
1

Extensions to Generalized Disjunctive Programming: Hierarchical Structures and First-order
Logic

Hector D. Perez, Ignacio E. Grossmann*
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA

Abstract

Optimization problems with discrete-continuous decisions are traditionally modeled in algebraic form via
(non)linear mixed-integer programming. A more systematic approach to modeling such systems is to use
Generalized Disjunctive Programming (GDP), which extends the Disjunctive Programming paradigm
proposed by Egon Balas to allow modeling systems from a logic-based level of abstraction that captures
the fundamental rules governing such systems via algebraic constraints and logic. Although GDP provides
a more general way of modeling systems, it warrants further generalization to encompass systems
presenting a hierarchical structure. This work extends the GDP literature to address two major alternatives
for modeling and solving systems with nested (hierarchical) disjunctions: explicit nested disjunctions and
equivalent single-level disjunctions. We also provide theoretical proofs on the relaxation tightness of such
alternatives, showing that explicitly modeling nested disjunctions is superior to the traditional approach
discussed in literature for dealing with nested disjunctions.

Keywords: Generalized disjunctive programming, Hierarchical systems, Discrete-continuous
optimization.

1. Introduction

Discrete-continuous optimization is one of the main modeling approaches to address design, planning,
and scheduling problems in Process Systems Engineering (PSE) (Grossmann, 2012). Raman and Grossmann
(1994) present a powerful modeling paradigm that extends the work by Balas (1985) on disjunctive
programming. This new paradigm, called Generalized Disjunctive Programming (GDP), has been further
developed by others in the PSE community over the years to account for additional features, such as
nonlinearities and nonconvexities in the problems encountered (Grossmann & Trespalacios, 2013). GDP
relies on the intersection of disjunctions of algebraic constraints (equality and inequality constraints with
continuous variables) to model the feasible space. Boolean variables are used as indicator variables for
each disjunct (set of algebraic constraints), enforcing the constraints in the disjunct when True. Logic
constraints are also included to describe the relationships between the Boolean indicator variables via
propositional logic.

GDP is a valuable modeling abstraction for optimization problems for two main reasons. Firstly, modeling
systems from the basis of their underlying logical relationships aids the development and formulation of
optimization models by making them easier to interpret, reducing the likelihood of modeling errors due
to logical fallacies. Secondly, GDP makes available a broad array of solution methods, ranging from mixed-
integer reformulations to logic-based search methods (Chen et al., 2022).

The present work extends the GDP theory to allow modeling hierarchical systems, which are commonly
encountered in PSE, and more particularly in Enterprise-Wide Optimization (EWO) (Grossmann, 2012; van

2

den Heever & Grossmann, 1999), and flowsheet superstructure optimization (Türkay & Grossmann,
1996a). Hierarchical systems involve multiple levels of decision making, which can be concisely modelled
via nested disjunctions. However, traditional GDP does not consider such formulations. Existing GDP
literature suggests reformulating nested disjunctions into equivalent single-level disjunctions (Vecchietti
& Grossmann, 2000). Such an approach requires introducing additional Boolean variables and logical
propositions. Industrial examples of this approach in scheduling include that of Castro et al. (2014) and
Castro (2017). An alternate approach is used in the work by van den Heever and Grossmann (1999), in
which a direct or inside-out reformulation to MI(N)LP is performed. We formalize these two approaches
and provide theoretical proofs on the tightness of their continuous relaxations. The model tightness and
computational performance of the different approaches are compared. A series of examples are used to
show the modeling and computational advantages obtained by explicitly modeling nested disjunctions.

The paper is organized as follows, Section 2 provides a background on the GDP modeling paradigm.
Section 3 extends this formulation to account for hierarchical systems, and discusses the alternatives for
modeling such systems. The equivalent mixed-integer programming reformulations for these alternatives
are presented, along with two theorems on the tightness of the resulting models. Section 4 provides
several numerical use cases for hierarchical GDPs. Section 5 presents concluding remarks.

2. Background: Generalized Disjunctive Programming (GDP)

The classical GDP formulation is given below (GDP), where 𝑥 is the set of continuous variables (bounded
between 𝑥!" and 𝑥#"), 𝑓(𝑥) is the objective function, 𝑟(𝑥) ≤ 0 is the set of global constraints, 𝑔$%(𝑥) ≤
0 is the set of constraints applied when the indicator Boolean 𝑌$% is True for disjunct 𝑗 in disjunction 𝑖.
𝑓(𝑥), 𝑟(𝑥), and 𝑔$%(𝑥) are assumed to be continuous and differentiable over 𝑥. Ω(𝑌) defines the set of
logic constraints, which are described via propositional logic on a subset of Boolean variables. These
constraints describe the relations between the Boolean variables via clauses that contain with one or
more of the following logic operators: AND (∧), OR (∨), implication (⇒), equivalence (⇔), and negation
(¬).	The set of logic constraints may also include cardinality clauses of the form choose exactly (or at least
or at most) 𝑚 Boolean variables from a subset of Booleans to be True (Yan & Hooker, 1999). We leverage
predicate logic to extend the notation used by Yan and Hooker for cardinality clauses by defining the
following predicates: 𝚵(𝑚, 𝑌&	∀𝑠 ∈ 𝑆) enforces that exactly 𝑚 of the Boolean variables 𝑌& are True,
𝚲(𝑚, 𝑌&	∀𝑠 ∈ 𝑆) enforces that at least 𝑚 of the variables are True, and 𝚪(𝑚, 𝑌&	∀𝑠 ∈ 𝑆) enforces that at
most 𝑚 are True.

min 𝑧 = 𝑓(𝑥) (GDP)
𝑠. 𝑡. 𝑟(𝑥) ≤ 0

 CD
𝑌$%

𝑔$%(𝑥) ≤ 0	E
%∈(!

 ∀𝑖 ∈ 𝐼

 𝚵G1, 𝑌$% 	∀𝑗 ∈ 𝐽$J ∀𝑖 ∈ 𝐼
 Ω(𝑌)
 𝑥!" ≤ 𝑥 ≤ 𝑥#"
 𝑥 ∈ ℝ)
 𝑌$% ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$

3

GDP models typically include a cardinality clause to enforce that exactly 1 disjunct in each disjunction is
selected, i.e., 𝚵G1, 𝑌$% 	∀𝑗 ∈ 𝐽$J	∀𝑖 ∈ 𝐼. The GDP literature often uses the exclusive OR (XOR) operator, ∨,
to define this constraint. However, such an operator is only correct for proper disjunctions (those with
non-overlapping disjuncts) and poses issues in GDP when there are overlapping disjuncts (improper
disjuncts). This is because XOR is an n-ary operator that returns True when an odd number of propositions
in the operator are True. This can create problems when transforming the GDP into a MIP via the Hull
reformulation because an odd number of disaggregated variables will be active (non-zero) for any feasible
point at the intersection of an odd number of disjuncts. As a result, the projection of the disaggregated
variables onto the original space will result in a value that is an odd integer multiple of the disaggregated
variable values, which is incorrect and may exclude valid solutions by making them infeasible (see
Appendix A). Thus, to avoid these issues, we use the predicate logic notation, 𝚵(1, 𝑌), here instead.

To illustrate the elements of a GDP model, consider the model below (GDP-example). The projection of
this model on the 𝑥*, 𝑥+-plane is given in Figure 2.1, where the quadratic objective function is shown in
the colored contours, the global constraints are given by the region under the black curves (one linear and
the other nonlinear), and the disjunction constraint is given by the three colored rectangles. The feasible
space of such a system is given by the disjoint regions in the orange, blue, and green rectangles that satisfy
the global constraints.

min 𝑧 =
1
2
(𝑥* − 2)+ +

3
2
(𝑥+ − 3)+

𝑠. 𝑡.
1
10
𝑥*+ + 𝑥+ ≤ 3

 2𝑥* + 𝑥+ ≤ 10

 X
𝑌*

0 ≤ 𝑥* ≤ 1
2 ≤ 𝑥+ ≤ 3

YCZ

𝑌+
3
2
≤ 𝑥* ≤ 1

0 ≤ 𝑥+ ≤ 1

[C

⎣
⎢
⎢
⎢
⎡

𝑌,
9
4 ≤ 𝑥* ≤

15
4

1 ≤ 𝑥+ ≤
11
5 ⎦
⎥
⎥
⎥
⎤

 𝚵(1, 𝑌$ 	∀𝑖 ∈ {1,2,3})
 0 ≤ 𝑥*, 𝑥+ ≤ 5
 𝑥*, 𝑥+ ∈ ℝ*
 𝑌$ ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ {1,2,3}

(GDP-example)

Ignacio Grossmann

4

Figure 2.1. Sample GDP graphical representation for GDP-example model.

One of the main advantages of modeling discrete-continuous problems using GDP is the collection of
methods that are available for optimizing such systems. These include, 1) reformulating to mixed-integer
(non)linear models (MI(N)LP) via either Big-M (Trespalacios & Grossmann, 2015) or Hull reformulations
(Agarwal, 2015; Bernal & Grossmann, 2021; Furman et al., 2020; Grossmann & Lee, 2003), 2) logic-based
decomposition methods such as Logic-based Outer Approximation (LOA) (Türkay & Grossmann, 1996b),
3) disjunctive branch-and-bound (Lee & Grossmann, 2000), 4) basic steps (Ruiz & Grossmann, 2012), and
5) hybrid cutting planes (Sawaya & Grossmann, 2005; Trespalacios & Grossmann, 2016). The reader is
referred to the above references for a detailed understanding of each of these solution methods.

3. Extended formulation for multi-level hierarchies

Decision hierarchies are present in most decision-making applications. These include for instance supply
chain and enterprise-wide optimization, where different levels of decision-making exist depending on the
time scales considered: planning (months/years), scheduling (hours/days), and control
(seconds/minutes). According to Brunaud and Grossmann (2017), integrating different decision levels
enables better coordination and communication between functional areas, which increases agility in
response to disturbances and makes it possible to attain benefits for the company that are not possible
with a siloed approach. Figure 3.1 illustrates the notion of the synergistic benefits that can be obtained
by an integrated approach, rather than siloed or aggregated approaches. Accounting for the relationships
between different levels of decision-making can aid in finding the true optimum, which differs from that
of the aggregated model (i.e., the model obtained by summing the siloed costs). Integrated approaches
to hierarchical decision-making systems have been addressed in the literature. Some examples of these
integrations are the integration between design and planning (operational and expansion) (van den
Heever & Grossmann, 1999), planning and scheduling (Maravelias & Sung, 2009), and scheduling and
control (Muñoz et al., 2011; Sokoler et al., 2017). The following subsections formalize how GDP can be
used to model hierarchical systems, along with theoretical proofs on the differences between the
approaches.

5

Figure 3.1. Illustartion of the different optimas for siloed, aggregated, and integrated approaches.

3.1. Hierarchical GDP

We propose extending the GDP paradigm to include multi-level decisions by means of nested disjunctions.
Although the notion of nesting disjunctions to represent hierarchical decisions is not new, the limitations
in the traditional GDP notation have made it difficult to exploit the benefits of using such structures. One
of the first references to nested disjunctions is found in the work by Vecchietti and Grossmann (2000),
which describes the transformations required to conform to the current GDP notation. It is interesting to
note that several works have relied on the nested GDP representation due to its compact representation.
In one of these (Rodriguez & Vecchietti, 2009), the following statement is made,

“Although the expressiveness of the hierarchical decisions by means of nested disjunctions, they
cannot be implemented directly. These disjunctions must be transformed into GDP form. For that
purpose, the disjunctions…must be rewritten as single disjunctions, and some additional constraints
must also be included in the model.”

Therefore, from a model development point of view, the use of disjunction nesting is shown to add value.
However, its implementation has often required breaking the explicit hierarchical structure. An exception
is the work by van den Heever and Grossmann (1999), which does not transform the nested GDP into a
logically equivalent single-level GDP, but rather suggests performing the Hull reformulation on the inner
disjunction and then reformulating the outer disjunction. We now build upon this concept to formally
extend the GDP notation for hierarchical systems that generalizes to multi-disjunct disjunctions, rather
than the on/off disjunctions used by van den Heever and Grossmann (1999). We also provide theoretical
proofs on the advantages of modeling system hierarchies via nested disjunctions, and highlight the
computational performance gains obtained using this explicit notation.

The proposed extension to the classical GDP notation for hierarchical systems is given below for a 2-Level
Nested GDP (2L-GDP), where the upper-level decisions, 𝑌, enforce the constraints 𝑔(𝑥) ≤ 0 and the

6

nested decisions, 𝑊, which have constraints ℎ(𝑥) ≤ 0. Here the cardinality clause of selecting exactly one
disjunct from the upper-level decisions, 𝑌, is expressed explicitly, along with a new set of cardinality rules
that enforce selecting exactly one of the lower-level decisions, 𝑊, if and only if the upper-level decision
has been selected, and selecting no lower-level decisions when the upper-level decision is not selected.
This constraint is expressed as the conjunction of two cardinality rules: g𝑌$% ⇒ 𝚵G1,𝑊$%-. 	∀𝑙 ∈ 𝐿$%-Ji ∧
g¬𝑌$% ⇒ 𝚵G0,𝑊$%-. 	∀𝑙 ∈ 𝐿$%-Ji	∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$%. In the GDP literature, this constraint has been
traditionally written as 𝑌$% ⇔	∨.∈!!"# 𝑊$%-. 		∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$%. However, such a logic proposition is
incomplete because it would allow the following to occur: 𝑌$% = 𝐹𝑎𝑙𝑠𝑒 and 𝑊$%-. = 𝑇𝑟𝑢𝑒 for more than
1 index 𝑙 ∈ 𝐿$%- (i.e., False ⇔ (True ∨ True) is valid because the exclusive OR makes the right-hand side
False). If all disjunctions are proper, then this will not occur. However, since there can be a disjunction
with overlapping disjuncts, the cardinality rule 𝚪G1,𝑊$%-. 	∀𝑙 ∈ 𝐿$%-J	∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 	𝐾$% would need to
be added to such a system to ensure that no more than 1 literal, 𝑊$%-., is set to True. A more compact
form would be to use the predicate constraint, 𝚵G𝟏{0123}G𝑌$%J,𝑊$%-. 	∀𝑙 ∈ 𝐿$%-J, where 𝟏{0123}(⋅) is the
indicator function that returns 1 when the input is True and 0 otherwise. In other words, the indicator
function maps a Boolean variable to its binary counterpart. For simplicity, we make a slight abuse of
notation by dropping the indicator function and using the expression 𝚵G𝑌$% ,𝑊$%-. 	∀𝑙 ∈ 𝐿$%-J instead.

min 𝑧 = 𝑓(𝑥) (2L-GDP)
𝑠. 𝑡. 𝑟(𝑥) ≤ 0

 C

⎣
⎢
⎢
⎢
⎡

𝑌$%
𝑔$%(𝑥) ≤ 0	

C D
𝑊$%-.

ℎ$%-.(𝑥) ≤ 0E
.∈!!"#

		∀𝑘 ∈ 𝐾$%
⎦
⎥
⎥
⎥
⎤

%∈(!

 ∀𝑖 ∈ 𝐼

 𝚵G1, 𝑌$% 	∀𝑗 ∈ 𝐽$J ∀𝑖 ∈ 𝐼
 𝚵G𝑌$% ,𝑊$%-. 	∀𝑙 ∈ 𝐿$%-J ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$%
 Ω(𝑌,𝑊)
 𝑥!" ≤ 𝑥 ≤ 𝑥#"
 𝑥 ∈ ℝ)
 𝑌$% ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$
 𝑊$%-. ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%-

This model can be generalized to a Multi-Level Nested GDP (ML-GDP) with 𝑛 levels, where the superscript
on the Boolean variables, constraints, and sets indicates the level 𝑘 ∈ {1,… , 𝑛} of the hierarchy that these
belong to.

min 𝑧 = 𝑓(𝑥) (ML-GDP)

𝑠. 𝑡. 𝑟(𝑥) ≤ 0

Ignacio Grossmann

Ignacio Grossmann

7

 C

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑌$$%$

(*)

𝑔$$%$
(*) (𝑥) ≤ 0	

C

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑌$$%$$%%%

(+)

𝑔$$%$$%%%
(+) (𝑥) ≤ 0

…

⎣
⎢
⎢
⎡

⋮

C X
𝑌$$%$…$&%&
())

𝑔$$%$…$&%&
()) (𝑥) ≤ 0

Y		∀𝑖) ∈ 𝐼$$%$…$&'$%&'$
())

%&∈(!$"$…!&
(&) ⎦

⎥
⎥
⎤

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

%%∈(!$"$!%
(%)

		∀𝑖+ ∈ 𝐼$$%$
(+)

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

	
%$∈(!$

($)

∀𝑖* ∈ 𝐼(*)

 𝚵G1, 𝑌$$%$
* 	∀𝑗* ∈ 𝐽$$J ∀𝑖* ∈ 𝐼(*)

𝚵 q𝑌$$%$…$#'$%#'$

(-8*) , 𝑌$$%$…$#%#
(-) 	∀𝑗- ∈ 𝐽$$%$…$#

(-) r

∀𝑘 ∈ {2,… , 𝑛}, 𝑖* ∈ 𝐼(*), 𝑗* ∈ 𝐽$$
(*), … , 𝑖- ∈ 𝐼$$%$…$#'$%#'$

(-) , 𝑗- ∈ 𝐽$$%$…$#
(-)

 ΩG𝑌(*), … , 𝑌())J
 𝑥!" ≤ 𝑥 ≤ 𝑥#"
 𝑥 ∈ ℝ)

𝑌$$%$…$#%#
(-) ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}

∀𝑘 ∈ {1,… , 𝑛}, 𝑖* ∈ 𝐼(*), 𝑗* ∈ 𝐽$$
(*), … , 𝑖- ∈ 𝐼$$%$…$#'$%#'$

(-) , 𝑗- ∈ 𝐽$$%$…$#
(-)

It should be noted that nested disjunctions should generally not include negations of Boolean variables
(see Appendix B).

3.2. Equivalent Single-level GDP

Previous references to GDP with nested disjunctions in literature have proposed transforming the 2L-GDP
model into the Equivalent Single-Level GDP (2E-GDP) given below (Grossmann & Trespalacios, 2013;
Vecchietti & Grossmann, 2000). Here, the nested disjunction is extracted and a dummy or “slack” disjunct
is added to preserve feasibility. Thus, if none of the nested disjuncts is selected, the slack disjunct is
selected, which contains the entire feasible set for 𝑥. The exclusive cardinality rule on the inner Boolean
variables, 𝑊, is also augmented to include the slack Boolean variable, 𝑊$%-9. This slack variable is,
however, not included in the linking logic constraint for the upper and lower-level decisions. This ensures
that the nested decisions are only selected if their master Boolean is True. This method for transforming
a nested disjunction can also be applied to the multi-level system ML-GDP.

min 𝑧 = 𝑓(𝑥) (2E-GDP)
𝑠. 𝑡. 𝑟(𝑥) ≤ 0

 CD
𝑌$%

𝑔$%(𝑥) ≤ 0	E
%∈(!

 ∀𝑖 ∈ 𝐼

8

 sC D
𝑊$%-.

ℎ$%-.(𝑥) ≤ 0E
.∈!!"#

tCu
𝑊$%-9

𝑥!" ≤ 𝑥 ≤ 𝑥#"
v ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$%

 𝚵G1, 𝑌$% 	∀𝑗 ∈ 𝐽$J ∀𝑖 ∈ 𝐼

 𝚵G1,𝑊$%-. 	∀𝑙 ∈ 𝐿$%- ∪ {0}J ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$%

 𝚵G𝑌$% ,𝑊$%-. 	∀𝑙 ∈ 𝐿$%-J ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$%

 Ω(𝑌,𝑊)
 𝑥!" ≤ 𝑥 ≤ 𝑥#"
 𝑥 ∈ ℝ)
 𝑌$% ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$
 𝑊$%-. ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%-

Although the above formulation, allows modeling hierarchical systems in the standard GDP notation, it
has two major drawbacks: 1) the explicit hierarchical structure is lost, and 2) although the Equivalent
Single-Level GDP model is logically equivalent to the Nested GDP model, it requires introducing additional
disjuncts and Boolean variables. Introducing “slack” disjuncts and “slack” Boolean variables results in
models whose continuous relaxations are less tight, as described in the next section.

3.3. Tightness of Continuous Relaxations

The following two theorems and their associated proofs establish the advantages of modeling multi-level
decisions problems via Nested GDP, rather than the Equivalent Single-Level GDP approach. The
advantages are shown by discussing the tightness of the continuous relaxations of both the Hull
reformulation (HR) and Big-M reformulation (BM) of these two GDP models.

Theorem 1. Let rML-GDP-HR denote the continuous relaxation of the mixed-integer program (MIP)
obtained from a Multi-Level Nested GDP via the Hull reformulation, and let rME-GDP-HR denote the
continuous relaxation of the MIP obtained from its respective Equivalent Single-Level GDP representation
via the Hull reformulation. The feasible space of the former is contained within the feasible space of the
latter, namely, rML-GDP-HR ⊆ rME-GDP-HR.

Proof. Without loss of generality, the above theorem is proved by establishing that the Hull reformulation
of the 2-Level Nested GDP model (r2L-GDP-HR) is contained in the Hull reformulation of its Equivalent
Single-Level GDP representation (r2E-GDP-HR):

r2L-GDP-HR ⊆ r2E-GDP-HR

The Hull reformulation for 2L-GDP is given below, where the continuous variable 𝑥 is disaggregated in
each disjunct (𝑥 is disaggregated into 𝑢$% for each upper-level disjunct, and 𝑢$% is disaggregated into 𝑣$%-.
for each lower-level disjunct) and the Boolean variables are replaced by their corresponding binary
variable (𝑌 becomes 𝑦, and 𝑊 becomes 𝑤). 𝐴 and 𝐵 are matrices of scalars, and 𝑐 is a vector of scalars.
These are used to map the logic constraints into their algebraic counterparts obtained after converting
the logic propositions into conjunctive normal form (CNF) and transforming each clause into its equivalent
algebraic constraint (Williams, 1985). Note that the disaggregated variables are bounded between

Ignacio Grossmann

9

min(0, 𝑥!") and max(0, 𝑥#") instead of the traditional bounds of 0 and 𝑥#" because we do not assume
that 𝑥 is nonnegative. As a result, the min and max operators in these bounds are required to guarantee
that the domain of the disaggregated variables contains the origin (0). This is necessary to ensure that the
disaggregation constraints remain feasible when the disaggregated variables are forced to 0 for the
disjuncts that are not selected.

min 𝑧 = 𝑓(𝑥) (2L-GDP-HR)

𝑠. 𝑡. 𝑟(𝑥) ≤ 0

Va
ria

bl
e

D i
sa

gg
re

ga
tio

n

�𝑢$%
%∈(!

= 𝑥 ∀𝑖 ∈ 𝐼

� 𝑣$%-.
.∈!!"#

= 𝑢$% ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$% , 𝐿$%- ≠ ∅

𝑥!" ⋅ 𝑦$% ≤ 𝑢$% ≤ 𝑥#" ⋅ 𝑦$% ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$

𝑥!" ⋅ 𝑤$%-. ≤ 𝑣$%-. ≤ 𝑥#" ⋅ 𝑤$%-. ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%-

Pe
rs

pe
ct

iv
e

Fu
nc

tio
ns

𝑦$% ⋅ 𝑔$% �
𝑢$%
𝑦$%
� ≤ 0 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$

𝑤$%-. ⋅ ℎ$%-. �
𝑣$%-.
𝑤$%-.

� ≤ 0 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%-

Ca
rd

in
al

ity

Ru
le

s

�𝑦$%
%∈(!

= 1 ∀𝑖 ∈ 𝐼

𝑦$% = � 𝑤$%-.
.∈!!"#

 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$% , 𝐿$%- ≠ ∅

O
th

er
 L

og
ic

Co

ns
tr

ai
nt

s

𝐴𝑦 + 𝐵𝑤 ≤ 𝑐

Va
ria

bl
e

Do
m

ai
ns

𝑥!" ≤ 𝑥 ≤ 𝑥#"
min(0, 𝑥!") ≤ 𝑢$% ≤ max(0, 𝑥#") ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$
min(0, 𝑥!") ≤ 𝑣$%-. ≤ max(0, 𝑥#") ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%-
𝑥 ∈ ℝ)
𝑢$% ∈ ℝ) ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$
𝑣$%-. ∈ ℝ) ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%-
𝑦$% ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$
𝑤$%-. ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%-

Ignacio Grossmann

Ignacio Grossmann

Ignacio Grossmann

Ignacio Grossmann

Ignacio Grossmann

Ignacio Grossmann

10

The Hull reformulation for 2E-GDP is given below, where 𝑥 is disaggregated into 𝑢$% for the upper-level
disjunctions, and is also disaggregated into 𝑣$%-. for the lower-level disjuncts, which are extracted when
transforming the model into an Equivalent Single-Level GDP.

min 𝑧 = 𝑓(𝑥) (2E-GDP-HR)
𝑠. 𝑡. 𝑟(𝑥) ≤ 0

Va
ria

bl
e

D i
sa

gg
re

ga
tio

n

�𝑢$%
%∈(!

= 𝑥 ∀𝑖 ∈ 𝐼

𝑣$%-9 + � 𝑣$%-.
.∈!!"#

= 𝑥 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$% , 𝐿$%- ≠ ∅

𝑥!" ⋅ 𝑦$% ≤ 𝑢$% ≤ 𝑥#" ⋅ 𝑦$% ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$

𝑥!" ⋅ 𝑤$%-. ≤ 𝑣$%-. ≤ 𝑥#" ⋅ 𝑤$%-. ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%- ∪ {0}, 𝐿$%- ≠ ∅

Pe
rs

pe
ct

iv
e

Fu
nc

tio
ns

𝑦$% ⋅ 𝑔$% �
𝑢$%
𝑦$%
� ≤ 0 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$

𝑤$%-. ⋅ ℎ$%-. �
𝑣$%-.
𝑤$%-.

� ≤ 0 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%-

Ca
rd

in
al

ity

Ru
le

s

�𝑦$%
%∈(!

= 1 ∀𝑖 ∈ 𝐼

𝑦$% = � 𝑤$%-.
.∈!!"#

 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$% , 𝐿$%- ≠ ∅

𝑤$%-9 + � 𝑤$%-.
.∈!!"#

= 1 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$% , 𝐿$%- ≠ ∅

O
th

er
 L

og
ic

Co

ns
tr

ai
nt

s

𝐴𝑦 + 𝐵𝑤 ≤ 𝑐

Va
ria

bl
e

Do
m

ai
ns

𝑥!" ≤ 𝑥 ≤ 𝑥#"
min(0, 𝑥!") ≤ 𝑢$% ≤ max(0, 𝑥#") ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$
min(0, 𝑥!") ≤ 𝑣$%-. ≤ max(0, 𝑥#") ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%- ∪ {0}, 𝐿$%- ≠ ∅
𝑥 ∈ ℝ)
𝑢$% ∈ ℝ) ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$
𝑣$%-. ∈ ℝ) ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%- ∪ {0}, 𝐿$%- ≠ ∅
𝑦$% ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$
𝑤$%-. ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%- ∪ {0}, 𝐿$%- ≠ ∅

Ignacio Grossmann

Ignacio Grossmann

Ignacio Grossmann

Ignacio Grossmann

Ignacio Grossmann

11

The difference between 2L-GDP-HR and 2E-GDP-HR is in the highlighted constraints in the variable
disaggregation and cardinality rules sections. The proof for the Hull reformulation case is given by applying
Fourier-Motzkin elimination (Dantzig, 1972) to eliminate the slack Binary variable (𝑤$%-9) and its
corresponding disaggregated variable (𝑣$%-9) from 2E-GDP-HR. We first combine the last two cardinality
rules in 2E-GDP-HR to obtain (1).

 𝑤$%-9 = 1 − 𝑦$% (1)

Equating the two variable aggregation constraints in 2E-GDP-HR and solving for 𝑣$%-9 gives (2).

 𝑣$%-9 = �𝑢$%
%∈(!

− � 𝑣$%-.
.∈!!"#

 (2)

Substituting (1) and (2) into the bounding constraint for 𝑣$%-9 gives (3), which can be rearranged into (4).

 𝑥!" ⋅ G1 − 𝑦$%J ≤ �𝑢$%
%∈(!

− � 𝑣$%-.
.∈!!"#

≤ 𝑥#" ⋅ G1 − 𝑦$%J (3)

 𝑢$% + � 𝑢$%+
%+∈(!:%+;%

− 𝑥#" ⋅ G1 − 𝑦$%J ≤ � 𝑣$%-.
.∈!!"#

≤ 𝑢$% + � 𝑢$%+
%+∈(!:%+;%

− 𝑥!" ⋅ G1 − 𝑦$%J (4)

Summing the bounding constraint for 𝑥$% over 𝑗< ∈ 𝐽$ for 𝑗< ≠ 𝑗, results in (5). Using the cardinality rule
∑ 𝑦$%%∈(! = 1, (5) can be written as given in (6), which has two parts, (6a) and (6b). Substituting these into
(4) proves that (4) is a relaxation of the disaggregation constraint in 2L-GDP-HR (∑ 𝑣$%-..∈!!"# = 𝑢$%, which
can be written as 𝑢$% ≤ ∑ 𝑣$%-..∈!!"# ≤ 𝑢$%).

 � 𝑥!" ⋅ 𝑦$%+
%+∈(!:%+;%

≤ � 𝑢$%+
%+∈(!:%+;%

≤ � 𝑥#" ⋅ 𝑦$%+
%+∈(!:%+;%

 (5)

 𝑥!" ⋅ G1 − 𝑦$%J ≤ � 𝑢$%+
%+∈(!:%+;%

≤ 𝑥#" ⋅ G1 − 𝑦$%J (6)

 � 𝑢$%+
%+∈(!:%+;%

− 𝑥#" ⋅ G1 − 𝑦$%J ≤ 0 (6a)

 � 𝑢$%+
%+∈(!:%+;%

− 𝑥!" ⋅ G1 − 𝑦$%J ≥ 0 (6b)

It should also be noted that the cardinality rule on the extracted lower-level decisions in 2E-GDP-HR
(𝑤$%-9 + ∑ 𝑤$%-..∈!!"# = 1) is redundant with respect to the other two cardinality rules. This can be shown
by noting that 𝑤$%-9 acts like a slack variable, which allows writing the mentioned cardinality rule as
∑ 𝑤$%-..∈!!"# ≤ 1. This expression is contained in the first two cardinality rules since 𝑦$% ≤ 1 and
∑ 𝑤$%-..∈!!"# = 𝑦$%. Therefore, the Hull reformulation of the Equivalent Single-Level GDP produces
constraints with continuous relaxations that are weaker than those resulting from the Hull reformulation
of the Nested GDP, proving that 2L-GDP-HR ⊆ 2E-GDP-HR.

QED

12

Theorem 2. Let rML-GDP-BM denote the continuous relaxation of the mixed-integer program (MIP)
obtained from a Multi-Level Nested GDP via the Big-M reformulation, and let rME-GDP-BM denote the
continuous relaxation of the MIP obtained from its respective Equivalent Single-Level GDP representation
via the Big-M reformulation. The feasible space of the former is contained within the feasible space of the
latter, namely, rML-GDP-BM ⊆ rME-GDP-BM, if tight values for the M parameters are used.

Proof. Without loss of generality, the above theorem is proved by establishing that the Big-M
reformulation of the 2-Level Nested GDP model (r2L-GDP-BM) is contained in the Big-M reformulation of
its Equivalent Single-Level GDP representation (r2E-GDP-BM), when tight M values are used:

r2L-GDP-BM ⊆ r2E-GDP-BM

The Big-M reformulation for the nested GDP model is given in 2L-GDP-BM, where 𝑀$% is the Big-M value
for the constraints in the 𝑗=> disjunct in disjunction 𝑖, 𝑀$%-.

< is the Big-M value associated with the upper-
level decision on the nested constraints, and 𝑚$%-.

< is the Big-M value associated with the lower-level
decision on the nested constraints. The Big-M reformulation for the Equivalent Single-Level GDP is given
in 2E-GDP-BM, where 𝑀$% is the same as in 2L-GDP-BM, and 𝑚$%-. is the Big-M value associated with the
extracted lower-level decisions.

min 𝑧 = 𝑓(𝑥) (2L-GDP-BM)
𝑠. 𝑡. 𝑟(𝑥) ≤ 0

 𝑔$%(𝑥) ≤ 𝑀$% ⋅ (1 − 𝑦$%) ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$
 ℎ$%-.(𝑥) ≤ 𝑚$%-.

< ⋅ G1 − 𝑤$%-.J + 𝑀$%-.
< ⋅ G1 − 𝑦$%J ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%-

 �𝑦$%
%∈(!

= 1 ∀𝑖 ∈ 𝐼

 𝑦$% = � 𝑤$%-.
.∈!!"#

 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$% , 𝐿$%- ≠ ∅

 𝐴𝑦 + 𝐵𝑤 ≤ 𝑐
 𝑥!" ≤ 𝑥 ≤ 𝑥#"
 𝑥 ∈ ℝ)
 𝑦$% ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$
 𝑤$%-. ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%-

min 𝑧 = 𝑓(𝑥) (2E-GDP-BM)
𝑠. 𝑡. 𝑟(𝑥) ≤ 0

 𝑔$%(𝑥) ≤ 𝑀$% ⋅ (1 − 𝑦$%) ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$
 ℎ$%-.(𝑥) ≤ 𝑚$%-. ⋅ G1 − 𝑤$%-.J ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%-

 �𝑦$%
%∈(!

= 1 ∀𝑖 ∈ 𝐼

 𝑦$% = � 𝑤$%-.
.∈!!"#

 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$% , 𝐿$%- ≠ ∅

Ignacio Grossmann

Ignacio Grossmann

13

 𝑤$%-9 + � 𝑤$%-.
.∈!!"#

= 1 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$% , 𝐿$%- ≠ ∅

 𝐴𝑦 + 𝐵𝑤 ≤ 𝑐
 𝑥!" ≤ 𝑥 ≤ 𝑥#"
 𝑥 ∈ ℝ)
 𝑦$% ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$
 𝑤$%-. ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$, 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%-

Finding the tightest Big-M values requires solving multiple optimization problems to maximize the value
of each constraint function over the complete model’s feasible region, or over the corresponding feasible
region of the disjunction (Grossmann & Trespalacios, 2013). For the proof we calculate tight Big-M values
using only the global constraints or upper-level constraints in the case of the nested constraints. The
following mathematical optimization problems are solved to obtain tight 𝑀 values: (7) for 𝑀$%, (8a) for
𝑚$%-.
< , (8b) for 𝑀$%-.

< , and (9) for 𝑚$%-.. It should be noted that 𝑚$%-.
< accounts for the upper-level

constraints 𝑔$%(𝑥) ≤ 0, meaning it is localized to the parent disjunct that it belongs to. 𝑀$%-.
< subtracts

𝑚$%-.
< from the traditional Big-M value to ensure that when both upper and lower-level decisions are not

selected (𝑦$% = 0 and 𝑤$%-. = 0), the resulting Big-M value is equivalent to the global Big-M value for that
constraint.

 𝑀$% = max�𝑔$%(𝑥)	|	𝑟(𝑥) ≤ 0, 𝑥!" ≤ 𝑥 ≤ 𝑥#" , 𝑥 ∈ ℝ)�		 (7)

 𝑚$%-.
< = max�ℎ$%-.(𝑥)	|	𝑟(𝑥) ≤ 0, 𝑔$%(𝑥) ≤ 0, 𝑥!" ≤ 𝑥 ≤ 𝑥#" , 𝑥 ∈ ℝ)� (8a)

 𝑀$%-.
< = max�ℎ$%-.(𝑥)	|	𝑟(𝑥) ≤ 0, 𝑥!" ≤ 𝑥 ≤ 𝑥#" , 𝑥 ∈ ℝ)� − 𝑚$%-.

< (8b)

 𝑚$%-. = max�ℎ$%-.(𝑥)	|	𝑟(𝑥) ≤ 0, 𝑥!" ≤ 𝑥 ≤ 𝑥#" , 𝑥 ∈ ℝ)� (9)

The proof lies in establishing that the feasible space of 2L-GDP-BM is contained in 2E-GDP-BM. The
difference between these two models is shown in the highlighted constraints above. It was previously
shown that the cardinality rule 𝑤$%-9 +∑ 𝑤$%-..∈!!"# = 1 is redundant (see Theorem 1). Thus, the proof is
given by establishing that the right-hand-sides of the highlighted Big-M constraints satisfy (10), meaning
that the Big-M constraint from 2L-GDP-BM is contained in the Big-M constraint from 2E-GDP-BM.
Substituting (9) in (8b), results in (11). Substituting (11) in (10) and simplifying the resulting expression
produces (12). From the cardinality constraint ∑ 𝑤$%-..∈!!"# = 𝑦$%, it is clear that 𝑤$%-. ≤ 𝑦$%, meaning that
the expressions in parenthesis in (12) can be dropped without changing the sign on the inequality. Thus,
𝑚$%-.
< ≤ 𝑚$%-., which is true considering that (9) is a relaxation of (8a). Therefore, 2L-GDP-BM ⊆ 2E-GDP-

BM.

 𝑚$%-.
< ⋅ G1 − 𝑤$%-.J + 𝑀$%-.

< ⋅ G1 − 𝑦$%J ≤ 𝑚$%-. ⋅ G1 − 𝑤$%-.J (10)

 𝑀$%-.
< = 𝑚$%-. −𝑚$%-.

< (11)

 𝑚$%-.
< ⋅ G𝑦$% −𝑤$%-.J ≤ 𝑚$%-. ⋅ G𝑦$% −𝑤$%-.J (12)

QED

Ignacio Grossmann

Ignacio Grossmann

14

4. Examples

Each of the examples in this section are implemented in the Julia programming language (version 1.9.0)
(Bezanson et al., 2017) using various packages within the ecosystem. These include JuMP (version 1.11.0)
(Dunning et al., 2017) for modeling mathematical programs, DisjunctiveProgramming (version 0.3.6)
(Perez et al., 2023) for reformulating GDPs (both nested and single-level) into MIPs, and Polyhedra
(version 0.7.6) (Legat et al., 2021) for projecting mathematical programming models onto 2D space (see
Section 4.1). For the numerical examples (Sections 4.2 and 4.3), the reformulated MI(N)LP models are
solved on an Ubuntu Server with 82 GB of RAM and an Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz
processor. CPLEX (version 22.1.1) is used as the MILP solver and BARON (version 23.1.5) as the MINLP
solver.

4.1. Illustrative Example

Consider the Nested GDP constraint system given in (13), which can be expressed as the Equivalent Single-
Level GDP in (14), where 𝑊, is the slack Boolean variable associated with the dummy disjunct. Each of
these models is reformulated into a MIP using the Big-M reformulation, with both a loose (large) M value
and a tight M value, and the Hull reformulation. Their continuous relaxations are then projected onto the
𝑥*, 𝑥+ plane in Figure 4.1.

⎣
⎢
⎢
⎢
⎢
⎡

𝑌*
1 ≤ 𝑥* ≤ 3
4 ≤ 𝑥+ ≤ 6

X
𝑊*

1 ≤ 𝑥* ≤ 2
5 ≤ 𝑥+ ≤ 6

Y ∨ X
𝑊+

2 ≤ 𝑥* ≤ 3
4 ≤ 𝑥+ ≤ 5

Y
⎦
⎥
⎥
⎥
⎥
⎤

∨ X
𝑌+

8 ≤ 𝑥* ≤ 9
1 ≤ 𝑥+ ≤ 2

Y (13.a)

 𝚵(1, {𝑌*, 𝑌+}) (13.b)

 𝚵(𝑌*, {𝑊*,𝑊+}) (13.c)

 X
𝑌*

1 ≤ 𝑥* ≤ 3
4 ≤ 𝑥+ ≤ 6

Y ∨ X
𝑌+

8 ≤ 𝑥* ≤ 9
1 ≤ 𝑥+ ≤ 2

Y (14.a)

 X
𝑊*

1 ≤ 𝑥* ≤ 2
5 ≤ 𝑥+ ≤ 6

Y ∨ X
𝑊+

2 ≤ 𝑥* ≤ 3
4 ≤ 𝑥+ ≤ 5

Y ∨ X
𝑊,

1 ≤ 𝑥* ≤ 9
1 ≤ 𝑥+ ≤ 6

Y (14.b)

 𝚵(1, {𝑌*, 𝑌+}) (14.c)

 𝚵(1, {𝑊*,𝑊+,𝑊,}) (14.d)

 𝚵(𝑌*, {𝑊*,𝑊+}) (14.e)

Table 4.1. Model sizes and projection areas for Illustrative Example.

Approach Binary
Variables

Continuous
Variables Constraints Feasible

Area
Relative

Area
Big-M 5 2 28 40.0 100%

15

Tight-M (equivalent) 5 2 28 17.3 43%
Tight-M (nested) 4 2 26 16.7 42%
Hull (equivalent) 5 12 72 16.7 42%

Hull (nested) 4 10 64 13.5 34%

Figure 4.1. Projections of the continuous relaxations of (13) and (14) onto the 𝑥*, 𝑥+ plane. Three

reformulations are shown (Big-M = Big-M Reformulation, Tight-M = Big-M Reformulation with tight M
values, Hull = Hull Reformulation). The 2-Level Nested GDP given in (13) is indicated with nested. The
Equivalent Single-Level GDP given in (14) is indicated with equivalent. Projection areas, relative to the

Big-M case are indicated in %.

Explicitly preserving the hierarchical relationship in the Nested GDP representation reduces the feasible
region of the continuous relaxation more than when the Equivalent Single-Level GDP representation is
used. This is observed in both the Tight-M (Big-M reformulation with a tight M) and Hull reformulation
cases. Furthermore, in this example the Tight-M reformulation of the Nested GDP model produces the
same relaxation as the Hull reformulation of the Equivalent Single-Level GDP model with only a fraction
of the model size (see Table 4.1). It should also be noted that the convex hull of the system is obtained
when either the Hull reformulation is applied to the Nested GDP or when it is applied to the Flattened
GDP. As a result, the continuous relaxation of either formulation will yield the optimum.

4.2. Example 1: Linear Model

Consider the superstructure optimization problem with technology selection and scheduling for a plant
that is to produce and sell material D (see Figure 4.2.1). Material D can be produced from material C
(reaction: C → D), which can be purchased from a third party or produced from material B (reaction: B →
C), which can in turn be purchased or produced from material A (reaction: A → B). The plant has two types
of multipurpose reactors, each with a backup unit, that can be used for the material transformation steps
(see Figure 4.2.2). Each of these has a maximum installed capacity of 100 kg. Up to one tank for each
material in the system can be installed for storage with a maximum installed capacity of 300 kg. There are
two candidate chemical processes to perform each material transformation step, giving a total of six
processes in the process superstructure. There are two potential technologies (catalysts) that can be used
in each process, each with a unique cost and yield, giving a total of 12 candidate process-catalysts

16

combinations in the system. The plant process and equipment superstructures are given in Figures 4.2.1
and 4.2.2, respectively. The former illustrates the candidate processes in the superstructure in the state-
task network representation (Kondili et al., 1993). The latter depicts the equipment options (reactor type
and units, and tanks) in the superstructure.

Figure 4.2.1. Process superstructure for Example 1 with 4 materials, 6 processes, 4 tanks, and 16

streams.

Figure 4.2.2. Equipment superstructure (process flow diagram) for Example 1 with 4 tanks and 2 reactor
types, each with 2 identical units.

The objective of the optimization problem is to maximize system profit over a 30-day schedule by making
the following decisions:

• Which material storage tanks to install.
• How many shared reactors to install.
• Which processes to install for each material transformation step.

o Which technologies (catalysts) to use in each of the selected processes.

F3

F4

F7

F8

F11

F12

F1

F2

F5

F6

F9

F10

F16F13 F14 F15

Process
1

Process
2

Process
3

Process
4

Process
5

Process
6

Tank
A

Tank
B

Tank
C

Tank
D

A B C D

Tank A

Tank B

Tank C

Tank D

Supply A

Supply B

Supply C

Demand D
R2 (Unit 1)

R2 (Unit 2)

R1 (Unit 1)

R1 (Unit 2)

Ignacio Grossmann

Ignacio Grossmann

17

o Which reactor type to use in each of the selected processes.
§ How many reactors to operate in each time period.
§ How much to produce in each batch of material.

• How much material to purchase for A, B, and C in each time period.

The hierarchy of these decisions is indicated by the bullet indentation above. Thus, the technology and
reactor type selections are second-level decisions, and the operating schedule and batch sizes are third-
level decisions. For simplicity, any changeover or setup times are not considered.

Model: The model for this system consists of the following linear constraints. Resource balances are
enforced around each resource 𝑘 at timepoint 𝑡 with the global constraints in (15) and (16). The level of
material at each tank, 𝐿-,=, is updated based on the material flowing in and out of the tank (material
balance). The availability of each reactor, 𝑅-,=, is updated based on the reactor usage, Δ𝑅$,-,=. A reactor
unit is locked (unavailable) when it begins a processing task 𝑖 at time 𝑡. At time 𝑡 + 𝜏$, the processing task
ends (𝜏$ is the duration), and the reactor unit is released (becomes available). The values used for the task
durations, 𝜏$, are 𝜏$ = 5		∀𝑖 ∈ {1,4,5,6}, 𝜏+ = 3, and 𝜏, = 4 (days). For greater detail on resource
balances, the reader is referenced to the review paper on the resource-task network by Perez et al. (2022).

 𝐿-,=�
=@)-	.3B3.

= 𝐿-,=8* + � 𝐹&,=
&∈C#

!&

�����
$)D.EF

− � 𝐹&,=
&∈C#

,-.

�������
E2=D.EF

 ∀𝑘 ∈ 𝐾=@)- , 𝑡 ∈ 𝑇 (15)

𝑅-,=�

13@G=E1
@B@$.@H$.$=I

= 𝑅-,=8* +��Δ𝑅$,-,=8J!�������

13@G=E1&
13.3@&3K

− Δ𝑅$,-,=���

13@G=E1&
.EG-3K

�
$∈L

 ∀𝑘 ∈ 𝐾13@G= , 𝑡 ∈ 𝑇 (16)

The decision to install a resource (tank or reactor) is governed by the disjunctions in (17) and (18), where
the decision is to determine how many units 𝑢 to install. In this example, 𝑈- = {0,1,2} for each reactor
type (at most 2 identical units can be installed for each reactor type 𝑘), and 𝑈- = {0,1} for each tank (at
most 1 tank can be installed for each material). The installation cost, 𝐶𝐼-, is calculated as the sum of a
fixed charge, 𝛼-, and a variable cost coefficient, 𝛽-, times the total resource capacity. If no units are
installed (𝑢 = 0), the installation cost and resource capacity, 𝑄-, drop to zero. (17) and (18) also set the
initial condition for the resource availability, 𝐿-,9 and 𝑅-,9: if installed, tanks are full, and all reactor units
are available, respectively. (17) also tracks the slack on the tank level at the final timepoint |𝑇|, 𝐿�-, which
refers to the amount below the full tank capacity, and is penalized in the objective function to reduce the
likelihood of depleting the inventory at the end of the scheduling horizon (see (41)). These constraints
ensure that the schedule obtained is a feasible schedule for normal operation with monthly cycles. For
startup operations the optimal schedule can be obtained by fixing the design decisions and rerunning the
model with the initial tank levels set to zero. The cardinality constraint (19) ensures that exactly one of
the disjuncts is selected. The values for the cost coefficients are given in Table 4.2.1. Since the plant
lifetime is greater than the scheduling horizon, resource installation costs coefficients have been scaled
to the appropriate order of magnitude. Installation costs for pipelines between tanks and reactors are
assumed to be negligible.

Ignacio Grossmann

18

 C

⎣
⎢
⎢
⎢
⎢
⎡

𝑋-,2

𝐶𝐼- = 𝛼- + 𝛽- ⋅ 𝑢 ⋅ 𝑄-���

$)&=@..3K
G@M@G$=I

		
𝐿-,9 = 𝑢 ⋅ 𝑄-

𝐿-,|0| + 𝐿�- = 𝑢 ⋅ 𝑄-

	

⎦
⎥
⎥
⎥
⎥
⎤

2∈##∖{9}

C

⎣
⎢
⎢
⎢
⎢
⎡

𝑋-,9
𝐶𝐼- = 0
𝑄- = 0

𝐿-,= = 0	∀𝑡 ∈ {0} ∪ 𝑇
𝐿�- = 0 ⎦

⎥
⎥
⎥
⎥
⎤

 ∀𝑘 ∈ 𝐾=@)- (17)

 C

⎣
⎢
⎢
⎢
⎡

𝑋-,2

𝐶𝐼- = 𝛼- + 𝛽- ⋅ 𝑢 ⋅ 𝑄-���

$)&=@..3K
G@M@G$=I

𝑅-,9 = 𝑢
	
⎦
⎥
⎥
⎥
⎤

2∈##∖{9}

C

⎣
⎢
⎢
⎡

𝑋-,9
𝐶𝐼- = 0
𝑄- = 0

𝑅-,9 = 0		∀𝑡 ∈ {0} ∪ 𝑇⎦
⎥
⎥
⎤
 ∀𝑘 ∈ 𝐾13@G= (18)

 𝚵G1, 𝑋-,2		∀𝑢 ∈ 𝑈-J ∀𝑘 ∈ 𝐾 (19)

Table 4.2.1. Fixed and variable cost coefficients for the installation cost of each resource.

Resource
(𝑘)

Fixed Cost
Coefficient (𝛼-)

Variable Cost
Coefficient (𝛽-)

Tank Material A $0.406 $0.011/kg
Tank Material B $0.069 $0.070/kg
Tank Material C $0.862 $0.029/kg
Tank Material D $0.086 $0.003/kg
Reactor Type 1 $0.662 $0.054/kg
Reactor Type 2 $0.116 $0.090/kg

The multi-level disjunction in (20) represents the decision to install process 𝑖 or not. When installed, the
total batch size, 𝐵$,=, is equal to the flow entering the process at time 𝑡. There are two nested disjunctions
if a process is installed. The first of these relates to which reactor type 𝑘 is assigned to the process, 𝑊$,-.
The second one pertains to which technology (catalyst) is used for that particular process, 𝑊�$,%. Once a
reactor type is assigned, the per unit batch size, 𝐵�$,=, is bounded by the installed capacity of each unit, 𝑄-,
and the operating cost, 𝐶𝑂$,=, is proportional to the total batch size with a cost coefficient 𝛾$,- (given in
Table 4.2.2). The nested technology selection disjunction specifies the amount of material leaving the
process when the batch is completed. This is governed by the yield, 𝜈, which is specific to the technology
𝑗 (given in Table 4.2.3). There is then a third-level set of disjunctions inside the reactor type assignment
disjunction, which determines the number of units, 𝑢, that are used for a batch at time, 𝑡, 𝑁$,-,=,2. The
number of units selected indicates the number of units that are locked at time 𝑡 and is also used to
determine the total batch size from the per unit batch size. Note that for this system, it is assumed that if
multiple units are used, their loads are equally distributed. Finally, when a process is not installed (¬𝑌$),
all pertinent variables are set to zero, and the reactor capacity is only bounded by the maximum allowed
capacity. The cardinality rules in (21)-(23) are the linking constraints between the different levels of this
multi-level disjunction.

19

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑌$
𝐹&,= = 𝐵$,=		∀𝑠 ∈ 𝑆$$)

C

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑊$,-

𝐵�$,= ≤ 𝑄- 		∀𝑡 ∈ 𝑇
𝐶𝑂$,= = 𝛾$,- ⋅ 𝐵$,=		∀𝑡 ∈ 𝑇

C

⎣
⎢
⎢
⎢
⎡

𝑁$,-,=,2
Δ𝑅$,-,= = 𝑢

𝐵$,= = 𝑢 ⋅ 𝐵�$,=¤¥¦
=E=@.	H@=G>

&$P3 ⎦
⎥
⎥
⎥
⎤

2∈##

		∀𝑡 ∈ 𝑇

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

-∈Q/012.

CZ

𝑊�$,%

𝐹&,=RJ! = 𝜈$,% ⋅ 𝐵$,=�����

H@=G>
I$3.K

		∀𝑠 ∈ 𝑆$E2= , 𝑡 ∈ 𝑇
[

%∈(⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

C

⎣
⎢
⎢
⎢
⎢
⎡

¬𝑌$
𝐹&,= = 0		∀𝑠 ∈ 𝑆$$) ∪ 𝑆$E2=

𝐵�$,= , 𝐵$,= , 𝐶𝑂$,= = 0		∀𝑡 ∈ 𝑇
Δ𝑅$,-,= = 0		∀𝑘 ∈ 𝐾13@G= , 𝑡 ∈ 𝑇

𝑄- ≤ 𝑄-#"		∀𝑘 ∈ 𝐾13@G= ⎦
⎥
⎥
⎥
⎥
⎤

 ∀𝑖 ∈ 𝐼 (20)

 𝚵G𝑌$,𝑊$,- 	∀𝑘 ∈ 𝐾13@G=J ∀𝑖 ∈ 𝐼 (21)

 𝚵G𝑊$,- , 𝑁$,-,=,2	∀𝑢 ∈ 𝑈-J ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾13@G= , 𝑡 ∈ 𝑇 (22)

 𝚵G𝑌$,𝑊�$,% 	∀𝑗 ∈ 𝐽J ∀𝑖 ∈ 𝐼 (23)

Table 4.2.2. Operating cost parameter, 𝛾$,- ($/kg), for each process 𝑖 and reactor type 𝑘 combination.

 Reactor
Type (𝑘)

Process (𝑖)
1 2 3 4 5 6

1 0.258 0.339 0.425 0.905 0.745 0.156
2 0.575 0.454 0.017 0.496 0.636 0.087

Table 4.2.3. Production yield parameter, 𝜈$,%, for each process 𝑖 and technology 𝑗 combination.

 Technology
(𝑗)

Process (𝑖)
1 2 3 4 5 6

1 42.6% 57.4% 44.3% 62.1% 86.3% 51.8%
2 76.7% 13.4% 8.7% 35.1% 19.3% 11.7%

An additional logic proposition must be included to ensure that if a process 𝑖 is triggered on reactor type
𝑘 at time 𝑡 with 𝑢 units (𝑁$,-,=,2 = 𝑇𝑟𝑢𝑒), the reactor type 𝑘 must have been installed with at least 𝑢 units
(∃𝑢< ∈ 𝑈-: 𝑢< ≥ 𝑢, 𝑋-,2+ = 𝑇𝑟𝑢𝑒). For example, if 𝑁$,-,=,* = 𝑇𝑟𝑢𝑒, then either 𝑋-,* = 𝑇𝑟𝑢𝑒 or 𝑋-,+ =
𝑇𝑟𝑢𝑒 (one or two units must have been installed when the plant was built). This condition is enforced
with the at least predicate in (24), which is equivalent to the propositional logic constraint 𝑁$,-,=,2 ⇒
⋁ 𝑋-,2+2+∈##:2+S2 .	

 𝚲G𝑁$,-,=,2, 𝑋-,2+ 	∀𝑢< ∈ 𝑈-: 𝑢< ≥ 𝑢J ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾13@G= , 𝑡 ∈ 𝑇, 𝑢 ∈ 𝑈- ∖ {0} (24)

The variable bounds and domains are given in (25)-(27) and (29)-(40). The upper bound resource
capacities are, 𝑄-#" = 300𝑘𝑔	∀𝑘 ∈ 𝐾=@)- and 𝑄-#" = 100𝑘𝑔	∀𝑘 ∈ 𝐾13@G=. The term |𝑈-| − 1 represents
the maximum number of units available to install since we consider the option of not installing a tank or
reactor 𝑘. The initialization constraint in (28) is used to ensure that there is no flow leaving a reactor in

20

the first 𝜏$ periods since it is assumed that all reactors are idle at the beginning of the scheduling horizon.
Thus, if production starts at 𝑡 = 1, the first batch of product is produced at 𝑡 = 𝜏$ + 1.

 0 ≤ 𝐵$,= ≤ � (|𝑈-| − 1) ⋅ 𝑄-#"

-∈Q/012.
 ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (25)

 0 ≤ 𝐵�$,= ≤ maxG𝑄-#"	∀𝑘 ∈ 𝐾13@G=J ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (26)
 0 ≤ 𝐹&,= ≤ 𝐹&#" ∀𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (27)
 𝐹&,= = 0 ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆$E2= , 𝑡 ∈ {1, … , 𝜏$} (28)
 0 ≤ 𝐶𝐼- ≤ 𝛼- + 𝛽- ⋅ (|𝑈-| − 1) ⋅ 𝑄-#" ∀𝑘 ∈ 𝐾 (29)
 0 ≤ 𝐿-,= ≤ (|𝑈-| − 1) ⋅ 𝑄-#" ∀𝑘 ∈ 𝐾=@)- , 𝑡 ∈ 𝑇 (30)
 0 ≤ 𝐿�- ≤ (|𝑈-| − 1) ⋅ 𝑄-#" ∀𝑘 ∈ 𝐾=@)- (31)

 0 ≤ 𝐶𝑂$,= ≤ � 𝛾$,- ⋅ (|𝑈-| − 1) ⋅ 𝑄-#"

-∈Q/012.
 ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (32)

 0 ≤ 𝑄- ≤ 𝑄-#" ∀𝑘 ∈ 𝐾13@G= (33)
 0 ≤ 𝑅-,= ≤ |𝑈-| − 1 ∀𝑘 ∈ 𝐾13@G= , 𝑡 ∈ 𝑇 (34)
 0 ≤ Δ𝑅$,-,= ≤ |𝑈-| − 1 ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾13@G= , 𝑡 ∈ 𝑇 (35)
 𝑁$,-,=,2 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾13@G= , 𝑡 ∈ 𝑇, 𝑢 ∈ 𝑈- (36)
 𝑊$,- ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾13@G= (37)
 𝑊�$,% ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (38)
 𝑋-,2 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑘 ∈ 𝐾, 𝑢 ∈ 𝑈- (39)
 𝑌$ ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ 𝐼 (40)

The objective of this optimization problem is to maximize profit, as given by (41), where 𝑝& is the price/cost
of each external flow 𝑠 ∈ 𝑆3T= (𝑝*, = −$1 𝑘𝑔	𝐴⁄ , 𝑝*U = −$7 𝑘𝑔	𝐵⁄ , 𝑝*V = −$8 𝑘𝑔	𝐶⁄ , and 𝑝*W =
$10 𝑘𝑔	𝐷⁄). The tank level slacks are penalized with a penalty coefficient equal to the absolute value of
the material price.

 max�

⎝

⎜
⎛

� 𝑝& ⋅ 𝐹&,=
&∈C03.

���������

X@=31$@.
&@.3&/M21G>@&3&

−�𝐶𝑂$,=
$∈L

�����

EM31@=$)Z
GE&=&

⎠

⎟
⎞

=∈0

− �𝐶𝐼-
-∈Q

�����

$)&=@..@=$E)
GE&=&

− � |𝑝-| ⋅ 𝐿�-
-∈Q.1&#

�����������

=@)-	&.@G-
M3)@.=$3&

 (41)

The resulting model is the linear Nested GDP given in (15)-(41). This hierarchical model is reformulated
into a mixed-integer linear program (MILP) using both Big-M (with both loose and tight M values) and Hull
reformulations. The hierarchical GDP model is also transformed into its Equivalent Single-Level GDP and
reformulated with both Big-M and Hull methods.

The optimum solution yields a cumulative profit of $2,085. The process network and equipment network
designs are given in Figures 4.2.3 and 4.2.4, respectively. The Gantt charts for procurement/sales and
production are shown in Figures 4.2.5 and 4.2.6, respectively. The tank levels are displayed in Figure 4.2.7.
The optimal design requires the installation of Processes 1, 3-5; Tanks B and C; and both reactor types,
each with two units available. Reactors of type 1 focus almost exclusively on Process 1 with Technology 2,
with one batch of Process 3 (Technology 1). Rectors of type 2 are used for Processes 4 and 5, each using

21

Technology 1. Procurement of A occurs every 5 days, with sales of D typically spaced out every 10 days.
By the end of the scheduling horizon, both tank levels have been restored to their initial levels (full).

Figure 4.2.3. Optimal process network design (edge thickness is proportional to the maximum flow on
that line).

Figure 4.2.4. Optimal equipment network design.

F3 F7

F8

F11F1 F5

F6

F9

F16F13

Process
1

Process
3

Process
4

Process
5

Tank
B

Tank
C

A D

Tank B

Tank C

Supply A

Supply B

Supply C

Demand D
R2 (Unit 1)

R2 (Unit 2)

R1 (Unit 1)

R1 (Unit 2)

22

Figure 4.2.5. Material procurement and sales schedule.

Figure 4.2.6. Plant operations schedule (text in each bar, i-j, indicates process number i and technology

number j for that event).

Figure 4.2.7. Amount of material in each tank (and maximum tank level) throughout the scheduling
horizon.

The model sizes and computational statistics for each of the reformulated MILP models are given in Table
4.2.4, where the continuous (LP) relaxation gap is calculated with respect to the optimal MIP solution.
Two additional scenarios are evaluated, where the sales price of material D is increased or decreased by
10%. The computational results for these cases are given in Tables 4.2.5 and 4.2.6. As can been observed,
all formulations, except the Hull reformulation of the Nested GDP, have poor continuous relaxations with
very large relaxation gaps. The Hull reformulated Nested GDP, on the other hand, has a tight relaxation
with an 8-9% relative gap. In this example, both the Big-M and Tight-M reformulations have similar
performance, with the Equivalent Single-Level models solving faster than the nested models (except for
the case with a 10% decrease in the sales price). For these models, the weak relaxations annul any
potential advantage from using nested disjunctions. The MILP model obtained by applying the Hull
reformulation to the Nested GDP model outperforms the other models, finding the optimum in
approximately half of the time required relative to its Equivalent Single-Level counterpart. Compared to
the Big-M models, this model solves faster by one order of magnitude, with significantly fewer cuts and
nodes explored. This superior performance is due to the tighter LP relaxation and reduced model size. The
Hull reformulated Nested GDP has fewer binary variables (25% and 4% less, before and after presolve,
respectively), continuous variables (10% and 26% less, before and after presolve, respectively), and
constraints (5% and 25% less, before and after presolve, respectively) than its Equivalent Single-Level
counterpart. Although it seems surprising that a model with fewer variables and constraints is tighter than

23

an equivalent model of greater size, this occurs because of the absence of slack disjuncts in the nested
formulation, which make the equivalent formulation less tight.

Table 4.2.4. Model sizes and computational statistics of the MILP models resulting from the Big-M
reformulations (using both loose and tight M values) and Hull reformulations of the GDP models in
Example 1.

 Big-M Reformulation Tight-M Reformulation Hull Reformulation
 Equivalent Nested Equivalent Nested Equivalent Nested
LP Relaxation

Relaxation Solution $81,000 $81,000 $80,999 $80,999 $68,044 $2,268
Relaxation Gap 3,785% 3,785% 3,785% 3,785% 3,163% 9%

MIP Solution
MIP Solution $2,085 $2,085 $2,085 $2,085 $2,085 $2,085

MIP Optimality Gap 0% 0% 0% 0% 0% 0%
Nodes Explored 184,458 875,768 403,339 516,094 41,356 28,706

Cuts Applied 349 605 388 433 710 20
CPU Time (s) 175 589 230 297 43 23

MIP Solutiona
MIP Solution $1,929 $934 $2,074 $1,928 $2,085 $2,085

MIP Optimality Gap 678% 4,337% 122% 117% 0% 0%
Nodes Explored 5,344,697 10,911,189 7,026,758 8,736,022 82,182 35,796

Cuts Applied 3,663 1,493 2,019 1,703 1,010 80
CPU Time (s) 3,616 3,633 3,623 3,628 216 79

Original Model Size
Binary Variables 1,550 1,166 1,550 1,166 1,550 1,166

Continuous Variables 1,634 1,634 1,634 1,634 11,850 10,614
Constraints 14,817 14,049 14,817 14,049 59,195 56,243

Reduced Model Sizeb
Binary Variables 1,158 1,156 1,160 1,156 1,158 1,115

Continuous Variables 1,409 1,409 1,409 1,409 4,468 3,302
Constraints 7,443 6,969 7,438 7,332 8,166 6,163

aNo presolve; no heuristics; no dynamic search (traditional branch & cut used)
bAfter the last presolve is performed on the model by CPLEX

Table 4.2.5. Model sizes and computational statistics of the MILP models resulting from the Big-M
reformulations (using both loose and tight M values) and Hull reformulations of the GDP models in
Example 1 with a 10% increase in the sales price for material D.

 Big-M Reformulation Tight-M Reformulation Hull Reformulation
 Equivalent Nested Equivalent Nested Equivalent Nested
LP Relaxation

Relaxation Solution $89,100 $89,100 $89,099 $89,099 $75,438 $2,708
Relaxation Gap 3,401% 3,401% 3,401% 3,401% 2,898% 8%

Ignacio Grossmann

24

MIP Solution
MIP Solution $2,516 $2,516 $2,516 $2,516 $2,516 $2,516

MIP Optimality Gap 0% 0% 0% 0% 0% 0%
Nodes Explored 319,705 893,877 186,730 487,941 38,509 38,256

Cuts Applied 499 422 393 529 832 18
CPU Time (s) 230 650 146 298 42 25

Table 4.2.6. Model sizes and computational statistics of the MILP models resulting from the Big-M
reformulations (using both loose and tight M values) and Hull reformulations of the GDP models in
Example 1 with a 10% decrease in the sales price for material D.

 Big-M Reformulation Tight-M Reformulation Hull Reformulation
 Equivalent Nested Equivalent Nested Equivalent Nested
LP Relaxation

Relaxation Solution $72,900 $72,900 $72,899 $72,900 $61,159 $1,829
Relaxation Gap 4,260% 4,260% 4,260% 4,260% 3,558% 9%

MIP Solution
MIP Solution $1,672 $1,672 $1,672 $1,672 $1,672 $1,672

MIP Optimality Gap 0% 0% 0% 0% 0% 0%
Nodes Explored 517,310 137,253 208,136 128,268 39,669 42,213

Cuts Applied 543 500 409 420 718 35
CPU Time (s) 644 148 206 213 40 24

4.3. Example 2: Nonlinear Model

Example 2 is based on Example 4.1 in the work by van den Heever and Grossmann (1999), which consists
of an integrated superstructure optimization problem with long term operational and expansion planning.
The problem has three potential processes (1, 2, and 3), each with its dedicated processing unit, and three
materials (A, B, and C) as shown in Figure 4.3.1. Material C is the final product (price: $10,800/ton) and is
produced from Material B in Process 1. Material B can be purchased externally (cost: $7,000/ton) or
produced from Material A (cost: $1,800/ton) in either Process 2 or Process 3. It is assumed that each
process includes any required separation steps, such that the respective exit streams are single-
component streams containing the pure product of each process. The objective here is to minimize cost
(maximize profit) by making the following decisions:

• Which processes should be used.
• Which processes to operate in each period.
• Which processes to undergo a capacity expansion in each period.
• How much new processing capacity to install in each period.

Ignacio Grossmann

25

Figure 4.3.1. Process superstructure for Example 2.

The hierarchical GDP model is given as follows. The material balance constraints in the two stream
junction points are given in (42) and (43), where 𝐹&,= is the flow (tons) in stream 𝑠 in period 𝑡 (where 𝑡 is
in years). The amount of imported B and exported C are constrained by (44) and (45), respectively.

 𝐹*,= = 𝐹+,= + 𝐹,,= ∀𝑡 ∈ 𝑇 (42)
 𝐹[,= = 𝐹U,= + 𝐹V,= + 𝐹W,= ∀𝑡 ∈ 𝑇 (43)
 𝐹W,= ≤ 5 ∀𝑡 ∈ 𝑇 (44)
 𝐹\,= ≤ 1 ∀𝑡 ∈ 𝑇 (45)

The installation and planning decisions are made in the nested disjunction given in (46), where the top-
level decision is to install Process 𝑖 or not (𝑌$ or ¬𝑌$). If a process is installed, the respective nonlinear
production yield constraint is enforced, where 𝑔*G𝐹[,=J = 0.9 ⋅ 𝐹[,=, 𝑔+G𝐹+,=J = lnG1 + 𝐹+,=J, and
𝑔,G𝐹,,=J = 1.2 ⋅ lnG1 + 𝐹,,=J. A process capacity balance is also applied to update the current capacity,
𝑄$,=, with the capacity in the previous period and the current capacity expansion, 𝑄𝐸$,=. The secondary

level decision is to operate the installed process, 𝑁$,=
(*), or not, 𝑁$,=

(+). If the process is operated in period 𝑡,
the exit flow is bounded by the process capacity, and the operating cost, 𝐶𝑂$,=, is determined with the
parameter 𝛾$ (𝛾* = $900, 𝛾+ = $1,000, and 𝛾, = $1,200). The tertiary level decision is to expand the
process capacity, 𝑍$,=

(*), or not, 𝑍$,=
(+). The expansion cost, 𝐶𝐸$,=, is calculated with the fixed cost parameter,

𝛼$ (𝛼* = $3,500, 𝛼+ = $1,000, and 𝛼, = $1,500), and the variable cost parameter, 𝛽$ (𝛽* = $1,200/𝑡𝑜𝑛,
𝛽+ = $700/𝑡𝑜𝑛, and 𝛽, = $1,100/𝑡𝑜𝑛). It should be noted that each of the parameters used can also be
indexed by time period if desired.

F2

Supply A

F6

Supply B

Demand C

F4Process 2

F5Process 3

F8Process 1

F3

F7F1

Supply B

26

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑌$
𝐹&,= = 𝑔$G𝐹&+,=J		∀𝑡 ∈ 𝑇

𝑄$,= = 𝑄$,=8*|=]* + 𝑄𝐸$,=		∀𝑡 ∈ 𝑇

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑁$,=

(*)

𝐹&,= ≤ 𝑄$,=
𝐶𝑂$,= = 𝛾$

D 𝑍$,=
(*)

𝐶𝐸$,= = 𝛼$ + 𝛽$ ⋅ 𝑄𝐸$,=
E ⋁ »

𝑍$,=
(+)

𝑄𝐸$,= = 0
𝐶𝐸$,= = 0

¼
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⋁

⎣
⎢
⎢
⎢
⎢
⎡ 𝑁$,=

(+)

𝐹&,= = 0
𝐶𝑂$,= = 0
𝑄𝐸$,= = 0
𝐶𝐸$,= = 0⎦

⎥
⎥
⎥
⎥
⎤

		∀𝑡 ∈ 𝑇

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⋁

⎣
⎢
⎢
⎢
⎡

¬𝑌$
𝐹&,= = 0		∀𝑡 ∈ 𝑇
𝐹&+,= = 0		∀𝑡 ∈ 𝑇

𝑄$,= , 𝑄𝐸$,= = 0		∀𝑡 ∈ 𝑇
𝐶𝑂$,= , 𝐶𝐸$,= = 0		∀𝑡 ∈ 𝑇⎦

⎥
⎥
⎥
⎤

		

∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆$E2= , 𝑠< ∈ 𝑆$$)

(46)

 𝚵(1, {𝑌$, ¬𝑌$}) ∀𝑖 ∈ 𝐼 (47)

 𝚵 q𝑌$, ½𝑁$,=
(*), 𝑁$,=

(+)¾r ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (48)
 𝚵 q𝑁$,=

(*), ½𝑍$,=
(*), 𝑍$,=

(+)¾r ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (49)

Additional logic constraints are given in (50)-(53). The cardinality clause in (50) allows installing at most 1
of Process 2 or Process 3. This is equivalent to the proposition ¬𝑌+ ∨ ¬𝑌, used in the original paper, but
generalizes for cases in which there are more than two potential processes in parallel. The implication in
(51) ensures that Process 1 is installed if either Process 2 or Process 3 are installed. (52) and (53) enforce
that process 𝑖 operate at least once if installed, with at least one expansion event scheduled between the
beginning of the planning horizon (period 1) and each period 𝑡 in which the process is operated,
respectively.

 𝚪(1, {𝑌+, 𝑌,}) (50)

 𝑌$ ⇒ 𝑌* ∀𝑖 ∈ {2,3} (51)

𝚲q𝑌$, 𝑁$,=
(*)	∀𝑡 ∈ 𝑇r ∀𝑖 ∈ 𝐼 (52)

 𝚲¿𝑁$,=
(*), 𝑍$,=+

(*)	∀𝑡< ∈ (1,… , 𝑡)À ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (53)

The variable domains are given in (54)-(60), where 𝐹&#" = 5	𝑡𝑜𝑛		∀𝑠 ∈ 𝑆, 𝑄𝐸*#" = 0.4	𝑡𝑜𝑛, 𝑄𝐸+#" =
0.3	𝑡𝑜𝑛, and 𝑄𝐸,#" = 0.3	𝑡𝑜𝑛.

 0 ≤ 𝐹&,= ≤ 𝐹&#" ∀𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (54)
 0 ≤ 𝑄$,= ≤ 𝑄𝐸$#" ⋅ 𝑡 ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (55)
 0 ≤ 𝑄𝐸$,= ≤ 𝑄𝐸$#" ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (56)
 0 ≤ 𝐶𝐸$,= ≤ 𝛼$ + 𝛽$ ⋅ 𝑄𝐸$#" ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (57)
 0 ≤ 𝐶𝑂$,= ≤ 𝛾$ ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (58)
 𝑁$,=

()), 𝑍$,=
()) ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, 𝑛 ∈ {1,2} (59)

 𝑌$ ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ 𝐼 (60)

The objective function is to minimize the system cost, as given in (61), where the stream costs, 𝑝&, are
given in Table 4.3.1. The model for Example 2 is thus given by (42)-(61).

27

 min�Á�𝑝& ⋅ 𝐹&,=
&∈C

+�G𝐶𝑂$,= + 𝐶𝐸$,=J
$∈L

Â
=∈0

 (61)

Table 4.3.1. Stream costs, 𝑝&, in $/ton.

Stream (𝑠) 1 2 3 4 5 6 7 8
Cost ($/ton) 1,800 0 0 300 100 7,000 0 -10,800

There are some differences between this formulation and the one in the original paper by van den Heever
and Grossmann (1999). The original formulation has the process capacity evolution constraint in the
disjunct governed by 𝑍$,=

(*). This requires specifying a new constraint, 𝑄$,= = 𝑄$,=8*, for the disjunct

governed by 𝑍$,=
(+), which would also be required for the disjunct governed by 𝑁$,=

(+). This is avoided by
moving the process capacity balance to the upper-level constraints in 𝑌$. The same is true for the yield
constraint, which we move from the 𝑁$,=

(*) disjunct to the 𝑌$ disjunct constraints. This requires that we only
constrain the flow exiting the process in the secondary level disjunction, rather than both the entrance
and exit flows. It is also more intuitive to specify the yield constraints when the processes are selected.
Another major difference is that the original model does not use the cardinality constraints in (48) and
(49). Instead, it uses the logic propositions (62) and (63). These propositions are contained in (48) and
(49), but do not establish a proper hierarchical relationship since there is no link between 𝑁$,=

(+) and 𝑌$, and

𝑍$,=
(+) and 𝑁$,=

(*).

 𝑁$,=
(*) ⇒ 𝑌$ ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (62)

 𝑍$,=
(*) ⇒ 𝑁$,=

(*) ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (63)

An important thing to note is that the model in Example 2 is an example of a type of hierarchical GDP, that
need not be hierarchical at all. This occurs when every disjunction has only two disjuncts, representing an
on and an off state, where the off state has all relevant variables set to zero. When this occurs, (46) can
actually be split into three sets of disjunctions without adding the “slack” disjunct observed in the
Equivalent Single-Level GDP model. These three sets of disjunctions are given in (64)-(66). The cardinality
constraints in (48)-(49) can be replaced by (62)-(63), and (67)-(68). The model composed of (42)-(45), (47),
and (50)-(68) is referred to here as the Non-hierarchical formulation.

 »
𝑌$

𝐹&,= = 𝑔$G𝐹&+,=J		∀𝑡 ∈ 𝑇
𝑄$,= = 𝑄$,=8*|=]* + 𝑄𝐸$,=		∀𝑡 ∈ 𝑇

¼⋁

⎣
⎢
⎢
⎢
⎡

¬𝑌$
𝐹&,= = 0		∀𝑡 ∈ 𝑇
𝐹&+,= = 0		∀𝑡 ∈ 𝑇
𝑄$,= = 0		∀𝑡 ∈ 𝑇
𝑄𝐸$,= = 0		∀𝑡 ∈ 𝑇⎦

⎥
⎥
⎥
⎤

		 ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆$E2= , 𝑠< ∈ 𝑆$$) (64)

 »
𝑁$,=
(*)

𝐹&,= ≤ 𝑄$,=
𝐶𝑂$,= = 𝛾$

¼ ⋁ »
𝑁$,=
(+)

𝐹&,= = 0
𝐶𝑂$,= = 0

¼ ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆$E2= , 𝑡 ∈ 𝑇 (65)

Ignacio Grossmann

28

 D 𝑍$,=
(*)

𝐶𝐸$,= = 𝛼$ + 𝛽$ ⋅ 𝑄𝐸$,=
E ⋁ »

𝑍$,=
(+)

𝑄𝐸$,= = 0
𝐶𝐸$,= = 0

¼ ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (66)

 𝚵 q1, ½𝑁$,=
(*), 𝑁$,=

(+)¾r ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (67)
 𝚵 q1, ½𝑍$,=

(*), 𝑍$,=
(+)¾r ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (68)

The Nested GDP model is compared against its Equivalent Single-Level formulation, and the Non-
hierarchical formulation, by reformulating each of these into mixed-integer nonlinear programs (MINLPs)
using the Hull reformulation. Since the models are nonlinear, the perspective functions were reformulated
using the 𝜖-approximation from Furman et al. (2020), with 𝜖 = 108^, which is the default nonlinear Hull
reformulation method in the DisjunctiveProgramming library. As in Example 1, two additional scenarios
are run where the product (stream 8) sales price is increased and decreased by 10%. The model statistics
are given in Tables 4.3.2 (nominal case), 4.3.3 (10% increase), and 4.3.4 (10% decrease). The Nested
formulation is faster than the Equivalent Single-Level formulation by a factor of 1.8 – 4.2. When local
search and range reduction are disabled in BARON, the difference in CPU time becomes more significant
(one order of magnitude difference). The continuous relaxations for the Nested and Non-hierarchical
formulations are equal (23% - 37% gap) and tighter than that of the Equivalent Single-Level formulation
(57% - 89% gap). The performance of the Nested formulation is comparable to that of the Non-hierarchical
one, with the latter having less continuous variables and constraints. This example highlights the fact that
models with on/off disjunctions do not require a hierarchical representation to attain the same
performance gains of the nested models.

Table 4.3.2. Model sizes and computational results of the MINLP models resulting from the Hull
reformulations of the Equivalent Single-Level, Nested, and Non-hierarchical GDP models. All models are
solved to optimality (0% gap).

 Hull Reformulation
 Equivalent Nested Non-hierarchical
Model Size

Binary Variables 384 258 258
Continuous Variables 2,499 2,058 1,554

Constraints 12,006 10,431 7,596
NLP Relaxation

Relaxation Solution -$161,458 -$122,829 -$122,829
Relaxation Gap 69% 29% 29%

MIP Solution
MIP Solution -$95,373 -$95,373 -$95,373

BaR Iterations 1 1 1
Cuts Applied 702 703 712
CPU Time (s) 8.8 4.6 3.5

MIP Solutiona
BaR Iterations 267 7 45

Cuts Applied 58,041 865 3,548
CPU Time (s) 74.5 3.3 5.6

29

aNo local search; no range reduction

Table 4.3.3. Computational statistics of the MILP models resulting from the Hull reformulations of the
GDP models in Example 2 with a 10% increase in the sales price for stream 8. All models are solved to
optimality (0% gap).

 Hull Reformulation
 Equivalent Nested Non-hierarchical
NLP Relaxation

Relaxation Solution -$184,138 -$144,645 -$144,645
Relaxation Gap 57% 23% 23%

MIP Solution
MIP Solution -$117,189 -$117,189 -$117,189

BaR Iterations 1 1 1
Cuts Applied 710 712 712
CPU Time (s) 12.2 2.9 3.5

MIP Solutiona
BaR Iterations 450 7 45

Cuts Applied 102,644 873 3,552
CPU Time (s) 60.5 5.8 2.2

aNo local search; no range reduction

Table 4.3.4. Computational statistics of the MILP models resulting from the Hull reformulations of the
GDP models in Example 2 with a 10% decrease in the sales price for stream 8. All models are solved to
optimality (0% gap).

 Hull Reformulation
 Equivalent Nested Non-hierarchical
NLP Relaxation

Relaxation Solution -$138,779 -$101,013 -$101,013
Relaxation Gap 89% 37% 37%

MIP Solution
MIP Solution -$73,557 -$73,557 -$73,557

BaR Iterations 1 1 1
Cuts Applied 719 729 722
CPU Time (s) 9.5 5.3 3.2

MIP Solutiona
BaR Iterations 301 5 45

Cuts Applied 71,519 640 3,440
CPU Time (s) 75.7 3.6 2.2

aNo local search; no range reduction

The optimal expansion profile for the nominal case is given in Figure 4.3.2, where it can be seen that
Process 2 is not installed, but Processes 1 and 3 are, where the capacity in Process 1 increases to 1 ton/year

30

by the third year, and Process 3 increases to 1.11 ton/year by the fourth year. The optimal system cost is
-$95 thousand, meaning that plant generates profit.

Figure 4.3.2. Capacity expansion profiles for each of the processes in Example 2.

5. Conclusions

Two main contributions are made in this paper to the generalized disjunctive programming (GDP)
modeling framework. The first one is to add cardinality rules to the logic constraints to allow for
constraints of the form choose exactly m Boolean variables to be True (or at least m, or at most m). For
more than two Boolean variables, modeling these types of constraints via propositional logic (zeroth-
order logic) is cumbersome. Thus, introducing predicate logic (first-order logic) to express this new
constraint form in GDP adds more expressiveness to logic-based models. The second contribution is to
extend GDP for modeling hierarchical systems via nested disjunctions. Such an approach results in more
intuitive models, but had not been formalized in the past, as classical GDP does not consider disjunction
nesting. The notation and logic constraints for such structures are provided, along with theoretical proofs
to the tightness of such models, versus equivalent single-level GDP models. It is shown that mixed-integer
programming reformulations of nested GDP models have continuous relaxations that are as tight or
tighter than the reformulations of their single-level counterparts in both the Hull reformulation, as well
as the Big-M reformulation when tight M values are used. In some cases, the nested models result in
tighter continuous relaxations, as shown in the illustrative and numerical examples presented. It was also
observed that when large M values are used, the reformulated nested models show worse performance
due to the presence of multiple large M parameters in the nested constraints. Finding tight M values
requires additional work, and can be done by applying interval arithmetic when the models are linear.
However, for nonlinear models, a separate optimization model must be solved for each constraint to find
the tightest M values.

Three examples are presented to show the advantages of using nested structures. In the illustrative
example, the tightness of the continuous relaxations of nested linear models are compared geometrically
with the relaxations of equivalent single-level models. In this example, the models that preserve nested
structures have smaller continuous relaxations than their single-level counterparts. This is promising as it
may result in computational savings when optimizing nested models. Example 1, a linear GDP, and
Example 2, a nonlinear GDP, illustrate the computational advantages of nested GDP models for problems

31

that integrate superstructure design, technology selection, and operations scheduling, and superstructure
design, long-term operations planning, and capacity expansion planning, respectively. It is also shown that
for systems with bi-disjunct constraints (disjunctions with only two disjunctions), where one disjunct
represents an off state with all pertinent variables set to zero (e.g., zero flow), there is no advantage to
modeling such systems as hierarchical, even when there may be several levels of decisions. Such systems
can be modelled more simply with single-level disjunctions and the necessary linking constraints.

Future work includes investigating how explicit hierarchical structures can be exploited for informed
model decomposition methods and branching strategies. Exploring applications of hierarchical GDP to
other fields, such as decision trees and stochastic optimization with event constraints, is another potential
area for development.

Acknowledgment

The authors gratefully acknowledge the financial support from the Center of Advanced Process Decision-
making at Carnegie Mellon University.

Supplementary Material
All source code for the figures and examples in this paper can be found at
https://github.com/hdavid16/Extensions-to-GDP-paper (repository will be made publicly available after
manuscript acceptance).

Nomenclature

The symbols for the sets, parameters, and variables used in Examples 4.2 and 4.3 are described below,

 Description
Sets

𝑖 ∈ 𝐼 Processes
𝑗 ∈ 𝐽 Technologies
𝑘 ∈ 𝐾 Resources

𝑘 ∈ 𝐾13@G= Reactors
𝑘 ∈ 𝐾=@)- Tanks
𝑠 ∈ 𝑆 Streams
𝑠 ∈ 𝑆3T= External material streams
𝑠 ∈ 𝑆T$) Streams entering 𝑥
𝑠 ∈ 𝑆TE2= Streams exiting 𝑥
𝑡 ∈ 𝑇 Time periods
𝑢 ∈ 𝑈- Number of installed units for resource 𝑘

Parameters
𝛼 Fixed installation/expansion cost
𝛽 Variable installation/expansion cost coefficient
𝛾 Variable operating cost coefficient
𝜈 Yield coefficient
𝜏$ Processing time for process 𝑖
𝐹&#" Upper bound on stream 𝑠
𝑝T Price/cost of stream/material 𝑥

32

𝑄-#" Upper bound on the capacity of resource 𝑘
𝑄𝐸$#" Upper bound on the capacity expansion of process 𝑖

Continuous Variables
𝐵$,= Total batch size for process 𝑖 starting in period 𝑡
𝐵�$,= Unit batch size for process 𝑖 starting in period 𝑡
𝐶𝐸$,= Expansion cost for process 𝑖 in period 𝑡
𝐶𝐼- Installation cost for resource 𝑘
𝐶𝑂$,= Operating cost of process 𝑖 in period 𝑡
𝐹&,= Flow in stream 𝑠 in period 𝑡
𝐿-,= Level in tank 𝑘 in period 𝑡
𝐿�- Level slack in tank 𝑘 in the final period (end of scheduling horizon)
𝑄- Capacity of resource 𝑘
𝑄$,= Capacity of process 𝑖 in period 𝑡
𝑄𝐸$,= Capacity expansion for process 𝑖 in period 𝑡
𝑅-,= Availability of resource 𝑘 in period 𝑡
Δ𝑅$,-,= Number of resources of type 𝑘 consumed for process 𝑖 in period 𝑡

Boolean Variables
𝑁$,-,=,2 Process 𝑖 is started on 𝑢 units of resource 𝑘 at period 𝑡
𝑁$,=
()) Operation of process 𝑖 in period 𝑡

𝑊�$,% Technology 𝑗 is used for process 𝑖
𝑊$,- Resource 𝑘 is assigned to process 𝑖
𝑋-,2 Resource 𝑘 installed with 𝑢 units
𝑌$ Process 𝑖 is installed
𝑍$,=
()) Capacity expansion of process 𝑖 in period 𝑡

References
Agarwal, A. (2015). A Novel MINLP Reformulation for Nonlinear Generalized Disjunctive Programming

(GDP) Problems. ArXiv. https://doi.org/10.48550/arxiv.1510.01791

Balas, E. (1985). Disjunctive Programming and a Hierarchy of Relaxations for Discrete Optimization
Problems. SIAM Journal on Algebraic Discrete Methods, 6(3), 466–486.
https://doi.org/10.1137/0606047

Bernal, D. E., & Grossmann, I. E. (2021). Convex Mixed-Integer Nonlinear Programs Derived from
Generalized Disjunctive Programming using Cones. https://doi.org/10.48550/arxiv.2109.09657

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to numerical
computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Brunaud, B., & Grossmann, I. E. (2017). Perspectives in multilevel decision-making in the process
industry. Frontiers of Engineering Management, 4(3), 256–270. https://doi.org/10.15302/J-FEM-
2017049

Castro, P., Rodrigues, D., Matos, H.A. (2014). Cyclic Scheduling of Pulp Digesters with Integrated Heating
Tasks. Industrial & Chemical Engineering Research, 53, 17098−17111.
https://dx.doi.org/10.1021/ie403822z

33

Castro, P. (2017). Optimal Scheduling of Multiproduct Pipelines in Networks with Reversible Flow.
Industrial & Chemical Engineering Research, 56, 9638−9656.
https://dx.doi.org/10.1021/acs.iecr.7b01685

Chen, Q., Johnson, E. S., Bernal, D. E., Valentin, R., Kale, S., Bates, J., Siirola, J. D., & Grossmann, I. E.
(2022). Pyomo.GDP: an ecosystem for logic based modeling and optimization development.
Optimization and Engineering, 23(1), 607–642. https://doi.org/10.1007/S11081-021-09601-
7/FIGURES/13

Dantzig, G. B. (1972). Fourier-Motzkin Elimination and Its Dual. Department of Operations Research,
Stanford University, CA. https://apps.dtic.mil/sti/citations/AD0750674

Dunning, I., Huchette, J., & Lubin, M. (2017). JuMP: A Modeling Language for Mathematical
Optimization. SIAM Review, 59(2), 295–320. https://doi.org/10.1137/15M1020575

Furman, K. C., Sawaya, N. W., & Grossmann, I. E. (2020). A computationally useful algebraic
representation of nonlinear disjunctive convex sets using the perspective function.
Computational Optimization and Applications, 76(2), 589–614. https://doi.org/10.1007/S10589-
020-00176-0/TABLES/7

Grossmann, I. E. (2012). Advances in mathematical programming models for enterprise-wide
optimization. Computers and Chemical Engineering, 47, 2–18.
https://doi.org/10.1016/j.compchemeng.2012.06.038

Grossmann, I. E., & Lee, S. (2003). Generalized Convex Disjunctive Programming: Nonlinear Convex Hull
Relaxation. Computational Optimization and Applications 2003 26:1, 26(1), 83–100.
https://doi.org/10.1023/A:1025154322278

Grossmann, I. E., & Trespalacios, F. (2013). Systematic modeling of discrete-continuous optimization
models through generalized disjunctive programming. AIChE Journal, 59(9), 3276–3295.
https://doi.org/10.1002/AIC.14088

Kondili, E., Pantelides, C. C., & Sargent, R. W. H. (1993). A general algorithm for short-term scheduling of
batch operations-I. MILP formulation. Computers and Chemical Engineering, 17(2), 211–227.
https://doi.org/10.1016/0098-1354(93)80015-F

Lee, S., & Grossmann, I. E. (2000). New algorithms for nonlinear generalized disjunctive programming.
Computers & Chemical Engineering, 24(9–10), 2125–2141. https://doi.org/10.1016/S0098-
1354(00)00581-0

Legat, B., Deits, R., Goretkin, G., Koolen, T., Huchette, J., Oyama, D., & Forets, M. (2021).
JuliaPolyhedra/Polyhedra.jl: v0.6.16. Zenodo. https://doi.org/10.5281/zenodo.4993670

Maravelias, C. T., & Sung, C. (2009). Integration of production planning and scheduling: Overview,
challenges and opportunities. Computers & Chemical Engineering, 33(12), 1919–1930.
https://doi.org/10.1016/J.COMPCHEMENG.2009.06.007

Muñoz, E., Capón-García, E., Moreno-Benito, M., Espuña, A., & Puigjaner, L. (2011). Scheduling and
control decision-making under an integrated information environment. Computers & Chemical
Engineering, 35(5), 774–786. https://doi.org/10.1016/J.COMPCHEMENG.2011.01.025

Perez, H. D., Amaran, S., Iyer, S., Wassick, J. M., Grossmann, I. E. (2022). Applications of the RTN
scheduling model in the chemical industry. In M. Bortz & N. Asprion (Eds.), Simulation and

34

Optimization in Process Engineering: The Benefit of Mathematical Methods in Applications of the
Chemical Industry (pp. 365-400). Elsevier. https://doi.org/10.1016/B978-0-323-85043-8.00006-4

Perez, H. D., Joshi, S., Grossmann, I. E. (2023). DisjunctiveProgramming.jl: Generalized Disjunctive
Programming Models and Algorithms for JuMP. ArXiv.
https://doi.org/10.48550/arXiv.2304.10492

Raman, R., & Grossmann, I. E. (1994). Modelling and computational techniques for logic based integer
programming. Computers & Chemical Engineering, 18(7), 563–578.
https://doi.org/10.1016/0098-1354(93)E0010-7

Rodriguez, M. A., & Vecchietti, A. (2009). Logical and generalized disjunctive programming for supplier
and contract selection under provision uncertainty. Industrial and Engineering Chemistry
Research, 48(11), 5506–5521. https://doi.org/10.1021/IE801614X/ASSET/IMAGES/MEDIUM/IE-
2008-01614X_0005.GIF

Ruiz, J. P., & Grossmann, I. E. (2012). A hierarchy of relaxations for nonlinear convex generalized
disjunctive programming. European Journal of Operational Research, 218(1), 38–47.
https://doi.org/10.1016/J.EJOR.2011.10.002

Sawaya, N. W., & Grossmann, I. E. (2005). A cutting plane method for solving linear generalized
disjunctive programming problems. Computers & Chemical Engineering, 29(9), 1891–1913.
https://doi.org/10.1016/J.COMPCHEMENG.2005.04.004

Sokoler, L. E., Dinesen, P. J., & Jorgensen, J. B. (2017). A Hierarchical Algorithm for Integrated Scheduling
and Control with Applications to Power Systems. IEEE Transactions on Control Systems
Technology, 25(2), 590–599. https://doi.org/10.1109/TCST.2016.2565382

Trespalacios, F., & Grossmann, I. E. (2015). Improved Big-M reformulation for generalized disjunctive
programs. Computers & Chemical Engineering, 76, 98–103.
https://doi.org/10.1016/J.COMPCHEMENG.2015.02.013

Trespalacios, F., & Grossmann, I. E. (2016). Cutting Plane Algorithm for Convex Generalized Disjunctive
Programs. INFORMS Journal on Computing, 28(2), 209–222.
https://doi.org/10.1287/IJOC.2015.0669

Türkay, M., & Grossmann, I. E. (1996a). Logic-based MINLP algorithms for the optimal synthesis of
process networks. Computers and Chemical Engineering, 20(8), 959–978.
https://doi.org/10.1016/0098-1354(95)00219-7

Türkay, M., & Grossmann, I. E. (1996b). Logic-based MINLP algorithms for the optimal synthesis of
process networks. Computers & Chemical Engineering, 20(8), 959–978.
https://doi.org/10.1016/0098-1354(95)00219-7

van den Heever, S. A., & Grossmann, I. E. (1999). Disjunctive multiperiod optimization methods for
design and planning of chemical process systems. Computers & Chemical Engineering, 23(8),
1075–1095. https://doi.org/10.1016/S0098-1354(99)00273-2

Vecchietti, A., & Grossmann, I. E. (2000). Modeling issues and implementation of language for
disjunctive programming. Computers & Chemical Engineering, 24(9–10), 2143–2155.
https://doi.org/10.1016/S0098-1354(00)00582-2

35

Williams, H. P. (1985). Model Building in Linear and Integer Programming. Computational Mathematical
Programming, 25–53. https://doi.org/10.1007/978-3-642-82450-0_2

Yan, H., & Hooker, J. N. (1999). Tight representation of logical constraints as cardinality rules.
Mathematical Programming 1999 85:2, 85(2), 363–377.
https://doi.org/10.1007/S101070050061

Appendix A: Challenges with Exclusive OR Operator

The Exclusive OR (XOR) returns true whenever an odd number of literals are True. As a binary operator, it
is equivalent to exactly one of the literals being true. However, when disjunctions have three or more
disjuncts, using an XOR operator can be problematic when the disjunction is not proper, meaning that
there is an overlap between the feasible regions of the disjuncts. Specifically, issues arise when a GDP
model is reformulated into a MIP model via the Hull reformulation. When the Hull reformulation is
applied, each variable in the disjunction is disaggregated, and it is assumed that exactly one of the
disaggregated variables takes a non-zero value, such that the sum of the disaggregated variables becomes
the original variable. However, for an improper disjunction, there can exist a scenario where a feasible
point is at the intersection of an odd number of disjuncts. When this occurs, an odd number of
disaggregated variables can become non-zero, resulting in an erroneous solution.

Consider the simple improper disjunction in (A1), where 𝑥 is bounded between 0 and 20. The Hull
reformulation of (A1) is given in (A2), where 𝑦$ is the binary counterpart of the Boolean 𝑌$. At the feasible
point 𝑥 = 5, all three disjuncts are valid, and the XOR operator 𝑌* ∨ 𝑌+ ∨ 𝑌,, will return True if all Boolean
variables 𝑌$ are True. In this scenario, 𝑥$ = 5		∀𝑖 ∈ {1,2,3}, making the aggregated variable 𝑥 = 15, which
is not correct. Note that if the upper bound on 𝑥 is less than 15, this solution becomes infeasible. Although
this is a simple example that could be avoided by using strict inequalities on the first and third disjunct,
there may be more complex disjunctions where it may not be as apparent that they are improper.

 Ä 𝑌*
𝑥 ≤ 5Å ∨ Ä

𝑌+
𝑥 = 5Å ∨ Ä

𝑌,
𝑥 ≥ 5Å (A1)

𝑥* ≤ 5𝑦*
𝑥+ = 5𝑦+
𝑥, ≥ 5𝑦,

0 ≤ 𝑥$ ≤ 20𝑦$ 		∀𝑖 ∈ {1,2,3}
𝑥 = 𝑥* + 𝑥+ + 𝑥, ⎭

⎪
⎬

⎪
⎫

 (A2)

Appendix B: Negations in Nested Disjunctions

Nesting disjunctions involves linking cardinality constraints of the form 𝚵(𝑌,𝑊$ 		∀𝑖 ∈ 𝐼), which indicates
that exactly one Boolean 𝑊$ is allowed to be True if and only if 𝑌 is True. Otherwise, exactly zero Booleans
𝑊$ are True. To illustrate this, consider Example 2 (Section 4.3), where the upper-level decision is to install
or not install a process (indicated by the Boolean variable 𝑌 below), and the lower-level decision is to
operate or not operate the process in a given time period (indicated by the Boolean variable 𝑁 below).
The modeler might consider writing such a nested disjunction as (B1). However, this is not correct from a
logic standpoint because the cardinality rule 𝚵(𝑌, {𝑁,¬𝑁}) is infeasible. This is because 𝑁 must either be
True or False, and ¬𝑁 is the complement of 𝑁. If 𝑌 = 𝐹𝑎𝑙𝑠𝑒, the cardinality rule implies that all the literals
must be False, but 𝑁 and ¬𝑁 cannot both be False. The correct form of writing this nested disjunction is

36

given in (B2), where 𝑁(*) indicates operating the process given the process is installed, and 𝑁(+) indicates
not operating the process given the process is installed.

 »
𝑌
…

Ä𝑁…Å ∨ Ä
¬𝑁
… Å

¼ ∨ Ä¬𝑌… Å (B1)

 Z

𝑌
…

u𝑁
(*)

…
v ∨ u𝑁

(+)

…
v
[∨ Ä¬𝑌… Å (B2)

Appendix C: Flattening Nested Disjunctions via Basic Steps

The third approach to modeling hierarchical GDP is to flatten the nested disjunctions by applying
sufficiently many basic steps (Ruiz & Grossmann, 2012; Grossmann & Trespalacios, 2013) within each
disjunction until the nested system is transformed into a system with single-level disjunctions. Consider
the simple nested disjunction in (C1). This disjunction constraint can be flattened by applying two basic
steps to introduce 𝑔*(𝑥) ≤ 0 into the nested disjunctions, resulting in (C2), where 𝑍* = 𝑌* ∧𝑊* and 𝑍+ =
𝑌* ∧𝑊+.

 Z

𝑌*
𝑔*(𝑥) ≤ 0

u
𝑊*

ℎ*(𝑥) ≤ 0v ∨ u
𝑊+

ℎ+(𝑥) ≤ 0v
[∨ u

𝑌+
𝑔+(𝑥) ≤ 0v (C1)

 »
𝑍*

𝑔*(𝑥) ≤ 0
ℎ*(𝑥) ≤ 0

¼ ∨ »
𝑍+

𝑔*(𝑥) ≤ 0
ℎ+(𝑥) ≤ 0

¼ ∨ u
𝑌+

𝑔+(𝑥) ≤ 0v (C2)

For disjunctions with a single nested disjunction, applying a basic step is quite inexpensive. However, once
there is more than one nested disjunction inside a single disjunct, the number of basic steps required to
flatten the hierarchical GDP grows exponentially. Consider the disjunction with two nested disjunctions in
(C3). Flattening the disjunction is a set covering problem and requires eight basic steps (four for each
combination of two disjuncts and four more to introduce 𝑔*(𝑥) ≤ 0 in the resulting disjuncts) to obtain
the equivalent disjunction in (C4).

⎣
⎢
⎢
⎢
⎢
⎡

𝑌*
𝑔*(𝑥) ≤ 0

u
𝑊*

ℎ*(𝑥) ≤ 0v ∨ u
𝑊+

ℎ+(𝑥) ≤ 0v

u
𝑊,

ℎ,(𝑥) ≤ 0v ∨ u
𝑊U

ℎU(𝑥) ≤ 0v⎦
⎥
⎥
⎥
⎥
⎤

∨ u
𝑌+

𝑔+(𝑥) ≤ 0v (C3)

37

⎣
⎢
⎢
⎡
𝑌* ∧𝑊* ∧𝑊,
𝑔*(𝑥) ≤ 0
ℎ*(𝑥) ≤ 0
ℎ,(𝑥) ≤ 0 ⎦

⎥
⎥
⎤
∨

⎣
⎢
⎢
⎡
𝑌* ∧𝑊* ∧𝑊U
𝑔*(𝑥) ≤ 0
ℎ*(𝑥) ≤ 0
ℎU(𝑥) ≤ 0 ⎦

⎥
⎥
⎤
∨

⎣
⎢
⎢
⎡
𝑌* ∧𝑊+ ∧𝑊,
𝑔*(𝑥) ≤ 0
ℎ+(𝑥) ≤ 0
ℎ,(𝑥) ≤ 0 ⎦

⎥
⎥
⎤
∨

⎣
⎢
⎢
⎡
𝑌* ∧𝑊+ ∧𝑊U
𝑔*(𝑥) ≤ 0
ℎ+(𝑥) ≤ 0
ℎU(𝑥) ≤ 0 ⎦

⎥
⎥
⎤
∨ u

𝑌+
𝑔+(𝑥) ≤ 0v (C4)

Generalizing this to the notation of 2L-GDP, a disjunction with 𝑘 ∈ 𝐾$% nested disjunctions, each of which
has 𝑙 ∈ 𝐿$%- disjuncts, requires the number of basic steps given in (17), where the notation G@*J is the
binomial coefficient (choose 1 from a group with 𝑎 elements). The coefficient 2 accounts for introducing
𝑔$%(𝑥) ≤ 0 into each of the resulting disjuncts, and can be replaced by the 1 + Ê𝑔$%(𝑥)Ê if 𝑔$%(𝑥)
represents a vector of functions, where Ê𝑔$%(𝑥)Ê is the number of functions within 𝑔$%(𝑥). A hybrid
approach is also possible, where some basic steps are performed and then the resulting nested disjunction
is flattened as in the Equivalent Single-Level GDP approach. However, as the number of nested
disjunctions increases, this hybrid approach yields many more disjunctions than those given in (C5).
Although flattening via basic steps may produce models that are tighter than the inside-out reformulation
of the Nested GDP, the combinatorial growth of such systems makes this approach prohibitive for multi-
level decision systems with multiple disjuncts in each nested disjunction. It is for this reason that this
approach is not considered in the main body of the paper. However, it is presented here as a reference
for the reader.

 2 ⋅ �
Ê𝐿$%*Ê
1

� ⋅ �
Ê𝐿$%+Ê
1

� ⋅ … ⋅ Á
Ë𝐿$%_Q!"_Ë

1
Â = 2 ⋅ Ì Ê𝐿$%-Ê

-∈Q!"

 (C5)

