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Abstract 

In this work, we propose an iterative framework to solve superstructure design problems, 

which includes surrogate models, with a custom implementation of the Logic-based 

Outer- Approximation algorithm (L-bOA). We build surrogate models (SM) using the 

machine learning software ALAMO exploiting its capability for selecting low-

complexity basis functions to accurately fit sample data. To improve and validate the SM, 

we apply the Error Maximization Sampling (EMS) strategy in the exploration step. In this 

step, we formulate mathematical problems that are solved through Derivative Free 

Optimization (DFO) techniques. The following step applies the L-bOA algorithm to solve 

the GDP synthesis problem. As several NLP subproblems are solved to determine the 

optimal solution in L-bOA in the exploitation step, the corresponding optimal points are 

added to the SM training set. In case that an NLP subproblem turns out to be infeasible, 

we solve the Euclidean Distance Minimization (EDM) problem to find the closest feasible 

point to the former infeasible point. In this way, the entire information from NLP 

subproblems is exploited. As original model output variables are required, we solve EDM 

problems using DFO strategies. The proposed methodology is applied to a methanol 

synthesis problem, which shows robustness and efficiency to determine the correct 

optimal scheme and errors less than 0.2% in operating variables. 

Keywords: superstructure optimization; surrogate models; disjunctive programming; 

derivative free optimization 

1. Introduction 

Advances in computers and mathematical modeling have enabled the detailed 

representation of process systems, and thus, the development of fundamental tools for 

decision making in process design. This scenario also presents new challenges. In 

mathematical programing, the standard method to formulate a problem is to declare all 

process unit equations to perform the optimization. However, when formulating highly 
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accurate models, some constraints or even the objective analytic function may not be 

available if they are evaluated through simulators or special programs. These functions 

that are not analytically available, are referred to as black-box models. When a 

mathematical problem includes both, explicit and black-box equations, it is referred to as 

hybrid or grey box model. A common approach to address this kind of problems includes 

building surrogate models (SMs) to replace the black-box models. SMs are simplified 

functions that can estimate output data from a set of input variables, requiring small CPU 

times. 

When working with surrogate models, there is a trade-off between exploration and 

exploitation steps. Exploration strategies improve the global performance of the SM in 

the entire feasible region to reduce the probability of excluding the global optimum. On 

the other hand, exploitation-based methods refine the SM in regions where optima could 

be potentially found.  

The interest of the Process Systems Engineering (PSE) community in developing efficient 

methods to address the formulation and solution of black/grey box problems has increased 

significantly in recent years (Bhosekar and Ierapetritou, 2018). Kim and Boukouvala 

(2020) developed a surrogate-based optimization procedure to solve mixed-integer 

nonlinear problems focused on avoiding the binary variable relaxation. Pedrozo et al. 

(2021a) proposed an iterative framework to address hybrid problems, replacing highly 

nonlinear equations for SM in order to reduce problem complexity. Thus, it was assumed 

that the analytic function was available for the exploration and exploitation steps.  

In this work, we include Derivative Free Optimization (DFO) techniques (Zhao et al., 

2021) in the exploration and exploitation steps to avoid using the analytic functions. 

Numerical results show that the strategy is efficient and accurate to address the synthesis 

problems and the generation and refinement of SMs. 

2. Methodology 

The proposed optimization framework is outlined in Fig. 1. Initially, lower and upper 

bounds are set for the input variables of each SM. The Latin Hypercube Sampling (LHS) 

technique is employed in MATLAB to generate sampling data. Output variables 

corresponding to each sampling point are obtained by performing simulations of the true 

or original model. When working with hybrid problems, a filtering step is required to 

discard infeasible sample points. Then, an initial SM is built in the machine learning 

software ALAMO (Wilson and Sahinidis, 2017) considering simple algebraic regression 

functions (SARFs).  

Since the accuracy of this initial SM may not be good enough in all sampling points, we 

evaluate the corresponding relative errors, and we add Gaussians Radial Basis Functions 

(GRBFs) to represent those points whose errors are greater than a tolerance. In this way, 

we build the first SM based on both, SARFs and GRBFs, and then, we carry out the first 

exploration step. The Error Maximization Sampling (EMS) (Wilson and Sahinidis, 2017) 

strategy is applied in the exploration step. This method consists of maximizing the relative 

error of the SM in the feasible region. In this work, this optimization is performed through 

the DFO solver (Powell, 2009), which makes use of black-box simulation models. As a 

result, low-accuracy points of the domain are identified, and then interpolated by means 

of GRBF to improve the SM performance in that region, until the relative error is less 

than a tolerance or a maximum number of EMS problems is solved. 

In the following step, we solve the hybrid model-based Generalized Disjunctive 

Programming (GDP) problem in GAMS. A custom implementation of the Logic-based 

Outer-Approximation (L-bOA) algorithm is employed (Pedrozo et al., 2021b, Pedrozo et 
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al., 2020). We exploit the information of the L-bOA subproblems to refine the SM in the 

exploitation step. The feasible NLP subproblem solutions are compared to the rigorous 

black-box simulations to assess the SMs accuracy in that region. As some NLP 

subproblems or black-box simulations might be infeasible due to the performance of the 

SMs, we formulate an optimization problem to determine the feasible sampling point that 

minimizes the Euclidean distance to the NLP subproblem solution, and this point is then 

added to the training set. This optimization problem is also solved using DFO solvers 

(Powell, 2009). 

The iterative algorithm, which is shown in Fig. 1, stops when the specified convergence 

criterion is met. Otherwise, the exploration step is carried out again (the number of major 

iterations of the algorithm is equal to the times the GDP problem is solved). 

 

 

Figure 1: Iterative optimization framework  

2.1. Software resources 

The solution procedure is automated using MATLAB as a core for data transferring (see 

Fig. 2). In this way, ALAMO is run from MATLAB to generate the corresponding initial 

SMs. These functions and their derivatives are transferred to GAMS to formulate the 

hybrid GDP problem for process synthesis, and to solve it with the custom 

implementation of the L-bOA algorithm. To improve the SMs, we solve DFO problems 

for black-box models in the exploration and exploitation steps. In these cases, we employ 

the algorithms developed by Powell (2009), through the package provided by Ragonneau 

and Zhang (2021). Since these algorithms do not explicitly handle constraints, the Bound 

Optimization BY Quadratic Approximation (BOBYQA) algorithm is used. 
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Figure 2: Software integration 

3. Case Study 

The methanol synthesis problem (Chen and Grossmann, 2019) is used as case study to 

test the proposed iterative algorithm. Figure 3 shows the process superstructure, where 

discrete decisions are represented using dashed lines for both, equipment and streams. 

The objective function is profit maximization. 

In order to illustrate the algorithm, reactor models (units 9 and 10) are replaced by 

surrogate models to calculate conversion in each reactor. In this way, a hybrid 

formulation, which includes first principles and two SMs, is obtained.  

 

Figure 3: Superstructure for methanol synthesis (Chen and Grossmann, 2019) 

4. Results 

In order to show the robustness of the method and to consider the random component of 

the sampling technique, the problem is solved using ten different initial sampling data 

sets. In addition, we test 100 and 1,000 initial sampling points to assess the impact of the 

initial SM in the algorithm performance. 

We observe that the iterative algorithm of Fig. 1 determines the optimal solution of the 

problem in each run (1,840 M$/y), and the error in the objective value is less than 0.2 % 

even in the worst case. Moreover, we observe that for the runs with 100 initial sampling 

points, the algorithm generally requires two major iterations (in 7 runs of 10, Fig.4) to 

satisfy the convergence criterion. Thus, these SMs are refined only one time in the 

neighbourhood of the optimal solution during the exploitation step to make them accurate 

enough. However, in the worst case, four major iterations are required to meet the 

convergence criterion. On the other hand, considering large initial sampling data (1,000 

points), the proposed method generally converges in one iteration (in 5 runs of 10, Fig.4). 
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Accordingly, the initial SM after exploration step has enough accuracy, so no data points 

are included in the exploitation step. In the worst cases, four iterations are also required. 

This analysis indicates that we cannot guarantee the quality of the initial SM. Even 

working with a large initial sampling data set, SM refinement during the exploration and 

exploitation steps can be required to achieve the desired accuracy of the generated SMs. 

Regarding the algorithm performance, Fig. 5 shows the corresponding CPU time 

distributions. On average, 11.9 and 2.5 minutes are the total CPU time for 100 and 1,000 

initial sampling points, respectively. The exploration step is the most time consuming, 

followed by the exploitation step, while CPU times associated with the initial fit and the 

GDP problem solution are negligible. These results are related to the use of DFO 

strategies in the refinement steps. Solving either an optimization problem for the 

exploration or exploitation step with DFO methods, requires 40 s approximately. Thus, 

the quality of initial SMs strongly influences the method’s performance. When the 

algorithm is run with a large initial sampling data set (1000 points), the SMs require less 

refinement, and consequently, fewer problems must be solved using DFO strategies, as 

compared to the case of using 100 initial sampling points. These results are in agreement 

with those from Wilson and Sahinidis (2017). 

When comparing this strategy with the case of using NLP solvers (CONOPT) for the 

exploration and exploitation steps (Pedrozo et al. 2021a), there is a significant increase in 

CPU time, i.e., 15 s vs. 2.5 min for 1,000 initial sampling points on average. 

 

 

Figure 4: Major iterations of the iterative framework from different initial LHS sets 

 

Figure 5: CPU time distribution. a) 100 initial sampling points. b) 1000 initial data sampling points. 

CPU times corresponding to initial fit and GDP problem solution are less than six seconds, so they 

are not easily distinguishable in the figure 
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5. Conclusions  

In this work, we propose an algorithm for SMs generation and refinement using DFO 

strategies in the exploration and exploitation steps for the synthesis of process flowsheets 

using Generalized Disjunctive Programming with surrogate models. The algorithm has 

been tested with a methanol synthesis case study. The optimization tool has been proven 

to be robust and effective in generating solutions with relative errors lower than 0.2 % for 

the objective function in the worst cases, and obtaining the same optimal flowsheet as the 

rigorous model. The CPU time can be reduced by using a larger initial sampling point set. 

This strategy paves the way to efficiently refine SMs by the use of black-box models and 

DFO solvers. 
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