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Abstract 

An integrated framework for building a virtual replica of business transactional processes in supply chains 

is presented. The framework consists of three main components: 1) a systems identification module that 

uses a unifying abstraction layer to generate process models, 2) a simulation module to create and run 

discrete-event simulations, and 3) an optimization module to optimize the supply chain business process 

operations. These business processes are conceptually modeled as networks of queues where agents 

perform tasks on the orders (internal or external) that are flowing through the process. The modeling 

approach allows capturing the routing dynamics and stochasticity in both the task durations and order 

arrivals that are observed in practice. The digital replica of the business processes creates value by 

providing a flexible digital environment that can be used to evaluate operating and design policies, identify 

and mitigate bottlenecks, quote more accurate lead times to customers, and forecast the impact of 

system disturbances and their remediation. The models in the digital twin are generated with data from 

the historian database and are updated in real-time using the live process data. The framework allows 

deploying optimization models offline, or in simulated real-time in a feed-back loop in a stochastic 

simulation environment. As an integrated simulation and optimization environment, the framework 

bridges and extends the literature in business process simulation, business process optimization, and 

supply chain management. Examples are presented to illustrate how the proposed digital twin can 

generate value in a digital supply chain. 
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1. Introduction 

Supply chains are complex dynamical systems that integrate three main types of flows: material, financial, 

and informational. These flows are tightly interconnected within the different businesses in an enterprise. 

The recent widespread push towards establishing digital supply chains has made the relationship between 

these flows even more intimate and visible (Büyüközkan and Göçer, 2018). The digitalization of supply 

chains has become a key enabler to effectively manage these flows, providing significant value to 

enterprises that seek to reduce costs, increase customer satisfaction, and streamline operations. A report 

by the consulting firm PwC Strategy& states that digital supply chains can expect annual improvements 

of 4% in efficiency and 3% in revenue when compared to traditional supply chains (Schrauf and Berttram, 

2016). While these percentages may not seem particularly high, their impact is significant when 

considering the volume of materials, services, and revenue that flow across a supply chain. A report by 

McKinsey & Company predicts significant reductions in lost sales (65-75%), logistics costs (15-30%), 

administrative costs (50-80%), inventories (35-75%), and forecasting error (30-50%) as a result of Supply 

Chain 4.0 (Alicke et al., 2016). Clearly, efficient supply chain management, enabled by digitalization, is key 
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to supply chain growth and sustainability. It is in this effort towards Supply Chain 4.0 or Digital Supply 

Chain, that this work proposes a digital twin framework for supply chain business processes.  

We first define the concept of supply chain business processes. A business process is the collection of 

connected events, actions, and decisions that add value to an enterprise and its customers (Dumas et al., 

2013). These processes involve agents (e.g., human actors, organizations, and automation software), 

physical objects (e.g., goods and documents), and intangible objects (digital footprint). Some examples of 

business processes common to supply chains are the order-to-cash, procure-to-pay, and issue-to-

resolution. Effective management of these processes is essential to efficient operation and customer 

satisfaction. There is extensive literature in the area of business process management (BPM), to which 

the reader is referred to standard books and articles on the topic (van der Aalst, 2013; van der Aalst et al., 

2003; vom Brocke and Rosemann, 2015; Dumas et al., 2013). 

The next concept to define is that of a digital twin. A digital twin refers to a virtual environment that 

mimics physical objects or systems in real-time (Negri et al., 2017; Stanford-Clark et al., 2019). Digital 

twins can take different forms, from augmented reality powered by internet of things (IoT) in 

manufacturing (Zhu et al., 2019) to simulation-based and data-driven decision support systems (DSS) in 

healthcare (Trotabas, 2019). Recent years have seen a big push toward the development and deployment 

of digital twins in many different industries. According to a recent study, the market for digital twins is 

expected to grow from $3 million to $48 million from 2020 to 2026 (58% annual growth) (Markets and 

Markets, 2020).  

Despite the increased need for digital twins, existing literature on supply chain digital twins is scarce due 

to it being a relatively new concept that has been emphasized more in industry than in academia. Existing 

literature is for the most part conceptual and focused on the material flows and physical processes in 

supply chains. Ivanov and Dolgui (2019) present the concept of a digital twin for supply chain in the context 

of risk management. They discuss a new generation of tools that integrate various technologies to provide 

decision analysis, modeling, control, and learning systems (DAMCLS) for supply chains. At the core, these 

DAMCLS are digital twins that replicate the physical supply chains continuously in real-time in terms of 

inventory, production, logistics, and demand. These digital twins bring together simulation, optimization, 

data analytics, and artificial intelligence to identify disruptions, simulate their impact, optimize recovery 

policies, design resilient systems, and perform real-time performance control. Barykin, et al. (2020) 

describe software tools that can be used to build supply chain digital twins with various degrees of 

complexity where optimization is used to solve the supply chain design problem, and simulation is used 

to model the system dynamics. There are few examples in the literature of actual digital twins developed 

for supply chains. One of these is the modular logistics digital twin by Lee and Lee (2021), which combines 

building information modeling (BIM), internet of things (IoT), geographic information systems (GIS), to 

solve a vehicle routing problem (VRP) in the modular construction supply chain.  

The key enablers of the proposed digital twin are discrete event simulation (DES) and mathematical 

programming (MP). DES has been extensively applied to queueing systems, manufacturing systems, and 

inventory systems (Goldsman et al., 2015). In the context of business processes, Hlupic and De Vreede 

(2005) propose the use of DES to evaluate business process design alternatives and thus increase the 

success rate of business process re-engineering. van der Aalst (2010) discusses the difficulties in adopting 

business process simulation in practice and proposes the use of process mining in simulation. Wagner et 
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al. (2009) extend the traditional DES framework to include concepts from Business Process Management 

Notation (BPMN). Their proposed extensions include the use of activity constructs, agent-based activities, 

and logical gateways for event flow. They apply their framework to model the business process associated 

with a first-in-first-out (FIFO) service queue.  

On the other hand, mathematical programming (MP) is one of the key drivers in supply chain management 

(SCM) (Laínez and Puigjaner, 2012; Shah, 2005), supply chain sustainability (Mota et al., 2015), and 

enterprise-wide optimization (EWO) (Grossmann, 2012). Applications of MP in supply chain range from 

network design problems (Lara et al., 2019) to scheduling (Guillén et al., 2006) and vehicle routing 

problems (Subramanyam et al., 2020). In terms of physical process operational scheduling, the process 

systems engineering (PSE) community has pioneered several mathematical modeling paradigms with 

applications in many industries (Harjunkoski et al., 2014; Méndez et al., 2006). Various methods have also 

been developed to account for uncertainty in scheduling. These include robust optimization (Lappas and 

Gounaris, 2016), stochastic programming (Balasubramanian and Grossmann, 2004a), and online or 

closed-loop scheduling (Gupta et al., 2016; McAllister et al., 2022). Although not applied in the context of 

supply chain processes, the computer science and information systems community has produced a 

handful of works in the area of workflow scheduling for cloud-based systems. These transactional 

scheduling approaches rely on both heuristics and mathematical programming (Cai et al., 2016; Hoenisch 

et al., 2016; Li et al., 2018), but are limited to static deterministic systems. 

In previous work, we have addressed the potential in applying scheduling models from the chemical 

process industry to improve the operations of supply chain business processes (Perez et al., 2021a, 

2021b). However, this work was limited to perfect information systems and ignored the stochastic nature 

of the transactional flows and future customer demands in the supply chain. In line with the growing need 

for digital twins, we extend our previous work to develop a framework for building and deploying virtual 

replicas of supply chain business processes. These twins model the system dynamics of the transactional 

processes, opening a varied range of tools to improve supply chain performance. These include, but are 

not limited to, performing Monte Carlo simulations for design evaluation, policy evaluation, policy 

improvement, disturbance management, fault detection, accurate order fulfillment quoting, and system 

forecasting. The digital twin further generates value by allowing for real-time and online (closed loop) 

business process optimization, where optimization events are triggered periodically or in response to 

system disturbances. The proposed framework thus brings together contributions from digital supply 

chain, discrete event simulation, business process management notation, queueing systems, and online 

optimization to extend the vision discussed by Ivanov and Dolgui in the context of physical supply chain 

processes to the information flows and transactional processes of the supply chain. Although the 

proposed framework is general for any supply chain business process, it is presented in the context of the 

order-to-cash (order fulfillment) process.  

The paper is structured as follows. Section 2 describes the order-to-cash process being modelled with the 

digital twin. Section 3 details the digital twin framework. Section 3.3 illustrates the benefits of the digital 

twin with five different examples. Section 5 provides concluding remarks.  
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2. Problem Description 

The order-to-cash (OTC) process is the business process that accounts for the steps that a customer order 

goes through, starting at the order creation and ending when the payment (cash) is received for the 

fulfilled order (Dumas et al., 2013). In this process, a company has one or more customers 𝑐 ∈ 𝐶, 

exhibiting the following characteristics,  

• Customer segmentation: priority tier assigned to that customer by the company. 

• Customer patience: the customer’s willingness or likelihood of waiting for an order after its due 

date without cancelling it. 

The different customers place orders 𝑜 ∈ 𝑂, which belong to different order classes 𝑖 ∈ 𝐼 and arrive at the 

company with stochastic interarrival times that are sampled from a given statistical distribution. Each 

order 𝑜 has the following parameters,  

• Release date: order arrival time, 𝑇𝑜
𝑟. 

• Early due date: earliest time the order will be accepted by the customer, 𝑇𝑜
𝑒. 

• Due date: latest time the order will be accepted by the customer and still be considered on-time, 

𝑇𝑜
𝑑. 

• Lost sales date: time after which the order will no longer be accepted by the customer, 𝑇𝑜
𝑙𝑠, 

meaning the customer’s waiting patience has been exceeded. 

• Early fulfillment incentive: the profit bonus that the company receives when the order is fulfilled 

early. This can be thought of as a premium the customer pays to expedite the order fulfillment. 

• Due date profit: the profit received when fulfilling the order on the due date. 

• Fixed late delivery penalty: a fixed decrease in profit incurred by the company for a late delivery. 

• Variable late delivery penalty: a variable (i.e., daily) penalty incurred after the due date has 

passed. 

• Lost sale penalty: a fixed penalty incurred for not fulfilling the customer order. This penalty will 

cause the profit to drop to zero or to a negative value, indicating a loss of goodwill by the 

company. 

For simplicity, order profit is modeled via piecewise linear functions as the one shown in Figure 1. 

However, the profit functions can be modelled with nonlinear expressions if required. With this modeling 

form, a delivery window between the early delivery date, 𝑇𝑒, and the due date, 𝑇𝑑, can be enforced with 

an incentive for early deliveries (if the early price, 𝑝𝑒, is greater than the price at the due date, 𝑝𝑑). Late 

orders can be penalized with a fixed penalty at 𝑇𝑑, such that the order profit drops to 𝑝𝑙, and a variable 

penalty, such that the order profit decreases linearly to 𝑝𝑓 at 𝑇𝑙𝑠, after which the order becomes a lost 

sale with a non-positive profit, 𝑝𝑙𝑠. This approach models profit in a flexible way that allows the use of 

delivery windows, incentives, fixed penalties, and variable costs, and captures both order backlogging and 

lost sales, which are typically not considered together in supply chain models. 
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Figure 1. Piecewise linear function used to model order profit 

A high-level view of the OTC process is given in Figure 2. As customer orders flow through the process, 

they undergo a series of transactions 𝑙 ∈ 𝐿 (processing stages) that are executed by agents 𝑎 ∈ 𝐴 

(resources), which can be either human agents or automated processing steps. The duration (processing 

time) of each transaction is modeled as a random variable 𝜏 ~ 𝐺(𝜉) that is sampled from a statistical 

distribution 𝐺(⋅) (e.g., Normal distribution) with known distribution parameters 𝜉 (e.g., mean and 

variance). In practice, the task duration distributions are generated from and updated with real process 

data. Such distributions can be aggregated for the transaction or modelled specific to the order type 

(class), customer segment, and resource (agent) involved. Agents can be completely flexible such that 

they can perform any transaction on the orders in the system, or completely dedicated such that they can 

only perform a specific transaction on orders coming from specific customers. However, various levels of 

agent flexibility can exist between these two extremes. Once a transaction is completed on an order, the 

order will move on to the next step in the OTC process network.  

Place Order
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Figure 2. Overview of main processing steps (transactions) in the OTC process. Reproduced with 
permission Perez, H.D., Amaran, S., Erisen, E., Wassick, J.M., Grossmann, I.E., 2021. Optimization of 

extended business processes in digital supply chains using mathematical programming. Computers and 
Chemical Engineering 152, 107323. Copyright (2021) Elsevier, Ltd. 

Although the OTC process is typically described as a serial (linear) network of steps, this is often not the 

case in practice. Real implementations of the OTC process can have various forms of complexity, such as 

parallel transactions, alternate paths, and recycle loops. Parallel transactions occur when the completion 

of a transaction triggers more than one transaction, which can be performed independently of each other. 

Alternate paths and recycle loops occur when the state of an order warrants an exception or deviation 

from the “standard” sequence of events, such as when an inconsistency must be corrected, or an order 

parameter modified. 
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From a process systems perspective, the OTC business process can be thought of as a flexible multi-stage 

batch plant, where customer orders are analogous to batches in the system. An alternative approach, 

which is the one used by the proposed digital twin is to model the OTC process as a network of queues, 

as shown in Figure 3. From this perspective each agent has its queue, where orders line up for transactions 

to be executed on them. Dedicated agents have single-class queues, whereas flexible agents have multi-

class queues, meaning that they perform different types of tasks (classes) on the orders in their queue. 

Two types of queueing phenomena are observed: preemption and reneging. Preemption occurs when an 

agent is actively processing an order and a higher priority is assigned to an existing order in the queue or 

a higher priority order arrives at the queue. This can occur when a high priority customer places a rush 

order, or when a change in the system state warrants increasing the priority on an existing order. When 

this occurs, the service on the active order is interrupted so that the higher priority order takes precedence 

at that step. A major assumption of the queueing model used is that the amount of work done already on 

the interrupted order is stored so that when the order returns to service, its work can be resumed from 

where it left off. If needed, this assumption can be relaxed by adjusting the way that the task durations 

are modelled after a preemption event. Reneging occurs when an order has exceeded its lost sales date 

and the customer decides to cancel the order.  

 

Figure 3. Sample queueing network representation of the supply chain order-to-cash business process 

3. Digital Twin Framework 

Now that the general characteristics of the OTC process being modelled have been described in Section 

2, the following section takes a step back to introduce the concept of a digital twin for a supply chain 

business process such as the OTC process. This section describes both what can be accomplished with an 

OTC digital twin, as well as detailing the features and internals of the proposed twin. A conceptual view 

of this framework is depicted in Figure 4. The proposed framework relies on three main modules, 

1. System identification module: used to model the supply chain business process as a graph with 

embedded metadata for the system parameters (see Section 3.2). 
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2. Simulation Engine: used to generate discrete event simulation models to simulate the system 

dynamics via Monte Carlo simulation (see Section 3.3). The simulation engine can be run 

independently of the optimization engine or in an integrated mode (see Section 3.5). 

3. Optimization Engine: used to execute mixed-integer linear programming (MILP) models or 

heuristics to schedule requests (e.g., customer orders) in the business process (see Section 3.4). 

The optimization can be run offline or integrated with the simulation engine for online scheduling 

(see Section 3.5). 

 

Figure 4. Supply chain business process digital twin framework 

The following subsections give a high-level view of how the digital twin is used to generate value (Section 

3.1), followed by a detailed description of the internals in each of the digital twin key components (system 

identification, simulation engine, and optimization engine). 

3.1 Framework Overview 

The digital twin uses both real-time data from the enterprise resource planning (ERP) systems and 

historical data from the historian database to create a model of the business process that mimics the 

behavior of the real system. This model is created by first creating a network abstraction model of the 

system, which is then used to generate the dynamic simulation model and the optimization methods in 

the simulation and optimization engines, respectively. These two engines are at the core of the digital 
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twin and enable various outcomes that are helpful to both the agents involved in executing the business 

process transactions, as well as the managers that oversee the business process. Some examples of what 

can be accomplished with the digital twin are, 

1. Enhanced order priorities: agents can use the digital twin to get a ranking of the orders that are 

in their process queue. This queue prioritization can be done via heuristics or mathematical 

programming scheduling models in the optimization engine. In the latter case, the prioritization 

is based, not just on the orders in the specific agent’s queue, but on the entire state of the system. 

Although not in the scope of the proposed framework, business rules commonly used in practice 

can be represented as heuristics or used to enhance existing heuristics. 

2. Enhanced promised order delivery dates: since the simulation engine can mimic the current state 

of the orders in the supply chain, Monte Carlo simulation can be used to get an estimate of when 

an incoming customer order can be fulfilled realistically. This goes beyond using mean lead times, 

but actually using the digital replica of the system to get a fulfillment date with an appropriate 

statistical confidence level. This type of information is particularly relevant to the customer 

service representative so as to avoid quoting unrealistic fulfillment dates to their customers. 

3. Forecasting the impact of a disturbance: when a disturbance occurs in the system, the digital twin 

can be used to run Monte Carlo simulations to estimate the impact of that disturbance on the 

system (e.g., on when the orders will be fulfilled and the load on the system queues). This 

information can be valuable to both agents and business leaders when evaluating proper 

mitigation strategies. The simulation engine itself can be used as an environment to evaluate 

alternative responses to supply chain disturbances. 

4. Fault detection: bottlenecks can be identified in the supply chain by performing data analysis on 

the real-time and simulated data. By identifying bottlenecks and other system inefficiencies, 

design and operational modifications can be proposed to alleviate these stresses on the system. 

5. Design evaluation: modifications to the supply chain business processes include changes to the 

business process structure and resource availability and configuration. These changes can be 

tested with the simulation engine with both Monte Carlo simulations and backtesting on historical 

data. An important design evaluation that can be addressed is where automation, such as robotic 

process automation (RPA) (van der Aalst et al., 2018), can be applied for the greatest benefit. 

6. Operational policy and business rule evaluation: optimization models and heuristics in the 

optimization engine can be fine-tuned and ranked to select the more appropriate method to 

assign order priorities and resources throughout the transactional network. Fixed business rules 

can also be evaluated. Since the digital twin is constantly updated with real-time data, current 

operating policies can be re-evaluated against the portfolio of policies to dynamically and 

adaptively select the best-suited policies. 

The core elements of the proposed digital twin have been developed using the Julia programming 

language (Bezanson et al., 2017) version 1.7, which allows leveraging existing high-performance libraries 

available within the Julia environment for network modeling, discrete event simulation, and mathematical 

programming. As an integrated platform, the framework reduces the need for creating interfaces 

between different programming languages, GUIs, and databases required to build and operate the digital 

twin. The digital twin framework is designed to model supply chain business processes of any complexity.  
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3.2 System Identification Module 

To model the supply chain business process, a process graph with embedded metadata (metagraph) is 

used as an abstraction layer to capture the system structure, parameters, and dynamics. The Graphs.jl 

and Metagraphs.jl (Fairbanks et al., 2021) open-source Julia language packages (versions 1.4 and 0.7, 

respectively) are used to efficiently create and modify the process metagraph. The value in having this 

abstraction layer lies in the way the metagraph is seamlessly used to build the simulation and optimization 

models in the core digital twin engines. As a unified system, any changes to the metagraph are 

automatically reflected in the simulation and optimization models. This eliminates the need to update 

multiple system models whenever a change is made or is being evaluated. 

Figure 5 provides a sample of a business process metagraph, which consists of a task network that 

indicates the transactions that customer orders will flow through. The agents associated with each 

transaction, as well as the task duration probability distributions are embedded in the task node 

metadata. A single aggregated duration distribution can be stored for the transaction, or an array of 

distributions can be stored to model the durations for each agent, order type, and customer segment 

combination. Each distribution is either fit or bootstrapped from the historical database and is periodically 

updated with real-time data. Routing dynamics are modeled via logical gateway nodes (split AND, merge 

AND, split XOR, merge XOR, start recycle, and end recycle). Split/merge AND node pairs indicate parallel 

routes that orders will take. Split/merge XOR node pairs indicate alternate routes that can be taken by 

orders. Split XOR nodes represent decision steps in the network. The decision step is modeled via the 

statistical probabilities or likelihood of taking one of the paths. The decision outcome is obtained by 

sampling from a weighted roulette wheel (selector), where the weights for each slot are transition 

probabilities obtained from historical data for that step or specific to the order type and/or customer type. 

The selector probabilities are also updated with real-time data to improve the prediction accuracy. 

Start/end recycle node pairs are used as markers to identify loops in the network.  

 

Figure 5. Sample business process metagraph 

The example depicted in Figure 5 can be used to illustrate the order flow in the process metagraph. In this 

sample system, customer orders are first sent to the Task #1 and Merge XOR #2 nodes. The Merge XOR 

#2 node checks that at least one of its predecessors has completed. Since this is a new order, the order 



H. Perez et al. (2022) 

10 
 

arrival process (Start node) has been completed, so the order moves on to Task #3. When Task #3 

completes, the weighted roulette wheel in the Split XOR #2 node is spun with a 60% probability that the 

order will be recycled back to Task #3 and a 40% probability that the order will move on to the Merge 

AND #1 node. When Task #1 completes, it is sent to the Split XOR #1 node where another roulette wheel 

is spun to determine if the order will be routed to Task #2a or Task #2b. Once one of these has completed, 

the Merge XOR #1 node will allow the order to continue to the Merge AND #1 node. Once the order has 

gone through both parallel branches in the network, the Merge AND #1 node will enable the order to 

move to the End node, indicating the order has been fulfilled. 

3.3 Simulation Engine 

The process metagraph has all the information required to build the queueing network representation for 

the discrete-event simulation in the simulation engine. Figure 6 shows the resulting queueing network 

obtained from the metagraph in Figure 5 when dedicated agents are used. The simulation engine is 

powered by the SimJulia.jl (Andriessen and Lauwens, 2017; Lauwens, 2017) open-source Julia language 

package (version 0.8.2). The resulting agent-based business process discrete event simulation captures 

the network flow logic from the task network in the metagraph and has similar features to those described 

by Wagner, et al. (2009). In the simulation engine, the agents involved in the business process are 

modelled as servers with independent queues that receive and process customer orders. Any 

modifications to the metagraph are automatically transferred to the agent-based network simulation 

engine, which avoids having to modify two separate models.  

 

Figure 6. Sample mapping of the metagraph in Figure 5 to a queueing network with dedicated agent 
queues in the simulation engine 

3.4 Optimization Engine 

From the process metagraph, mixed-integer linear programming (MILP) scheduling models or heuristic 

approaches can be built in the optimization engine. The mathematical programming functionality in the 

optimization engine is powered by the JuMP.jl (Dunning et al., 2017) open-source Julia language package 

(version 0.21.10). 

3.4.1 Mathematical Programming 

The discrete-time State-task Network (STN) (Kondili et al., 1993; Shah et al., 1993) is used for the 

optimization engine within the framework. Although alternate modeling paradigms are available (e.g., 

Resource-task-network [RTN] and General Precedence models), this work focuses on the STN because 

previous results have shown that this modeling paradigm tends to exhibit reduced solution times for 
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larger instances of the order-to-cash process (Perez et al., 2021b). As a discrete-time model, the STN 

model benefits from the tighter linear programming relaxations observed in discrete-time scheduling 

models (Harjunkoski et al., 2014).  

A sample graphical representation of a bipartite state-task network for the order-to-cash (OTC) process is 

given in Figure 7. The states in the OTC STN model are binary states that indicate if an order is waiting at 

a particular buffer in the queueing network (1 = order is present, 0 = order is not present). The exception 

is the sink state (𝑆𝑠𝑖𝑛𝑘), which can be integer-valued if there is more than one sink task (𝐿𝑠𝑖𝑛𝑘). In this 

case, the value of the order sink state indicates the number of sink tasks that have completed up to that 

point prior to the order being fulfilled. Thus, each state node has no more than one successor task and no 

more than one predecessor task, unless it is a sink state with more than one sink task. In this STN model, 

each task consumes one state from each of its upstream order states when the task is triggered, and 

generate one downstream order state when the task completes.  

 

Figure 7. Sample state-task network for the system shown in Figure 3. Circular nodes are order states 
and rectangular nodes are tasks. 

As a discrete-time model, a fixed time grid with uniform slots of size Δ𝑇 is used to model time. Since 

temporal discretization introduces round-off errors, these are handled in a conservative fashion to avoid 

infeasibilities in the real system. The mean (expected) task durations 𝜏𝑖 𝑙 𝑎 = E[𝜏𝑖 𝑙 𝑎] for each order class 

𝑖 at task 𝑙 processed by agent 𝑎 are mapped to mean durations 𝜏𝑜 𝑙 𝑎  for order 𝑜 using the class of each 

order. These durations are then rounded up to the nearest multiple of Δ𝑇 (𝜏𝑜 𝑙 𝑎
′ = ⌈𝜏𝑜 𝑙 𝑎 Δ𝑇⁄ ⌉). The 

scheduling horizon is taken to be the latest lost sales date (𝐻 = max
𝑜∈𝑂

𝑇𝑜
𝑙𝑠) and is rounded up to the nearest 

multiple of Δ𝑇 (ℎ = ⌈𝐻 Δ𝑇⁄ ⌉ + 1) to ensure that the latest lost sales date is included. Using the latest lost 

sales date as the horizon results in an adaptive rolling horizon approach. This approach avoids the end-of-

horizon effects observed when a fixed or shrinking horizon is used (Lima et al., 2011), in which case the 

model assumes that no new orders can be fulfilled beyond the horizon. If a fixed or shrinking horizon 

approach is desired, the floor operator (round down) is used on the discretized horizon to guarantee that 

the horizon is not exceeded. The release, early, due, and lost sales dates for each order are rounded up 

and down to ensure feasibility:  𝑡𝑜
𝑟̅ = ⌈𝑇𝑜

𝑟 Δ𝑇⁄ ⌉ + 1, 𝑡𝑜
𝑒̅ = ⌈𝑇𝑜

𝑒 Δ𝑇⁄ ⌉ + 1, 𝑡𝑜
𝑑
̲̲ ̲ = ⌊𝑇𝑜

𝑑 Δ𝑇⁄ ⌋ + 1, and 𝑡𝑜
𝑙𝑠
̲̲̲̲ =

⌊𝑇𝑜
𝑙𝑠 Δ𝑇⁄ ⌋ + 1, where ⌈𝑥⌉ is the ceiling operator and ⌊𝑥⌋ is the floor operator. Note: 𝑡 is a time index that 

indicates the time point (or time period), rather than the absolute time, with the +1 in each expressions 

indicating that the first time point (𝑡 = 1) is the beginning of the scheduling horizon (zeroth time, 𝑇 = 0). 

Assignment Constraints: The unit allocation constraint in Eq. (1) proposed by Shah et al. (1993) is used to 

ensure that each agent can process no more than one order at a time during the duration of a task, 

[𝑡 − 𝜏𝑜 𝑙 𝑎
′ + 1 𝑡]. 𝑊𝑜 𝑙 𝑎 𝑡 is a binary variable that denotes that task 𝑙 is triggered at time point 𝑡 on order 
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𝑜 by agent 𝑎. The (𝑥)+ notation in the inner summation is equivalent to the positive part of 𝑥, or 

max(𝑥 0), and is used to ensure that the summation is properly defined when 𝑡 < 𝜏𝑜 𝑙 𝑎
′ . It should be 

noted that the STN representation in Figure 7 must be duplicated for each order in the system, and Eq. 

(1) is the linking constraint that joins each of the customer order subnetworks. 

∑∑ ∑ 𝑊𝑜 𝑙 𝑎 𝑡′

𝑡

𝑡′=(𝑡−𝜏𝑜 𝑙 𝑎
′ )

+
+1

 

𝑙∈𝐿𝑎𝑜∈𝑂

≤ 1                      ∀𝑎 ∈ 𝐴 𝑡 ∈ 𝑇𝑃 (1) 

Order State Balance: A balance is performed for each order state at each time point. This balance is 

described by Eq. (2), in which the order availability at state 𝑠 and time point 𝑡 is equal to the initial 

condition, plus the order state value in the previous time point, minus any consumption occurring when 

its succeeding task (𝐿𝑠
𝑠𝑢𝑐𝑐) is triggered, plus any generation occurring when a preceding task (𝐿𝑠

𝑝𝑟𝑒𝑑
) is 

completed, plus the arrival of a new order if it is a source state (𝑠 ∈ 𝑆𝑠𝑟𝑐), minus the delivery of an order 

if it is the sink state (𝑠 ∈ 𝑆𝑠𝑖𝑛𝑘). The binary parameter 𝐸𝑜 𝑡 indicates when a new order arrives, such that 

𝐸𝑜 𝑡 = 1 when 𝑡 = 𝑡𝑜
𝑟̅, and 𝐸𝑜 𝑡 = 0 at all other time points. 𝐷𝑜 𝑡 is a binary variable that indicates if order 

𝑜 was fulfilled (delivered) at time point 𝑡. Since order states cannot be negative, the coefficient |𝐿𝑠𝑖𝑛𝑘|, 

ensures that the order can only be fulfilled after all sink tasks have completed.  

𝑂𝑆𝑜 𝑠 𝑡 = 𝑂𝑆𝑜 𝑠 𝑡
𝑖𝑛𝑖𝑡 + 𝑂𝑆𝑜 𝑠 𝑡−1|𝑡>1 − ∑ ∑ 𝑊𝑜 𝑙 𝑎 𝑡

𝑎∈𝐴𝑙𝑙∈𝐿𝑠
𝑠𝑢𝑐𝑐

+ ∑ ∑ 𝑊𝑜 𝑙 𝑎 𝑡−𝜏𝑜 𝑙 𝑎
′ |

𝑡>𝜏𝑜 𝑙 𝑎
′

𝑎∈𝐴𝑙𝑙∈𝐿𝑠
𝑝𝑟𝑒𝑑

+ 𝐸𝑜 𝑡|𝑠∈𝑆𝑠𝑟𝑐 − (|𝐿
𝑠𝑖𝑛𝑘| ⋅ 𝐷𝑜 𝑡)|𝑠∈𝑆𝑠𝑖𝑛𝑘  

∀𝑜 ∈ 𝑂 𝑠 ∈ 𝑆 𝑡 ∈ 𝑇𝑃 

(2) 

The initialization parameter 𝑂𝑆𝑜 𝑠 𝑡
𝑖𝑛𝑖𝑡  is only relevant when optimizing an on-going order-to-cash process, 

as is the case when the optimization engine is run within the simulation engine. 𝑂𝑆𝑜 𝑠 𝑡
𝑖𝑛𝑖𝑡  must be defined 

for both queued orders and active (on-going) tasks. Queued order states are initialized using Eq. (3), where 

𝑌𝑜 𝑙
0  is a binary parameter that is 1 if task 𝑙 was already completed on order 𝑜 by time point 0. Thus, the 

initialization will only have a positive value if at least one predecessor task 𝑙 ∈ 𝐿𝑠
𝑝𝑟𝑒𝑑

 has finished, but the 

successor task 𝑙 ∈ 𝐿𝑠
𝑠𝑢𝑐𝑐 has not begun. For source states 𝑠 ∈ 𝑆𝑠𝑟𝑐, 𝐿𝑠

𝑝𝑟𝑒𝑑
 represents the order arrival 

event. Active task state initialization is defined based on if preemption is allowed or not. When 

preemption is not allowed, Eq. (4) is used, where 𝑌𝑜 𝑙 𝜔
𝑛𝑝

 is a binary parameter that is 1 if and only if task 𝑙 

began on order 𝑜 at 𝑡 = 𝜔 − 𝜏𝑜 𝑙 𝑎
′ < 0 by agent 𝑎, and is expected to end at 𝑡 = 𝜔. An additional 

constraint must be added in this case that fixes all task triggering variables for that agent to zero up to the 

period prior to when the task is expected to end (𝑊𝑜 𝑙 𝑎 𝑡 = 0  ∀𝑜 ∈ 𝑂 𝑙 ∈ 𝐿𝑎  𝑡 ∈ [1 𝜔 − 1]). This ensures 

that the busy agent is not scheduled for a task while it is still busy. The initialization for an agent that does 

not support preemption is illustrated in Figure 8. When task preemption is allowed, Eq. (5) is used, where 

𝑌𝑜 𝑠
𝑝

 is a binary parameter that is 1 if and only if the successor task 𝑙 ∈ 𝐿𝑠
𝑠𝑢𝑐𝑐 is active at time 0. In the case 

of an active task that is preemptible, the mean processing time for order 𝑜 at task 𝑙 ∈ 𝐿𝑠
𝑠𝑢𝑐𝑐 is replaced by 

the expected remaining processing time given the current time-in-service (𝜏𝑜 𝑙 𝑎
′ =

⌈(E[𝜏𝑜 𝑙 𝑎|𝑇 ≥ 𝛿] − 𝛿) Δ𝑇⁄ ⌉  ∀𝑎 ∈ 𝐴𝑙, where 𝛿 is the time-in-service). All initialization calculations are 

done in a pre-processing step when building the scheduling model. 
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𝑂𝑆𝑜 𝑠 0
𝑖𝑛𝑖𝑡 = ∑ 𝑌𝑜 𝑙

0

𝑙∈𝐿𝑠
𝑝𝑟𝑒𝑑

− ∑ 𝑌𝑜 𝑙
0

𝑙∈𝐿𝑠
𝑠𝑢𝑐𝑐

                 ∀𝑜 ∈ 𝑂 𝑠 ∈ 𝑆 
(3) 

𝑂𝑆𝑜 𝑠 𝜔
𝑖𝑛𝑖𝑡 = ∑ 𝑌𝑜 𝑙 𝜔

𝑛𝑝

𝑙∈𝐿𝑠
𝑝𝑟𝑒𝑑

                                     ∀𝑜 ∈ 𝑂 𝑠 ∈ 𝑆 
(4) 

𝑂𝑆𝑜 𝑠 1
𝑖𝑛𝑖𝑡 = 𝑌𝑜 𝑠

𝑝
                                                      ∀𝑜 ∈ 𝑂 𝑠 ∈ 𝑆 (5) 

 

Figure 8. Sample initialization when an agent that does not support preemption begins a transaction at 
𝑡 = −2. 

Order Fulfillment: The fulfillment of an order can be categorized as either on-time, backlogged, or lost 

sale. An order is fulfilled on-time when it is delivered within the allowed window ([𝑡𝑜
𝑒̅  𝑡𝑜

𝑑
̲̲ ̲]) as given in Eq. 

(6). An order is backlogged when it is delivered after the due date 𝑡𝑜
𝑑
̲̲ ̲ and by the final delivery date 𝑡𝑜

𝑙𝑠
̲̲̲̲  as 

given in Eq. (7). After this point, the order becomes a lost sale as given in Eq. (8). 

𝑂𝑇𝑜 = ∑ 𝐷𝑜 𝑡

𝑡𝑜
𝑑
̲̲ ̲

𝑡=𝑡𝑜
𝑒̅̅ ̅

                                                      ∀𝑜 ∈ 𝑂 (6) 

𝐵𝐿𝑜 = ∑ 𝐷𝑜 𝑡

𝑡𝑜
𝑙𝑠
̲̲ ̲̲

𝑡=𝑡𝑜
𝑑
̲̲ ̲+1

                                                  ∀𝑜 ∈ 𝑂 (7) 
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𝐿𝑆𝑜 = 1 − 𝑂𝑇𝑜 − 𝐵𝐿𝑜                                          ∀𝑜 ∈ 𝑂 (8) 

Order Profit: The time that an order is fulfilled 𝑡𝑜
𝑚𝑎𝑥 is dictated by the delivery variable 𝐷𝑜 𝑡 as given in Eq. 

(9). This fulfillment date is then used to determine which regime the order profit 𝑧𝑜 belongs to, as 

visualized in Figure 1 and enforced by the disjunction in (10). The disjunction is reformulated into mixed-

integer constraints using the convex hull reformulation (Grossmann and Trespalacios, 2013), as shown in 

Eqs. (11)-(12). For simplicity, Boolean and binary variables are used interchangeably in the disjunction and 

the reformulated MILP constraints. Since 𝑡𝑜
𝑚𝑎𝑥 is governed by Eq. (9), the constraints for 𝑡𝑜

𝑚𝑎𝑥 in the 

disjunctions do not need to be included in the reformulation. However, since 𝑡𝑜
𝑚𝑎𝑥 must be disaggregated, 

the upper bound constraints are included. A disaggregated variable for 𝑡𝑜
𝑚𝑎𝑥 does not need to be defined 

for the lost sales case since the aggregated variable will automatically be set to zero if the order is neither 

on-time nor backlogged. The upper bound constraints on the disaggregated 𝑧𝑜 are redundant and not 

included. 

𝐷𝑜 𝑡 ⋅ 𝑡 ≤ 𝑡𝑜
𝑚𝑎𝑥               ∀𝑜 ∈ 𝑂 𝑡 ∈ {𝑡𝑜

𝑒̅  …  |𝑇𝑃|} (9) 

[

𝑂𝑇𝑜
𝑡𝑜
𝑒̅ ≤ 𝑡𝑜

𝑚𝑎𝑥 ≤ 𝑡𝑜
𝑑
̲̲ ̲

𝑧𝑜 ≤ 𝑝𝑜
𝑒 −𝑚1 𝑜 ⋅ (𝑡𝑜

𝑚𝑎𝑥 − 𝑡𝑜
𝑒̅)

]⋁ [

𝐵𝐿𝑜
𝑡𝑜
𝑑
̲̲ ̲ < 𝑡𝑜

𝑚𝑎𝑥 ≤ 𝑡𝑜
𝑙𝑠
̲̲̲̲

𝑧𝑜 ≤ 𝑝𝑜
𝑙 −𝑚2 𝑜 ⋅ (𝑡𝑜

𝑚𝑎𝑥 − 𝑡𝑜
𝑑
̲̲ ̲)

] ⋁ [

𝐿𝑆𝑜
𝑡𝑜
𝑚𝑎𝑥 = 0

𝑧𝑜 ≤ 𝑝𝑜
𝑙𝑠
]      ∀𝑜 ∈ 𝑂 (10) 

𝑡𝑜
𝑚𝑎𝑥 = 𝑡𝑜

𝑚𝑎𝑥 1 + 𝑡𝑜
𝑚𝑎𝑥 2

 𝑡𝑜
𝑚𝑎𝑥 1 ≤ 𝑡𝑜

𝑑
̲̲ ̲ ⋅ 𝑂𝑇𝑜

  𝑡𝑜
𝑚𝑎𝑥 2 ≤ 𝑡𝑜

𝑙𝑠
̲̲̲̲ ⋅ 𝐵𝐿𝑜

}       ∀𝑜 ∈ 𝑂 (11) 

𝑧𝑜 = 𝑧𝑜 1 + 𝑧𝑜 2 + 𝑧𝑜 3

𝑧𝑜 1 +𝑚1 𝑜 ⋅ 𝑡𝑜
𝑚𝑎𝑥 1 ≤ (𝑝𝑜

𝑒 +𝑚1 𝑜 ⋅ 𝑡𝑜
𝑒̅) ⋅ 𝑂𝑇𝑜

 𝑧𝑜 2 +𝑚2 𝑜 ⋅ 𝑡𝑜
𝑚𝑎𝑥 2 ≤ (𝑝𝑜

𝑙 +𝑚2 𝑜 ⋅ 𝑡𝑜
𝑑
̲̲ ̲) ⋅ 𝐵𝐿𝑜

 𝑧𝑜 3 ≤ 𝑝𝑜
𝑙𝑠 ⋅ 𝐿𝑆𝑜 }

 
 

 
 

       ∀𝑜 ∈ 𝑂 (12) 

Objective Function: The objective is to maximize profit, which is the cumulative sales profit for the orders 
in the system. It is assumed that operating costs (e.g., labor costs) are fixed and taken into account in 
linear functions used to quantify 𝑧𝑜. The objective function given in (13) is used. 

 max∑ 𝑧𝑜
𝑜∈𝑂

 (13) 

Variable Domains: The domains of the variables are given below, 

 0 ≤ 𝑡𝑜
𝑚𝑎𝑥 ≤ 𝑡𝑜

𝑙𝑠
̲̲̲̲                                                      ∀𝑜 ∈ 𝑂 (14) 

 0 ≤ 𝑡𝑜
𝑚𝑎𝑥 1 ≤ 𝑡𝑜

𝑑
̲̲ ̲                                                     ∀𝑜 ∈ 𝑂 (15) 
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 0 ≤ 𝑡𝑜
𝑚𝑎𝑥 2 ≤ 𝑡𝑜

𝑙𝑠
̲̲̲̲                                                      ∀𝑜 ∈ 𝑂 (16) 

 𝑝𝑜
𝑙𝑠 ≤ 𝑧𝑜 ≤ 𝑝𝑜

𝑒                                                     ∀𝑜 ∈ 𝑂 (17) 

 0 ≤ 𝑧𝑜 1 ≤ 𝑝𝑜
𝑒                                                     ∀𝑜 ∈ 𝑂 (18) 

 0 ≤ 𝑧𝑜 2 ≤ 𝑝𝑜
𝑙                                                      ∀𝑜 ∈ 𝑂 (19) 

 𝑝𝑜
𝑙𝑠 ≤ 𝑧𝑜 3 ≤ 0                                                     ∀𝑜 ∈ 𝑂 (20) 

 𝑂𝑇𝑜 𝐵𝐿𝑜 𝐿𝑆𝑜 ∈ {0 1}                                                     ∀𝑜 ∈ 𝑂 (21) 

 𝐷𝑜 𝑡 ∈ {0 1}                                      ∀𝑜 ∈ 𝑂 𝑡 ∈ 𝑇𝑃 (22) 

 𝑂𝑆𝑜 𝑠 𝑡 ∈ {0 1}               ∀𝑜 ∈ 𝑂 𝑠 ∈ 𝑆\𝑆
𝑠𝑖𝑛𝑘  𝑡 ∈ 𝑇𝑃 (23) 

 𝑂𝑆𝑜 𝑠 𝑡 ∈ {0 …  |𝐿
𝑠𝑖𝑛𝑘| }    ∀𝑜 ∈ 𝑂 𝑠 ∈ 𝑆𝑠𝑖𝑛𝑘𝑡 ∈ 𝑇𝑃 (24) 

 𝑊𝑜 𝑙 𝑎 𝑡 ∈ {0 1}             ∀𝑜 ∈ 𝑂 𝑙 ∈ 𝐿 𝑎 ∈ 𝐴𝑙  𝑡 ∈ 𝑇𝑃 (25) 

The discrete-time STN model is given by Eqs. (1),(2),(6)-(9),(11)-(25). 

3.4.2 Heuristics 

Another option to schedule customer orders in the business process is to use heuristics. There are two 

classes of decisions that need to be made when operating the supply chain business processes: 1) what 

queue should an order be assigned to for a particular task (if there is more than one)?, and 2) what priority 

or rank should the order be given in the queue that it is assigned to? 

Queue Assignment: the following heuristics are available when there is more than one agent able to 

perform a transaction on an order, 

• Join-shortest-queue (JSQ): the order is assigned to the agent with the least number of orders in 

its queue with ties broken randomly. 

• Join-fastest-queue (JFQ): the order is assigned to the agent with the shortest expected response 

time (shortest time the order is expected to wait until the transaction is completed on it). Any 

ties are broken at random. 

• Join-any-queue (JAQ): the order is assigned randomly to one of the agents capable of performing 

that task. 

• Join-designated-queue (JDQ): the order is assigned to an agent that processes orders with certain 

characteristics (e.g., from the same customer or customer segment). 

Order Priority: Several heuristics are available to assign priorities to orders when they arrive at an 

agent’s queue, 

• Highest-profit (HP): the order is assigned a priority proportional to the profit it would have if it 

was fulfilled at the time of arrival at the queue. This value is obtained from the profit function for 

that order (see Figure 1). This priority heuristic is dynamic in that it is updated each time the order 

is preempted, or moves downstream in the network to the next queue. 
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• Soonest-due-date (SDD): the order is assigned a priority that is inversely proportional to the order 

due date, meaning that orders that are sooner are given a higher priority. This priority is static in 

that it does not change as the order moves through the network. 

• Shortest-expected-remaining-processing-time (SERPT): the order is assigned a priority that is 

inversely proportional to the expected remaining processing time, meaning that orders that are 

expected to complete the transaction sooner are assigned a higher priority. Whenever a new 

order arrives at the queue, its expected remaining processing time is equal to its expected 

processing time. However, its priority is reevaluated each time a new order enters the queue and 

whenever it is preempted. Thus, it is a localized dynamic policy for each queue.  

• Highest-priority-customer-segment (HPCS): the order is assigned a priority proportional to the 

customer segmentation priority. 

• First-in-first-out (FIFO): the priority is solely based on order of arrival. No preemption occurs. 

3.5 Simulation-Optimization Integration 

Each of the engines in the digital twin can be used separately by using the simulation engine to run Monte 

Carlo simulations or using the optimization engine to run offline optimizations. However, additional value 

is generated by integrating the two engines. In this case, the user can decide to run Monte Carlo 

simulations using the heuristics described in Section 3.4.2, or the user can leverage the strengths of 

mathematical programming by embedding MILP optimization routines in the simulation engine. In the 

latter case, the optimization is embedded as an event in the discrete event simulation that is triggered 

periodically at fixed intervals or in response to a system condition (e.g., when a new order arrives or after 

a disturbance). When an optimization event is triggered, a snapshot of the system state and the process 

metagraph are used to generate the STN model, which is then optimized to schedule the active orders 

and assign the resources (agents) involved in each transaction. The resulting schedule obtained from the 

model is then translated into order priorities and queue assignments throughout the network, which are 

passed to the discrete event simulation where the system queues are updated accordingly. Since the 

optimization is an event in the simulation, the computational time spent building the MILP model and 

performing the scheduling optimization is accounted for in the duration of the optimization event. The 

simulation does not pause for the optimization to occur, but keeps marching forward in time, allowing for 

a more realistic implementation of optimization in the business process environment. Thus, the 

optimization frequency and solution time plays an important role in the simulation-optimization 

integration. If an optimization event takes too long relative to the process time scales, the system may 

have deviated significantly from the state used to generate the model and the solution found may no 

longer be relevant. 

4. Examples 

For the examples below, the following heuristics are defined based on those presented in Section 3.4.2, 

• Heuristic P: Highest-profit prioritization with join-fastest-queue assignment. 

• Heuristic D: Soonest-due-date prioritization with join-fastest-queue assignment. 

• Heuristic S: Shortest-expected-remaining-processing-time prioritization with join-fastest-queue 

assignment. 

• Heuristic F1: First-in-first-out with join-fastest-queue assignment. 
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• Heuristic F2: First-in-first-out with join-shortest-queue assignment. 

• Heuristic F3: First-in-first-out with join-any-queue assignment. 

• Heuristic PD: Priority is obtained by averaging the priorities from Heuristics P and D; join-fastest-

queue is used. 

• Heuristic PS: Priority is obtained by averaging the priorities from Heuristics P and S; join-fastest-

queue is used. 

• Heuristic PDS: Priority is obtained by averaging the priorities from Heuristics P, D, and S; join-

fastest-queue is used. 

 

4.1 Example 1: benefit of business process scheduling 

Example 1 is an overly simplified example to illustrate, by inspection, the benefit of using optimization 

models to schedule orders in the order fulfillment process. Figure 9 shows the layout of the order 

fulfillment network, which has three stages: create order, produce material, and ship order. The first stage 

has one customer service representative (CSR) processing orders at a rate of 1 h/order. The manufacturing 

stage has two plant sites (A and B), which produce product at a rate of 3 h/order. The shipping stage has 

one third party logistics agent (3PL) that takes 2 h to ship orders. The STN model is compared against each 

of the heuristics for a system with five orders that enter the system at the zeroth hour and have different 

due dates and profit functions as shown in Figure 10. In this toy example, a 14-hour scheduling horizon is 

used, and the MILP model (710 binary variables, 35 continuous variables, and 1,885 constraints) 

outperforms the heuristics by finding the optimal schedule in 0.2 s of CPU time. The STN model yields a 

system profit of $8.81 thousand and fulfills four out of five orders on time as shown in Table 1. This is a 2-

8% improvement in profit and an improvement in on-time fulfillment of up to 100% in some cases. Figure 

11 shows the optimal schedule obtained with the best heuristic (top) and the STN model (bottom). 

Although the best heuristic (Heuristics PD and PDS) uses both the order profit and the due date to assign 

priorities, it underperforms relative to the STN model which has a complete mathematical model of the 

system that accounts for not only order profit and due dates, but also for processing times and resource 

availability. As a result, the STN model is able to fulfill the first order on-time, whereas Heuristics PD and 

PDS fulfill it 5 days late. 

 

Figure 9. Network layout and process parameters for Example 1 
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Figure 10. Order profit functions for each of the five orders in Example 1 

Table 1. Scheduling results for Example 1. Cells in red indicate a late delivery for that order with respect 
to the order due date. Cells in green indicate an on-time delivery for that order. 

   Fulfillment Date 

Order 
ID 

On-time 
Profit 

Due 
Date 

Heuristic 
P 

Heuristic 
Da 

Heuristic 
F2 

Heuristic 
F3 

Heuristic 
PDb 

Heuristic 
PS 

MILP 
 

1 $1,000 7 14 6 6 6 12 14 6  
2 $2,000 8 10 8 8 8 8 10 8  
3 $1,000 10 12 10 10 12 14 12 14  
4 $2,000 11 8 12 14 10 10 8 10  
5 $3,000 12 6 14 12 14 6 6 12   

   $8,405 $8,170 $8,620 $8,285 $8,646 $8,405 $8,810 Profit 

   40% 60% 80% 60% 60% 40% 80% On-time  

      100% 100% 100% 100% 100% 100% 100% Fulfilled  
aThe same outcome is observed for Heuristics S and F1 
bThe same outcome is observed for Heuristic PDS  
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Figure 11. Gantt chart for the best heuristic solution (Heuristic PD and PDS; top) and the optimal 

schedule (MILP; bottom) in Example 1 

4.2 Example 2: benefit of business process scheduling when under order control 

Example 2 illustrates the impact of system congestion on the different scheduling approaches. This is done 

by increasing the number of orders in the system shown in Example 1 from one order to 40 orders. The 

profit functions for the orders are generated at random with the following characteristics, 

• All orders arrive at the beginning of the scheduling horizon (T = 0 hours), 

• The order due dates are sampled uniformly from the range between T = 6 hours and T = 20 hours 

to account for a minimum lead time of 6 hours, 

Heuristic PD/PDS: 

 
MILP: 
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• The lost sales dates are sampled uniformly from the range between the order due date and T = 

20 hours, 

• The order fulfillment profit is sampled uniformly from the range between $0K and $1K, 

• No early delivery incentive is used, 

• A 10% profit decrease occurs at the order due date, 

• An additional 10% profit decrease occurs by the order lost sales date, 

• A profit of $0 is assigned beyond the lost sales date. 

 

Figure 12. System profit (top) and on-time fulfillment rate (bottom) as a function of the number of 
orders during the first 20 hours of simulation. Heuristics F1, F2 and F3 are not shown since they have a 

similar profit profile as Heuristic S. Heuristic PDS is not shown since it has a similar profit profile as 
Heuristic PD. Heuristic PS is not shown since it has a similar profit profile as Heuristic P. 

A simulation horizon of 20 hours is used. Since the minimum lead time for an order is six hours, it becomes 

impossible to fulfill all orders on-time with the existing resources as the number of orders is increased. 

Figure 12 shows the system revenue and on-time fulfillment rate as the number of orders is increased 

from 1 to 40. Heuristics S and F1-F3 can no longer fulfill all orders after three orders. The other heuristics 

fail after five or six orders, and the MILP after seven orders. The gap between the system revenue obtained 
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by the MILP model and the heuristics begins to become more pronounced at this point when the system 

is under order control. When the system has 40 orders, the gap between MILP model and the heuristics 

has grown to approximately 40% relative to the best heuristic solution (Heuristic PD). In general, any 

heuristic that does not use order profit information performs poorly, as expected. Decreases in the profit 

profiles on some of the heuristics occur when a new order enters the system and receives a higher priority, 

but cannot be fulfilled due to its earlier lost sale date. However, since it received a higher priority, it tied 

up resources that could not be used by other orders that has previously been fulfilled. Once again, this 

highlights the benefit of a model-based approach that captures the entire profit profiles, processing times, 

and resource utilizations. 

4.3 Example 3: using the digital twin to test impact of online optimization (stochastic environment) 

The previous examples were deterministic because all orders entered the system at the beginning of the 

simulation horizon and the task durations were fixed and known. Example 3 now shows the performance 

of the MILP model in a more complex and realistic order fulfillment process that is simulated with 

uncertainty in the order parameters (arrival times, due dates, and profits) and process parameters (task 

durations). Figure 13 represents the order fulfillment process network, with parallel tasks and multiple 

agents. The network contains two sets of parallel transactions. The first parallel branching occurs 

downstream of the Credit Check step, such that the Schedule Shipment and Reserve Inventory steps can 

be executed independently of each other, but are prerequisites to the Check-in Shipment step. The second 

set of parallel tasks occurs at the end of the process, where the Create Invoice and Goods Issue steps must 

both be completed for an order to be considered fulfilled. In terms of resource availability, each task has 

one agent assigned to it, except for the Reserve Inventory or Load Goods transactions, which have two 

agents assigned. At each transaction, three different Gaussian distributions are used to model the event 

duration. The mean task durations (𝜇) for each of these distributions is indicated next to each task in 

Figure 13. Orders are assigned to one of these distributions at each transaction based on the order class 

and customer segment. The orders in the system are generated at random with the following 

characteristics, 

• The earliest due date for each order is its release date, 

• The due date for each order is sampled uniformly from the range between 2 hours after its release 

date (this is the soonest an order can be processed at expectation) and 15 hours after its release 

date, 

• The lost sales date for each order is sampled uniformly from the range between its due date and 

5 hours after its due date, 

• The profit for each order at its due date is sampled from the Normal distribution with mean $1K 

and standard deviation $0.1K, 

• A 10% early fulfillment incentive is used on all orders, 

• A 30% profit decrease at the due date occurs on all orders, 

• An additional 50% profit decrease by the lost sales date occurs on all orders, 

• A profit of $0 is applied to all orders beyond the lost sales date. 



H. Perez et al. (2022) 

22 
 

 

Figure 13. Order fulfillment task network for Example 3 

The system is modeled across a 24-hour horizon, in which 47 customer orders enter the system at random 

with interarrival times sampled from the Exponential distribution with mean interarrival times of 35 min. 

The system being modelled is found to be stable from a queueing perspective since the mean arrival rate 

is lower than the expected task durations, which results in a mean utilization factor that is less than unity 

at expectation. Furthermore, since orders will eventually be forced to leave as lost sales if not fulfilled, 

the number of orders in the system is bounded, which ensures that the network queues remain stable. 

On average, the number of orders in the system does not exceed 30 orders, as shown in Figure 14. As can 

be observed, the number of orders at the end of the simulation horizon does not drop to zero. This is done 

to provide a more realistic simulation where orders continue arriving throughout the simulation horizon, 

resulting in a number of orders still in the system by the end of the simulation. Thus, the simulation model 

does not experience end-of-horizon effects that are seen in other studies. 

 

Figure 14. Number of orders in the system when run using Heuristic F3 

In Example 3, the heuristics and MILP approaches are compared under three main cases with varying 

degrees of uncertainty. For the first case, the coefficient of variation (CoV, ratio between the standard 

deviation and the mean) of the task durations is set at 10%. The CoV is increased to 30% in the second 

case and to 90% in the final case. For each case, 30 random simulations are performed with a simulation 

horizon of 24 hours. The nine heuristics and the MILP model are run against each other to dynamically 

schedule the system orders in each of these 90 simulation instances. The MILP model (STN model) uses a 

15-min resolution, and is triggered each time a new order arrives in the system (every 35 min on average). 

The models are solved with a 1% optimality gap tolerance and a 10 min time limit. In practice, the 
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termination criteria will likely need to be fine-tuned to determine the criteria values that will allow finding 

good feasible solutions with minimal delays relative to the simulation timescales. It should be noted that 

the MILP model uses a rolling horizon approach (Lima et al., 2011) that is adaptive in the sense that it does 

not use a fixed look-ahead horizon, but instead uses a custom look-ahead horizon at each run that is equal 

to the last lost sales date for the current orders in the system. For comparison purposes, a second version 

of the MILP model is used in which a shrinking scheduling horizon (Balasubramanian and Grossmann, 

2004b) is used, meaning that the STN model uses the remaining simulation horizon for its scheduling 

horizon when triggered. The two solution approaches are illustrated in Figure 15. It is expected that the 

shrinking horizon solution approach will achieve a higher performance at the expense of artificial end-of-

horizon effects. Of the two modeling approaches, the adaptive rolling horizon approach is the one to be 

used in practice. 

 

Figure 15. Illustrative comparison between the shrinking horizon solution approach (left) and the 
adaptive rolling horizon approach (right). 

The simulation results in Figure 16 and Table A1 (see Appendix) show that the deterministic Rolling MILP 

model outperforms the heuristics even in the stochastic simulation environment. The mean profit from 

the Rolling MILP approach is statistically different from all the heuristics in each CoV case with a 

confidence level of at least 99.6%, based on a corre ated (paired)  tudent’s t-test. The mean profit 

attained by the Rolling MILP model is greater than that obtained with each heuristic by at least 3% and at 

most 70%. Since the Rolling MILP model is deterministic, the model error increases with the coefficient of 

variation of the task durations, resulting in a decrease in the mean system profit. However, a performance 

decrease is also observed in the heuristics. On a run-by-run basis, the Rolling MILP model was observed 

to yield a system profit that ranged from approximately 13% below to 79% above the profit of the other 

heuristics in the 10% and 30% CoV cases, and approximately 30% below to 170% above in the 90% CoV 

case. Out of the 810 simulation instances (90 instances for each of the 9 heuristics), the Rolling MILP was 

outperformed by a heuristic in 13% of the instances. 

Table A2 shows the mean relative performance of each of the heuristics on a run-by-run basis, relative to 

the Rolling MILP model. The worst relative performance by a heuristic occurs for Heuristic D in the 90% 

CoV case, which has a profit that is 40% below the Rolling MILP profit on average. The best relative 

performance by a heuristic is for Heuristic PD in the 30% CoV case, which has a profit that is only 3% below 

the Rolling MILP profit on average. The Shrinking MILP model attains a profit that is 7-14% higher on 

average. Despite having a higher apparent profit, the Shrinking MILP model neglects that the system 

continues beyond the 24-hour simulation horizon. As a result, no schedule is generated at the end of the 

simulation and any remaining orders are erroneously assumed to be lost sales. On the other hand, the 
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Rolling MILP model generates a schedule that extends beyond the 24-hour simulation horizon in the last 

optimization runs, which is the desired optimization mode since orders are still present in the system. 

With the final schedule generated near the end of the simulation horizon, the Rolling MILP model is 

expected to attain an average profit of $40.2 ± 0.8 thousand for the 10% CoV case, $37.9 ± 0.5 thousand 

for the 30% CoV case, and $27.6 ± 1.6 thousand for the 90% CoV case, which exceeds the Shrinking MILP 

average profit by 20-27%. 

 

Figure 16. Mean system profit for each of the methods used in Example 3 in each of the CoV cases with 

95% confidence intervals. 

The Rolling MILP model also takes the lead in the on-time fulfillment rates as shown in Figure 17 and Table 
A3, with a mean on-time fulfillment rate exceeding the best heuristic by 4-8 points on average. The mean 
on-time fulfillment rate in the Rolling MILP model is statistically greater than in each of the heuristics with 
a confidence of at least 98.9% based on a correlated  tudent’s t-test. The gap between the Rolling MILP 
model and the best heuristic decreases as the system uncertainty increases. In terms of total order 
fulfillment, the Rolling MILP model only surpasses all heuristics in the 90% CoV case, whereas the Shrinking 
MILP model is comparable to or superior to all the heuristics in each case on average. The Shrinking MILP 
model exhibits higher fulfillment rates, relative to the Rolling MILP model because the Rolling MILP model 
schedules orders beyond the 24-hour simulation horizon; however, their fulfillment is not accounted for 
in the simulation metric. 

Regarding system preemptions, which are shown in Figure 18 and Table A4, the Rolling MILP model 
introduces more preemptions than every other heuristic on average, except for Heuristic PS in the 90% 
CoV case and Heuristic PDS in the 30% and 90% CoV cases. The Shrinking MILP model presents fewer 
preemptions than the Rolling MILP model due to the end-of-horizon effects. Towards the end of the 
simulation horizon, the Shrinking MILP model reduces the preemption frequency since it assumes that 
the system ends at T = 24 hours. Once again, these end-of-horizon effects are not desired, supporting the 
use of the Rolling MILP model, which extends to T = 36 hours in the last optimization run, over the 
Shrinking horizon approach.  
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Figure 17. Mean on-time order fulfillment (top) and order fulfillment (bottom) for each of the methods 

used in Example 3 in each of the CoV cases with 95% confidence intervals. 

 

Figure 18. Mean number of preemptions for each method used in Example 3 in each of the CoV cases 
with 95% confidence intervals 
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A closer look at the preemptions indicates that the Rolling MILP model tends to preempt the Reserve 
Inventory and Load Goods steps more often than the other heuristics (at least 86% higher than the next 
highest heuristic) as shown in Figure 19 and Table A5. This is due in part to the fact that these are the only 
two transactions with more than one agent. As a result, the optimizer exploits the differences in the 
expected task durations between the two agents to its advantage. This occurs in at most 17% of the 
preemptions in the Reserve Inventory step and 12% of the preemptions in the Load Goods step. The 
increased number of preemptions in these transactions is also likely due to the fact they are the most 
time-consuming steps at expectation. Thus, adjustments in the scheduling of orders at these steps is likely 
to have a greater impact on the system performance. It should be noted that since the transactions in the 
business process are for the most part executed by human agents, there is a cost to interrupting the jobs 
done by these agents, especially if it involves reassigning the job to a different agent. Various approaches 
can be taken to mitigate the occurrence of preemptions in the STN model if the specific business requires 
it. Some approaches to accomplish this include, 

• Adding an upper bound to the number of preemptions allowed, 

• Penalizing preemptions in the objective function, 

• Increasing the remaining service time for a preempted transaction to account for inefficiencies 

resulting from the preemption, 

• Making agent reassignments forbidden when more than one agent is available to perform a 

transaction, 

• Making preemptions forbidden altogether for certain steps where preempting is not allowed in 

practice (e.g., a load goods step may not allow preemptions in some businesses since there is a 

significant setup time that occurs to start such an operation, and that setup time would be 

required when a preempted load goods step is restarted). 

Each of these approaches comes at the expense of a lower profit margin, but may be required to 
realistically model the business process. 

 

Figure 19. Boxplot of the number of preemptions by task in Example 3 

Upon comparing the heuristics among themselves, it is observed that the heuristics that assign orders 

based on the join-fastest-queue heuristic (all except Heuristics F2 and F3) have similar performance when 

the uncertainty is low (10% and 30% CoV). Their performance is superior to those that use other queue 
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assignment heuristics by at least 10% on average. Interestingly, despite having a comparable profit to the 

other heuristics, Heuristic D has the lowest on-time fulfillment rate in the low uncertainty cases. However, 

because it has the highest total fulfillment rate, it makes up the difference in terms of profit. Once the 

CoV is increased to 90%, some clear differences are observed between the heuristics. Heuristics D and PD 

show poor performance. Although Heuristic P benefits from scheduling the orders with the highest profit, 

Heuristic S benefits from prioritizing orders with lower expected service time, ensuring that more orders 

are fulfilled both on-time and overall.  

The simulation outputs can also be used to determine vulnerabilities in the supply chain business process. 

Analyzing the utilization factors (ratio of arrival rates to service rates) for each of the agents in the system 

shows that the Customer Service agent has a utilization factor that is greater than 90% on average 

regardless of the scheduling policy used as shown in Figure 20. This does not provide much capacity for 

errors or other contingencies. With these results, a business leader could then determine if additional 

resources should be allocated at certain transactions in the business process. 

 

Figure 20. Utilization factor boxplot for each of the resources in Example 3 

4.4 Example 4: using the digital twin to for disturbance mitigation 

Example 4 illustrates how the digital twin can be used to assess the impact of system disturbances and 

evaluate potential mitigation strategies prior to their implementation in the real business process. The 

system in Example 3 is modified to assess the impact of losing a resource at the Load Goods step. Three 

mitigation strategies are evaluated, 

• Disruption Approach: do nothing. The system continues to run with a single resource for the Load 

Goods step. 

• Restore Approach: hire an additional resource comparable to the one that was lost two days after 

the disturbance occurred. 

• Invest Approach: hire two additional resources comparable to the one that was lost two days after 

the disturbance occurred.  
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Prior to the disturbance, the simulation engine was initialized with two days of simulation time. When the 

disturbance occurs on day two, five random instances of customer orders are generated as described in 

Example 3. For each of these instances, 30 random simulations are run with a 30% CoV for the task 

durations. Figure 21 shows the number of enqueued orders at the Load Goods step, as well as the total 

number of orders in the system and the cumulative number of orders lost due to exceeding the fulfillment 

window. The Baseline results show the performance if no disturbance had occurred. The simulation 

results show that if an additional resource is hired after two days (Restore Approach), the system rapidly 

stabilizes to its baseline queue length levels within three hours. On the other hand, if no mitigation is 

performed (Disturbance Approach), the load on the system increases, as indicated by the gap in the total 

system orders with respect to the baseline. The gap in the mean queue length at the warehouse with 

respect to the baseline is much more pronounced with the mean queue length in the perturbed system 

being more than twice that of the baseline on average. A drop is observed in the mean number of orders 

at the end of day four for the perturbed system. However, this drop is not due to any increased system 

performance, but due to an increase in lost orders. The perturbed system subsequently rebounds back to 

its previous queue length levels after day five. The negative impact of the disturbance is made clear in the 

cumulative lost sales plot. When no mitigation is performed, the increase in lost sales is more pronounced. 

When the disturbance is mitigated, the slope on the mean lost sales is comparable to that of the baseline 

system, with an offset of approximately 25 orders. The Invest Approach is not shown in the plots because 

it follows the same profiles as the Restore Approach.  

Table 2 reports the mean profit, on-time fulfillment, and total fulfillment for each of the scenarios. Of the 

mitigation strategies presented, the Invest Approach results in the smallest gap with respect to the 

baseline, with a decrease in 10-20% in each performance metric. This is attributed to the fact that this 

approach allows the Load Goods step to operate with a 17% lower load on average. However, it involves 

hiring an additional agent, which may not be best financial decision since the difference between the 

Invest Approach and the Restore Approach is quite small (less than 2%). 

Table 2. Mean performance for each of the approaches with 95% confidence intervals 

  Approach 

Parameter Baseline Disruption Restore Invest 

System Profit ($K) 174 ± 0.4 124 ± 0.5 147 ± 0.4 148 ± 0.5 

On-time fulfillment (%) 51.3 ± 0.2 33.3 ± 0.2 40.3 ± 0.2 41.1 ± 0.2 

Order fulfillment (%) 74.7 ± 0.2 55.1 ± 0.2 65 ± 0.2 65.6 ± 0.2 



H. Perez et al. (2022) 

29 
 

 

Figure 21. Mean number of orders queued at the Load Goods step (top; with 99% confidence intervals), 
mean number of orders in the system (middle; with 99% confidence intervals), and cumulative lost sales 

(bottom; with maximum and minimum bands) for Example 4 

4.5 Example 5: using the digital twin to provide better promised delivery dates to customers 

Example 5 illustrates how the digital twin can be used to provide more accurate quoted delivery dates to 

customers. The following modifications are made to the system in Example 3, 

• The mean interarrival time for customer orders is 45 min. 
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• The order profit is sampled from the uniform distribution with a minimum of $0K and a maximum 

of $1K. Orders are split among three profit classes: low ($0.00K - $0.33K), medium ($0.33K - 

$0.67K), and high ($0.67 - $1.00K). 

• Order profits are constant, and no penalties are assessed. 

• Due dates and lost sales dates are removed. 

The system operating with highest profit priority (Heuristic P) is observed to be stable as indicated by the 

number of orders in the system in the historian database displayed in Figure 22. 400 2-week periods are 

superimposed in Figure 22, showing that the number of orders in the system varies between 0 and 40, 

with less than 25 orders in most cases. The 800 weeks of historical data are used to determine the lead 

time distributions for orders based on their profit class, as shown in Figure 23. Without the advantages of 

a digital twin, businesses would likely need to use the lead time distributions for each order class, or the 

aggregated lead time distribution, to quote promised delivery dates to customers. However, improved 

lead time estimates can be obtained by leveraging the capabilities of the digital twin to forecast system 

performance when a customer places a new order.  

In Example 5, a new order enters the system after there are already seven other orders in the system at 

various locations in the order-to-cash network. Of the existing orders, five are high-valued, one is medium-

valued, and another low-valued. The simulation engine is then initialized with the current system state 

and 10 Monte Carlo simulations are subsequently run to estimate the fulfillment date for that order based 

on the current system state and the scheduling policy being used (Heuristic P). Each Monte Carlo instance 

is performed by running 20 random simulations with a simulation horizon of 36 hours, giving a total of 

7,200 hours of simulation per instance and 72,000 hours overall. The high performant features of the Julia 

language are leveraged in this example to speed up the simulation runs by using the out-of-the box multi-

threading features to run the simulations in parallel.  

For illustrative purposes, Example 5 is executed three times, one for each class, by assuming a different 

value for the new order ($0.25K, $0.50K, and $0.75K). The estimated mean lead times obtained by both 

Monte Carlo simulation are then compared with those from the historical lead time distributions in Table 

3. In this example, the expected lead times obtained from the Monte Carlo simulations are lower than 

both the aggregated mean lead time and the segmented mean lead times for each value range. Although 

a conservative approach could be taken by using the historical lead times, this is not the best approach 

since it will result in higher inventory levels if customers do not accept early shipments. It should be noted 

that the digital twin produces distributions for the new order’s expected lead time, which have much less 

variability (lower CoV) than the historical lead time distributions. Clearly, using a high-fidelity simulation 

engine can facilitate providing lead time quotes that are more accurate because they are based on the 

current system state and system forecasts generated via Monte Carlo simulation.  



H. Perez et al. (2022) 

31 
 

 

Figure 22. 800 weeks of historical orders in the system superimposed over a 2-week period 

 

Figure 23. Lead time distributions for orders in the historian database 

Table 3. Comparison between the simulated lead time for the new order and the expected lead times 
from historical data. 95% confidence intervals are reported for the mean lead times. 

    
Aggregated 

Historical Data 
Segmented  

Historical Data 
Digital Twin 
Simulation 

Order 
Price 

Order 
Class 

Mean 
(hr) 

Deviation 
(hr) 

Mean  
(hr) 

Deviation 
(hr) 

Mean 
(hr) 

Deviation 
(hr) 

$0.25K Low 6.7 ± 3.4 4.7 10 ± 0.1 6.4 6.6 ± 0.1 0.8 

$0.50K Medium 6.7 ± 3.4 4.7 5.8 ± 0 2.5 4.1 ± 0.1 0.6 

$0.75K High 6.7 ± 3.4 4.7 4.3 ± 0 1.2 3.7 ± 0.1 0.6 

 

5. Conclusions 

A framework for a supply chain business process digital twin is presented, which leverages the highly 

performant packages from the open-sourced Julia ecosystem. The use of a task-network abstraction layer 
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enhanced with business process management notation (BPMN) and process metadata is used to readily 

generate simulation and optimization models for the business processes being studied. The internals of 

the digita  twin’s simu ation and optimization engines are described with five examp es to i  ustrate the 

benefits of using a digital twin to assign priorities to customer orders, increase system revenue and on-

time fulfillment, evaluate disturbance mitigation approaches, and quote accurate order lead times.  

The STN scheduling paradigm from the chemical process industry is applied to the supply chain business 

processes. A novel approach for integrating optimization models within simulation engines is presented, 

in which optimization events are embedded in the stochastic discrete event simulation engine of the 

digital twin. This approach provides a more realistic modeling by allowing for the MILP model build times 

and solution times to be taken into account in the simulation. In the examples shown, the STN model 

surpasses each of the heuristics despite being a deterministic model. This confirms the benefit of using 

mathematical models that capture the system features (e.g., order prices, backlog penalties, processing 

times, due dates, and lost sales dates) and rely on this holistic view to assign orders to queues and 

prioritize the orders in each of the queues.  

The simulation results indicate that the performance of the heuristics is problem-specific, highlighting the 

benefit of using the digital twin to select and fine tune the best operating policy from the portfolio of 

scheduling policies. Overall, there is great promise in integrating simulation with optimization in the 

context of a digital twin to improve the performance of supply chains in the digital era. 

Future work includes adding business rules that are used in practice into the digital twin. These can be 

used to set order priorities and queue assignments, as well as dictate the outcomes of decisions at split 

XOR nodes. Next steps on the mathematical modeling side include extending the STN formulation to 

capture the recycle loops and XOR logical gates observed in industrial supply chain business processes. 

Another area of further development is in integrating financial and material flows in the supply chain 

digital twin to obtain a holistic supply chain virtual replica. 

6. Abbreviations 

BIM Building information modeling 
BPMN Business process management notation 

CoV Coefficient of variation 
DAMCLS Decision analysis, modeling, control, and learning systems 

DES Discrete-event simulation 
DSC Digital supply chain 
DSS Decision support system 

EWO Enterprise-wide optimization 
FIFO First-in-first-out 
GIS Geographic information system 

HPCS Highest-priority-customer-segment 
HP Highest-priority 
IoT Internet of things 
JAQ Join-any-queue 
JDQ Join-designated-queue 
JFQ Join-fastest-queue 
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JSQ Join-shortest-queue 
MILP Mixed-integer linear programming 
MP Mathematical programming 
OTC Order-to-cash 
PSE Process systems engineering 
RPA Robotic process automation 
SCM Supply chain management 
SDD Shortest-due-date 

SERPT Shortest-expected-remaining-processing-time 
STN State-task network 
VRP Vehicle routing problem 
XOR Exclusive OR operator 

7. Nomenclature 

 Description 

Sets  

𝑎 ∈ 𝐴 Agents 
𝑎 ∈ 𝐴𝑙  Agents assigned to stage 𝑙 
𝜊 ∈ 𝑂 Customer orders 
𝑙 ∈ 𝐿 Tasks 
𝑙 ∈ 𝐿𝑎 Tasks performed by agent 𝑎 
𝑙 ∈ 𝐿𝑠𝑟𝑐 Source tasks (have no predecessors) 

𝑙 ∈ 𝐿𝑠𝑖𝑛𝑘 Sink tasks (have no successors) 

𝑙 ∈ 𝐿𝑠
𝑝𝑟𝑒𝑑

 Tasks preceding state 𝑠 

𝑙 ∈ 𝐿𝑠
𝑠𝑢𝑐𝑐 Tasks succeeding state 𝑠 

𝑠 ∈ 𝑆 Order states 
𝑠 ∈ 𝑆𝑠𝑟𝑐 Source order states (predecessors to 𝐿𝑠𝑟𝑐) 

𝑠 ∈ 𝑆𝑠𝑖𝑛𝑘 Singleton final order state 
𝑡 ∈ 𝑇𝑃 Discrete time points (or time periods) 
𝑇 ∈ 𝑇𝑉 Time 

Parameters  

𝐸𝑜 𝑡 Binary parameter indicating if order 𝑜 enters the system at time point 𝑡. 
Δ𝑡 Temporal resolution. 
ℎ Scheduling horizon. 
ℎ Rounded (floor) horizon 

𝑂𝑆𝑜 𝑠 𝑡
𝑖𝑛𝑖𝑡  Initialization parameter for order 𝑜 indicating the arrival of an order state at state 

𝑠 at time point 𝑡 

𝑝𝑜
𝑒  𝑝𝑜

𝑑  𝑝𝑜
𝑙  𝑝𝑜

𝑓
 𝑝𝑜
𝑙𝑠 Early, due, late, final, and lost sales profits for order 𝑜. 

𝑇𝑜
𝑟 𝑇𝑜

𝑒  𝑇𝑜
𝑑  𝑇𝑜

𝑙𝑠 Release, early, due, and lost sales dates for order 𝑜. 

𝑡𝑜
𝑟̅  𝑡𝑜

𝑒̅  𝑡𝑜
𝑑
̲̲ ̲ 𝑡𝑜

𝑙𝑠
̲̲̲̲  Rounded release, early, due, and lost sales dates for order 𝑜 in terms time points. 

𝜏 Processing time random variable. 
𝜏𝑖 𝑙 𝑎 Expected processing time for order class 𝑖 in stage 𝑙 by agent 𝑎. 

𝜏𝑜 𝑙 𝑎 Expected processing time for order 𝑜 in stage 𝑙 by agent 𝑎. 
𝜏𝑜 𝑙 𝑎
′  Rounded expected processing times (ceiling) in terms of time points. 

𝑌𝑜 𝑙
0  Binary parameter indicating if task 𝑙 was already completed on order 𝑜 in the past 

(by time point 0). 
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𝑌𝑜 𝑙 𝜔
𝑛𝑝

 Binary parameter indicating if task 𝑙 by agent 𝑎 on order 𝑜 is expected to end at 𝑡 =
𝜔. 

𝑌𝑜 𝑠
𝑝

 Binary parameter indicating if the successor task 𝑙 ∈ 𝐿𝑠
𝑠𝑢𝑐𝑐 is active at time 0 

Continuous Variables 

𝑂𝑆𝑜 𝑠 𝑡 Order state level for order 𝑜 at state 𝑠 and time point 𝑡. 
𝑡𝑜
𝑚𝑎𝑥 Fulfillment date for order 𝑜. 

𝑡𝑜
𝑚𝑎𝑥 1 𝑡𝑜

𝑚𝑎𝑥 2 Disaggregated fulfillment date for order 𝑜. 

𝑧𝑜 Profit for order 𝑜. 
𝑧𝑜 1 𝑧𝑜 2 𝑧𝑜 3 Disaggregated profit for order 𝑜. 

Binary Variables 

𝐵𝐿𝑜 Binary indicating if order 𝑜 is backlogged. 
𝐷𝑜 𝑡 Binary indicating if order 𝑜 is delivered at time point t. 
𝑂𝑇𝑜 Binary indicating if order 𝑜 is fulfilled on-time. 
𝐿𝑆𝑜 Binary indicating if order 𝑜 is a lost sale. 
𝑊𝑜 𝑙 𝑎 𝑡 Binary indicating if task 𝑙 is triggered on order 𝑜 by agent 𝑎 at time point 𝑡. 
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10.  Appendix 

Tabular results from Example 3 are shown in Tables A1 – A5. 

Table A1. Mean system profit ($ thousands) for each method used in Example 3 in each of the CoV cases 
with 95% confidence intervals 

  Coefficient of Variation 

Method 10% 30% 90% 

Heuristic P 27.3 ± 0.4 27.0 ± 0.6 17.3 ± 0.7 

Heuristic D 27.7 ± 0.5 26.3 ± 0.9 11.4 ± 1.0 

Heuristic S 28.0 ± 0.6 25.8 ± 0.9 18.0 ± 0.8 

Heuristic F1 27.4 ± 0.5 25.7 ± 0.7 15.8 ± 0.5 

Heuristic F2 24.3 ± 0.3 23.1 ± 0.5 14.7 ± 0.8 

Heuristic F3 21.6 ± 0.6 20.9 ± 0.7 12.8 ± 0.7 

Heuristic PD 29.2 ± 0.6 28.4 ± 0.9 13.4 ± 0.8 

Heuristic PS 29.1 ± 0.5 27.6 ± 0.9 17.8 ± 0.7 

Heuristic PDS 29.0 ± 0.7 27.7 ± 0.8 17.1 ± 0.8 

Rolling MILP 30.3 ± 0.6 29.6 ± 0.4 19.5 ± 1.2 

Shrinking MILP 33.6 ± 0.4 31.6 ± 0.4 21.8 ± 0.9 

Table A2. Mean scenario performance ratio for system revenue (relative to the Rolling MILP model) for 
each method used in Example 3 in each of the CoV cases with 95% confidence intervals 

  Coefficient of Variation 

Method 10% 30% 90% 

Heuristic P 0.90 ± 0.02 0.91 ± 0.02 0.91 ± 0.06 

Heuristic D 0.91 ± 0.02 0.89 ± 0.03 0.59 ± 0.04 

Heuristic S 0.93 ± 0.03 0.87 ± 0.03 0.94 ± 0.07 

Heuristic F1 0.91 ± 0.02 0.87 ± 0.02 0.83 ± 0.05 

Heuristic F2 0.80 ± 0.02 0.78 ± 0.02 0.77 ± 0.06 

Heuristic F3 0.71 ± 0.03 0.71 ± 0.03 0.67 ± 0.04 

Heuristic PD 0.97 ± 0.03 0.96 ± 0.03 0.70 ± 0.05 

Heuristic PS 0.96 ± 0.02 0.93 ± 0.03 0.94 ± 0.06 

Heuristic PDS 0.96 ± 0.03 0.94 ± 0.03 0.90 ± 0.07 

Rolling MILP 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 

Shrinking MILP 1.11 ± 0.03 1.07 ± 0.02 1.14 ± 0.05 



H. Perez et al. (2022) 

39 
 

Table A3. Mean on-time fulfillment rate (%) and total fulfillment rate (%) for each method used in 
Example 3 in each of the CoV cases with 95% confidence intervals 

  Coefficient of Variation 

 10% 30% 90% 

Method On-time Total On-time Total On-time Total 

Heuristic P 45.5 ± 0.8 58.5 ± 1.1 45.3 ± 1.1 57.6 ± 1.5 29.0 ± 1.4 36.6 ± 1.9 

Heuristic D 37.3 ± 1.2 69.8 ± 1.1 33.3 ± 2.2 68.2 ± 1.5 10.3 ± 1.7 34.6 ± 2.5 

Heuristic S 47.2 ± 1.5 63.5 ± 1.2 43.0 ± 1.9 59.9 ± 1.9 29.9 ± 1.8 42.5 ± 1.6 

Heuristic F1 40.8 ± 1.2 66.0 ± 1.0 38.9 ± 1.5 62.2 ± 1.5 24.3 ± 1.1 38.9 ± 1.5 

Heuristic F2 37.4 ± 0.8 59.3 ± 0.7 34.8 ± 1.0 56.8 ± 1.1 21.6 ± 1.7 37.0 ± 2.0 

Heuristic F3 32.1 ± 1.4 53.6 ± 1.5 31.4 ± 1.5 52.0 ± 1.9 18.3 ± 1.5 32.8 ± 1.6 

Heuristic PD 48.1 ± 1.8 66.5 ± 1.2 45.2 ± 2.2 65.2 ± 1.6 14.4 ± 1.6 35.4 ± 1.9 

Heuristic PS 50.3 ± 1.2 63.8 ± 1.1 47.4 ± 1.9 61.0 ± 1.7 29.6 ± 1.5 40.7 ± 1.6 

Heuristic PDS 47.4 ± 2.1 66.0 ± 1.3 45.9 ± 2.0 62.9 ± 1.5 27.1 ± 1.6 40.6 ± 1.8 

Rolling MILP 55.6 ± 1.5 67.2 ± 1.2 53.5 ± 1.1 65.7 ± 0.9 33.6 ± 2.7 44.0 ± 2.2 

Shrinking MILP 63.8 ± 1.2 71.4 ± 0.9 58.9 ± 0.9 67.5 ± 0.9 37.7 ± 2.2 48.9 ± 1.7 

Table A4. Mean number of preemptions for each method used in Example 3 in each of the CoV cases 
with 95% confidence intervals 

  Coefficient of Variation 

Method 10% 30% 90% 

Heuristic P 89 ± 2 81 ± 2 66 ± 3 

Heuristic D 67 ± 2 62 ± 3 27 ± 5 

Heuristic S 105 ± 3 115 ± 3 90 ± 5 

Heuristic F1/F2/F3 0 ± 0 0 ± 0 0 ± 0 

Heuristic PD 82 ± 2 80 ± 3 54 ± 4 

Heuristic PS 135 ± 3 130 ± 4 107 ± 4 

Heuristic PDS 147 ± 3 138 ± 4 105 ± 4 

Rolling MILP 150 ± 4 135 ± 5 99 ± 6 

Shrinking MILP 135 ± 4 103 ± 4 86 ± 5 

Table A5. Mean preemptions by task for each method used in Example 3 with 95% confidence intervals 

Method 
Create 
Order 

Credit 
Check 

Reserve 
Inventory 

Schedule 
Shipment 

Check-in 
Shipment 

Load 
Goods 

Create 
Invoice 

Goods 
Issue 

Heuristic P 21.3 ± 0.4 12.4 ± 0.6 9.6 ± 0.7 10.6 ± 0.6 10.1 ± 0.7 4.4 ± 0.5 5.8 ± 0.5 4.6 ± 0.4 

Heuristic D 14.5 ± 0.8 8.6 ± 0.8 6.8 ± 0.7 7.7 ± 0.8 6.3 ± 0.6 2.6 ± 0.4 4.4 ± 0.5 4.4 ± 0.5 

Heuristic S 20.6 ± 0.8 18.0 ± 0.6 15.6 ± 1.0 15.8 ± 0.7 11.8 ± 0.8 6.5 ± 0.7 6.7 ± 0.6 8.5 ± 0.7 

Heuristic PD 15.5 ± 0.7 10.3 ± 0.6 7.8 ± 0.6 8.2 ± 0.5 9.4 ± 0.6 6.0 ± 0.6 7.7 ± 0.8 7.3 ± 0.8 

Heuristic PS 27.0 ± 0.5 20.1 ± 0.7 16.9 ± 1.0 18.8 ± 0.8 14.1 ± 0.8 8.4 ± 0.7 9.4 ± 0.6 9.8 ± 0.7 

Heuristic PDS 27.0 ± 0.4 18.5 ± 0.7 18.5 ± 1.1 19.1 ± 0.8 16.2 ± 1.0 10.2 ± 1.0 10.2 ± 0.9 10.8 ± 0.9 

Rolling MILP 16.9 ± 0.6 20.1 ± 0.9 34.4 ± 2.0 16.3 ± 1.2 10.3 ± 0.9 19.1 ± 1.3 5.1 ± 0.6 5.8 ± 0.6 

Shrinking MILP 15.4 ± 0.6 18.6 ± 1.0 26.9 ± 1.7 13.1 ± 1.2 9.6 ± 0.9 12.8 ± 1.0 5.6 ± 0.6 6.1 ± 0.6 
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