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Abstract 
A new continuous time multistage scheduling Mixed-Integer Linear Programming 
(MILP) model is proposed to optimize the business transactional processes in supply 
chains. The novelty of this approach is in using techniques from the Process Systems 
Engineering (PSE) and Operations Research (OR) communities to address a side of 
supply chain optimization (information flow) that has not been targeted previously. This 
model accounts for the allocation of resources in processing orders at each of the stages 
of a business transactional process. The objective of the model is to improve customer 
experience, using on-time-delivery (OTD) as a surrogate metric for this target. An 
illustrative example, featuring a subset of the business transactional steps in the Order-
to-Cash (OTC) process is presented, showing the potential of using mathematical 
programming to improve supply chain performance. The model enables identifying 
bottlenecks in the processes and determining where additional resources should be 
allocated. The model can also be used as a valuable tool to assist customer service 
representatives in establishing realistic promise-to-delivery dates for their clients. 
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1. Introduction 
 
Supply chains have been traditionally modelled and optimized by the Process Systems 
Engineering (PSE) (Grossmann, 2012) and Operations Research (OR) (Owen and 
Daskin, 1998) communities, with the focus being on the optimization of material flow 
within the supply chain network. Literature has shown the need to expand this vision to 
also include the financial flows in supply chain optimization. Jahangiri and Cecelja 
(2014) show how financial models of supply chain can be used to understand the effect 
of supplier penalty and manufacturer lead time on the company profit. Kees et al. (2019) 
show the benefits of integrating material and financial flows to improve both the 
availability of drugs in a hospital supply chain as well as the hospital economic 
performance. Yi and Reklaitis (2004) show the impact that an integrated material and 
cash flow model can have on the design of chemical plants. Guillen et al. (2006) show 
the economic benefits of integrating process operations and financial decisions when 
optimizing a chemical supply chain. However, there is another type of flow that has 
been overlooked by the optimization communities: information flow. Supply chains are 
commonly managed via Enterprise Resource Planning (ERP) systems, which log the 
data associated with business processes. Previous work in this regard has focussed on 
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the simulation (Villarraga et al., 2017) and design (Niedermann and Schwarz, 2011) of 
business processes, rather than the optimization of its operations.  
 
The purpose of this paper is to propose a mathematical programming model for 
optimizing the transactional processes in a supply chain. As an example, the model is 
applied to the Order-to-Cash (OTC) business process. The OTC process is one of the 
business processes present in virtually all companies, involving the transactions that 
occur between the time when an order is placed by a client, to the time when payment is 
received for the goods delivered. The objective is to minimize the occurrence of late 
product deliveries and thus reduce the time between when orders are placed, and 
payment is received for the delivered products. Additional benefits of the model include 
helping to inform production order due dates as well as promise-to-delivery dates for 
order fulfilment. The model presented in the paper is analogous to the sequential 
multistage models used by the PSE community for scheduling multistage batch plants 
(Mendez et al., 2006), but it differs in several important respects from the traditional 
multistage scheduling models. Although the model is a new model for modelling 
multistage processes, the novelty of this project is in using techniques from the PSE and 
OR communities to address an aspect of supply chain optimization that has been largely 
overlooked by the optimization communities. 

2. Problem Statement 
 
The OTC process is analogous in its structure to a flowshop problem. When a company 
receives a set of orders, 𝑜𝑜 ∈ 𝑂𝑂, from its clients, there are a set of tasks, 𝑙𝑙 ∈ 𝐿𝐿, that need 
to be performed by agents, 𝑎𝑎 ∈ 𝐴𝐴, until products are delivered to the clients and 
payment of invoices is received. Each agent has a queue with positions 𝑝𝑝 ∈ 𝑃𝑃 to which 
orders are assigned for processing. The system can be described as a directed graph of 
queues that map the trajectory of each order within the supply chain. The overall goal is 
to assign orders to agents and reorder the queue positions to maximize the number of 
orders delivered on time. Thus, the problem seeks to find an optimal order processing 
policy, as opposed to the traditional queue management policies of first-in-first-out 
(FIFO), last-in-first-out (LIFO), smallest-to-largest, or largest-to-smallest (Villarraga et 
al., 2017). 

3. Mathematical Model 
The mathematical model for the OTC process is based on the following assumptions, 

1. Order release dates, due dates, and processing times are deterministic. In 
practice orders are placed dynamically, but in the base model, the system is 
assumed to be static. 

2. There are no transition times for orders between steps or stages in the OTC 
process. Unlike chemical plants, which require waiting times for materials to 
be transferred between units, instantaneous transitions are possible since data 
(information) are available to all agents in the OTC process via the company’s 
ERP system.  

3. There are no transitions times between orders in an agent’s queue. Unlike 
chemical processing units, which often require transition times for 
changeovers, business processing units (agents) can process orders back to 
back due to their non-material nature.  
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4. Each order can only be processed at most once at each stage. Inefficiencies in 
the OTC process may lead to orders being processed multiple times by an 
agent. However, this degree of complexity is not included in the base model. 

5. Each order represents one batch of product. In industrial systems, orders can 
correspond to multiple sub-orders, and sub-orders can correspond to multiple 
batches, fractions of batches, or even entire production campaigns in some 
cases. The assumption of one batch per order is made for simplification 
purposes. 

6. No resource constraints are considered aside from human personnel 
constraints. 

The model described in this section uses continuous time via time slots (Mouret et al., 
2011) to model the time events, and is analogous to the model presented by Pinto and 
Grossmann (1995) for scheduling multistage batch plants. Some differences with the 
latter model are: 

• The model allows for the possibility of not all orders being processed on time. 
When this occurs in a real scenario, the promise-to-delivery dates would be 
adjusted by the customer service representatives. 

• Order transfers between stages are instantaneous due to the use of ERP 
systems. 

• Based on the agent type, processing times may or may not depend on the 
quantity ordered. 

• Time matching of order stages and unit slots is not required. The assignment of 
units (agents) to stages is defined a priori by the structure of the OTC process 
steps. 

• Instead of minimizing the earliness of an order’s end time, the proposed 
formulation targets maximizing the on-time completion of orders. 

3.1. Model Constraints 
3.1.1. Time Bounds 
There is a start time, 𝑡𝑡𝑜𝑜,𝑝𝑝,𝑎𝑎

𝑠𝑠 ∈ ℝ+, and an end time, 𝑡𝑡𝑜𝑜,𝑝𝑝,𝑎𝑎
𝑓𝑓 ∈ ℝ+, for each order assigned 

to a queue position. The start time occurs between the release date, 𝑇𝑇𝑜𝑜𝑟𝑟, and due date 𝑇𝑇𝑜𝑜𝑑𝑑 
of the order (Eq. 1). The binary variable 𝑥𝑥𝑜𝑜,𝑝𝑝,𝑎𝑎 denotes when an agent 𝑎𝑎 has order 𝑜𝑜 in 
queue position 𝑝𝑝. The time an order leaves a queue is the sum of the start time and the 
order processing duration and must occur before the due date of the order (Eq. 2). 𝜏𝜏𝑜𝑜,𝑎𝑎 
is the average processing time of agent 𝑎𝑎 for order 𝑜𝑜 and can depend on the material 
quantity requested as well as the material type.  
3.1.2. Assignment Constraints 
Eqs. 3-4 allow each order to be processed at most once at each stage and allow at most 
one order to occupy each queue position in the queue of each agent. 
3.1.3. Precedence Constraints 
Eq. 5 ensures that queue positions are used consecutively in each agent’s queue. Agent 
precedence relations are given in Eq. 6. Eq. 7 enforces that if there is an order present 
in a queue position, then its start time must be after the end time of the order in the 
queue position immediately ahead of it. 𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚 is the scheduling horizon. Eq. 8 ensures 
that if an order is scheduled to be processed at a downstream stage, it can only be 
processed after the previous stage, has finished processing it. 
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𝑥𝑥𝑜𝑜,𝑝𝑝,𝑎𝑎 ⋅ 𝑇𝑇𝑜𝑜𝑟𝑟 ≤ 𝑡𝑡𝑜𝑜,𝑝𝑝,𝑎𝑎
𝑠𝑠 ≤ 𝑥𝑥𝑜𝑜,𝑝𝑝,𝑎𝑎 ⋅ 𝑇𝑇𝑜𝑜𝑑𝑑                                               ∀𝑜𝑜 ∈ 𝑂𝑂,𝑝𝑝 ∈ 𝑃𝑃,𝑎𝑎 ∈ 𝐴𝐴 (1) 

𝑡𝑡𝑜𝑜,𝑝𝑝,𝑎𝑎
𝑠𝑠 + 𝜏𝜏𝑜𝑜,𝑎𝑎 ⋅ 𝑥𝑥𝑜𝑜,𝑝𝑝,𝑎𝑎 = 𝑡𝑡𝑜𝑜,𝑝𝑝,𝑎𝑎

𝑓𝑓 ≤ 𝑥𝑥𝑜𝑜,𝑝𝑝,𝑎𝑎 ⋅ 𝑇𝑇𝑜𝑜𝑑𝑑                              ∀𝑜𝑜 ∈ 𝑂𝑂,𝑝𝑝 ∈ 𝑃𝑃,𝑎𝑎 ∈ 𝐴𝐴 (2) 

� �𝑥𝑥𝑜𝑜,𝑝𝑝,𝑎𝑎
𝑝𝑝∈𝑃𝑃𝑎𝑎∈𝐴𝐴𝑙𝑙

≤ 1                                                                                    ∀𝑜𝑜 ∈ 𝑂𝑂, 𝑙𝑙 ∈ 𝐿𝐿 (3) 

�𝑥𝑥𝑜𝑜,𝑝𝑝,𝑎𝑎
𝑜𝑜∈𝑂𝑂

≤ 1                                                                                           ∀𝑝𝑝 ∈ 𝑃𝑃,𝑎𝑎 ∈ 𝐴𝐴 (4) 

�𝑥𝑥𝑜𝑜,𝑝𝑝1,𝑎𝑎
𝑜𝑜∈𝑂𝑂

≥ �𝑥𝑥𝑜𝑜,𝑝𝑝2,𝑎𝑎
𝑜𝑜∈𝑂𝑂

                                                     ∀𝑝𝑝1,𝑝𝑝2 ∈ 𝑃𝑃,𝑝𝑝1 + 1 = 𝑝𝑝2
                               ∀𝑎𝑎 ∈ 𝐴𝐴  (5) 

� �𝑥𝑥𝑜𝑜,𝑝𝑝,𝑎𝑎
𝑝𝑝∈𝑃𝑃𝑎𝑎∈𝐴𝐴𝑙𝑙1

≥ � �𝑥𝑥𝑜𝑜,𝑝𝑝,𝑎𝑎
𝑝𝑝∈𝑃𝑃𝑎𝑎∈𝐴𝐴𝑙𝑙2

                                         ∀𝑙𝑙1, 𝑙𝑙2 ∈ 𝐿𝐿, 𝑙𝑙1 + 1 = 𝑙𝑙2
                           ∀𝑜𝑜 ∈ 𝑂𝑂  (6) 

�𝑡𝑡𝑜𝑜,𝑝𝑝1,𝑎𝑎
𝑓𝑓

𝑜𝑜∈𝑂𝑂

≤ �𝑡𝑡𝑜𝑜,𝑝𝑝2,𝑎𝑎
𝑠𝑠

𝑜𝑜∈𝑂𝑂

+ 𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚 ⋅ �1 −�𝑥𝑥𝑜𝑜,𝑝𝑝2,𝑎𝑎
𝑜𝑜∈𝑂𝑂

�     ∀𝑝𝑝1,𝑝𝑝2 ∈ 𝑃𝑃,𝑝𝑝1 + 1 = 𝑝𝑝2
                               ∀𝑎𝑎 ∈ 𝐴𝐴  (7) 

� � 𝑡𝑡𝑜𝑜,𝑝𝑝,𝑎𝑎
𝑓𝑓

𝑎𝑎∈𝐴𝐴𝑙𝑙1𝑝𝑝∈𝑃𝑃

≤� � 𝑡𝑡𝑜𝑜,𝑝𝑝,𝑎𝑎
𝑠𝑠

𝑎𝑎∈𝐴𝐴𝑙𝑙2𝑝𝑝∈𝑃𝑃

+ 𝑇𝑇𝑜𝑜𝑑𝑑

⋅ �1 −� � 𝑥𝑥𝑜𝑜,𝑝𝑝,𝑎𝑎
𝑎𝑎∈𝐴𝐴𝑙𝑙2𝑝𝑝∈𝑃𝑃

�                         ∀𝑙𝑙1, 𝑙𝑙2 ∈ 𝐿𝐿, 𝑙𝑙1 + 1 = 𝑙𝑙2
                           ∀𝑜𝑜 ∈ 𝑂𝑂  

(8) 

3.2. Objective Function 
The On-Time-Delivery (OTD, percentage of orders fulfilled before their due date) 
metric is a key performance indicator of the OTC process.  Since the model is intended 
for dynamic implementation, the objective function to be maximized is the total number 
of business transactions (Eq. 9), which measures the sum of orders processed by all 
agents. This is the objective function of choice since it increases the chances of 
obtaining a high OTD throughout the optimization horizon. Customer segmentation 
dictates order priority, such that orders from high priority customers have a higher 𝑤𝑤𝑜𝑜. 
 

𝑂𝑂𝑇𝑇𝑂𝑂 = ���𝑤𝑤𝑜𝑜 ⋅ 𝑥𝑥𝑜𝑜,𝑝𝑝,𝑎𝑎
𝑜𝑜∈𝑂𝑂𝑝𝑝∈𝑃𝑃𝑎𝑎∈𝐴𝐴

 (9) 

4. Illustrative Example 
The MILP model was applied to a subset of the OTC process with three stages and four 
agents (see Figure 1). The order and system details are given in Tables 1-2. The 
illustrative example was run using JuMP 0.19.2 (Julia 1.2.0) with Gurobi 8.1.0 as the 
MIP solver using a PC with an Intel i7, 1.9 GHz, 64-bit processor, and 24 GB of RAM. 
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Solution time was 0.07 s to full optimality. To show the benefits of using the model 
over traditional scheduling, the model results were compared to those of a human 
scheduler using the priority-first approach (orders are scheduled based on customer 
priority). The results given in Figure 2 show that for this case, the human scheduler 
only attains a 60% order fulfilment, whereas the model provides a schedule with 100% 
order fulfilment. Thus, the benefits of using the model to schedule the operations of the 
OTC process are evident in even small cases with five orders. Although a human 
scheduler could potentially come up with the same schedule as that of the optimizer 
after much trial and error, such a task becomes virtually impossible as the number of 
orders increases.  

a1

a3

a2

a4

Customer Service Rep.

Manufacturing 
Site #2

Manufacturing 
Site #1

Transportation Product & Invoice 
Delivery

 
Figure 1. Simplified OTC process flow for illustrative example 

Table 1. Order specifications in the illustrative example 

Order 1 2 3 4 5 
Day Released 0 1 2 2 7 
Day Due 10 10 10 12 14 
Priority Medium High High Low Low 

Table 2. OTC agent processing times 

Agent 𝑎𝑎1 𝑎𝑎2 𝑎𝑎3 𝑎𝑎4 
Processing Time (d) 1 3 3 2 

5. Conclusions 
A new sequential multi-stage process model is presented to optimize the queues of the 
agents involved in the OTC business process to improve on-time delivery. An 
illustrative example is given, which shows that the allocation of resources is key in 
orders fulfilment. The proposed model can be used to identify bottlenecks in the process 
and determine which stages need an increase in personnel or a decrease in processing 
times to improve system performance. Future work in this area includes integrating the 
business transactional model with manufacturing scheduling models to account for the 
details involved in the manufacturing and logistic stages of the supply chain. In terms of 
implementation, a rolling horizon approach can be used for dynamic optimization. 
Scaling to industrial sized problems, which also contain additional complexities such as 
rework, and variable processing times will also be addressed in the future. 
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Figure 2. Priority-first human scheduler (top) and model optimized schedule (bottom) 
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