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Abstract 
The advancement of domain reduction techniques has significantly enhanced the 
performance of solvers in mathematical programming. This paper delves into the impact 
of integrating convexification and domain reduction techniques within the Outer- 
Approximation method. We propose a refined convexification-based Outer-
Approximation method alongside a Branch-and-Bound method for both convex and 
nonconvex Mixed-Integer Nonlinear Programming problems. These methods have been 
developed and incorporated into the open-source Mixed-Integer Nonlinear 
Decomposition Toolbox for Pyomo-MindtPy. Comprehensive benchmark tests were 
conducted, validating the effectiveness and reliability of our proposed algorithms. These 
tests highlight the improvements achieved by incorporating convexification and domain 
reduction techniques into the Outer-Approximation and Branch-and-Bound methods. 
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1. Introduction 
Mixed-integer nonlinear programming (MINLP) has broad applications in process 
systems engineering (PSE), including planning, scheduling, and control. It offers a 
powerful modeling framework that optimizes discrete and continuous variables involved 
in linear and nonlinear constraints. However, the combinatorial complexity, nonlinearity, 
and even nonconvexity lead to substantial challenges in optimizing such problems.  
Generally, MINLP can be classified as convex and nonconvex, depending on the 
convexity of its continuous relaxation. The algorithms for MINLP are primarily 
categorized into Branch-and-Bound (B&B) methods and decomposition methods 
(Kronqvist et al., 2019). The main idea of MINLP decomposition algorithms is to 
generate linear inequalities to approximate nonlinear constraints and iteratively solve the 
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relaxed Mixed-Integer Linear Programming (MILP) main problem and Nonlinear 
Programming (NLP) subproblems. Decomposition methods for convex MINLP problems 
include the Outer-Approximation (OA) method (Duran and Grossmann, 1986). This 
method involves solving an MILP defined by linear inequalities that relax the nonlinear 
constraints, known as OA cuts, and an NLP with the main problem's integer solution 
fixed. The first-order Taylor approximation of the nonlinear constraints defines these OA 
cuts. To reduce the MILP problem solution time, the Linear Programming and Nonlinear 
Programming-based B&B (LP/NLP-B&B) method (Quesada and Grossmann, 1992) 
maintains the same B&B for the MILP, solves NLPs at the tree's integer nodes, and uses 
OA cuts to improve the searching bounds. Consequently, these decomposition methods 
are often called multi-tree and single-tree, based on their management of the MILP 
problem. A significant limitation of these methods is their initialization, usually given by 
relaxing the nonlinearity of the problem and relying on the cuts generated at each iteration 
to provide a better linear approximation as iterations progress. 
While the OA method is effective for convex MINLPs, its limitations become apparent 
for nonconvex MINLP, where OA cuts do not guarantee validity in relaxations of 
nonlinear functions, precluding global optimality guarantees. Other relaxation techniques 
have been developed for nonconvex MINLPs addressing this challenge. Among these, 
the Auxiliary Variable Method (AVM) and McCormick relaxations are successful 
strategies for generating relaxations of nonconvex factorable functions (Tawarmalani and 
Sahinidis, 2013). AVM achieves this by introducing an auxiliary variable and a 
corresponding equality constraint for each intermediate nonlinear factor in a function, 
leading to computational efficiency by decomposing the function into simpler, lower-
dimensional components. However, this method entails incorporating many auxiliary 
variables and constraints. In contrast, McCormick relaxations maintain the dimension of 
the original function and use a recursive approach to produce the required convex and 
concave relaxations effectively (Chachuat, 2013). 
In addition to advancements in reformulations and optimization algorithms, the 
performance of optimization solvers has significantly improved through domain 
reduction techniques. These techniques encompass bound tightening, eliminating 
redundant variables and constraints, and convexification (Zhang et al., 2020). The bound 
tightening techniques include Feasibility-based Bound Tightening (FBBT), Optimality-
based Bound Tightening (OBBT), and Marginals-based Bound Tightening (Zhang et al., 
2020). Domain reduction methods, including convexification cuts and bound tightening 
techniques, have been successful for spatial B&B methods. These tighter relaxations 
provide stronger dual bounds, accelerating the B&B process by facilitating node pruning 
and efficiently identifying optimal solutions. However, decomposition-based MINLP 
solvers have not yet fully harnessed the potential of domain reduction techniques. 
This work investigates the efficacy of domain reduction techniques within OA methods, 
applicable to both convex and nonconvex MINLP problems. It is understood that domain 
reduction techniques can be used during the presolve stage and at each node within the 
B&B tree, a strategy known as the branch-and-reduce method. Similarly, in the OA 
method, these techniques can be employed both in the presolve phase and during solving 
integer-fixed NLP subproblems. However, this work focuses on the impact of domain 
reduction methods at the method's initialization stage. 

2. Solution algorithm 
The general form of a MINLP problem is as follows. 
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min
!,#
				𝑓(𝑥, 𝑦)

𝑠. 𝑡.				𝑔$(𝑥, 𝑦) ≤ 0			, ∀𝑗 = 1,… , 𝑙

𝑥 ∈ 8𝑥, 𝑥9 ⊆ ℝ%, 𝑦 ∈ <𝑦,… , 𝑦= ⊆ ℤ&,
(𝑀𝐼𝑁𝐿𝑃) 

Where 𝑥 and 𝑦	represent continuous variables and discrete variables, respectively. Upper 
and lower variable bounds are determined by over- and underbars, respectively. Both the 
objective 𝑓(𝑥, 𝑦) and constraints 𝑔$(𝑥, 𝑦) are potentially nonlinear functions. 
The OA solution method for MINLP involves an iterative two-step procedure. The first 
step in iteration 𝑘 determines the integer variables' values 𝑦'() by solving problem (OA-
MILP), defined by the OA cuts. Its optimal objective function value, encoded in variable 
𝜇, provides a dual lower bound (LB) to the original MINLP problem's optimal objective. 

min
!,#,*

				𝜇

𝑠. 𝑡.				𝑓(𝑥+ , 𝑦+) + ∇𝑓(𝑥+ , 𝑦+), H𝑥 − 𝑥
+

𝑦 − 𝑦+J ≤ 𝜇						∀𝑖 = 1,… , 𝑘

𝑔$(𝑥+ , 𝑦+) + ∇𝑔$(𝑥+ , 𝑦+), H
𝑥 − 𝑥+
𝑦 − 𝑦+J ≤ 0			∀𝑖 = 1,… , 𝑘, ∀𝑗 ∈ 𝐼

𝑥 ∈ 8𝑥, 𝑥9 ⊆ ℝ%, 𝑦 ∈ <𝑦,… , 𝑦= ⊆ ℤ&, 𝜇 ∈ ℝ).

(𝑂𝐴 −𝑀𝐼𝐿𝑃) 

The second step is determining the continuous variables' values 𝑥'() by solving problem 
(NLP-I) whose optimal solution yields a primal upper bound (UB) to problem (MINLP). 

min
!,#
				𝑓(𝑥, 𝑦'())

𝑠. 𝑡.				𝑔$(𝑥, 𝑦'()) ≤ 0			, ∀𝑗 = 1,… , 𝑙
𝑥 ∈ 8𝑥, 𝑥9 ⊆ ℝ%.

(𝑁𝐿𝑃 − 𝐼) 

If problem (NLP-I) is infeasible, the following feasibility subproblem is solved to 
minimize a norm 𝑝 of the constraint violations 𝑠, as a result updating 𝑥'(). 

min
!,#,-

				‖𝑠‖.

𝑠. 𝑡.				𝑔$(𝑥, 𝑦'()) ≤ 𝑠$ 			∀𝑗 = 1,… , 𝑙
𝑥 ∈ 8𝑥, 𝑥9 ⊆ ℝ%, 𝑠 ∈ [0,∞) ⊆ ℝ(

/ .
(𝑁𝐿𝑃 − 𝑓) 

As shown in Figure 1.a, the OA method begins by solving the relaxed NLP problem and 
then iteratively solves the (OA-MILP), (NLP-I), and (NLP-f) problems. The key to this 
process is the progressive accumulation of OA cuts, which incrementally narrows the gap 
between the LB and the UB. The iterations continue until LB and UB converge, 
culminating in the OA method reaching the optimal solution. This method is guaranteed 
to find the global optimal solution of convex MINLPs (Duran and Grossmann, 1986). 
Maintaining a single MILP tree for the LP/NLP-B&B method can be implemented using 
the LazyConstraint callback function through callback functions in current MILP solvers, 
as shown in Figure 1.b. This method initializes by solving the relaxed NLP problem as 
well. Then, a B&B method is used to solve problem (OA-MILP). Whenever an incumbent 
solution is found in the search tree, (NLP-I) is solved, and OA cuts are added as lazy 
constraints to the MILP tree. This B&B process is guaranteed to terminate at the global 
optimal solution of convex MINLP problems (Quesada and Grossmann, 1992). 
The OA and LP/NLP-B&B methods generate tight cuts at the boundary of the nonlinear 
feasible region defined by the original problem constraints by incurring the cost of solving 
NLP subproblems. If the (NLP-I) subproblem is infeasible, (NLP-f) is solved to find the 
point closest to the feasible region to generate the tightest possible cuts. Since the linear 
inequality constraints are accumulated iteratively, the main problem in the early iterations 
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is that a poor approximation of the original MINLP model is obtained. Consequently, the 
integer combination provided by the main problem tends to yield an infeasible (NLP-I) 
subproblem, and no primal bound can be obtained. 
 

(a) (b)  
Figure 1. (a) Outer-Approximation method and (b) LP/NLP-based B&B method 

 
In this work, we apply the domain reduction methods to the initialization stage of the OA 
method to resolve this issue. Eq. (1) shows the tightened bounds of the discrete and 
continuous variables, 8𝑥0, 𝑥′9  and <𝑦′, … , 𝑦′=, respectively. Eq. (2) corresponds to the 
convexification linear cuts generated by the auxiliary variable method or reformulations, 
where 𝑧 are auxiliary variables. Since both Eq. (1) and (2) are applied at the initialization 
stage, they are valid for (OA-MILP), (NLP-I), and (NLP-f). 

𝑥 ∈ 8𝑥0, 𝑥′9 ∈ 8𝑥, 𝑥9 ⊆ ℝ%; 	𝑦 ∈ <𝑦′, … , 𝑦′= ∈ <𝑦,… , 𝑦= ⊆ ℤ& (1) 
𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 ≤ 𝑏 (2) 

Considering that the convexification cuts are the relaxation of nonlinear constraints, they 
are redundant in the NLP subproblems where the original nonlinear constraints are 
included. Therefore, we denote the (NLP-I) and (NLP-f) problems with convexification 
cuts and tightened bounds as complete-scale NLP problems. The (NLP-I) and (NLP-f) 
problems with only tightened bounds are denoted reduced-scale NLP problems. 
This work also considers modified alternatives of the OA and LP/NLP-B&B methods to 
guarantee global optimality for nonconvex MINLP problems. Several modifications have 
been introduced to provide such global optimality guarantees, denoted as global OA 
(GOA) and global LP/NLP-B&B (GLP/NLP-B&B). First, instead of adding OA cuts, the 
affine underestimators and overstimators are generated based on the convex and concave 
McCormick relaxations using subgradient propagation (Chachuat, 2013). Second, to 
guarantee the algorithm's convergence, no-good cuts are generated to cut off the explored 
integer combinations and prevent the algorithm from repeatedly cycling through the same 
combinations. These enhancements enable the global algorithms to converge to the global 
optimum of nonconvex MINLP problems if the NLP subproblems are solved to global 
optimality (Kesavan et al., 2004). Furthermore, we integrate the domain reduction 
techniques in GOA and GLP/NLP-B&B and investigate their effect on its performance. 

3. Benchmarking and Results 
To evaluate the impact of domain reduction techniques, we use test instances from the 
problem library MINLPLib (Vigerske, 2014). 434 convex instances and 181 nonconvex 
instances are selected, adhering to the criteria that each instance must have at least one 
discrete variable and at least one continuous variable. For clarity in our analysis, we use 
(r) and (c) to distinguish between the reduced-scale and complete-scale NLP subproblems 
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used in the convexification-based OA and LP/NLP-B&B methods. Moreover, we indicate 
the results with convexification with the prefix (C-) in the following results. 
The benchmark implementation is based on the Mixed-integer nonlinear decomposition 
toolbox for Pyomo-MindtPy (Bernal et al., 2018). We use both the multi-tree and single-
tree implementation of OA and GOA strategy, maintaining their default configurations 
as a baseline. Moreover, a special version of BARON 19.4.4 is used to tighten the bounds 
and generate convexification cuts. Option dolocal is set to 0, and numloc is set to 0 to turn 
off local search during upper bounding and preprocessing in BARON. All range reduction 
and relaxation options are retained at their default settings. Nonlinear FBBT, OBBT, 
marginals-based, and linear-feasibility-based bound tightening are applied. Outer 
approximations of convex univariate functions and cutting planes are also applied. For 
the termination criteria of the algorithm, we set the absolute tolerances 𝜖 = 1012 and 
𝜖34/ = 1015, along with a time limit of 900s. We use GUROBI 10.0.0 as the MILP solver, 
IPOPTH 3.14 as the NLP solver for convex instances, and BARON 23.6.22 as the NLP 
solver for nonconvex instances. All tests ran on a Linux cluster with 48 AMD EPYC 7643 
2.3GHz CPUs and 1 TB RAM, with each test restricted to using only a single thread. 
The time and iteration performance profiles of the convex instances are presented in 
Figure 2. For the LP/NLP-B&B method, the number of iterations refers to the number of 
(NLP-I) subproblems solved. Overall, the convexification-based OA and LP/NLP-B&B 
methods utilizing reduced-scale NLP subproblems outperform the other solver 
alternatives regarding solution time. Regarding the number of iterations, both the OA and 
LP/NLP-B&B methods benefit from the convexification cuts and the bound tightening 
techniques. Interestingly, the choice between complete-scale and reduced-scale NLP 
subproblems does not significantly impact iteration performance. 
However, it is noteworthy that the convexification-based LP/NLP-B&B method with 
complete-scale NLP subproblems underperforms in time performance compared to the 
standard LP/NLP-B&B method. This coincides with our previous statement that the 
convexification cuts are redundant and increase the computational complexity of (NLP-
I) and (NLP-f) subproblems. For instances that can be solved within one second, both the 
standard OA method and the LP/NLP B&B method are more efficient than their 
convexified counterparts, as both bound tightening and convexification cuts entail 
additional processing time. Nonetheless, the bound tightening and convexification cuts 
generally enhance the performance of both the OA and LP/NLP B&B methods. 
The benchmark results of nonconvex instances are presented in Figure 3. Similar to the 
convex cases, the convexification-based OA and LP/NLP B&B methods outperform the 
others in solution time and number of iterations. This consistent performance across 
convex and nonconvex MINLP problems demonstrates the effectiveness of the proposed 
convexification-based OA and LP/NLP B&B methods. 

 
 

Figure 2. Time and iteration performance profile of 434 convex MINLP instances 
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Figure 3. Time and iteration performance profile of 181 nonconvex MINLP instances 

4. Conclusions 
This work explores the impact of domain reduction techniques implemented in B&B-
based solvers on the OA and the LP/NLP-B&B methods. These effects were investigated 
for variations of these methods to solve both convex and nonconvex MINLPs to global 
optimality. The proposed convexification-based OA and LP/NLP-B&B methods are 
implemented within the open-source solver MindtPy. Our benchmarking results highlight 
the significant improvements by domain reduction techniques in enhancing the efficiency 
of the OA and LP/NLP-B&B methods, observed by reducing the computational times and 
the number of iterations required for solving convex and nonconvex MINLP problems to 
global optimality. These results highlight the value of implementing domain reduction 
techniques, which are successful for B&B methods, in MINLP decomposition algorithms. 
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