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Abstract 

Optimization problems with discrete-continuous decisions are traditionally modeled in algebraic form via 
(non)linear mixed-integer programming. A more systematic approach to modeling such systems is to use 
Generalized Disjunctive Programming (GDP), which extends the Disjunctive Programming paradigm 
proposed by Egon Balas to allow modeling systems from a logic-based level of abstraction that captures 
the fundamental rules governing such systems via algebraic constraints and logic. Although GDP provides 
a more general way of modeling systems, it warrants further generalization to encompass systems 
presenting a hierarchical structure. This work extends the GDP literature to address two major alternatives 
for modeling and solving systems with nested (hierarchical) disjunctions: explicit nested disjunctions and 
equivalent single-level disjunctions. We also provide theoretical proofs on the relaxation tightness of such 
alternatives, showing that explicitly modeling nested disjunctions is superior to the traditional approach 
discussed in literature for dealing with nested disjunctions. 

Keywords: Generalized disjunctive programming, Hierarchical systems, Discrete-continuous 
optimization. 

1. Introduction 

Discrete-continuous optimization is one of the main modeling approaches to address design, planning, 
and scheduling problems in Process Systems Engineering (PSE) (Grossmann, 2012). Raman and Grossmann 
(1994) present a powerful modeling paradigm that extends the work by Balas (1985) on disjunctive 
programming. This new paradigm, called Generalized Disjunctive Programming (GDP), has been further 
developed by others in the PSE community over the years to account for additional features, such as 
nonlinearities and nonconvexities in the problems encountered (Grossmann & Trespalacios, 2013). GDP 
relies on the intersection of disjunctions of algebraic constraints (equality and inequality constraints with 
continuous variables) to model the feasible space. Boolean variables are used as indicator variables for 
each disjunct (set of algebraic constraints), enforcing the constraints in the disjunct when True. Logic 
constraints are also included to describe the relationships between the Boolean indicator variables via 
propositional logic. 

GDP is a valuable modeling abstraction for optimization problems for two main reasons. Firstly, modeling 
systems from the basis of their underlying logical relationships aids the development and formulation of 
optimization models by making them easier to interpret, reducing the likelihood of modeling errors due 
to logical fallacies. Secondly, GDP makes available a broad array of solution methods, ranging from mixed-
integer reformulations to logic-based search methods (Chen et al., 2022). 

The present work extends the GDP theory to allow modeling hierarchical systems, which are commonly 
encountered in PSE, and more particularly in Enterprise-Wide Optimization (EWO) (Grossmann, 2012; van 
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den Heever & Grossmann, 1999), and flowsheet superstructure optimization (Türkay & Grossmann, 
1996a). Hierarchical systems involve multiple levels of decision making, which can be concisely modelled 
via nested disjunctions. However, traditional GDP does not consider such formulations. Existing GDP 
literature suggests reformulating nested disjunctions into equivalent single-level disjunctions (Vecchietti 
& Grossmann, 2000). Such an approach requires introducing additional Boolean variables and logical 
propositions. Industrial examples of this approach in scheduling include that of Castro et al. (2014) and 
Castro (2017). An alternate approach is used in the work by van den Heever and Grossmann (1999), in 
which a direct or inside-out reformulation to MI(N)LP is performed. We formalize these two approaches 
and provide theoretical proofs on the tightness of their continuous relaxations. The model tightness and 
computational performance of the different approaches are compared. A series of examples are used to 
show the modeling and computational advantages obtained by explicitly modeling nested disjunctions. 

The paper is organized as follows, Section 2 provides a background on the GDP modeling paradigm. 
Section 3 extends this formulation to account for hierarchical systems, and discusses the alternatives for 
modeling such systems. The equivalent mixed-integer programming reformulations for these alternatives 
are presented, along with two theorems on the tightness of the resulting models. Section 4 provides 
several numerical use cases for hierarchical GDPs. Section 5 presents concluding remarks. 

2. Background: Generalized Disjunctive Programming (GDP) 

The classical GDP formulation is given below (GDP), where 𝑥 is the set of continuous variables (bounded 
between 𝑥!" and 𝑥#"), 𝑓(𝑥) is the objective function, 𝑟(𝑥) ≤ 0 is the set of global constraints, 𝑔$%(𝑥) ≤
0 is the set of constraints applied when the indicator Boolean 𝑌$%  is True for disjunct 𝑗 in disjunction 𝑖. 
𝑓(𝑥), 𝑟(𝑥), and 𝑔$%(𝑥) are assumed to be continuous and differentiable over 𝑥. Ω(𝑌) defines the set of 
logic constraints, which are described via propositional logic on a subset of Boolean variables. These 
constraints describe the relations between the Boolean variables via clauses that contain with one or 
more of the following logic operators: AND (∧), OR (∨), implication (⇒), equivalence (⇔), and negation 
(¬).	The set of logic constraints may also include cardinality clauses of the form choose exactly (or at least 
or at most) 𝑚 Boolean variables from a subset of Booleans to be True (Yan & Hooker, 1999). We leverage 
predicate logic to extend the notation used by Yan and Hooker for cardinality clauses by defining the 
following predicates: 𝚵(𝑚, 𝑌&	∀𝑠 ∈ 𝑆) enforces that exactly 𝑚 of the Boolean variables 𝑌& are True, 
𝚲(𝑚, 𝑌&	∀𝑠 ∈ 𝑆) enforces that at least 𝑚 of the variables are True, and 𝚪(𝑚, 𝑌&	∀𝑠 ∈ 𝑆) enforces that at 
most 𝑚 are True.  

 

min 𝑧 = 𝑓(𝑥) (GDP) 
𝑠. 𝑡. 𝑟(𝑥) ≤ 0   

 CD
𝑌$%

𝑔$%(𝑥) ≤ 0	E
%∈(!

 ∀𝑖 ∈ 𝐼  

 𝚵G1, 𝑌$% 	∀𝑗 ∈ 𝐽$J ∀𝑖 ∈ 𝐼  
 Ω(𝑌)   
 𝑥!" ≤ 𝑥 ≤ 𝑥#"   
 𝑥 ∈ ℝ)   
 𝑌$% ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$   
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GDP models typically include a cardinality clause to enforce that exactly 1 disjunct in each disjunction is 
selected, i.e., 𝚵G1, 𝑌$% 	∀𝑗 ∈ 𝐽$J	∀𝑖 ∈ 𝐼. The GDP literature often uses the exclusive OR (XOR) operator, ∨, 
to define this constraint. However, such an operator is only correct for proper disjunctions (those with 
non-overlapping disjuncts) and poses issues in GDP when there are overlapping disjuncts (improper 
disjuncts). This is because XOR is an n-ary operator that returns True when an odd number of propositions 
in the operator are True. This can create problems when transforming the GDP into a MIP via the Hull 
reformulation because an odd number of disaggregated variables will be active (non-zero) for any feasible 
point at the intersection of an odd number of disjuncts. As a result, the projection of the disaggregated 
variables onto the original space will result in a value that is an odd integer multiple of the disaggregated 
variable values, which is incorrect and may exclude valid solutions by making them infeasible (see 
Appendix A). Thus, to avoid these issues, we use the predicate logic notation, 𝚵(1, 𝑌), here instead. 

To illustrate the elements of a GDP model, consider the model below (GDP-example). The projection of 
this model on the 𝑥*, 𝑥+-plane is given in Figure 2.1, where the quadratic objective function is shown in 
the colored contours, the global constraints are given by the region under the black curves (one linear and 
the other nonlinear), and the disjunction constraint is given by the three colored rectangles. The feasible 
space of such a system is given by the disjoint regions in the orange, blue, and green rectangles that satisfy 
the global constraints. 

min 𝑧 =
1
2
(𝑥* − 2)+ +

3
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⎤

 

 𝚵(1, 𝑌$ 	∀𝑖 ∈ {1,2,3})   
 0 ≤ 𝑥*, 𝑥+ ≤ 5   
 𝑥*, 𝑥+ ∈ ℝ*   
 𝑌$ ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ {1,2,3}  

(GDP-example)

Ignacio Grossmann
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Figure 2.1. Sample GDP graphical representation for GDP-example model. 

One of the main advantages of modeling discrete-continuous problems using GDP is the collection of 
methods that are available for optimizing such systems. These include, 1) reformulating to mixed-integer 
(non)linear models (MI(N)LP) via either Big-M (Trespalacios & Grossmann, 2015) or Hull reformulations 
(Agarwal, 2015; Bernal & Grossmann, 2021; Furman et al., 2020; Grossmann & Lee, 2003), 2) logic-based 
decomposition methods such as Logic-based Outer Approximation (LOA) (Türkay & Grossmann, 1996b), 
3) disjunctive branch-and-bound (Lee & Grossmann, 2000), 4) basic steps (Ruiz & Grossmann, 2012), and 
5) hybrid cutting planes (Sawaya & Grossmann, 2005; Trespalacios & Grossmann, 2016). The reader is 
referred to the above references for a detailed understanding of each of these solution methods. 

3. Extended formulation for multi-level hierarchies 

Decision hierarchies are present in most decision-making applications. These include for instance supply 
chain and enterprise-wide optimization, where different levels of decision-making exist depending on the 
time scales considered: planning (months/years), scheduling (hours/days), and control 
(seconds/minutes). According to Brunaud and Grossmann (2017), integrating different decision levels 
enables better coordination and communication between functional areas, which increases agility in 
response to disturbances and makes it possible to attain benefits for the company that are not possible 
with a siloed approach. Figure 3.1 illustrates the notion of the synergistic benefits that can be obtained 
by an integrated approach, rather than siloed or aggregated approaches. Accounting for the relationships 
between different levels of decision-making can aid in finding the true optimum, which differs from that 
of the aggregated model (i.e., the model obtained by summing the siloed costs). Integrated approaches 
to hierarchical decision-making systems have been addressed in the literature. Some examples of these 
integrations are the integration between design and planning (operational and expansion) (van den 
Heever & Grossmann, 1999), planning and scheduling (Maravelias & Sung, 2009), and scheduling and 
control (Muñoz et al., 2011; Sokoler et al., 2017). The following subsections formalize how GDP can be 
used to model hierarchical systems, along with theoretical proofs on the differences between the 
approaches. 
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Figure 3.1. Illustartion of the different optimas for siloed, aggregated, and integrated approaches. 

3.1. Hierarchical GDP 

We propose extending the GDP paradigm to include multi-level decisions by means of nested disjunctions. 
Although the notion of nesting disjunctions to represent hierarchical decisions is not new, the limitations 
in the traditional GDP notation have made it difficult to exploit the benefits of using such structures. One 
of the first references to nested disjunctions is found in the work by Vecchietti and Grossmann (2000), 
which describes the transformations required to conform to the current GDP notation. It is interesting to 
note that several works have relied on the nested GDP representation due to its compact representation. 
In one of these (Rodriguez & Vecchietti, 2009), the following statement is made,  

“Although the expressiveness of the hierarchical decisions by means of nested disjunctions, they 
cannot be implemented directly. These disjunctions must be transformed into GDP form. For that 
purpose, the disjunctions…must be rewritten as single disjunctions, and some additional constraints 
must also be included in the model.” 

Therefore, from a model development point of view, the use of disjunction nesting is shown to add value. 
However, its implementation has often required breaking the explicit hierarchical structure. An exception 
is the work by van den Heever and Grossmann (1999), which does not transform the nested GDP into a 
logically equivalent single-level GDP, but rather suggests performing the Hull reformulation on the inner 
disjunction and then reformulating the outer disjunction. We now build upon this concept to formally 
extend the GDP notation for hierarchical systems that generalizes to multi-disjunct disjunctions, rather 
than the on/off disjunctions used by van den Heever and Grossmann (1999). We also provide theoretical 
proofs on the advantages of modeling system hierarchies via nested disjunctions, and highlight the 
computational performance gains obtained using this explicit notation. 

The proposed extension to the classical GDP notation for hierarchical systems is given below for a 2-Level 
Nested GDP (2L-GDP), where the upper-level decisions, 𝑌, enforce the constraints 𝑔(𝑥) ≤ 0 and the 
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nested decisions, 𝑊, which have constraints ℎ(𝑥) ≤ 0. Here the cardinality clause of selecting exactly one 
disjunct from the upper-level decisions, 𝑌, is expressed explicitly, along with a new set of cardinality rules 
that enforce selecting exactly one of the lower-level decisions, 𝑊, if and only if the upper-level decision 
has been selected, and selecting no lower-level decisions when the upper-level decision is not selected. 
This constraint is expressed as the conjunction of two cardinality rules: g𝑌$% ⇒ 𝚵G1,𝑊$%-. 	∀𝑙 ∈ 𝐿$%-Ji ∧
g¬𝑌$% ⇒ 𝚵G0,𝑊$%-. 	∀𝑙 ∈ 𝐿$%-Ji	∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$%. In the GDP literature, this constraint has been 
traditionally written as 𝑌$% ⇔	∨.∈!!"# 𝑊$%-. 		∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$%. However, such a logic proposition is 
incomplete because it would allow the following to occur: 𝑌$% = 𝐹𝑎𝑙𝑠𝑒 and 𝑊$%-. = 𝑇𝑟𝑢𝑒 for more than 
1 index 𝑙 ∈ 𝐿$%- (i.e., False ⇔ (True ∨ True) is valid because the exclusive OR makes the right-hand side 
False). If all disjunctions are proper, then this will not occur. However, since there can be a disjunction 
with overlapping disjuncts, the cardinality rule 𝚪G1,𝑊$%-. 	∀𝑙 ∈ 𝐿$%-J	∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 	𝐾$%  would need to 
be added to such a system to ensure that no more than 1 literal, 𝑊$%-., is set to True. A more compact 
form would be to use the predicate constraint, 𝚵G𝟏{0123}G𝑌$%J,𝑊$%-. 	∀𝑙 ∈ 𝐿$%-J, where 𝟏{0123}(⋅) is the 
indicator function that returns 1 when the input is True and 0 otherwise. In other words, the indicator 
function maps a Boolean variable to its binary counterpart. For simplicity, we make a slight abuse of 
notation by dropping the indicator function and using the expression 𝚵G𝑌$% ,𝑊$%-. 	∀𝑙 ∈ 𝐿$%-J instead. 

min 𝑧 = 𝑓(𝑥) (2L-GDP) 
𝑠. 𝑡. 𝑟(𝑥) ≤ 0  

 C

⎣
⎢
⎢
⎢
⎡

𝑌$%
𝑔$%(𝑥) ≤ 0	

C D
𝑊$%-.

ℎ$%-.(𝑥) ≤ 0E
.∈!!"#

		∀𝑘 ∈ 𝐾$%
⎦
⎥
⎥
⎥
⎤

%∈(!

 ∀𝑖 ∈ 𝐼  

 𝚵G1, 𝑌$% 	∀𝑗 ∈ 𝐽$J ∀𝑖 ∈ 𝐼  
 𝚵G𝑌$% ,𝑊$%-. 	∀𝑙 ∈ 𝐿$%-J ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$%   
 Ω(𝑌,𝑊)   
 𝑥!" ≤ 𝑥 ≤ 𝑥#"   
 𝑥 ∈ ℝ)   
 𝑌$% ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$   
 𝑊$%-. ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%-  

This model can be generalized to a Multi-Level Nested GDP (ML-GDP) with 𝑛 levels, where the superscript 
on the Boolean variables, constraints, and sets indicates the level 𝑘 ∈ {1,… , 𝑛} of the hierarchy that these 
belong to. 

min 𝑧 = 𝑓(𝑥) (ML-GDP) 

𝑠. 𝑡. 𝑟(𝑥) ≤ 0  

Ignacio Grossmann

Ignacio Grossmann
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⎥
⎥
⎥
⎥
⎥
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⎥
⎥
⎥
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⎥
⎥
⎥
⎥
⎥
⎤

	
%$∈(!$
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∀𝑖* ∈ 𝐼(*) 

 

 𝚵G1, 𝑌$$%$
* 	∀𝑗* ∈ 𝐽$$J ∀𝑖* ∈ 𝐼(*) 

 

 
𝚵 q𝑌$$%$…$#'$%#'$

(-8*) , 𝑌$$%$…$#%#
(-) 	∀𝑗- ∈ 𝐽$$%$…$#

(-) r 

∀𝑘 ∈ {2,… , 𝑛}, 𝑖* ∈ 𝐼(*), 𝑗* ∈ 𝐽$$
(*), … , 𝑖- ∈ 𝐼$$%$…$#'$%#'$

(-) , 𝑗- ∈ 𝐽$$%$…$#
(-)  

 

 ΩG𝑌(*), … , 𝑌())J   
 𝑥!" ≤ 𝑥 ≤ 𝑥#"   
 𝑥 ∈ ℝ)   

 
𝑌$$%$…$#%#
(-) ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} 

∀𝑘 ∈ {1,… , 𝑛}, 𝑖* ∈ 𝐼(*), 𝑗* ∈ 𝐽$$
(*), … , 𝑖- ∈ 𝐼$$%$…$#'$%#'$

(-) , 𝑗- ∈ 𝐽$$%$…$#
(-)  

 

It should be noted that nested disjunctions should generally not include negations of Boolean variables 
(see Appendix B). 

3.2. Equivalent Single-level GDP 

Previous references to GDP with nested disjunctions in literature have proposed transforming the 2L-GDP 
model into the Equivalent Single-Level GDP (2E-GDP) given below (Grossmann & Trespalacios, 2013; 
Vecchietti & Grossmann, 2000). Here, the nested disjunction is extracted and a dummy or “slack” disjunct 
is added to preserve feasibility. Thus, if none of the nested disjuncts is selected, the slack disjunct is 
selected, which contains the entire feasible set for 𝑥. The exclusive cardinality rule on the inner Boolean 
variables, 𝑊, is also augmented to include the slack Boolean variable, 𝑊$%-9. This slack variable is, 
however, not included in the linking logic constraint for the upper and lower-level decisions. This ensures 
that the nested decisions are only selected if their master Boolean is True. This method for transforming 
a nested disjunction can also be applied to the multi-level system ML-GDP. 

min 𝑧 = 𝑓(𝑥) (2E-GDP) 
𝑠. 𝑡. 𝑟(𝑥) ≤ 0  

 CD
𝑌$%

𝑔$%(𝑥) ≤ 0	E
%∈(!

 ∀𝑖 ∈ 𝐼  
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 sC D
𝑊$%-.

ℎ$%-.(𝑥) ≤ 0E
.∈!!"#

tCu
𝑊$%-9

𝑥!" ≤ 𝑥 ≤ 𝑥#"
v ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$%   

 𝚵G1, 𝑌$% 	∀𝑗 ∈ 𝐽$J ∀𝑖 ∈ 𝐼  

 𝚵G1,𝑊$%-. 	∀𝑙 ∈ 𝐿$%- ∪ {0}J ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$%   

 𝚵G𝑌$% ,𝑊$%-. 	∀𝑙 ∈ 𝐿$%-J ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$%   

 Ω(𝑌,𝑊)   
 𝑥!" ≤ 𝑥 ≤ 𝑥#"   
 𝑥 ∈ ℝ)   
 𝑌$% ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$   
 𝑊$%-. ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%-  

Although the above formulation, allows modeling hierarchical systems in the standard GDP notation, it 
has two major drawbacks: 1) the explicit hierarchical structure is lost, and 2) although the Equivalent 
Single-Level GDP model is logically equivalent to the Nested GDP model, it requires introducing additional 
disjuncts and Boolean variables. Introducing “slack” disjuncts and “slack” Boolean variables results in 
models whose continuous relaxations are less tight, as described in the next section. 

3.3. Tightness of Continuous Relaxations 

The following two theorems and their associated proofs establish the advantages of modeling multi-level 
decisions problems via Nested GDP, rather than the Equivalent Single-Level GDP approach. The 
advantages are shown by discussing the tightness of the continuous relaxations of both the Hull 
reformulation (HR) and Big-M reformulation (BM) of these two GDP models. 

Theorem 1. Let rML-GDP-HR denote the continuous relaxation of the mixed-integer program (MIP) 
obtained from a Multi-Level Nested GDP via the Hull reformulation, and let rME-GDP-HR denote the 
continuous relaxation of the MIP obtained from its respective Equivalent Single-Level GDP representation 
via the Hull reformulation. The feasible space of the former is contained within the feasible space of the 
latter, namely, rML-GDP-HR ⊆ rME-GDP-HR. 

Proof. Without loss of generality, the above theorem is proved by establishing that the Hull reformulation 
of the 2-Level Nested GDP model (r2L-GDP-HR) is contained in the Hull reformulation of its Equivalent 
Single-Level GDP representation (r2E-GDP-HR):  

r2L-GDP-HR ⊆ r2E-GDP-HR 

The Hull reformulation for 2L-GDP is given below, where the continuous variable 𝑥 is disaggregated in 
each disjunct (𝑥 is disaggregated into 𝑢$%  for each upper-level disjunct, and 𝑢$%  is disaggregated into 𝑣$%-.  
for each lower-level disjunct) and the Boolean variables are replaced by their corresponding binary 
variable (𝑌 becomes 𝑦, and 𝑊 becomes 𝑤). 𝐴 and 𝐵 are matrices of scalars, and 𝑐 is a vector of scalars. 
These are used to map the logic constraints into their algebraic counterparts obtained after converting 
the logic propositions into conjunctive normal form (CNF) and transforming each clause into its equivalent 
algebraic constraint (Williams, 1985). Note that the disaggregated variables are bounded between 

Ignacio Grossmann
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min(0, 𝑥!") and max(0, 𝑥#") instead of the traditional bounds of 0 and 𝑥#" because we do not assume 
that 𝑥 is nonnegative. As a result, the min and max operators in these bounds are required to guarantee 
that the domain of the disaggregated variables contains the origin (0). This is necessary to ensure that the 
disaggregation constraints remain feasible when the disaggregated variables are forced to 0 for the 
disjuncts that are not selected. 

min 𝑧 = 𝑓(𝑥) (2L-GDP-HR) 

𝑠. 𝑡. 𝑟(𝑥) ≤ 0  

Va
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e 

D i
sa

gg
re

ga
tio

n 

�𝑢$%
%∈(!

= 𝑥 ∀𝑖 ∈ 𝐼  

� 𝑣$%-.
.∈!!"#

= 𝑢$%  ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$% , 𝐿$%- ≠ ∅  

𝑥!" ⋅ 𝑦$% ≤ 𝑢$% ≤ 𝑥#" ⋅ 𝑦$%  ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$   

𝑥!" ⋅ 𝑤$%-. ≤ 𝑣$%-. ≤ 𝑥#" ⋅ 𝑤$%-.  ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%-  

Pe
rs

pe
ct

iv
e 

Fu
nc

tio
ns

 

𝑦$% ⋅ 𝑔$% �
𝑢$%
𝑦$%
� ≤ 0 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$  

 

𝑤$%-. ⋅ ℎ$%-. �
𝑣$%-.
𝑤$%-.

� ≤ 0 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%- 
 

Ca
rd

in
al

ity
 

Ru
le

s 

�𝑦$%
%∈(!

= 1 ∀𝑖 ∈ 𝐼 
 

𝑦$% = � 𝑤$%-.
.∈!!"#

 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$% , 𝐿$%- ≠ ∅ 
 

O
th

er
 L

og
ic

 
Co

ns
tr

ai
nt

s 

𝐴𝑦 + 𝐵𝑤 ≤ 𝑐  

 

Va
ria

bl
e  

Do
m

ai
ns

 

𝑥!" ≤ 𝑥 ≤ 𝑥#"   
min(0, 𝑥!") ≤ 𝑢$% ≤ max(0, 𝑥#") ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$   
min(0, 𝑥!") ≤ 𝑣$%-. ≤ max(0, 𝑥#") ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%-  
𝑥 ∈ ℝ)   
𝑢$% ∈ ℝ) ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$   
𝑣$%-. ∈ ℝ) ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%-  
𝑦$% ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$   
𝑤$%-. ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%-  

Ignacio Grossmann

Ignacio Grossmann

Ignacio Grossmann

Ignacio Grossmann

Ignacio Grossmann

Ignacio Grossmann
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The Hull reformulation for 2E-GDP is given below, where 𝑥 is disaggregated into 𝑢$%  for the upper-level 
disjunctions, and is also disaggregated into 𝑣$%-.  for the lower-level disjuncts, which are extracted when 
transforming the model into an Equivalent Single-Level GDP. 

 

 

min 𝑧 = 𝑓(𝑥) (2E-GDP-HR) 
𝑠. 𝑡. 𝑟(𝑥) ≤ 0  

Va
ria

bl
e  

D i
sa

gg
re

ga
tio

n  

�𝑢$%
%∈(!

= 𝑥 ∀𝑖 ∈ 𝐼  

𝑣$%-9 + � 𝑣$%-.
.∈!!"#

= 𝑥 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$% , 𝐿$%- ≠ ∅  

𝑥!" ⋅ 𝑦$% ≤ 𝑢$% ≤ 𝑥#" ⋅ 𝑦$%  ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$   

𝑥!" ⋅ 𝑤$%-. ≤ 𝑣$%-. ≤ 𝑥#" ⋅ 𝑤$%-.  ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%- ∪ {0}, 𝐿$%- ≠ ∅  

Pe
rs

pe
ct

iv
e 

Fu
nc

tio
ns

 

𝑦$% ⋅ 𝑔$% �
𝑢$%
𝑦$%
� ≤ 0 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$  

 

𝑤$%-. ⋅ ℎ$%-. �
𝑣$%-.
𝑤$%-.

� ≤ 0 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%- 
 

Ca
rd

in
al

ity
 

Ru
le

s  

�𝑦$%
%∈(!

= 1 ∀𝑖 ∈ 𝐼 
 

𝑦$% = � 𝑤$%-.
.∈!!"#

 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$% , 𝐿$%- ≠ ∅ 
 

𝑤$%-9 + � 𝑤$%-.
.∈!!"#

= 1 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$% , 𝐿$%- ≠ ∅ 
 

O
th

er
 L

og
ic

 
Co

ns
tr

ai
nt

s 

𝐴𝑦 + 𝐵𝑤 ≤ 𝑐  

 

Va
ria

bl
e 

Do
m

ai
ns

 

𝑥!" ≤ 𝑥 ≤ 𝑥#"   
min(0, 𝑥!") ≤ 𝑢$% ≤ max(0, 𝑥#") ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$   
min(0, 𝑥!") ≤ 𝑣$%-. ≤ max(0, 𝑥#") ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%- ∪ {0}, 𝐿$%- ≠ ∅  
𝑥 ∈ ℝ)   
𝑢$% ∈ ℝ) ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$   
𝑣$%-. ∈ ℝ) ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%- ∪ {0}, 𝐿$%- ≠ ∅  
𝑦$% ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$   
𝑤$%-. ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%- ∪ {0}, 𝐿$%- ≠ ∅  

Ignacio Grossmann

Ignacio Grossmann

Ignacio Grossmann
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The difference between 2L-GDP-HR and 2E-GDP-HR is in the highlighted constraints in the variable 
disaggregation and cardinality rules sections. The proof for the Hull reformulation case is given by applying 
Fourier-Motzkin elimination (Dantzig, 1972) to eliminate the slack Binary variable (𝑤$%-9) and its 
corresponding disaggregated variable (𝑣$%-9) from 2E-GDP-HR. We first combine the last two cardinality 
rules in 2E-GDP-HR to obtain (1). 

 𝑤$%-9 = 1 − 𝑦$%  (1) 

Equating the two variable aggregation constraints in 2E-GDP-HR and solving for 𝑣$%-9 gives (2).  

 𝑣$%-9 = �𝑢$%
%∈(!

− � 𝑣$%-.
.∈!!"#

 (2) 

Substituting (1) and (2) into the bounding constraint for 𝑣$%-9 gives (3), which can be rearranged into (4). 

 𝑥!" ⋅ G1 − 𝑦$%J ≤ �𝑢$%
%∈(!

− � 𝑣$%-.
.∈!!"#

≤ 𝑥#" ⋅ G1 − 𝑦$%J (3) 

 𝑢$% + � 𝑢$%+
%+∈(!:%+;%

− 𝑥#" ⋅ G1 − 𝑦$%J ≤ � 𝑣$%-.
.∈!!"#

≤ 𝑢$% + � 𝑢$%+
%+∈(!:%+;%

− 𝑥!" ⋅ G1 − 𝑦$%J (4) 

Summing the bounding constraint for 𝑥$%  over 𝑗< ∈ 𝐽$  for 𝑗< ≠ 𝑗, results in (5). Using the cardinality rule 
∑ 𝑦$%%∈(! = 1, (5) can be written as given in (6), which has two parts, (6a) and (6b). Substituting these into 
(4) proves that (4) is a relaxation of the disaggregation constraint in 2L-GDP-HR (∑ 𝑣$%-..∈!!"# = 𝑢$%, which 
can be written as 𝑢$% ≤ ∑ 𝑣$%-..∈!!"# ≤ 𝑢$%).  

 � 𝑥!" ⋅ 𝑦$%+
%+∈(!:%+;%

≤ � 𝑢$%+
%+∈(!:%+;%

≤ � 𝑥#" ⋅ 𝑦$%+
%+∈(!:%+;%

 (5) 

 𝑥!" ⋅ G1 − 𝑦$%J ≤ � 𝑢$%+
%+∈(!:%+;%

≤ 𝑥#" ⋅ G1 − 𝑦$%J (6) 

 � 𝑢$%+
%+∈(!:%+;%

− 𝑥#" ⋅ G1 − 𝑦$%J ≤ 0 (6a) 

 � 𝑢$%+
%+∈(!:%+;%

− 𝑥!" ⋅ G1 − 𝑦$%J ≥ 0 (6b) 

It should also be noted that the cardinality rule on the extracted lower-level decisions in 2E-GDP-HR 
(𝑤$%-9 + ∑ 𝑤$%-..∈!!"# = 1) is redundant with respect to the other two cardinality rules. This can be shown 
by noting that 𝑤$%-9 acts like a slack variable, which allows writing the mentioned cardinality rule as 
∑ 𝑤$%-..∈!!"# ≤ 1. This expression is contained in the first two cardinality rules since 𝑦$% ≤ 1 and 
∑ 𝑤$%-..∈!!"# = 𝑦$%. Therefore, the Hull reformulation of the Equivalent Single-Level GDP produces 
constraints with continuous relaxations that are weaker than those resulting from the Hull reformulation 
of the Nested GDP, proving that 2L-GDP-HR ⊆ 2E-GDP-HR.  

QED 
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Theorem 2. Let rML-GDP-BM denote the continuous relaxation of the mixed-integer program (MIP) 
obtained from a Multi-Level Nested GDP via the Big-M reformulation, and let rME-GDP-BM denote the 
continuous relaxation of the MIP obtained from its respective Equivalent Single-Level GDP representation 
via the Big-M reformulation. The feasible space of the former is contained within the feasible space of the 
latter, namely, rML-GDP-BM ⊆ rME-GDP-BM, if tight values for the M parameters are used. 

Proof. Without loss of generality, the above theorem is proved by establishing that the Big-M 
reformulation of the 2-Level Nested GDP model (r2L-GDP-BM) is contained in the Big-M reformulation of 
its Equivalent Single-Level GDP representation (r2E-GDP-BM), when tight M values are used: 

r2L-GDP-BM ⊆ r2E-GDP-BM 

The Big-M reformulation for the nested GDP model is given in 2L-GDP-BM, where 𝑀$%  is the Big-M value 
for the constraints in the 𝑗=> disjunct in disjunction 𝑖, 𝑀$%-.

<  is the Big-M value associated with the upper-
level decision on the nested constraints, and 𝑚$%-.

<  is the Big-M value associated with the lower-level 
decision on the nested constraints. The Big-M reformulation for the Equivalent Single-Level GDP is given 
in 2E-GDP-BM, where 𝑀$%  is the same as in 2L-GDP-BM, and 𝑚$%-.  is the Big-M value associated with the 
extracted lower-level decisions. 

min 𝑧 = 𝑓(𝑥) (2L-GDP-BM) 
𝑠. 𝑡. 𝑟(𝑥) ≤ 0  

 𝑔$%(𝑥) ≤ 𝑀$% ⋅ (1 − 𝑦$%) ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$   
 ℎ$%-.(𝑥) ≤ 𝑚$%-.

< ⋅ G1 − 𝑤$%-.J + 𝑀$%-.
< ⋅ G1 − 𝑦$%J ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%-  

 �𝑦$%
%∈(!

= 1 ∀𝑖 ∈ 𝐼 
 

 𝑦$% = � 𝑤$%-.
.∈!!"#

 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$% , 𝐿$%- ≠ ∅ 
 

 𝐴𝑦 + 𝐵𝑤 ≤ 𝑐   
 𝑥!" ≤ 𝑥 ≤ 𝑥#"   
 𝑥 ∈ ℝ)   
 𝑦$% ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$   
 𝑤$%-. ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%-  

 

min 𝑧 = 𝑓(𝑥) (2E-GDP-BM) 
𝑠. 𝑡. 𝑟(𝑥) ≤ 0  

 𝑔$%(𝑥) ≤ 𝑀$% ⋅ (1 − 𝑦$%) ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$   
 ℎ$%-.(𝑥) ≤ 𝑚$%-. ⋅ G1 − 𝑤$%-.J ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%-  

 �𝑦$%
%∈(!

= 1 ∀𝑖 ∈ 𝐼 
 

 𝑦$% = � 𝑤$%-.
.∈!!"#

 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$% , 𝐿$%- ≠ ∅ 
 

Ignacio Grossmann
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 𝑤$%-9 + � 𝑤$%-.
.∈!!"#

= 1 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$% , 𝐿$%- ≠ ∅ 
 

 𝐴𝑦 + 𝐵𝑤 ≤ 𝑐   
 𝑥!" ≤ 𝑥 ≤ 𝑥#"   
 𝑥 ∈ ℝ)   
 𝑦$% ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$   
 𝑤$%-. ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽$ , 𝑘 ∈ 𝐾$% , 𝑙 ∈ 𝐿$%-  

Finding the tightest Big-M values requires solving multiple optimization problems to maximize the value 
of each constraint function over the complete model’s feasible region, or over the corresponding feasible 
region of the disjunction (Grossmann & Trespalacios, 2013). For the proof we calculate tight Big-M values 
using only the global constraints or upper-level constraints in the case of the nested constraints. The 
following mathematical optimization problems are solved to obtain tight 𝑀 values: (7) for 𝑀$%, (8a) for 
𝑚$%-.
< , (8b) for 𝑀$%-.

< , and (9) for 𝑚$%-.. It should be noted that 𝑚$%-.
<  accounts for the upper-level 

constraints 𝑔$%(𝑥) ≤ 0, meaning it is localized to the parent disjunct that it belongs to. 𝑀$%-.
<  subtracts 

𝑚$%-.
<  from the traditional Big-M value to ensure that when both upper and lower-level decisions are not 

selected (𝑦$% = 0 and 𝑤$%-. = 0), the resulting Big-M value is equivalent to the global Big-M value for that 
constraint. 

 𝑀$% = max�𝑔$%(𝑥)	|	𝑟(𝑥) ≤ 0, 𝑥!" ≤ 𝑥 ≤ 𝑥#" , 𝑥 ∈ ℝ)�		 (7) 

 𝑚$%-.
< = max�ℎ$%-.(𝑥)	|	𝑟(𝑥) ≤ 0, 𝑔$%(𝑥) ≤ 0, 𝑥!" ≤ 𝑥 ≤ 𝑥#" , 𝑥 ∈ ℝ)� (8a) 

 𝑀$%-.
< = max�ℎ$%-.(𝑥)	|	𝑟(𝑥) ≤ 0, 𝑥!" ≤ 𝑥 ≤ 𝑥#" , 𝑥 ∈ ℝ)� − 𝑚$%-.

<  (8b) 

 𝑚$%-. = max�ℎ$%-.(𝑥)	|	𝑟(𝑥) ≤ 0, 𝑥!" ≤ 𝑥 ≤ 𝑥#" , 𝑥 ∈ ℝ)� (9) 

The proof lies in establishing that the feasible space of 2L-GDP-BM is contained in 2E-GDP-BM. The 
difference between these two models is shown in the highlighted constraints above. It was previously 
shown that the cardinality rule 𝑤$%-9 +∑ 𝑤$%-..∈!!"# = 1 is redundant (see Theorem 1). Thus, the proof is 
given by establishing that the right-hand-sides of the highlighted Big-M constraints satisfy (10), meaning 
that the Big-M constraint from 2L-GDP-BM is contained in the Big-M constraint from 2E-GDP-BM. 
Substituting (9) in (8b), results in (11). Substituting (11) in (10) and simplifying the resulting expression 
produces (12). From the cardinality constraint ∑ 𝑤$%-..∈!!"# = 𝑦$%, it is clear that 𝑤$%-. ≤ 𝑦$%, meaning that 
the expressions in parenthesis in (12) can be dropped without changing the sign on the inequality. Thus, 
𝑚$%-.
< ≤ 𝑚$%-., which is true considering that (9) is a relaxation of (8a). Therefore, 2L-GDP-BM ⊆ 2E-GDP-

BM. 

 𝑚$%-.
< ⋅ G1 − 𝑤$%-.J + 𝑀$%-.

< ⋅ G1 − 𝑦$%J ≤ 𝑚$%-. ⋅ G1 − 𝑤$%-.J (10) 

 𝑀$%-.
< = 𝑚$%-. −𝑚$%-.

<  (11) 

 𝑚$%-.
< ⋅ G𝑦$% −𝑤$%-.J ≤ 𝑚$%-. ⋅ G𝑦$% −𝑤$%-.J (12) 

QED 

Ignacio Grossmann
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4. Examples 

Each of the examples in this section are implemented in the Julia programming language (version 1.9.0) 
(Bezanson et al., 2017) using various packages within the ecosystem. These include JuMP (version 1.11.0) 
(Dunning et al., 2017) for modeling mathematical programs, DisjunctiveProgramming (version 0.3.6) 
(Perez et al., 2023) for reformulating GDPs (both nested and single-level) into MIPs, and Polyhedra 
(version 0.7.6) (Legat et al., 2021) for projecting mathematical programming models onto 2D space (see 
Section 4.1). For the numerical examples (Sections 4.2 and 4.3), the reformulated MI(N)LP models are 
solved on an Ubuntu Server with 82 GB of RAM and an Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz 
processor. CPLEX (version 22.1.1) is used as the MILP solver and BARON (version 23.1.5) as the MINLP 
solver.  

4.1. Illustrative Example 

Consider the Nested GDP constraint system given in (13), which can be expressed as the Equivalent Single-
Level GDP in (14), where 𝑊, is the slack Boolean variable associated with the dummy disjunct. Each of 
these models is reformulated into a MIP using the Big-M reformulation, with both a loose (large) M value 
and a tight M value, and the Hull reformulation. Their continuous relaxations are then projected onto the 
𝑥*, 𝑥+ plane in Figure 4.1. 

 

⎣
⎢
⎢
⎢
⎢
⎡

𝑌*
1 ≤ 𝑥* ≤ 3
4 ≤ 𝑥+ ≤ 6

X
𝑊*

1 ≤ 𝑥* ≤ 2
5 ≤ 𝑥+ ≤ 6

Y ∨ X
𝑊+

2 ≤ 𝑥* ≤ 3
4 ≤ 𝑥+ ≤ 5

Y
⎦
⎥
⎥
⎥
⎥
⎤

∨ X
𝑌+

8 ≤ 𝑥* ≤ 9
1 ≤ 𝑥+ ≤ 2

Y (13.a) 

 𝚵(1, {𝑌*, 𝑌+}) (13.b) 

 𝚵(𝑌*, {𝑊*,𝑊+}) (13.c) 

 X
𝑌*

1 ≤ 𝑥* ≤ 3
4 ≤ 𝑥+ ≤ 6

Y ∨ X
𝑌+

8 ≤ 𝑥* ≤ 9
1 ≤ 𝑥+ ≤ 2

Y (14.a) 

 X
𝑊*

1 ≤ 𝑥* ≤ 2
5 ≤ 𝑥+ ≤ 6

Y ∨ X
𝑊+

2 ≤ 𝑥* ≤ 3
4 ≤ 𝑥+ ≤ 5

Y ∨ X
𝑊,

1 ≤ 𝑥* ≤ 9
1 ≤ 𝑥+ ≤ 6

Y (14.b) 

 𝚵(1, {𝑌*, 𝑌+}) (14.c) 

 𝚵(1, {𝑊*,𝑊+,𝑊,}) (14.d) 

 𝚵(𝑌*, {𝑊*,𝑊+}) (14.e) 

Table 4.1. Model sizes and projection areas for Illustrative Example. 

Approach Binary 
Variables 

Continuous 
Variables Constraints Feasible 

Area 
Relative 

Area 
Big-M 5 2 28 40.0 100% 
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Tight-M (equivalent) 5 2 28 17.3 43% 
Tight-M (nested) 4 2 26 16.7 42% 
Hull (equivalent) 5 12 72 16.7 42% 

Hull (nested) 4 10 64 13.5 34% 

 

 
Figure 4.1. Projections of the continuous relaxations of (13) and (14) onto the 𝑥*, 𝑥+ plane. Three 

reformulations are shown (Big-M = Big-M Reformulation, Tight-M = Big-M Reformulation with tight M 
values, Hull = Hull Reformulation). The 2-Level Nested GDP given in (13) is indicated with nested. The 
Equivalent Single-Level GDP given in (14) is indicated with equivalent. Projection areas, relative to the 

Big-M case are indicated in %. 

Explicitly preserving the hierarchical relationship in the Nested GDP representation reduces the feasible 
region of the continuous relaxation more than when the Equivalent Single-Level GDP representation is 
used. This is observed in both the Tight-M (Big-M reformulation with a tight M) and Hull reformulation 
cases. Furthermore, in this example the Tight-M reformulation of the Nested GDP model produces the 
same relaxation as the Hull reformulation of the Equivalent Single-Level GDP model with only a fraction 
of the model size (see Table 4.1). It should also be noted that the convex hull of the system is obtained 
when either the Hull reformulation is applied to the Nested GDP or when it is applied to the Flattened 
GDP. As a result, the continuous relaxation of either formulation will yield the optimum. 

4.2. Example 1: Linear Model 

Consider the superstructure optimization problem with technology selection and scheduling for a plant 
that is to produce and sell material D (see Figure 4.2.1). Material D can be produced from material C 
(reaction: C → D), which can be purchased from a third party or produced from material B (reaction: B → 
C), which can in turn be purchased or produced from material A (reaction: A → B). The plant has two types 
of multipurpose reactors, each with a backup unit, that can be used for the material transformation steps 
(see Figure 4.2.2). Each of these has a maximum installed capacity of 100 kg. Up to one tank for each 
material in the system can be installed for storage with a maximum installed capacity of 300 kg. There are 
two candidate chemical processes to perform each material transformation step, giving a total of six 
processes in the process superstructure. There are two potential technologies (catalysts) that can be used 
in each process, each with a unique cost and yield, giving a total of 12 candidate process-catalysts 
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combinations in the system. The plant process and equipment superstructures are given in Figures 4.2.1 
and 4.2.2, respectively. The former illustrates the candidate processes in the superstructure in the state-
task network representation (Kondili et al., 1993). The latter depicts the equipment options (reactor type 
and units, and tanks) in the superstructure. 

 
Figure 4.2.1. Process superstructure for Example 1 with 4 materials, 6 processes, 4 tanks, and 16 

streams. 

 

Figure 4.2.2. Equipment superstructure (process flow diagram) for Example 1 with 4 tanks and 2 reactor 
types, each with 2 identical units. 

The objective of the optimization problem is to maximize system profit over a 30-day schedule by making 
the following decisions:  

• Which material storage tanks to install. 
• How many shared reactors to install. 
• Which processes to install for each material transformation step. 

o Which technologies (catalysts) to use in each of the selected processes. 

F3

F4

F7

F8

F11

F12

F1

F2

F5

F6

F9

F10

F16F13 F14 F15

Process
1

Process
2

Process
3

Process
4

Process
5

Process
6

Tank
A

Tank
B

Tank
C

Tank
D

A B C D

Tank A

Tank B

Tank C

Tank D

Supply A

Supply B

Supply C

Demand D
R2 (Unit 1)

R2 (Unit 2)

R1 (Unit 1)

R1 (Unit 2)

Ignacio Grossmann

Ignacio Grossmann



17 
 

o Which reactor type to use in each of the selected processes. 
§ How many reactors to operate in each time period. 
§ How much to produce in each batch of material. 

• How much material to purchase for A, B, and C in each time period. 

The hierarchy of these decisions is indicated by the bullet indentation above. Thus, the technology and 
reactor type selections are second-level decisions, and the operating schedule and batch sizes are third-
level decisions. For simplicity, any changeover or setup times are not considered. 

Model: The model for this system consists of the following linear constraints. Resource balances are 
enforced around each resource 𝑘 at timepoint 𝑡 with the global constraints in (15) and (16). The level of 
material at each tank, 𝐿-,=, is updated based on the material flowing in and out of the tank (material 
balance). The availability of each reactor, 𝑅-,=, is updated based on the reactor usage, Δ𝑅$,-,=. A reactor 
unit is locked (unavailable) when it begins a processing task 𝑖 at time 𝑡. At time 𝑡 + 𝜏$, the processing task 
ends (𝜏$  is the duration), and the reactor unit is released (becomes available). The values used for the task 
durations, 𝜏$, are 𝜏$ = 5		∀𝑖 ∈ {1,4,5,6}, 𝜏+ = 3, and 𝜏, = 4 (days). For greater detail on resource 
balances, the reader is referenced to the review paper on the resource-task network by Perez et al. (2022). 

 𝐿-,=�
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 ∀𝑘 ∈ 𝐾13@G= , 𝑡 ∈ 𝑇 (16) 

The decision to install a resource (tank or reactor) is governed by the disjunctions in (17) and (18), where 
the decision is to determine how many units 𝑢 to install. In this example, 𝑈- = {0,1,2} for each reactor 
type (at most 2 identical units can be installed for each reactor type 𝑘), and 𝑈- = {0,1} for each tank (at 
most 1 tank can be installed for each material). The installation cost, 𝐶𝐼-, is calculated as the sum of a 
fixed charge, 𝛼-, and a variable cost coefficient, 𝛽-, times the total resource capacity. If no units are 
installed (𝑢 = 0), the installation cost and resource capacity, 𝑄-, drop to zero. (17) and (18) also set the 
initial condition for the resource availability, 𝐿-,9 and 𝑅-,9: if installed, tanks are full, and all reactor units 
are available, respectively. (17) also tracks the slack on the tank level at the final timepoint |𝑇|, 𝐿�-, which 
refers to the amount below the full tank capacity, and is penalized in the objective function to reduce the 
likelihood of depleting the inventory at the end of the scheduling horizon (see (41)). These constraints 
ensure that the schedule obtained is a feasible schedule for normal operation with monthly cycles. For 
startup operations the optimal schedule can be obtained by fixing the design decisions and rerunning the 
model with the initial tank levels set to zero. The cardinality constraint (19) ensures that exactly one of 
the disjuncts is selected. The values for the cost coefficients are given in Table 4.2.1. Since the plant 
lifetime is greater than the scheduling horizon, resource installation costs coefficients have been scaled 
to the appropriate order of magnitude. Installation costs for pipelines between tanks and reactors are 
assumed to be negligible. 

Ignacio Grossmann



18 
 

 C

⎣
⎢
⎢
⎢
⎢
⎡

𝑋-,2

𝐶𝐼- = 𝛼- + 𝛽- ⋅ 𝑢 ⋅ 𝑄-���

$)&=@..3K
G@M@G$=I

		
𝐿-,9 = 𝑢 ⋅ 𝑄-

𝐿-,|0| + 𝐿�- = 𝑢 ⋅ 𝑄-

	

⎦
⎥
⎥
⎥
⎥
⎤

2∈##∖{9}

C

⎣
⎢
⎢
⎢
⎢
⎡

𝑋-,9
𝐶𝐼- = 0
𝑄- = 0

𝐿-,= = 0	∀𝑡 ∈ {0} ∪ 𝑇
𝐿�- = 0 ⎦

⎥
⎥
⎥
⎥
⎤

 ∀𝑘 ∈ 𝐾=@)- (17) 

 C

⎣
⎢
⎢
⎢
⎡

𝑋-,2

𝐶𝐼- = 𝛼- + 𝛽- ⋅ 𝑢 ⋅ 𝑄-���

$)&=@..3K
G@M@G$=I

𝑅-,9 = 𝑢
	
⎦
⎥
⎥
⎥
⎤

2∈##∖{9}

C

⎣
⎢
⎢
⎡

𝑋-,9
𝐶𝐼- = 0
𝑄- = 0

𝑅-,9 = 0		∀𝑡 ∈ {0} ∪ 𝑇⎦
⎥
⎥
⎤
 ∀𝑘 ∈ 𝐾13@G= (18) 

 𝚵G1, 𝑋-,2		∀𝑢 ∈ 𝑈-J ∀𝑘 ∈ 𝐾 (19) 

Table 4.2.1. Fixed and variable cost coefficients for the installation cost of each resource. 

Resource 
(𝑘) 

Fixed Cost 
Coefficient (𝛼-) 

Variable Cost 
Coefficient (𝛽-) 

Tank Material A $0.406 $0.011/kg 
Tank Material B $0.069 $0.070/kg 
Tank Material C $0.862 $0.029/kg 
Tank Material D $0.086 $0.003/kg 
Reactor Type 1 $0.662 $0.054/kg 
Reactor Type 2 $0.116 $0.090/kg 

The multi-level disjunction in (20) represents the decision to install process 𝑖 or not. When installed, the 
total batch size, 𝐵$,=, is equal to the flow entering the process at time 𝑡. There are two nested disjunctions 
if a process is installed. The first of these relates to which reactor type 𝑘 is assigned to the process, 𝑊$,-. 
The second one pertains to which technology (catalyst) is used for that particular process, 𝑊�$,%. Once a 
reactor type is assigned, the per unit batch size, 𝐵�$,=, is bounded by the installed capacity of each unit, 𝑄-, 
and the operating cost, 𝐶𝑂$,=, is proportional to the total batch size with a cost coefficient 𝛾$,- (given in 
Table 4.2.2). The nested technology selection disjunction specifies the amount of material leaving the 
process when the batch is completed. This is governed by the yield, 𝜈, which is specific to the technology 
𝑗 (given in Table 4.2.3). There is then a third-level set of disjunctions inside the reactor type assignment 
disjunction, which determines the number of units, 𝑢, that are used for a batch at time, 𝑡, 𝑁$,-,=,2. The 
number of units selected indicates the number of units that are locked at time 𝑡 and is also used to 
determine the total batch size from the per unit batch size. Note that for this system, it is assumed that if 
multiple units are used, their loads are equally distributed. Finally, when a process is not installed (¬𝑌$), 
all pertinent variables are set to zero, and the reactor capacity is only bounded by the maximum allowed 
capacity. The cardinality rules in (21)-(23) are the linking constraints between the different levels of this 
multi-level disjunction.  
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 ∀𝑖 ∈ 𝐼 (20) 

 𝚵G𝑌$ ,𝑊$,- 	∀𝑘 ∈ 𝐾13@G=J ∀𝑖 ∈ 𝐼 (21) 

 𝚵G𝑊$,- , 𝑁$,-,=,2	∀𝑢 ∈ 𝑈-J ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾13@G= , 𝑡 ∈ 𝑇 (22) 

 𝚵G𝑌$ ,𝑊�$,% 	∀𝑗 ∈ 𝐽J ∀𝑖 ∈ 𝐼 (23) 

Table 4.2.2. Operating cost parameter, 𝛾$,- ($/kg), for each process 𝑖 and reactor type 𝑘 combination. 

 Reactor 
Type (𝑘) 

Process (𝑖) 
1 2 3 4 5 6 

1 0.258 0.339 0.425 0.905 0.745 0.156 
2 0.575 0.454 0.017 0.496 0.636 0.087 

Table 4.2.3. Production yield parameter, 𝜈$,%, for each process 𝑖 and technology 𝑗 combination. 

 Technology 
(𝑗) 

Process (𝑖) 
1 2 3 4 5 6 

1 42.6% 57.4% 44.3% 62.1% 86.3% 51.8% 
2 76.7% 13.4% 8.7% 35.1% 19.3% 11.7% 

An additional logic proposition must be included to ensure that if a process 𝑖 is triggered on reactor type 
𝑘 at time 𝑡 with 𝑢 units (𝑁$,-,=,2 = 𝑇𝑟𝑢𝑒), the reactor type 𝑘 must have been installed with at least 𝑢 units 
(∃𝑢< ∈ 𝑈-: 𝑢< ≥ 𝑢, 𝑋-,2+ = 𝑇𝑟𝑢𝑒). For example, if 𝑁$,-,=,* = 𝑇𝑟𝑢𝑒, then either 𝑋-,* = 𝑇𝑟𝑢𝑒 or 𝑋-,+ =
𝑇𝑟𝑢𝑒 (one or two units must have been installed when the plant was built). This condition is enforced 
with the at least predicate in (24), which is equivalent to the propositional logic constraint 𝑁$,-,=,2 ⇒
⋁ 𝑋-,2+2+∈##:2+S2 .	 

 𝚲G𝑁$,-,=,2, 𝑋-,2+ 	∀𝑢< ∈ 𝑈-: 𝑢< ≥ 𝑢J ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾13@G= , 𝑡 ∈ 𝑇, 𝑢 ∈ 𝑈- ∖ {0} (24) 

The variable bounds and domains are given in (25)-(27) and (29)-(40). The upper bound resource 
capacities are, 𝑄-#" = 300𝑘𝑔	∀𝑘 ∈ 𝐾=@)- and 𝑄-#" = 100𝑘𝑔	∀𝑘 ∈ 𝐾13@G=. The term |𝑈-| − 1 represents 
the maximum number of units available to install since we consider the option of not installing a tank or 
reactor 𝑘. The initialization constraint in (28) is used to ensure that there is no flow leaving a reactor in 
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the first 𝜏$  periods since it is assumed that all reactors are idle at the beginning of the scheduling horizon. 
Thus, if production starts at 𝑡 = 1, the first batch of product is produced at 𝑡 = 𝜏$ + 1. 

 0 ≤ 𝐵$,= ≤ � (|𝑈-| − 1) ⋅ 𝑄-#"

-∈Q/012.
 ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (25) 

 0 ≤ 𝐵�$,= ≤ maxG𝑄-#"	∀𝑘 ∈ 𝐾13@G=J ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (26) 
 0 ≤ 𝐹&,= ≤ 𝐹&#" ∀𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (27) 
 𝐹&,= = 0 ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆$E2= , 𝑡 ∈ {1, … , 𝜏$} (28) 
 0 ≤ 𝐶𝐼- ≤ 𝛼- + 𝛽- ⋅ (|𝑈-| − 1) ⋅ 𝑄-#" ∀𝑘 ∈ 𝐾 (29) 
 0 ≤ 𝐿-,= ≤ (|𝑈-| − 1) ⋅ 𝑄-#" ∀𝑘 ∈ 𝐾=@)- , 𝑡 ∈ 𝑇 (30) 
 0 ≤ 𝐿�- ≤ (|𝑈-| − 1) ⋅ 𝑄-#" ∀𝑘 ∈ 𝐾=@)- (31) 

 0 ≤ 𝐶𝑂$,= ≤ � 𝛾$,- ⋅ (|𝑈-| − 1) ⋅ 𝑄-#"

-∈Q/012.
 ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (32) 

 0 ≤ 𝑄- ≤ 𝑄-#"        ∀𝑘 ∈ 𝐾13@G= (33) 
 0 ≤ 𝑅-,= ≤ |𝑈-| − 1 ∀𝑘 ∈ 𝐾13@G= , 𝑡 ∈ 𝑇 (34) 
 0 ≤ Δ𝑅$,-,= ≤ |𝑈-| − 1 ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾13@G= , 𝑡 ∈ 𝑇 (35) 
 𝑁$,-,=,2 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾13@G= , 𝑡 ∈ 𝑇, 𝑢 ∈ 𝑈- (36) 
 𝑊$,- ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾13@G= (37) 
 𝑊�$,% ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (38) 
 𝑋-,2 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑘 ∈ 𝐾, 𝑢 ∈ 𝑈- (39) 
 𝑌$ ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ 𝐼 (40) 

The objective of this optimization problem is to maximize profit, as given by (41), where 𝑝& is the price/cost 
of each external flow 𝑠 ∈ 𝑆3T= (𝑝*, = −$1 𝑘𝑔	𝐴⁄ , 𝑝*U = −$7 𝑘𝑔	𝐵⁄ , 𝑝*V = −$8 𝑘𝑔	𝐶⁄ , and 𝑝*W =
$10 𝑘𝑔	𝐷⁄ ). The tank level slacks are penalized with a penalty coefficient equal to the absolute value of 
the material price. 
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The resulting model is the linear Nested GDP given in (15)-(41). This hierarchical model is reformulated 
into a mixed-integer linear program (MILP) using both Big-M (with both loose and tight M values) and Hull 
reformulations. The hierarchical GDP model is also transformed into its Equivalent Single-Level GDP and 
reformulated with both Big-M and Hull methods.  

The optimum solution yields a cumulative profit of $2,085. The process network and equipment network 
designs are given in Figures 4.2.3 and 4.2.4, respectively. The Gantt charts for procurement/sales and 
production are shown in Figures 4.2.5 and 4.2.6, respectively. The tank levels are displayed in Figure 4.2.7. 
The optimal design requires the installation of Processes 1, 3-5; Tanks B and C; and both reactor types, 
each with two units available. Reactors of type 1 focus almost exclusively on Process 1 with Technology 2, 
with one batch of Process 3 (Technology 1). Rectors of type 2 are used for Processes 4 and 5, each using 
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Technology 1. Procurement of A occurs every 5 days, with sales of D typically spaced out every 10 days. 
By the end of the scheduling horizon, both tank levels have been restored to their initial levels (full). 

 

Figure 4.2.3. Optimal process network design (edge thickness is proportional to the maximum flow on 
that line). 

 

Figure 4.2.4. Optimal equipment network design. 
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Figure 4.2.5. Material procurement and sales schedule. 

 
Figure 4.2.6. Plant operations schedule (text in each bar, i-j, indicates process number i and technology 

number j for that event). 

 

Figure 4.2.7. Amount of material in each tank (and maximum tank level) throughout the scheduling 
horizon. 

The model sizes and computational statistics for each of the reformulated MILP models are given in Table 
4.2.4, where the continuous (LP) relaxation gap is calculated with respect to the optimal MIP solution. 
Two additional scenarios are evaluated, where the sales price of material D is increased or decreased by 
10%. The computational results for these cases are given in Tables 4.2.5 and 4.2.6. As can been observed, 
all formulations, except the Hull reformulation of the Nested GDP, have poor continuous relaxations with 
very large relaxation gaps. The Hull reformulated Nested GDP, on the other hand, has a tight relaxation 
with an 8-9% relative gap. In this example, both the Big-M and Tight-M reformulations have similar 
performance, with the Equivalent Single-Level models solving faster than the nested models (except for 
the case with a 10% decrease in the sales price). For these models, the weak relaxations annul any 
potential advantage from using nested disjunctions. The MILP model obtained by applying the Hull 
reformulation to the Nested GDP model outperforms the other models, finding the optimum in 
approximately half of the time required relative to its Equivalent Single-Level counterpart. Compared to 
the Big-M models, this model solves faster by one order of magnitude, with significantly fewer cuts and 
nodes explored. This superior performance is due to the tighter LP relaxation and reduced model size. The 
Hull reformulated Nested GDP has fewer binary variables (25% and 4% less, before and after presolve, 
respectively), continuous variables (10% and 26% less, before and after presolve, respectively), and 
constraints (5% and 25% less, before and after presolve, respectively) than its Equivalent Single-Level 
counterpart. Although it seems surprising that a model with fewer variables and constraints is tighter than 
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an equivalent model of greater size, this occurs because of the absence of slack disjuncts in the nested 
formulation, which make the equivalent formulation less tight. 

Table 4.2.4. Model sizes and computational statistics of the MILP models resulting from the Big-M 
reformulations (using both loose and tight M values) and Hull reformulations of the GDP models in 
Example 1. 

  Big-M Reformulation Tight-M Reformulation Hull Reformulation 
  Equivalent Nested Equivalent Nested Equivalent Nested 
LP Relaxation             

Relaxation Solution $81,000  $81,000  $80,999  $80,999  $68,044  $2,268  
Relaxation Gap 3,785% 3,785% 3,785% 3,785% 3,163% 9% 

MIP Solution             
MIP Solution $2,085 $2,085 $2,085  $2,085  $2,085  $2,085  

MIP Optimality Gap 0% 0% 0% 0% 0% 0% 
Nodes Explored 184,458 875,768 403,339 516,094 41,356 28,706  

Cuts Applied 349 605 388 433 710 20  
CPU Time (s) 175 589 230 297 43 23  

MIP Solutiona             
MIP Solution $1,929 $934 $2,074 $1,928 $2,085 $2,085 

MIP Optimality Gap 678% 4,337% 122% 117% 0% 0% 
Nodes Explored 5,344,697 10,911,189 7,026,758 8,736,022 82,182 35,796 

Cuts Applied 3,663 1,493 2,019 1,703 1,010 80 
CPU Time (s) 3,616 3,633 3,623 3,628 216 79 

Original Model Size             
Binary Variables 1,550 1,166 1,550 1,166 1,550 1,166 

Continuous Variables 1,634 1,634 1,634 1,634 11,850 10,614 
Constraints 14,817 14,049 14,817 14,049 59,195 56,243 

Reduced Model Sizeb             
Binary Variables 1,158 1,156 1,160 1,156 1,158 1,115 

Continuous Variables 1,409 1,409 1,409 1,409 4,468 3,302 
Constraints 7,443 6,969 7,438 7,332 8,166 6,163 

aNo presolve; no heuristics; no dynamic search (traditional branch & cut used) 
bAfter the last presolve is performed on the model by CPLEX 

Table 4.2.5. Model sizes and computational statistics of the MILP models resulting from the Big-M 
reformulations (using both loose and tight M values) and Hull reformulations of the GDP models in 
Example 1 with a 10% increase in the sales price for material D. 

  Big-M Reformulation Tight-M Reformulation Hull Reformulation 
  Equivalent Nested Equivalent Nested Equivalent Nested 
LP Relaxation             

Relaxation Solution $89,100 $89,100 $89,099 $89,099 $75,438 $2,708 
Relaxation Gap 3,401% 3,401% 3,401% 3,401% 2,898% 8% 

Ignacio Grossmann
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MIP Solution       
MIP Solution $2,516 $2,516 $2,516 $2,516 $2,516 $2,516 

MIP Optimality Gap 0% 0% 0% 0% 0% 0% 
Nodes Explored 319,705 893,877 186,730 487,941 38,509 38,256 

Cuts Applied 499 422 393 529 832 18 
CPU Time (s) 230 650 146 298 42 25 

Table 4.2.6. Model sizes and computational statistics of the MILP models resulting from the Big-M 
reformulations (using both loose and tight M values) and Hull reformulations of the GDP models in 
Example 1 with a 10% decrease in the sales price for material D. 

  Big-M Reformulation Tight-M Reformulation Hull Reformulation 
  Equivalent Nested Equivalent Nested Equivalent Nested 
LP Relaxation             

Relaxation Solution $72,900 $72,900 $72,899 $72,900 $61,159 $1,829 
Relaxation Gap 4,260% 4,260% 4,260% 4,260% 3,558% 9% 

MIP Solution       
MIP Solution $1,672 $1,672 $1,672 $1,672 $1,672 $1,672 

MIP Optimality Gap 0% 0% 0% 0% 0% 0% 
Nodes Explored 517,310 137,253 208,136 128,268 39,669 42,213 

Cuts Applied 543 500 409 420 718 35 
CPU Time (s) 644 148 206 213 40 24 

4.3. Example 2: Nonlinear Model 

Example 2 is based on Example 4.1 in the work by van den Heever and Grossmann (1999), which consists 
of an integrated superstructure optimization problem with long term operational and expansion planning. 
The problem has three potential processes (1, 2, and 3), each with its dedicated processing unit, and three 
materials (A, B, and C) as shown in Figure 4.3.1. Material C is the final product (price: $10,800/ton) and is 
produced from Material B in Process 1. Material B can be purchased externally (cost: $7,000/ton) or 
produced from Material A (cost: $1,800/ton) in either Process 2 or Process 3. It is assumed that each 
process includes any required separation steps, such that the respective exit streams are single-
component streams containing the pure product of each process. The objective here is to minimize cost 
(maximize profit) by making the following decisions: 

• Which processes should be used. 
• Which processes to operate in each period. 
• Which processes to undergo a capacity expansion in each period. 
• How much new processing capacity to install in each period. 

Ignacio Grossmann
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Figure 4.3.1. Process superstructure for Example 2. 

The hierarchical GDP model is given as follows. The material balance constraints in the two stream 
junction points are given in (42) and (43), where 𝐹&,= is the flow (tons) in stream 𝑠 in period 𝑡 (where 𝑡 is 
in years). The amount of imported B and exported C are constrained by (44) and (45), respectively. 

 𝐹*,= = 𝐹+,= + 𝐹,,= ∀𝑡 ∈ 𝑇 (42) 
 𝐹[,= = 𝐹U,= + 𝐹V,= + 𝐹W,= ∀𝑡 ∈ 𝑇 (43) 
 𝐹W,= ≤ 5 ∀𝑡 ∈ 𝑇 (44) 
 𝐹\,= ≤ 1 ∀𝑡 ∈ 𝑇 (45) 

The installation and planning decisions are made in the nested disjunction given in (46), where the top-
level decision is to install Process 𝑖 or not (𝑌$  or ¬𝑌$). If a process is installed, the respective nonlinear 
production yield constraint is enforced, where 𝑔*G𝐹[,=J = 0.9 ⋅ 𝐹[,=, 𝑔+G𝐹+,=J = lnG1 + 𝐹+,=J, and 
𝑔,G𝐹,,=J = 1.2 ⋅ lnG1 + 𝐹,,=J. A process capacity balance is also applied to update the current capacity, 
𝑄$,=, with the capacity in the previous period and the current capacity expansion, 𝑄𝐸$,=. The secondary 

level decision is to operate the installed process, 𝑁$,=
(*), or not, 𝑁$,=

(+). If the process is operated in period 𝑡, 
the exit flow is bounded by the process capacity, and the operating cost, 𝐶𝑂$,=, is determined with the 
parameter 𝛾$  (𝛾* = $900, 𝛾+ = $1,000, and 𝛾, = $1,200). The tertiary level decision is to expand the 
process capacity, 𝑍$,=

(*), or not, 𝑍$,=
(+). The expansion cost, 𝐶𝐸$,=, is calculated with the fixed cost parameter, 

𝛼$  (𝛼* = $3,500, 𝛼+ = $1,000, and 𝛼, = $1,500), and the variable cost parameter, 𝛽$  (𝛽* = $1,200/𝑡𝑜𝑛, 
𝛽+ = $700/𝑡𝑜𝑛, and 𝛽, = $1,100/𝑡𝑜𝑛). It should be noted that each of the parameters used can also be 
indexed by time period if desired.  
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∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆$E2= , 𝑠< ∈ 𝑆$$) 

(46) 

 𝚵(1, {𝑌$ , ¬𝑌$}) ∀𝑖 ∈ 𝐼 (47) 

 𝚵 q𝑌$ , ½𝑁$,=
(*), 𝑁$,=

(+)¾r ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (48) 
 𝚵 q𝑁$,=

(*), ½𝑍$,=
(*), 𝑍$,=

(+)¾r ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (49) 

Additional logic constraints are given in (50)-(53). The cardinality clause in (50) allows installing at most 1 
of Process 2 or Process 3. This is equivalent to the proposition ¬𝑌+ ∨ ¬𝑌, used in the original paper, but 
generalizes for cases in which there are more than two potential processes in parallel. The implication in 
(51) ensures that Process 1 is installed if either Process 2 or Process 3 are installed. (52) and (53) enforce 
that process 𝑖 operate at least once if installed, with at least one expansion event scheduled between the 
beginning of the planning horizon (period 1) and each period 𝑡 in which the process is operated, 
respectively.  

 𝚪(1, {𝑌+, 𝑌,})  (50) 

 𝑌$ ⇒ 𝑌* ∀𝑖 ∈ {2,3} (51) 
 

𝚲q𝑌$ , 𝑁$,=
(*)	∀𝑡 ∈ 𝑇r ∀𝑖 ∈ 𝐼 (52) 

 𝚲¿𝑁$,=
(*), 𝑍$,=+

(*)	∀𝑡< ∈ (1,… , 𝑡)À ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (53) 

The variable domains are given in (54)-(60), where 𝐹&#" = 5	𝑡𝑜𝑛		∀𝑠 ∈ 𝑆, 𝑄𝐸*#" = 0.4	𝑡𝑜𝑛, 𝑄𝐸+#" =
0.3	𝑡𝑜𝑛, and 𝑄𝐸,#" = 0.3	𝑡𝑜𝑛. 

 0 ≤ 𝐹&,= ≤ 𝐹&#" ∀𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (54) 
 0 ≤ 𝑄$,= ≤ 𝑄𝐸$#" ⋅ 𝑡 ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (55) 
 0 ≤ 𝑄𝐸$,= ≤ 𝑄𝐸$#" ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (56) 
 0 ≤ 𝐶𝐸$,= ≤ 𝛼$ + 𝛽$ ⋅ 𝑄𝐸$#" ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (57) 
 0 ≤ 𝐶𝑂$,= ≤ 𝛾$  ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (58) 
 𝑁$,=

()), 𝑍$,=
()) ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, 𝑛 ∈ {1,2} (59) 

 𝑌$ ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ 𝐼 (60) 

The objective function is to minimize the system cost, as given in (61), where the stream costs, 𝑝&, are 
given in Table 4.3.1. The model for Example 2 is thus given by (42)-(61).  
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 min�Á�𝑝& ⋅ 𝐹&,=
&∈C

+�G𝐶𝑂$,= + 𝐶𝐸$,=J
$∈L

Â
=∈0

  (61) 

Table 4.3.1. Stream costs, 𝑝&, in $/ton. 

Stream (𝑠) 1 2 3 4 5 6 7 8 
Cost ($/ton) 1,800 0 0 300 100 7,000 0 -10,800 

There are some differences between this formulation and the one in the original paper by van den Heever 
and Grossmann (1999). The original formulation has the process capacity evolution constraint in the 
disjunct governed by 𝑍$,=

(*). This requires specifying a new constraint, 𝑄$,= = 𝑄$,=8*, for the disjunct 

governed by 𝑍$,=
(+), which would also be required for the disjunct governed by 𝑁$,=

(+). This is avoided by 
moving the process capacity balance to the upper-level constraints in 𝑌$. The same is true for the yield 
constraint, which we move from the 𝑁$,=

(*) disjunct to the 𝑌$  disjunct constraints. This requires that we only 
constrain the flow exiting the process in the secondary level disjunction, rather than both the entrance 
and exit flows. It is also more intuitive to specify the yield constraints when the processes are selected. 
Another major difference is that the original model does not use the cardinality constraints in (48) and 
(49). Instead, it uses the logic propositions (62) and (63). These propositions are contained in (48) and 
(49), but do not establish a proper hierarchical relationship since there is no link between 𝑁$,=

(+) and 𝑌$, and 

𝑍$,=
(+) and 𝑁$,=

(*). 

 𝑁$,=
(*) ⇒ 𝑌$  ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (62) 

 𝑍$,=
(*) ⇒ 𝑁$,=

(*) ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (63) 

An important thing to note is that the model in Example 2 is an example of a type of hierarchical GDP, that 
need not be hierarchical at all. This occurs when every disjunction has only two disjuncts, representing an 
on and an off state, where the off state has all relevant variables set to zero. When this occurs, (46) can 
actually be split into three sets of disjunctions without adding the “slack” disjunct observed in the 
Equivalent Single-Level GDP model. These three sets of disjunctions are given in (64)-(66). The cardinality 
constraints in (48)-(49) can be replaced by (62)-(63), and (67)-(68). The model composed of (42)-(45), (47), 
and (50)-(68) is referred to here as the Non-hierarchical formulation. 

 »
𝑌$

𝐹&,= = 𝑔$G𝐹&+,=J		∀𝑡 ∈ 𝑇
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⎤

		 ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆$E2= , 𝑠< ∈ 𝑆$$) (64) 

 »
𝑁$,=
(*)

𝐹&,= ≤ 𝑄$,=
𝐶𝑂$,= = 𝛾$

¼ ⋁ »
𝑁$,=
(+)

𝐹&,= = 0
𝐶𝑂$,= = 0

¼ ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆$E2= , 𝑡 ∈ 𝑇 (65) 
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 D 𝑍$,=
(*)

𝐶𝐸$,= = 𝛼$ + 𝛽$ ⋅ 𝑄𝐸$,=
E ⋁ »

𝑍$,=
(+)

𝑄𝐸$,= = 0
𝐶𝐸$,= = 0

¼ ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (66) 

 𝚵 q1, ½𝑁$,=
(*), 𝑁$,=

(+)¾r ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (67) 
 𝚵 q1, ½𝑍$,=

(*), 𝑍$,=
(+)¾r ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (68) 

The Nested GDP model is compared against its Equivalent Single-Level formulation, and the Non-
hierarchical formulation, by reformulating each of these into mixed-integer nonlinear programs (MINLPs) 
using the Hull reformulation. Since the models are nonlinear, the perspective functions were reformulated 
using the 𝜖-approximation from Furman et al. (2020), with 𝜖 = 108^, which is the default nonlinear Hull 
reformulation method in the DisjunctiveProgramming library. As in Example 1, two additional scenarios 
are run where the product (stream 8) sales price is increased and decreased by 10%. The model statistics 
are given in Tables 4.3.2 (nominal case), 4.3.3 (10% increase), and 4.3.4 (10% decrease). The Nested 
formulation is faster than the Equivalent Single-Level formulation by a factor of 1.8 – 4.2. When local 
search and range reduction are disabled in BARON, the difference in CPU time becomes more significant 
(one order of magnitude difference). The continuous relaxations for the Nested and Non-hierarchical 
formulations are equal (23% - 37% gap) and tighter than that of the Equivalent Single-Level formulation 
(57% - 89% gap). The performance of the Nested formulation is comparable to that of the Non-hierarchical 
one, with the latter having less continuous variables and constraints. This example highlights the fact that 
models with on/off disjunctions do not require a hierarchical representation to attain the same 
performance gains of the nested models.  

Table 4.3.2. Model sizes and computational results of the MINLP models resulting from the Hull 
reformulations of the Equivalent Single-Level, Nested, and Non-hierarchical GDP models. All models are 
solved to optimality (0% gap). 

  Hull Reformulation 
  Equivalent Nested Non-hierarchical 
Model Size       

Binary Variables 384 258 258 
Continuous Variables 2,499 2,058 1,554 

Constraints 12,006 10,431 7,596 
NLP Relaxation       

Relaxation Solution -$161,458 -$122,829 -$122,829 
Relaxation Gap 69% 29% 29% 

MIP Solution    
MIP Solution -$95,373 -$95,373 -$95,373 

BaR Iterations 1 1  1  
Cuts Applied 702 703 712 
CPU Time (s) 8.8 4.6  3.5  

MIP Solutiona    
BaR Iterations 267 7 45 

Cuts Applied 58,041 865 3,548 
CPU Time (s) 74.5 3.3 5.6 
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aNo local search; no range reduction 

Table 4.3.3. Computational statistics of the MILP models resulting from the Hull reformulations of the 
GDP models in Example 2 with a 10% increase in the sales price for stream 8. All models are solved to 
optimality (0% gap). 

  Hull Reformulation 
  Equivalent Nested Non-hierarchical 
NLP Relaxation    

Relaxation Solution -$184,138 -$144,645 -$144,645 
Relaxation Gap 57% 23% 23% 

MIP Solution    
MIP Solution -$117,189 -$117,189 -$117,189 

BaR Iterations 1 1 1 
Cuts Applied 710 712 712 
CPU Time (s) 12.2 2.9 3.5 

MIP Solutiona    
BaR Iterations 450 7 45 

Cuts Applied 102,644 873 3,552 
CPU Time (s) 60.5 5.8 2.2 

aNo local search; no range reduction 

Table 4.3.4. Computational statistics of the MILP models resulting from the Hull reformulations of the 
GDP models in Example 2 with a 10% decrease in the sales price for stream 8. All models are solved to 
optimality (0% gap). 

  Hull Reformulation 
  Equivalent Nested Non-hierarchical 
NLP Relaxation       

Relaxation Solution -$138,779 -$101,013 -$101,013 
Relaxation Gap 89% 37% 37% 

MIP Solution    
MIP Solution -$73,557 -$73,557 -$73,557 

BaR Iterations 1 1 1 
Cuts Applied 719 729 722 
CPU Time (s) 9.5 5.3 3.2 

MIP Solutiona    
BaR Iterations 301 5 45 

Cuts Applied 71,519 640 3,440 
CPU Time (s) 75.7 3.6 2.2 

aNo local search; no range reduction 

The optimal expansion profile for the nominal case is given in Figure 4.3.2, where it can be seen that 
Process 2 is not installed, but Processes 1 and 3 are, where the capacity in Process 1 increases to 1 ton/year 
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by the third year, and Process 3 increases to 1.11 ton/year by the fourth year. The optimal system cost is 
-$95 thousand, meaning that plant generates profit. 

 

Figure 4.3.2. Capacity expansion profiles for each of the processes in Example 2. 

5. Conclusions 

Two main contributions are made in this paper to the generalized disjunctive programming (GDP) 
modeling framework. The first one is to add cardinality rules to the logic constraints to allow for 
constraints of the form choose exactly m Boolean variables to be True (or at least m, or at most m). For 
more than two Boolean variables, modeling these types of constraints via propositional logic (zeroth-
order logic) is cumbersome. Thus, introducing predicate logic (first-order logic) to express this new 
constraint form in GDP adds more expressiveness to logic-based models. The second contribution is to 
extend GDP for modeling hierarchical systems via nested disjunctions. Such an approach results in more 
intuitive models, but had not been formalized in the past, as classical GDP does not consider disjunction 
nesting. The notation and logic constraints for such structures are provided, along with theoretical proofs 
to the tightness of such models, versus equivalent single-level GDP models. It is shown that mixed-integer 
programming reformulations of nested GDP models have continuous relaxations that are as tight or 
tighter than the reformulations of their single-level counterparts in both the Hull reformulation, as well 
as the Big-M reformulation when tight M values are used. In some cases, the nested models result in 
tighter continuous relaxations, as shown in the illustrative and numerical examples presented. It was also 
observed that when large M values are used, the reformulated nested models show worse performance 
due to the presence of multiple large M parameters in the nested constraints. Finding tight M values 
requires additional work, and can be done by applying interval arithmetic when the models are linear. 
However, for nonlinear models, a separate optimization model must be solved for each constraint to find 
the tightest M values.  

Three examples are presented to show the advantages of using nested structures. In the illustrative 
example, the tightness of the continuous relaxations of nested linear models are compared geometrically 
with the relaxations of equivalent single-level models. In this example, the models that preserve nested 
structures have smaller continuous relaxations than their single-level counterparts. This is promising as it 
may result in computational savings when optimizing nested models. Example 1, a linear GDP, and 
Example 2, a nonlinear GDP, illustrate the computational advantages of nested GDP models for problems 
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that integrate superstructure design, technology selection, and operations scheduling, and superstructure 
design, long-term operations planning, and capacity expansion planning, respectively. It is also shown that 
for systems with bi-disjunct constraints (disjunctions with only two disjunctions), where one disjunct 
represents an off state with all pertinent variables set to zero (e.g., zero flow), there is no advantage to 
modeling such systems as hierarchical, even when there may be several levels of decisions. Such systems 
can be modelled more simply with single-level disjunctions and the necessary linking constraints. 

Future work includes investigating how explicit hierarchical structures can be exploited for informed 
model decomposition methods and branching strategies. Exploring applications of hierarchical GDP to 
other fields, such as decision trees and stochastic optimization with event constraints, is another potential 
area for development. 
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Nomenclature 

The symbols for the sets, parameters, and variables used in Examples 4.2 and 4.3 are described below, 

 Description 
Sets  

𝑖 ∈ 𝐼 Processes 
𝑗 ∈ 𝐽 Technologies 
𝑘 ∈ 𝐾 Resources 

𝑘 ∈ 𝐾13@G= Reactors 
𝑘 ∈ 𝐾=@)- Tanks 
𝑠 ∈ 𝑆 Streams 
𝑠 ∈ 𝑆3T= External material streams 
𝑠 ∈ 𝑆T$) Streams entering 𝑥 
𝑠 ∈ 𝑆TE2= Streams exiting 𝑥 
𝑡 ∈ 𝑇 Time periods 
𝑢 ∈ 𝑈- Number of installed units for resource 𝑘 

Parameters  
𝛼 Fixed installation/expansion cost 
𝛽 Variable installation/expansion cost coefficient 
𝛾 Variable operating cost coefficient 
𝜈 Yield coefficient 
𝜏$  Processing time for process 𝑖 
𝐹&#" Upper bound on stream 𝑠 
𝑝T Price/cost of stream/material 𝑥 



32 
 

𝑄-#" Upper bound on the capacity of resource 𝑘 
𝑄𝐸$#" Upper bound on the capacity expansion of process 𝑖 

Continuous Variables 
𝐵$,= Total batch size for process 𝑖 starting in period 𝑡 
𝐵�$,= Unit batch size for process 𝑖 starting in period 𝑡 
𝐶𝐸$,= Expansion cost for process 𝑖 in period 𝑡 
𝐶𝐼- Installation cost for resource 𝑘 
𝐶𝑂$,= Operating cost of process 𝑖 in period 𝑡 
𝐹&,= Flow in stream 𝑠 in period 𝑡 
𝐿-,= Level in tank 𝑘 in period 𝑡 
𝐿�- Level slack in tank 𝑘 in the final period (end of scheduling horizon) 
𝑄- Capacity of resource 𝑘 
𝑄$,= Capacity of process 𝑖 in period 𝑡 
𝑄𝐸$,= Capacity expansion for process 𝑖 in period 𝑡 
𝑅-,= Availability of resource 𝑘 in period 𝑡 
Δ𝑅$,-,= Number of resources of type 𝑘 consumed for process 𝑖 in period 𝑡 

Boolean Variables 
𝑁$,-,=,2 Process 𝑖 is started on 𝑢 units of resource 𝑘 at period 𝑡 
𝑁$,=
()) Operation of process 𝑖 in period 𝑡 

𝑊�$,%  Technology 𝑗 is used for process 𝑖 
𝑊$,- Resource 𝑘 is assigned to process 𝑖 
𝑋-,2 Resource 𝑘 installed with 𝑢 units 
𝑌$  Process 𝑖 is installed 
𝑍$,=
()) Capacity expansion of process 𝑖 in period 𝑡 
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Appendix A: Challenges with Exclusive OR Operator 

The Exclusive OR (XOR) returns true whenever an odd number of literals are True. As a binary operator, it 
is equivalent to exactly one of the literals being true. However, when disjunctions have three or more 
disjuncts, using an XOR operator can be problematic when the disjunction is not proper, meaning that 
there is an overlap between the feasible regions of the disjuncts. Specifically, issues arise when a GDP 
model is reformulated into a MIP model via the Hull reformulation. When the Hull reformulation is 
applied, each variable in the disjunction is disaggregated, and it is assumed that exactly one of the 
disaggregated variables takes a non-zero value, such that the sum of the disaggregated variables becomes 
the original variable. However, for an improper disjunction, there can exist a scenario where a feasible 
point is at the intersection of an odd number of disjuncts. When this occurs, an odd number of 
disaggregated variables can become non-zero, resulting in an erroneous solution. 

Consider the simple improper disjunction in (A1), where 𝑥 is bounded between 0 and 20. The Hull 
reformulation of (A1) is given in (A2), where 𝑦$  is the binary counterpart of the Boolean 𝑌$. At the feasible 
point 𝑥 = 5, all three disjuncts are valid, and the XOR operator 𝑌* ∨ 𝑌+ ∨ 𝑌,, will return True if all Boolean 
variables 𝑌$  are True. In this scenario, 𝑥$ = 5		∀𝑖 ∈ {1,2,3}, making the aggregated variable 𝑥 = 15, which 
is not correct. Note that if the upper bound on 𝑥 is less than 15, this solution becomes infeasible. Although 
this is a simple example that could be avoided by using strict inequalities on the first and third disjunct, 
there may be more complex disjunctions where it may not be as apparent that they are improper. 

 Ä 𝑌*
𝑥 ≤ 5Å ∨ Ä

𝑌+
𝑥 = 5Å ∨ Ä

𝑌,
𝑥 ≥ 5Å (A1) 

 

𝑥* ≤ 5𝑦*
𝑥+ = 5𝑦+
𝑥, ≥ 5𝑦,

0 ≤ 𝑥$ ≤ 20𝑦$ 		∀𝑖 ∈ {1,2,3}
𝑥 = 𝑥* + 𝑥+ + 𝑥, ⎭

⎪
⎬

⎪
⎫

 (A2) 

Appendix B: Negations in Nested Disjunctions 

Nesting disjunctions involves linking cardinality constraints of the form 𝚵(𝑌,𝑊$ 		∀𝑖 ∈ 𝐼), which indicates 
that exactly one Boolean 𝑊$  is allowed to be True if and only if 𝑌 is True. Otherwise, exactly zero Booleans 
𝑊$  are True. To illustrate this, consider Example 2 (Section 4.3), where the upper-level decision is to install 
or not install a process (indicated by the Boolean variable 𝑌 below), and the lower-level decision is to 
operate or not operate the process in a given time period (indicated by the Boolean variable 𝑁 below). 
The modeler might consider writing such a nested disjunction as (B1). However, this is not correct from a 
logic standpoint because the cardinality rule 𝚵(𝑌, {𝑁,¬𝑁}) is infeasible. This is because 𝑁 must either be 
True or False, and ¬𝑁 is the complement of 𝑁. If 𝑌 = 𝐹𝑎𝑙𝑠𝑒, the cardinality rule implies that all the literals 
must be False, but 𝑁 and ¬𝑁 cannot both be False. The correct form of writing this nested disjunction is 
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given in (B2), where 𝑁(*) indicates operating the process given the process is installed, and 𝑁(+) indicates 
not operating the process given the process is installed. 

 »
𝑌
…

Ä𝑁…Å ∨ Ä
¬𝑁
… Å

¼ ∨ Ä¬𝑌… Å (B1) 

 Z

𝑌
…

u𝑁
(*)

…
v ∨ u𝑁

(+)

…
v
[ ∨ Ä¬𝑌… Å (B2) 

 

Appendix C: Flattening Nested Disjunctions via Basic Steps 

The third approach to modeling hierarchical GDP is to flatten the nested disjunctions by applying 
sufficiently many basic steps (Ruiz & Grossmann, 2012; Grossmann & Trespalacios, 2013) within each 
disjunction until the nested system is transformed into a system with single-level disjunctions. Consider 
the simple nested disjunction in (C1). This disjunction constraint can be flattened by applying two basic 
steps to introduce 𝑔*(𝑥) ≤ 0 into the nested disjunctions, resulting in (C2), where 𝑍* = 𝑌* ∧𝑊* and 𝑍+ =
𝑌* ∧𝑊+. 

 Z

𝑌*
𝑔*(𝑥) ≤ 0

u
𝑊*

ℎ*(𝑥) ≤ 0v ∨ u
𝑊+

ℎ+(𝑥) ≤ 0v
[ ∨ u

𝑌+
𝑔+(𝑥) ≤ 0v (C1) 

 »
𝑍*

𝑔*(𝑥) ≤ 0
ℎ*(𝑥) ≤ 0

¼ ∨ »
𝑍+

𝑔*(𝑥) ≤ 0
ℎ+(𝑥) ≤ 0

¼ ∨ u
𝑌+

𝑔+(𝑥) ≤ 0v (C2) 

For disjunctions with a single nested disjunction, applying a basic step is quite inexpensive. However, once 
there is more than one nested disjunction inside a single disjunct, the number of basic steps required to 
flatten the hierarchical GDP grows exponentially. Consider the disjunction with two nested disjunctions in 
(C3). Flattening the disjunction is a set covering problem and requires eight basic steps (four for each 
combination of two disjuncts and four more to introduce 𝑔*(𝑥) ≤ 0 in the resulting disjuncts) to obtain 
the equivalent disjunction in (C4).  
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𝑔+(𝑥) ≤ 0v (C3) 
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⎢
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⎥
⎥
⎤
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⎢
⎡
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⎥
⎥
⎤
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𝑔+(𝑥) ≤ 0v (C4) 

Generalizing this to the notation of 2L-GDP, a disjunction with 𝑘 ∈ 𝐾$%  nested disjunctions, each of which 
has 𝑙 ∈ 𝐿$%- disjuncts, requires the number of basic steps given in (17), where the notation G@*J is the 
binomial coefficient (choose 1 from a group with 𝑎 elements). The coefficient 2 accounts for introducing 
𝑔$%(𝑥) ≤ 0 into each of the resulting disjuncts, and can be replaced by the 1 + Ê𝑔$%(𝑥)Ê if 𝑔$%(𝑥) 
represents a vector of functions, where Ê𝑔$%(𝑥)Ê is the number of functions within 𝑔$%(𝑥). A hybrid 
approach is also possible, where some basic steps are performed and then the resulting nested disjunction 
is flattened as in the Equivalent Single-Level GDP approach. However, as the number of nested 
disjunctions increases, this hybrid approach yields many more disjunctions than those given in (C5). 
Although flattening via basic steps may produce models that are tighter than the inside-out reformulation 
of the Nested GDP, the combinatorial growth of such systems makes this approach prohibitive for multi-
level decision systems with multiple disjuncts in each nested disjunction. It is for this reason that this 
approach is not considered in the main body of the paper. However, it is presented here as a reference 
for the reader. 
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