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Abstract 

An overview of the mathematical formulations used for discrete and continuous optimization are 
presented. These include Linear Programming, Nonlinear Programming, Integer Programming, Mixed-
Integer Linear Programming, Mixed-Integer Nonlinear Programming, Logic-based Optimization, Stochastic 
Programming, Robust Optimization, and Flexibility Analysis. Successful applications of optimization 
models in industry are presented in the following fields: upstream oil & gas, materials blending, natural 
gas, biofuels, water treatment, electricity market integration, plant reliability, and supply chain design. 
Ongoing projects applying computational models to optimize industrial process systems are also 
mentioned. Implementations of customized optimization techniques that improve computational 
performance and enable finding solutions to otherwise unsolvable optimization problems are highlighted. 
These include strengthening cuts, decomposition strategies, model reformulation, and linearization, 
among others. 

Keywords: Mathematical Programming, Enterprise-wide Optimization, Mixed Integer Programming, 
Generalized Disjunctive Programming, Stochastic Programming, Robust Optimization. 

1. Introduction 

Continuous and discrete optimization has played an important role in improving industrial processes. 
Since its origins, the field of optimization has been influenced by key researchers from the process 
industries. Among these are Martin Beale, Jacques F. Benders, Abraham Charnes, and William W. Cooper, 
who were key figures for applying mathematical programming in the oil industry. Beale joined the 
Corporation for Economic and Industrial Research (CEIR) in 1961, which later became Scicon (Scientific 
Control Systems Ltd.), where he led the development of mathematical programming software for 
industrial applications. (Beale 1965; Powell 1987). Benders joined the Shell laboratory in Amsterdam in 
1955 and applied mathematical programming techniques to oil refinery logistics (Benders 1962). Charnes 
and Cooper were both affiliated with what is currently Carnegie Mellon University. Their research included 
applications of mathematical programming for aviation fuel blending in collaboration with Gulf Oil 
(Charnes et al. 1952; Cooper 2002). 

The evolution of applied industrial optimization has led to the birth of a field called Enterprise-wide 
Optimization (EWO) (Grossmann 2005). EWO targets a more complete view of industrial processes that 
includes not only manufacturing, but also supply and distribution within the enterprise. There are 
different layers to EWO, namely, planning, scheduling, and control. These are depicted in the decision-
making pyramid shown in Figure 1. The distinguishing element between the three decision levels is the 
time scale of the events involved. The control level pertains to the second to minute operational decisions 
at the manufacturing facilities, involving the manipulation of equipment and process parameters. The 
scheduling level involves decisions at the hours and days resolution such as the allocation of resources 
and event sequencing. The planning level is for long term decisions (weeks to years resolution) such as 
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long-term investment decisions and operational targets. Within each level, optimization targets include 
profit maximization, improved resource utilization, cost minimization, and sustainable design and 
operation. Optimization in each of these decision levels can bring significant benefits to industries where 
implemented. 

 

Figure 1. Decision-making pyramid for EWO 

This paper is organized as follows, Section Error! Reference source not found. gives an overview of 
research focuses in the area of EWO at Carnegie Mellon University, highlighting industrial collaborations. 
Section 3 presents an overview of the different types of continuous and discrete optimization models 
used for EWO. Section 4 presents a total of 8 industrial applications areas  for optimization. Concluding 
remarks are given in Section 5. 

2. EWO Group 

At Carnegie Mellon University, a multidisciplinary research center now known as the Center for Advanced 
Process Decision-making (CAPD) was established in the mid-80s by professors Art Westerberg, Larry 
Biegler, and Ignacio Grossmann. This center has grown since and is composed of researchers in the fields 
of chemical engineering, operations research, and industrial engineering. Its research goals include: 1) 
understanding and supporting complex issues faced by industry both from a design and an operational 
point of view, and 2) developing modeling and solution techniques to address those issues. Within the 
CAPD, there is an interest group that focusses on Enterprise-wide Optimization (EWO), whose goals 
include 1) optimizing entire supply chains, 2) developing novel planning and scheduling models that 
oftentimes address uncertainty, and 3) integrating planning, scheduling, and real-time optimization. A 
wide portfolio of projects has been undertaken over the years by the EWO group. Recent projects in the 
group along with the company collaborators are listed below. 

1. Network design, planning, and scheduling 
a. Demand side management in the steel industry (ABB) 
b. New copper concentrate optimal scheduling topology (Aurubis) 
c. Unconventional oil gathering network design (ExxonMobil) 
d. Stochastic multi-period oilfield planning and design (SKInnovation) 
e. Integration of reservoir modeling with oilfield planning (Total) 

2. Reaction systems 
a. Residue fluidized catalytic cracking real-time optimization (Petrobras) 
b. Continuous reactor design and optimization (Dow) 
c. Kinetic parameter estimation (Eli-Lilly) 

3. Algorithms 
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a. Stochastic nonconvex mixed-integer nonlinear programming algorithms (ExxonMobil) 
b. Design space via symbolic computation (Eli-Lilly) 

4. Data driven approaches 
a. Polymer design with derivative-free optimization (ExxonMobil) 
b. Data-driven optimization of integrated chemical plants (Dow) 
c. Production schedule optimization with deep reinforcement learning (Dow) 

5. Equipment and Maintenance 
a. Integrated reliability and storage design with maintenance policy optimization (Linde) 
b. Heat exchanger circuitry optimization (MERL) 
c. Advanced heat exchanger model optimization (UTI Carrier) 

6. Supply Chain and Logistics 
a. Novel continuous-time inventory routing algorithms (Air Liquide) 
b. Multi-period vehicle routing algorithms (Linde) 
c. Full truckload delivery planning (Braskem) 
d. Customer service marginal cost estimation (Air Liquide) 
e. Digital supply chain business process optimization (Dow) 
f. Portfolio-wide optimization in the pharmaceutical industry (Eli-Lilly) 

Industrial collaboration has been key to the research success and knowledge development in the EWO 
group. Industry driven projects have provided key insights that give real world relevance to the projects 
developed in the group. The knowledge gained from these collaborations is freely available to the public 
at http://egon.cheme.cmu.edu/ewo/seminars.html. In regard to the projects undertaken by the EWO 
group, most projects apply methods from mathematical programming, with increased emphasis on 
uncertainty. There has also been interest in other optimization approaches such as data-driven modeling, 
artificial intelligence, and symbolic computation. 

The following section will provide an overview of the mathematical programming models used in discrete 
and continuous optimization. 

3. Optimization Models 

The general formulation for continuous and discrete optimization consists of an objective function and a 
set of constraints as shown in (1). The objective function 𝑓 can be a linear or non-linear single-valued 
function. The optimization sense is usually minimization, although maximization can also be used. The set 
of constraints is given by linear or nonlinear sets of constraint inequalities and equalities. In the general 
notation given below, 𝑔#  is a vector-valued function of the variables 𝑥 and 𝑦, which represent continuous 
and discrete variables, respectively. Other continuous and discrete sets besides 𝑚-dimensional reals and 
𝑛-dimensional integers can be used for the domains of 𝑥 and 𝑦. Binary variables are often used for the 
discrete variables to denote yes or no decisions. 

 min
+,-

			𝑓(𝑥, 𝑦)									 

𝑠. 𝑡.				𝑔4(𝑥, 𝑦) ≤ 0 
										𝑔7(𝑥, 𝑦) = 0 
											𝑔9(𝑥, 𝑦) ≥ 0 

	𝑥 ∈ ℝ= 
𝑦 ∈ ℤ? 

(1) 
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Mathematical formulations can be divided into the following groups: 

• Linear Programing (LP): all expressions are linear with respect to the variables, and only 
continuous variables are used. Algorithms for solving LPs fall into two categories: pivoting 
methods (e.g. simplex) and barrier methods (interior-point methods) (Tomlin 1989; Illés and 
Terlaky 2002). 

• Nonlinear Programing (NLP): at least one nonlinear expression is used, and only continuous 
variables are used. Algorithms for solving NLPs fall into three main categories: 1) reduced gradient 
methods (e.g. GRG2, CONOPT, and MINOS codes), 2) successive quadratic programming (e.g. SQP 
code), and 3) interior point methods (e.g. IPOPT code) (Biegler 2010). 

• Integer Programming (IP): all expressions are linear, and all variables are integer-valued. The two 
main algorithms for solving IPs are branch-and-bound (Dakin 1965), cutting planes (Balas et al. 
1993), and branch-and-cut (Johnson et al. 2000). Many integer programs fall under the category 
of 0-1 IP, where all variables are binary. 

• Mixed Integer Programming (MIP): both continuous and discrete variables are used. When all 
expressions are linear, the framework is referred to as mixed integer linear programming (MILP). 
When at least one expression is nonlinear, it is referred to as mixed integer nonlinear 
programming (MINLP). Algorithms for MILPs are the same ones as for IPs. In the case of MINLPs, 
the main algorithms are branch-and-bound, Generalized Benders Decomposition (GBD) 
(Geoffrion 1972), Outer-Approximation methods (OA and QOA) (Duran and Grossmann 1986; Su 
et al. 2018), and the Extended Cutting Plane method (ECP) (Westerlund and Pettersson 1995). 
MINLPs can at times be linearized via exact linearization or piecewise linear approximations to 
improve their solvability. 

Logic based formulations have also been developed under the framework of Generalized Disjunctive 
Programming (GDP) (Raman and Grossmann 1994). The GDP formulation is given in (2), where 𝑐A is a 
scalar fixed cost for disjunction 𝑘, 𝑓 is a single-valued function, 𝑔(𝑥) ≤ 0 represents the set of common 
constraints among scenarios. The OR operator (∨) is used to select amongst a set of alternatives 𝐽A in the 
set of disjunctions 𝐾. When a given alternative is selected, the respective Boolean variable 𝑌 is 𝑇𝑟𝑢𝑒 and 
activates the constraints of the form 𝑟K,A(𝑥) ≤ 0 and sets the fixed cost to 𝛾K,A. The vector-valued Boolean 
function Ω(𝑌) is used to incorporate additional logical expressions, which must be 𝑇𝑟𝑢𝑒 for the solution 
to be feasible.  

 min
+,N

		O𝑐A
A

+ 𝑓(𝑥)																																														 

 
𝑠. 𝑡.					𝑔(𝑥) ≤ 0																																																 

 

QR
𝑌K,A

𝑟K,A(𝑥) ≤ 0
𝑐A = 𝛾K,A

S			∀𝑘 ∈ 𝐾
K∈UV

				 

 
Ω(𝑌) = 𝑇𝑟𝑢𝑒																													 

 
																		𝑥 ∈ ℝ= 
 

(2) 
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																		𝑌K,A ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} 

The GDP formulation can be reformulated into 0-1 MILP/MINLP problems. In the process, Boolean 
variables are translated into binary variables. The two main reformulation techniques are the Big-M 
method and the Hull Reformulation method (Grossmann and Trespalacios 2013). There is a tradeoff 
between the two in terms of model complexity and model tightness, with the latter resulting in tighter, 
but more complex models.  

Constraint programming (CP) (Hooker and van Hoeve 2018) is a logic-based framework that can be applied 
to optimization. It is well suited for scheduling problems in which resources are limited and relies on an 
efficient method for finding feasible solutions via a technique called constraint propagation. Hybrid 
CP/MILP approaches have also been used to combine the advantages of both methods (Jain and 
Grossmann 2001; Maravelias and Grossmann 2004). For instance, CP can be used for the sequencing 
constraints and MILP can be used for the resource assignment constraints. This technique has promising 
synergy that can significantly improve solution times. 

Optimizing under uncertainty plays an important role in industrial applications, in which many different 
types of uncertainties can be encountered (Sahinidis 2004). Uncertainties can be classified as exogenous 
or endogenous, depending on what triggers the realization or disclosure of the uncertain parameter 
values (Jonsbråten 1998). When the triggering is external to the decision maker (e.g. future demand for a 
product), the uncertainty is termed exogenous, and when it is triggered by the decision maker’s choices 
(e.g. oil field size, which can only be known after drilling and producing), it is termed endogenous. The 
three main approaches to optimization under uncertainty are Stochastic Programming (Birge and 
Louveaux 2011), Robust Optimization (Bertsimas et al. 2011), and Flexibility Analysis (Grossmann et al. 
1983). 

The most common stochastic programming (SP) approach is the two-stage formulation, which is 
presented in (3). The objective function in stochastic programming is an expectation of 𝑓 given the 
uncertain parameter 𝜉, which has a discretized probability distribution. The two-stage formulation 
separates the here-and-now decisions (𝑥; stage 1) from the wait-and-see decisions (𝑦; stage 2). The latter 
are recourse decisions that are made in response to a scenario 𝑠. A scenario is a state that arises from one 
of the possible realizations of the uncertain parameters. The formulation can be extended to multi-stage 
scenarios. Multi-stage scenarios are often represented with a scenario tree as the one shown in Figure 2 
for a three-stage stochastic program under exogenous uncertainty with two realizations (high and low) 
for the uncertain parameter 𝜉 in each stage. Nodes represent the states of the system at each period and 
arcs represent transitions from one period to the next.  

 min
+,-

			O𝑝^ ⋅ 𝑓(𝑥, 𝑦 , 𝜉^)
^∈`

									 

𝑠. 𝑡.			𝑔(𝑥, 𝑦, 𝜉) ≤ 0 
                     𝑥 ∈ 𝑋 
																						𝑦 ∈ 𝑌 

(3) 

Two important metrics are typically associated with the use of stochastic programming: EVPI (expected 
value of perfect information) and VSS (value of the stochastic solution). The EVPI quantifies the 
improvement that is possible if uncertainties are replaced with perfect information. This gives an 
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indication of how valuable it would be to reduce uncertainties by improving forecasting accuracy, for 
instance. On the other hand, the VSS quantifies the added value of using stochastic programming relative 
to the deterministic optimization counterpart. These metrics are typically applied to two-stage problems, 
but can be extended to multi-stage problems as discussed in Escudero, et al. (2007). 

 
Figure 2. Sample scenario tree for a three-stage stochastic program with exogenous uncertainty 

Robust optimization (RO) takes a different approach to uncertainty. Rather than optimizing over possible 
scenarios given uncertain parameter probability distributions, the focus is on optimizing over a 
deterministic uncertainty set to guarantee feasibility over all points in the set. The problems can be 
formulated so that the degree of conservatism is customizable (Bertsimas and Sim 2003). The general 
formulation for RO is given in (4). This formulation is aimed at finding fixed operating variables 𝑥 that 
minimize the maximal value of the constraint system under the uncertainty set 𝑊. This ensures the 
solution is feasible for all uncertain points since it is feasible for the worst-case uncertainties in 𝑊. 

 min
+∈c

max
f∈g

max
K∈U

𝑓K(𝑥, 𝑤) (4) 

Extensions to the classical RO approach are Adjustable Robust Optimization (ARO) and Affinely Adjustable 
Robust Optimization (AARO) (Ben-Tal et al. 2004). In these formulations, the operating variables are a 
function of the uncertain parameters, meaning 𝑥 = 𝑥(𝑤). In AARO, the relationship between the 
uncertain parameters and the operating variables is linear, 𝑥 = 𝑝 + 𝑄𝑤. These approaches have the 
advantage of increased flexibility in the formulations for more realistic optimization. 

Another approach to optimizing over an uncertain set is that of Flexibility Analysis (FA) (Grossmann et al. 
1983, 2014), which uses an alternate sequence of optimization operators than that of RO. (5) provides the 
general formulation for FA, which  finds the worst parameter 𝑤 by maximizing over the uncertainty set 
𝑊, given that the operating variables 𝑥 are adjusted for each parameter 𝑤 to minimize the largest 
constraint in the system. For linear models, FA problems are translated into MILPs, whereas AARO 
problems are translated into LPs. Although FA is computationally more expensive given its more general 
treatment of the operating variables, requiring the use of binary variables in its reformulation as an MILP, 
it provides solutions that are feasible and more rigorous in the uncertainty set when compared to AARO 
(Zhang et al. 2016). Thus, FA can find better solutions than those proposed by AARO. 

 max
f∈g

min
+∈c

max
K∈U

𝑓K(𝑥, 𝑤) (5) 
 

𝜉j4k 𝜉j4l  

𝜉j7k 𝜉j7k 𝜉j7l  𝜉j7l  

1 2 3 4 

𝑡 = 1 

𝑡 = 2 

𝑡 = 0 
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4. Industrial Examples  

4.1. Upstream Oil & Gas 

According to a market research report by IBISWorld (Mieles 2020), the Oil & Gas E&P (Exploration and 
Production) industry generated $3.3 trillion USD in revenue in 2019. Of that revenue, roughly 75% came 
from oil and 25% from gas. The industry as a whole is very capital intensive with a 4:1 capital investment 
to labor costs ratio. CAPEX (capital expense) for production facilities can be on the order of billions of 
dollars in the case of offshore facilities. Optimization in this industry can generate significant value, as 
even small percentages in cost reduction or revenue increase can amount to millions of dollars. As a result, 
several studies have focused on the optimization of both offshore and onshore facilities. Industrial 
optimization examples in each of these areas are presented in this section. 

4.1.1. Offshore deep-water oilfield development 

An application of mathematical programming to plan the optimal development of deep-water oil fields is 
presented in Gupta and Grossmann (2012). A multiperiod nonconvex MINLP model is used to plan the 
development and production of multiple oil fields. The model accounts for simplified reservoir models 
and multicomponent (oil, gas, and water) systems. Key decisions the offshore development planning 
model belong to the following areas, 

• Installation and expansion timing for FPSO (floating production and storage) units,  
• FPSO unit capacities,  
• FPSO connections to the oil fields,  
• number of wells to drill in each field,  
• oil and gas production rates at each field.  

The objective of the model is to maximize the NPV (net present value) of the offshore development 
project. High order polynomials for the reservoir profiles in terms of cumulative water and cumulative gas 
production are used to avoid the bilinear terms resulting from using water-oil ratios or gas-oil ratios. The 
model can also be reformulated as an MILP by using exact and piecewise linearization techniques to find 
the global optimum of the approximated problem. Figure 3 illustrates a piecewise linearization of a 
nonlinear oil delivery profile. 

A case study for the above model is presented for a project with a 20-year horizon, 10 oil fields, 3 FPSOs, 
23 wells, 3-year lead time for FPSO installation, and 1-year lead time for facility expansion. The MINLP 
model has approximately 500 binary variables, 5,700 continuous variables, and 9,900 constraints. It is 
solved in 67 seconds using DICOPT 2x-C on an Intel Core i7 with 4 GB of RAM to yield an optimal NPV of 
$30.95 billion USD. The reformulated MILP has approximately 1,600 binary variables, 12,000 continuous 
variables, and 17,000 constraints and requires a considerably longer computational time (approx. 4.5 
hours) to find a global optimum of $30.99 billion USD. Connection schedules and production rates are 
shown in Figure 4 and Figure 5. The three FPSOs are installed within the first two years and production 
begins in the end of year three (beginning of year four), with additional field connections scheduled for 
the following three years. 
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Figure 3. Sample piecewise linearization for oil deliverability profiles (Gupta and Grossmann 2012) 

 

Figure 4. Installation plan for deep-water case study (Gupta and Grossmann 2012) 
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Figure 5. Oil production rates for deep-water case study (Gupta and Grossmann 2012) 

The 2012 deterministic model discussed above has been extended to a multi-stage stochastic model that 
accounts for 1) endogenous uncertainties in the oil field parameters and 2) fiscal contracts involving 
taxation and royalties (Gupta and Grossmann 2014). Figure 6 displays the predicted revenue distribution 
included in the model. Langrangean decomposition is used to parallelize and improve the computational 
performance during solution time. For a project with 3 fields and three FPSOs, studies show the benefits 
of using decomposition techniques for solving stochastic programs. When 4 scenarios involving 
uncertainties in the oil field size, oil deliverability, water-oil ratio, and gas-oil ratio are included in the 
project, the full-space model is solved to optimality using CPLEX 12.2 in under 3 hours, yielding an 
expected NPV of $12 billion. Decomposition yields a solution that is only 0.5% below the optimum and 
has an optimality gap of less than 2%. However, the solution times for the decomposed model are 7.3 and 
4.3 minutes for the sequential and parallel implementations, respectively. This is a significant speedup of 
2 orders of magnitude.  

Another instance that includes uncertainty in the oil field size (4 scenarios) and accounts for progressive 
production sharing agreements shows that the sequential and parallel decomposition implementations 
find a solution of $3 billion with an optimality gap of 0.7% in only 2 hours and 1 hour, respectively. On the 
other hand, the full-space model times out after 10 hours with a 21% optimality gap and a solution that 
is 2.3% below the solution obtained via decomposition. Larger instances with 5 oil fields and up to 8 
scenarios show that even though decomposition strategies become more computationally expensive, 
they find better solutions with tighter bounds much faster than the full-space models. 
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Figure 6. Revenue flows in typical production sharing agreements (Gupta and Grossmann 2014) 

4.1.2. Onshore shale gas development  

A multiperiod planning MINLP model for shale gas development projects is presented in Drouven and 
Grossmann (2016), which extends the work by Cafaro and Grossmann (2014). The model uses a shale gas 
development superstructure and optimizes decisions in the following areas, 

• Selection of well pad locations, 
• Timing of well pad construction, 
• Selection of number of wells to drill and their location, 
• Timing of drilling operations, 
• Allocation of available drilling rigs, 
• Selection of locations for processing plants and compressor stations, 
• Allocation of available compressors, and 
• Layout and design of pipelines. 

Figure 7 illustrates the superstructure for a greenfield shale gas development case study with a 10-year 
planning horizon, 10 candidate well pads in three pad clusters, 1 processing plant, 1 compressor station, 
1 freshwater source, and varying well compositions by well clusters. The resulting MINLP model consists 
of 13,000 constraints, 10,000 bilinear terms, and 25,000 binary variables. The model was optimized in 
approximately 1.5 hours to yield an NPV of $214 million USD, which is a 2.6 times higher NPV than the 
historic development strategy used for that project. This NPV was achieved by improving equipment 
utilization and scheduling return-to-pad operations, which incurred 14% more development expenses, 
but required 23% less wells to be drilled. The optimal structure and operating schedules are given in Figure 
8 and Figure 9, respectively. 

In the work by Cafaro, et al. (2016), planning of shale gas refracturing is proposed via two main 
approaches, 1) a continuous-time NLP model based on productivity decline forecasts, and 2) a discrete-
time MILP model that explicitly accounts for multiple refractures. The MILP model is obtained via 
reformulation of a GDP model, and takes three different forms depending on the reformulation approach 
(big-M reformulation, standard hull reformulation, and compact hull reformulation). The model is coupled 
with multiple price forecasting models and a reservoir simulation model with real data. The model sizes 
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are given in Table 1 below. Although the hull reformulations result in significantly larger models, the 
model complexity is paid off with the superior computational performance observed. The reduced model 
size of the compact hull reformulation allows it to outperform the standard hull reformulation, taking less 
than half of the time required to solve the latter. For the real case study, the solutions find significant 
increases in the development NPV and well recovery. Well recoveries are increased by up to 25% and 
profits by hundreds of thousands of dollars when using the optimized plan. 

 

Figure 7. Case study shale gas development superstructure (Drouven and Grossmann 2016) 

 

Figure 8. Optimal shale gas structure (Drouven and Grossmann 2016) 
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Figure 9. Optimal shale gas development schedule with number of wells drilled indicated within the 
drilling tasks (Drouven and Grossmann 2016) 

Table 1. Model sizes and run time (using Gurobi 5.6.2) for the big-M formulation (BMF), standard hull 
reformulation (SHR), and compact hull reformulation (CHR) MILP models (Cafaro et al. 2016). 

 BMF SHR CHR 
Binary Variables 240 360 360 
Continuous Variables 481 44,161 22,381 
Constraints 15,603 89,163 67,383 
Nodes Explored 7,786 0 0 
Solution Time (s) 255 22 9 

4.2. Multiperiod Blending 

Blending operations are key in many industries, such as the downstream petrochemicals, food, and 
pharmaceuticals industries, where most product recipes contain one or more blending steps. Figure 10 
shows a sample configuration for a blending problem consisting of supply, blending, and demand tanks. 
From a mathematical programming standpoint, blending problems are difficult to solve due to bilinear 
terms that give rise to nonconvex MINLPs. Different approaches have been taken to improve the 
solvability of these models. In Lotero, et al. (2016), an alternate formulation with redundant constraints 
is used to tighten and improve the model relaxations. The authors also present a bilevel decomposition 
algorithm that outperforms state of the art general purpose solvers. In the decomposition algorithm, a 
master MILP is solved to fix binary variables in a subproblem containing a reduced MINLP. Figure 11 shows 
the proposed decomposition algorithm and Figure 12 compares the performance of the proposed 
algorithm with the SCIP solver. The decomposition approach finds the global optimum in a reasonable 
amount of time (approximately 20 minutes on average for the 45 instances studied), whereas the general 
purpose SCIP solver, times out with a large optimality gap. The instances studied were for 6 and 8 time 
periods and 1 to 10 stream specifications, resulting in models with 240-320 binary variables, 128-1,760 
bilinear terms, 552-1,312 continuous variables, and 984-3,616 constraints. 
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Figure 10. Sample schematic for blending problem (Lotero et al. 2016) 

 

Figure 11. Bilevel decomposition algorithm for multiperiod blending problem (Lotero et al. 2016) 

 

Figure 12. 43-instance average relative upper and lower bounds for decomposition algorithm and SCIP 
solver (Lotero et al. 2016) 
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4.3. Processing Plant Designs 

MINLP has been applied to the optimization of biological and chemical processing plants. One example is 
the optimization of a natural gas plant design presented in Caballero, et al. (2007). This work integrates 
GDP with the commercial process simulator HYSYS to find the optimal equipment types and utility 
selections for the plant. The reformulated MINLP is coupled to a HYSYS flowsheet and has 38 explicit 
nonlinear constraints, 5 linear constraints, 16 binary variables, 19 external variables (7 are flowsheet 
specifications), and 40 implicit blocks of equations (for cost, sizing, and correlations). The two algorithms 
applied are an LP-NLP Branch-and-bound and Outer approximation. The LP-NLP BB algorithm solves 23 LP 
nodes and 2 NLP subproblems, requiring 300 seconds to find the minimum cost design of $117 
thousand/year. The OA approach performs 4 major iterations and solves 3 NLP subproblems in 708 
seconds. The optimal design with equipment selections and utility specifications is shown in Figure 13. 

 

Figure 13. Optimal natural gas plant design (Caballero et al. 2007) 

Another example is the economic evaluation and design of a plant for bioethanol and biodiesel synthesis 
presented in Martín and Grossmann (2015). The work uses MINLP for superstructure optimization of a 
plant with several alternative biochemical pathways. The model includes two biomass pre-treatment 
alternatives, mainly ammonia fiber explosion (AFEX) and dilute acid pretreatment. Pre-treatment is 
followed by hydrolysis, from which the intermediate material can either be fermented and purified to 
produce biodiesel or bioethanol. An additional feature of the model is that it accounts for heat integration 
for the plant by performing a heat exchanger network synthesis simultaneously during the optimization. 
From the data used in the model, the production of biodiesel is determined to be economically infeasible. 
The model allows to perform a sensitivity study to understand the technological improvements required 
in terms of conversion ratios (greater than 50%) for biodiesel to become economically feasible. 

In another study by Martín and Grossmann (2011), superstructure optimization with MINLP is used to 
design a lignocellulosic ethanol process via gasification. The superstructure includes alternate 
technological pathways for the different stages of bioethanol production as depicted in Figure 14. The 
MINLP superstructure can be decomposed into 8 subproblems that can be solved as NLPs as shown in 
Figure 15. Within each subproblem, the following subsystems are linked sequentially: syngas composition 
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adjustment, sour gas removal, and ethanol purification. MINOS, KNITRO, and CONOPT3 (NLP solvers) are 
used to initialize the subsystems. Heat integration using the SYNHEAT heat integration software is then 
included on each of the subproblems to design an energetically optimal system. Multi-effect distillation is 
used to strengthen the heat integration in the final purification step. The optimal design results in a 
production cost of $1.04/gal of ethanol and involves high pressure gasification, steam reforming, PSA H2, 
PSA/MEA, catalytic reactor, and direct distillation. The cost is further reduced with H2 byproduct credits 
to $0.41/gal. These results show potential achieved through optimization when compared to the other 
cost evaluations in literature, which range from $1-2/gal. 

 

 

Figure 14. Technological pathways for bioethanol production (Martín and Grossmann 2011) 
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Figure 15. Superstructure subproblems for bioethanol production (Martín and Grossmann 2011) 

4.4. Facility Network Design 

Lara, et al. (2019) present a novel algorithm for planning and designing manufacturing networks that takes 
into account the tradeoffs between the decision to build centralized facilities versus the decision to build 
distributed facilities. The tradeoff is of economies of scale versus transportation costs, which play key 
roles in the profitability of manufacturing networks. The model used is a multi-period GDP extension of 
the Capacitated Multi-facility Weber Problem that is reformulated as a non-convex MINLP and solved with 
an accelerated bilevel decomposition algorithm that provides tight bounds and outperforms the 
commercial global optimizers BARON, SCIP, and ANTIGONE as shown in Figure 16. The model uses the 
locations of customers and suppliers and iteratively refines the grid partitioning of the two-dimensional 
geographical space to find the optimal facility locations and make the optimal facility type decisions to 
meet location specific customer demand and minimize costs.  

An application is presented in the design of a bioethanol supply chain with 10 suppliers, 10 markets, 10 
potential distributed facilities, and 2 potential centralized facilities. The model has 1,320 binary variables, 
1,545 continuous variables, and 3,457 constraints. Three iterations of the accelerated bilevel 
decomposition algorithm during 6 hours were required to solve the problem to a 2% optimality gap with 
a net present cost of approximately $2 billion. The proposed algorithm proved superior to BARON, which 
still had an optimality gap of 68% after 10 hours of run time. The optimal supply chain design is illustrated 
in Figure 17. The investment schedule includes building 10 distributed facilities in the first year and a 
single centralized facility in the second year.  
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Figure 16. Performance profiles for the standard and accelerated bilevel decomposition algorithm in 
Lara, et al. (2018, 2019) and the commercial solvers BARON, SCIP, and ANTIGONE 

 

Figure 17. Optimal supply chain network structure for the biomass case study 

4.5. Water Network Design 

Global optimization techniques are important in solving water network design problems that require 
water treatment facilities for water leaving processing facilities, a common requirement in many 
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industries. This problem is formulated in Karuppiah and Grossmann (2006) as a superstructure 
optimization with a nonconvex NLP or a nonconvex GDP in which all possible interconnections between 
water-using process equipment and treatment units are considered so as to account for reuse and recycle 
of water. Techniques such as convex envelopes, explicit tight variable bounds inferred from the 
superstructure, and novel bound strengthening cuts based on flow balances are used in a spatial branch 
and contract algorithm to solve this problem efficiently. The strengthening cuts also prove very 
advantageous when used with BARON, solving problems that were virtually unsolvable by BARON. As an 
example, in one of the instances studied, no solution was found after more than 10 hours of solution time. 
When the strengthening cut was added to BARON, the problem solved in 1.06 seconds. 

The work by Karuppiah and Grossmann (2006) is continued in that of Ahmetović and Grossmann (2011). 
An industrial water network case study is depicted with the superstructure in Figure 18. The notation in 
this superstructure is as follows, nodes with PU are processing units (5 in total), nodes with TU are 
treatment units (3 in total), red triangle nodes are mixers, and blue triangle nodes are splitters. The study 
quantifies the tradeoff between investment cost and the network complexity. A pareto plot of this 
tradeoff is shown in Figure 19. For all the points in this front, the water consumption was 40 t/h, 
representing a reduction of more than 85% in the standard water consumption at the plant. The simplest 
network, with 13 removable connections is depicted in Figure 20. The model for this instance has 72 binary 
variables, 233 continuous variables, and 251 constraints. Solution time in BARON is under 200 seconds 
with a 1% optimality gap stopping criteria. 

 

Figure 18. Sample superstructure for facility water network (Ahmetović et al. 2017) 
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Figure 19. Pareto-optimal front for the water network design case study (Ahmetović and Grossmann 
2011) 

 

Figure 20. Simplest configuration on the pareto front for the optimal water network design (Ahmetović 
and Grossmann 2011) 

Other works have also shown that these design problems can be solved with increased levels of detail in 
the process models used. Yang, et al. (2014) introduce shortcut models for the treatment units rather 
than using simple fixed contaminant removal models. This approach makes optimization results more 
realistic and applicable. The shortcut models used account for mass transfer of contaminants in the 
treatment units. This allows the optimization models to represent the connection between treatment 
costs and removal efficiencies, providing more realistic solutions. Other extensions include the use of 
nonlinear cost functions for operating and investment costs of treatment units, and addressing 
uncertainty in the contaminant loads present via worst-case, best-case, and nominal scenarios. The 
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increased complexity of the models is mitigated by using Lagrangean decomposition strategies to solve 
the problems to global optimality. 

4.6. Electricity Market Integration 

Cryogenic energy storage (CES) technology makes it possible for chemical industries to integrate their 
processes with the energy market. In a work done by Zhang, et al. (2015), an optimization model is 
proposed to integrate the operations of an air separation unit (ASU) with the energy market via CES. The 
process, which is illustrated in Figure 21, allows for an ASU to produce surplus liquid nitrogen and oxygen 
to create a CES inventory that can then be used for one or more of the following alternatives, 1) to 
generate electricity with a gas turbine for internal use, 2) to sell electricity at the spot price on the energy 
market, or 3) to commit electricity on the reserve market. High electricity spot prices make options 1 and 
2 attractive, whereas the fact that revenue from the operating reserve market is created regardless of 
whether the electricity is actually sold or how much of it is sold makes option 3 attractive. However, option 
3 introduces uncertainty that must be properly addressed to avoid severe penalties for not providing the 
reserve capacity immediately upon request. The uncertainty present here is three-fold: amount, time, and 
duration of the reserve demand. To properly plan for such uncertainty and capture the benefits of 
participating in the operating reserve market, adjustable affine robust optimization (AARO) is used on an 
MILP scheduling model for the integrated ASU/CES system. The model has 2.5 thousand binary variables, 
55 thousand continuous variables, and 53 thousand constraints. Solution time with CPLEX 12.5 is 10 
minutes with a 1% optimality gap stopping criteria.  

The proposed ASU/CES system is tested under varying degrees of conservatism in regard to the operating 
reserve demand. Even with the highest level of conservatism (assuming that operating reserve can be 
requested every day), a 5% cost reduction in utilities, especially during peak times, is achieved under the 
proposed system. For moderate levels of conservatism, the savings are on the order of 9%. Figure 22 
shows the optimal operating schedule for the most conservative case. Another benefit of the integrated 
ASU/CES system is that of increased plant operation as shown in Figure 23.  
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Figure 21. Proposed ASU/CSE system for energy market integration (Zhang et al. 2015) 

 

Figure 22. Optimal operating schedule for conservative reserve demand scenario (Zhang et al. 2015) 

 

Figure 23. Power consumption and electricity price profiles for the design with no CES capabilities (top) 
and the design with CES (bottom) (Zhang et al. 2015) 

4.7. Reliable Plant Design 

In the chemical and manufacturing industries, plant reliability is essential for maintaining competitivity 
and profitability. However, plant synthesis and optimization approaches often ignore the need for 
redundant equipment and probabilities of equipment failure. The work by Ye, et al. (2018) proposes a 
model for designing reliable plants that are serial in structure. Options within the superstructure include 
installation of prioritized redundant equipment with identical characteristics and redundant equipment 
with varying capacities or features. A geometric distribution is used to model stage availability. Equipment 
costs in the model include both installation and repair costs. Two formulations are presented with 
different objectives: 1) profit maximization and 2) plant availability maximization. An advantage of the 
second formulation is that it can be reformulated as a convex MINLP, whereas the profit maximization 
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formulation is nonconvex. The availability maximization model uses an 𝜖-constraint to limit equipment 
costs. The model facilitates assessing the tradeoffs between plant availability and cost as shown in Figure 
24. For designs below the pareto curve, it is possible to simultaneously improve availability and reduce 
cost up until a point on the pareto curve is attained. However, beyond that point, it is not possible to 
simultaneously improve both objectives. An improvement in one objective, requires a worsening in the 
other. The only way to improve availability is to increase the upper bound on the equipment cost. 

  

Figure 24. Sample pareto plot of system availability vs total equipment cost for a system with four 
stages and three potential redundant units per stage (Ye et al. 2018) 

Two case studies for the reliable design of a methanol synthesis plant (Türkay and Grossmann 1996) and 
a toluene hydrodealkylation plant (Kocis and Grossmann 1989) are conducted. The methanol synthesis 
reliability model consists of 72 binary variables, 451 continuous variables, and 408 constraints. Solution 
time is 0.45 seconds with DICOPT (CONOPT 3.16D and CPLEX 12.6) to attain an optimal profit of $3.40 
million/yr and an availability of 97%. This is an improvement in the optimal design presented in the 
literature, which ignores potential equipment failures, resulting in a profit of $3.35 million/yr (1.5% lower) 
and an availability of 92%. The hydrodealkylation model is larger with 400 million design alternatives, 108 
binary variables, 955 continuous variables, and 893 constraints, yielding an optimal profit of $3.97 
million/yr in 10 seconds of solution time. This solution has a profit that is 4% higher than a naïve design 
that ignores plant reliability. Availability is increased from 90% to 94% by considering equipment 
redundancy. The optimal reliable designs for the methanol and hydrodealkylation plants are given in 
Figure 25 and Figure 26. Reliability optimization allows for increases in both plant reliability and profit in 
the order of a few percentage points since it mitigates losses due to plant failures. 
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Figure 25. Optimal design for a methanol synthesis plant with redundant units (Türkay and Grossmann 
1996; Ye et al. 2018) 

 

Figure 26. Optimal design for a hydrodealkylation plant with redundant units (Kocis and Grossmann 
1989; Ye et al. 2018) 

4.8. Resilient Supply Chain Design 

Expanding the scope of reliability to the supply chain level, reliability of supply chains in view of 
disturbances is critical to effective supply chain management. The motivating problem in Garcia-Herreros, 
et al. (2014) is that of a supply chain with one manufacturing facility that produces multiple commodities 
that are sent to multiple distribution centers to satisfy demands at different customer locations. Potential 
distribution center locations are preselected. Disturbances in the system occur when disruptions occur at 
the distribution centers. There is a fixed probability of disruption for each distribution. The key decisions 
are whether to establish a distribution center at a preselected location and with what capacity to install 
it. A two-stage stochastic programming model is proposed where the first stage decisions are the 
distribution center selection and capacity assignments, and the second stage decisions are the assignment 
of commodity specific customer demands to each available distribution center under each disruption 
scenario. The model is solved with a strengthened multi-cut Benders decomposition (Birge and Louveaux 
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1988). Additionally, several techniques are applied to improve the model’s solvability. The four main 
techniques are as follows, 

1. Indistinguishability: indistinguishable scenarios are identified as those with disruptions at 
locations that were not selected. Only one instance is solved for each indistinguishable set. 

2. Parallelization: Benders subproblems are parallelized. 
3. Relevant scenario selection: scenarios with very low probabilities of occurring are set aside to 

allow the model to be tractable despite the exponential increase in scenarios as the problem size 
increases. 

4. Bounding excluded scenarios: a procedure for providing bounds on the full space model that 
accounts for the excluded scenarios after the optimization completes is used. 

 

Figure 27. Sample multi-commodity distribution system with 1 plant, 3 distribution centers, and 6 
customers (Garcia-Herreros et al. 2014) 

The model is applied to an industrial supply chain design problem with 29 candidate distribution centers 
with disruption probabilities ranging from 0.5% to 3%, 110 customers, and 61 commodities. The total 
number of scenarios that would need to be considered is 27r ≈ 540	𝑚𝑖𝑙𝑙𝑖𝑜𝑛. However, using the 
techniques described previously the problem can be solved in under 5 hours for a reduced problem set 
with at most 1 disruption at a time and 30 scenarios that covers 85% of the total probability of scenarios. 
The model size for this instance is of 29 binary variables, 250 thousand continuous variables, and 300 
thousand constraints. Increasing the coverage to 98.5% of the total probability of scenarios (436 scenarios 
in the set), by allowing up to 2 simultaneous disruptions, increases the run time to around 5 days with less 
than a 1% optimality gap. The model size here is 29 binary variables, 3.6 million continuous variables, and 
4.4. million constraints. In this case, the scenario set is within the full space bounds, which is not the case 
in the deterministic problem nor in the 30-scenario set problem. 

5. Conclusions 

An overview of continuous and discrete optimization models has been presented with successful 
applications of these models in industrial settings. The industrial applications include Oil & Gas upstream 
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operations, material blending facilities, natural gas plant design, biofuels synthesis, supply chain facility 
network design, water network design, industrial electricity market integration, reliable plant design, and 
supply chain design. Strategies for improving model tractability have been presented, including model 
linearization, decomposition methods, scenario subset selection, and strengthening cuts, among others. 
Continuous and discrete optimization in industrial applications remains a rich and thriving field of research 
with new problems being engaged every year. Algorithmic improvements over the years have made it 
possible to solve larger models. Some key challenges that are being and need to be tackled are: 1) finding 
improved relaxations for global optimization, 2) improving the computational performance of large-scale 
nonconvex MINLP/GDP and stochastic programming, 3) developing algorithms for mixed-integer dynamic 
optimization that enable integration amongst the three levels of the decision-making pyramid, 4) 
optimizing entire supply chains, and 5) extending the work to include sustainable system design and 
operation. Further developments in these areas will greatly improve the quality of decisions that need to 
be made in the processing industries. 
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