional 

compressor C3 to DC2 top stream. Process A2 additionally includes C3 and heat exchanger 

HXW3. On the other hand, Process B1 selects a deethylenizer first configuration, which is the 

only difference with Process B. Figure 16 also shows the number of infeasible NLP subproblems 

in the L-bOA algorithm for each price scenario. The rigorous model for propylene production via 

olefin metathesis is large and highly nonlinear, and NLP subproblems do not converge in many 

cases. In particular, in the first (600 $/t) and fourth (900 $/t) price scenarios, there are eight and 

nine infeasible NLP subproblems, respectively. This analysis is also performed by solving the 

optimal design problem with the proposed hybrid model generation approach. In this case, we 
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build a hybrid model, and rather than solving a single GDP problem for a given price scenario as 

shown in the algorithm from Fig. 1, we solve GDP problems for the nine price scenarios, 

constrained with the same hybrid model. In this way, the NLP subproblem solutions from each 

GDP price scenario are exploited simultaneously in the algorithm to refine surrogate models and 

build a new hybrid model for the next major iteration of the proposed algorithm. Regarding NLP 

subproblem infeasibility, the GDP constrained with the hybrid model did not present any, 

suggesting that this approach is numerically more robust. Furthermore, the hybrid model 

approach is computationally more efficient than the rigorous model for this analysis (40.7 min 

to obtain the optimal solution for all price scenarios, against 60.4 minutes with the rigorous 

model). Finally, it must be noted that NPV for the optimal design obtained using the rigorous 

and hybrid models overlap in Fig. 16. 

 

Figure 16: Net present value (NPV) sensitivity to ethylene price for optimal design obtained 
solving GDP constrained with rigorous and hybrid models. A: Ethylene is the single feedstock. B: 
Ethylene and butane are feedstock.  

5 CONCLUSIONS 

In this work, we have proposed a novel iterative procedure for hybrid model generation within 

a superstructure optimization framework. To build surrogate models, we apply the Latin 

Hypercube Sampling technique for initial data generation, followed by an initial fit model based 

on low-complexity algebraic regression functions. For further refinement, Gaussian Radial Basis 

Functions (GRBFs) are added where the performance of the algebraic regression model is not 

accurate enough through an adaptive sampling technique (exploration step).  

We formulate the optimal design problem for a given superstructure as a Generalized 

Disjunctive Programming (GDP) problem, and solve the optimization problem with a hybrid 

model with a custom implementation of the L-bOA algorithm in GAMS. We perform an iterative 
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procedure to continue refining the surrogate model with GRBF (exploitation step) in the domain 

regions by using the information of the L-bOA solution until convergence criteria are fulfilled. 

Two case studies were considered with the proposed methodology: a methanol synthesis 

process and a propylene via olefin metathesis plant design. In each case study, a GDP 

constrained with a rigorous model is first solved, and then followed by the proposed algorithm 

for the generation of hybrid models where the GDP constrained with these hybrid models is 

solved. 

In all cases, the same optimal process scheme is determined with both approaches, with relative 

differences in the objective function lower than 1%. A sensitivity analysis is performed for the 

net present value of the propylene production plant with respect to raw material price, which 

supports the conclusion that the proposed methodology provides a more robust approach to 

address the optimal design of highly nonlinear, large-scale processes. In this analysis, as several 

scenarios were run, the proposed approach has proven to be computationally more efficient 

than the use of a rigorous model (with 33% lower CPU time requirement). 

6 NOMENCLATURE 

6.1 Functions 

ℎ𝑠: Conditional surrogate model function included within a disjunctive term 
𝑔𝑠 : Permanent surrogate model function ℎ𝑖

𝑎 : Simple algebraic function 𝑖  that belongs to a 
surrogate model function 
ℎ𝑟: Original model function    
𝑔𝑟: Original model constraints 

6.2 Variables 

𝐶𝐶𝑢:  column capital cost 

𝑄𝑢
𝑟𝑒𝑏: reboiler duty  

𝑇𝑡𝑜𝑝: column top temperature 

𝑇𝑏𝑜𝑡𝑡𝑜𝑚: column bottom temperature𝑣: Surrogate input variables 
𝑣𝑖: Surrogate input variables  

𝐹𝑇𝑢
𝑖𝑛: Input total flowrate of unit 𝑢 

𝐹𝑇𝑢
𝑜𝑢𝑡: Output total flowrate of unit 𝑢 

𝑓𝑢,j
𝑖𝑛: Input molar flow of component 𝑗 of unit 𝑢 

𝑓𝑢,j
𝑜𝑢𝑡: Output molar flow of component 𝑗 of unit 𝑢 

𝑇𝑢
𝑖𝑛: Unit 𝑢 input stream temperature   

𝑇𝑢
𝑜𝑢𝑡: Unit 𝑢 output stream temperature 

𝑃𝑢
𝑜𝑢𝑡: Unit 𝑢 output stream pressure 

𝜒𝑢: Unit 𝑢 conversion 

𝜒𝑢
𝑒𝑞 : Unit 𝑢 equilibrium conversion 

𝑟𝑢: reactor 𝑢 hydrogen consumption  
𝐷𝐹𝑢,𝑛,𝑗: Input flowrates to column 𝑢 in stage 𝑛 of component 𝑗 

𝐷𝐻𝑢,𝑛: Input enthalpy flow to column 𝑢 in stage 𝑛  

𝐷𝑓𝑣𝑢,𝑛,𝑗: vapor molar flow of component 𝑗 at stage 𝑛 in column 𝑢  

𝐷𝑓𝑙𝑢,𝑛,𝑗: liquid molar flow of component 𝑗 at stage 𝑛 in column 𝑢  
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𝐷𝑉𝑢,𝑛: vapor total molar flow at stage 𝑛 in column 𝑢 
𝐷𝐿𝑢,𝑛: liquid total molar flow at stage 𝑛 in column 𝑢 
𝐷𝑅𝑢,𝑛: liquid-to-vapor ratio at stage 𝑛 

𝐷𝐶𝑡𝑢,𝑛: temperature at stage 𝑛 
𝐷𝐶𝑝𝑢,𝑛: pressure at stage 𝑛 
𝐷𝐿𝑝𝑢,𝑛,𝑗: logarithm of pure component 𝑗 partial pressure at stage 𝑛;  

𝐷ℎ𝑙𝑢,𝑛: liquid enthalpy flow from stage 𝑛 
𝐷ℎ𝑣𝑢,𝑛: vapor enthalpy flow from stage 𝑛 
𝐷ℎ𝑣𝑐𝑢,𝑛,𝑗: vapor enthalpy of pure component 𝑗 from stage 𝑛 

𝐷ℎ𝑙𝑐𝑢,𝑛,𝑗: liquid enthalpy of pure component 𝑗 from stage 𝑛 

𝑄𝑢
𝑟𝑒𝑏: reboiler duty in column 𝑢 

𝑄𝑢
𝑐𝑜𝑛𝑑: condenser duty in column 𝑢 

𝐶𝑐𝑈𝑡𝑢: Unit 𝑢 cooling utility   
𝐶ℎ𝑈𝑡𝑢: Unit 𝑢 heating utility   
𝐶𝐶𝑢: Unit 𝑢 capital cost  
𝐻𝑠𝑢: specific enthalpy of column 𝑢 input stream 

𝐻𝑢
𝑖𝑛: total enthalpy of column 𝑢 input stream 

𝐻𝑢
𝑡𝑜𝑝: enthalpy of column 𝑢 top stream 

𝐻𝑢
𝑏𝑜𝑡𝑡𝑜𝑚:  enthalpy of column 𝑢 bottom stream 

𝑓𝑢,𝑗
𝑏𝑜𝑡𝑡𝑜𝑚: bottom flowrate of component 𝑗 in column 𝑢 

𝑇𝑢
𝑏𝑜𝑡𝑡𝑜𝑚: bottom temperature of column 𝑢 

𝑇𝑢
𝑡𝑜𝑝

: top temperature of column 𝑢 

𝑃𝑢
𝑡𝑜𝑝: top pressure of column 𝑢 

𝑃𝑢
𝑏𝑜𝑡𝑡𝑜𝑚: bottom pressure of column 𝑢 

𝑓𝑢,𝑗
𝑡𝑜𝑝: top flowrate of component 𝑗 in column 𝑢 

 

6.3 Boolean variables 

𝑌𝑗𝑘: Boolean variable that it is true if the k-th term of the j-th disjunction is selected and false 

otherwise 

6.4 Parameters 

𝑐𝑖: surrogate model coefficient 𝑖 
𝑤𝑖: surrogate model coefficient 𝑖 
𝑣𝑠𝑖: interpolation point 𝑖 
𝑣𝑖

∗: 𝑖-th input variable of the NLP subproblem solution from hybrid GDP 
𝑣𝐿 , 𝑣𝑈: lower and upper bounds for surrogate model input variables 
𝑁𝑖𝑛𝑝𝑢𝑡  is the number of surrogate model input variables 

∆𝐻𝑟𝑥𝑛: reaction heat 

𝐻𝑗
0: component enthalpy evaluated at the reference temperature 

𝑇𝑟𝑒𝑓 : reference temperature 

 𝑐𝑗,𝑖
𝐶𝑃: polynomial coefficient 𝑖 to calculate specific heat and vapor enthalpy for component 𝑗 

𝑐𝑗,𝑖
𝐻𝐿: polynomial coefficient 𝑖 to calculate liquid enthalpy for component 𝑗 

𝑐𝑗,𝑖
𝐴𝑁 : coefficient 𝑖 of extended Antoine equation for component 𝑗 

Greek letters 
𝛾: form factor of radial basis functions 
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6.5 Sets 

𝑈: set of units 
𝐶𝐷𝑢: condenser stage in unit 𝑢 
𝑅𝐵𝑢: reboiler stage in unit 𝑢 
𝑁𝑢

𝐹𝑒𝑒𝑑 : Feed stage in column 𝑢 
𝑁𝑆𝑢: separation stages in distillation column 𝑢 
𝑈𝑉𝑢: subset of units to which vapor stream enters from unit 𝑢 
𝑈𝐿𝑢: subset of units to which liquid stream enters from unit 𝑢  
𝑈𝑑𝑐: set of columns 
𝐽: set of components 

6.6 Indices 

𝑗: index of components 
𝑢: index of units 
𝑛: index of column stages 
𝑡: index of tasks 
𝑟: index of reactions 
𝑝: index of phases 
𝑚: index of physical change 
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