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Abstract 

The Resource-Task Network (RTN) model is a major contribution of Process Systems Engineering to the 

general area of scheduling optimization. The RTN representation models processes as bipartite graphs 

comprising two types of vertices: resources and tasks. A resource is general and includes all entities that 

are involved in the process steps (e.g., materials, processing and storage equipment, and utilities). A task 

is an abstract term for an operation that transforms a set of resources into another set. We provide a 

general review of the RTN model for both discrete and continuous-time representations. We then 

describe extensions to the standard RTN model that have been driven by the needs of the chemical 

industry. Successful industrial applications of these extensions in offline and online process scheduling 

and payload optimization, as well as a recent application to business processes, highlighting the impact 

that the RTN model continues to have in practice.  

Keywords: Resource-Task Network, scheduling, spatial optimization, discrete event simulation, 

mathematical programming 

1. Introduction 

Over the past three decades, the Process Systems Engineering (PSE) community has pioneered the area 

of optimization-based process scheduling (Georgiadis et al., 2019; Maravelias, 2021). The essence of 

optimization-based scheduling is mathematical programming, and more specifically, mixed-integer 

programming (MIP), where a system is modelled by a set of continuous and discrete variables (e.g., batch 

sizes, process start times, equipment assignment) that are constrained by a series of algebraic inequalities 

and equalities (e.g., material balances, resource assignment constraints). An objective function is added 

to the resulting model, and the model is passed to a MIP solver that performs the optimization by seeking 

the point in the discrete-continuous feasible space with the optimum objective function value. Objective 

functions vary depending on what is being targeted with the model. Common examples of objective 

functions include, profit maximization, cost minimization, production makespan minimization, and 

tardiness minimization. Over the years, several models have been proposed to optimize the timing and 

sequencing of events at a chemical plant, as well as the allocation of limited resources, such as equipment, 

feedstock, utilities, and operators (Floudas and Lin, 2004; Méndez et al., 2006). At first, MIP models for 

scheduling were not readily accepted by the scientific community due to the claim that MIP models were 

too difficult to solve to render them of any practical use. However, improved model formulations (Shah 

et al., 1993), new algorithmic developments (Bixby and Rothberg, 2007), and the evolution of computing 

power (Chen, 2016) have facilitated the adoption of these models by industry, generating value in 

operations and manufacturing (Harjunkoski et al., 2014).  

One of the more versatile, simple, and compact models proposed for process scheduling in PSE is the 

Resource-Task Network (RTN). The RTN model was developed in the 90’s and has had a significant impact 
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in the chemical industry since its inception. In the last decade, several extensions have been developed 

and successfully implemented in industrial processes by researchers from The Dow Chemical Company 

and Carnegie Mellon University. These extensions have been prompted in response to limitations that 

have been observed in the standard RTN formulation when implementing it in practice (Wassick and 

Ferrio, 2011). The strengths of the RTN paradigm have also led to its application in other areas of PSE and 

other industries. These include payload optimization (Wassick and Ferrio, 2011), control systems (Nie et 

al., 2014), process network simulation models (Akiya et al., 2011), supply chain transactional processes 

(Perez et al., 2021a), and supply chain logistics (Chen, 2019).  

This chapter is organized as follows. Section 2 presents a review of the classical RTN model formulations. 

Section 3 presents the extensions to the RTN model driven by the needs of the chemical industry. Section 

4 highlights the impact that the model extensions have had in generating value in industry. Finally, Section 

5 states concluding remarks. 

2. Review of RTN Model 

In 1993, the group at Imperial College led by Professor Roger Sargent published a novel modeling 

framework for process scheduling called the State-Task Network (STN) (Kondili et al., 1993; Shah et al., 

1993). This modeling paradigm regards all processes as bipartite graphs with two types of vertices: states 

and tasks. A state represents a material involved in the process being scheduled (e.g., raw material, 

intermediate, or product). A task is an operation in which incoming states are transformed into outgoing 

states. The STN paradigm in its original form does not account for equipment and other resources 

explicitly in its network representation, but instead accounts for them mathematically with additional 

variables and constraints.  

A year later, Costas Pantelides, a member of Roger Sargent’s group, presented a conceptually more 

general and powerful modeling paradigm: the Resource-Task Network (Pantelides, 1994). This paradigm 

continues representing processes as bipartite graphs, but uses resources instead of states. The concept of 

a resource is general and includes all entities that are involved in the process steps, such as materials (e.g., 

raw materials, intermediates, and products), processing and storage equipment (e.g., tanks and reactors), 

and utilities (e.g., operators and steam). A sample diagram of an RTN is shown in Figure 1, which depicts 

the connections between resources and task nodes, and describes process typical specifications required 

for process scheduling. The resulting RTN model is represented mathematically using mixed-integer 

programming (MIP for both discrete and continuous time operations). Both commercial and open-source 

MIP solvers are available for optimizing the models. These solvers rely on techniques such as branch-and-

bound (Dakin, 1965), cutting planes (Balas et al., 1993), and branch-and-cut (Johnson et al., 2000)   when 

the models are linear. When nonlinearities are introduced in the models (e.g., when modeling inventory 

costs in continuous-time formulations), these may be solved using MINLP solvers that rely on branch-and-

bound, Generalized Benders Decomposition (Geoffrion, 1972), Outer-Approximation methods (Duran and 

Grossmann, 1986; Su et al., 2018), and the Extended Cutting Plane method (Westerlund and Pettersson, 

1995). Another option is to linearize the MINLP models via exact linearization (Glover, 1975)  or piecewise 

linear approximations (Gupta and Grossmann, 2012; Sridhar et al., 2013). 

The RTN paradigm has the advantage of producing more compact models, especially when systems have 

identical processing units (e.g., redundant or parallel equipment). When alternate processing units exist 
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for the same task, a copy of the task node must be made for each alternate resource type. In its simplest 

form, the RTN model only requires three sets of constraints (resource balances, resource limits, and 

operational constraints) and three variables types (resource inventories, task extents, and task triggers). 

Both discrete-time and continuous-time representations exist for the RTN model. 

A

Task

EQ

C

U

Typical task specifications:
• Duration (e.g., 5 hr.)
• Extent (e.g., batch size)
• Recipe for material transformation (e.g., 

0.6A + 0.4B   C)
• Equipment (EQ) utilization
• Utility (U) consumption/generation profile 

(e.g., 0.25 kg/s Steam per kg of C for first 
hour)

B Raw 
Material

Product

Utility

Task Node

Equipment

Resource Nodes

Variable consumption/
production

Discrete consumption/
production

 
Figure 1. Sample network structure of an RTN 

T1 = 0 T2 T3 T|T|-2 T|T| = HT|T|-1

T1 = 0 T2 T3 T|T|-2 T|T| = HT|T|-1

Discrete-time representation:

Continuous-time representation:

 

Figure 2. Discrete-time (top) and continuous-time (bottom) representations for RTN 

2.1 Discrete-time Representation 

The original formulation of the RTN model presented by Pantelides (1994) is for a discrete-time 

representation. The classical discrete-time formulation splits the temporal axis onto a uniform grid with 

time intervals of equal size as shown in Figure 2. The three sets of constraints in this formulation are 

described below.  

2.1.1 Resource Balance 

The resource level balance is given by (1), which indicates that the resource level for a resource 𝑟 at time 

point 𝑡, 𝑅𝑟,𝑡, is obtained by updating the resource level in the previous time point (or the initial resource 

value if 𝑡 is the first time point) with the consumption or production of that resource and any entrance or 

exit of the resource into or from the system. The consumption and production of the resource is governed 

by the variables 𝑁𝑖,𝑡 (integer) and 𝜉𝑖,𝑡 (continuous), which indicate the number of occurrences of task 𝑖 



H. Perez et al. (2021) 

4 
 

and the extent of the task at time point 𝑡, respectively. The parameters 𝜇𝑖,𝑟,𝑡 and 𝜈𝑖,𝑟,𝑡 indicate the 

consumption/production ratios relative to the number of task occurrences and the task extent, 

respectively. The sign on the parameter indicates if it is a consumption (negative) or production (positive) 

term. The parameter 𝜇𝑖,𝑟,𝑡 is for resources that are consumed in discrete quantities (e.g., equipment and 

operators), and 𝜈𝑖,𝑟,𝑡 is for resources that are consumed in variable quantities (e.g., materials and utilities). 

𝑅𝑟,𝑡 = 𝑅𝑟,𝑡−1 + ∑ ∑(𝜇𝑖,𝑟,𝜃 ⋅ 𝑁𝑖,𝑡−𝜃 + 𝜈𝑖,𝑟,𝜃 ⋅ 𝜉𝑖,𝑡−𝜃)

𝜏𝑖

𝜃=0𝑖∈ℐ𝑟

+ Π𝑟,𝑡 ∀𝑟 ∈ ℛ, 𝑡 ∈ 𝒯 (1) 

The balance for resource 𝑟 accounts for resource consumption and production in all tasks that involve the 

resource (set ℐ𝑟) and all time points in the range [𝑡 − 𝜏𝑖 , 𝑡], where 𝜏𝑖 is the duration of task 𝑖, since 

consumption or production can occur at any time point within the task duration. For continuous 

processes, 𝜏𝑖 is the minimum duration of the continuous task, such that a continuous task can be thought 

of as multiple small tasks in series of 𝜏𝑖 duration (typically 𝜏𝑖 = 1). The entrance and exit of resource 𝑟 to 

the system at time 𝑡 is governed by parameter Π𝑟,𝑡, which is positive when a resource enters (e.g., supply 

of raw materials), and negative when it leaves the system (e.g., delivery of a final product). 

2.1.2 Resource Limits 

All resource inventories have lower and upper bounds as expressed in (2). 

𝑅𝑟
𝑚𝑖𝑛 ≤ 𝑅𝑟,𝑡 ≤ 𝑅𝑟

𝑚𝑎𝑥  ∀𝑟 ∈ ℛ, 𝑡 ∈ 𝒯 (2) 

2.1.3 Operational Constraints 

The extent of a task (e.g., batch size) is forced to zero when the task is not executed (i.e., 𝑁𝑖,𝑡 = 0), and is 

bounded between the limits 𝑉𝑖
𝑚𝑖𝑛 and 𝑉𝑖

𝑚𝑎𝑥, when the task is performed (i.e., 𝑁𝑖,𝑡 ∈ ℤ+).  

𝑉𝑖
𝑚𝑖𝑛 ⋅ 𝑁𝑖,𝑡 ≤ 𝜉𝑖,𝑡 ≤ 𝑉𝑖

𝑚𝑎𝑥 ⋅ 𝑁𝑖,𝑡 ∀𝑖 ∈ ℐ, 𝑡 ∈ 𝒯 (3) 

2.1.4 Variable Domains 

Variable domains are 𝑅𝑟,𝑡 ∈ ℝ+ ∀𝑟 ∈ ℛ, 𝑡 ∈ 𝒯 and 𝑁𝑖,𝑡 ∈ ℤ+, 𝜉𝑖,𝑡 ∈ ℝ+ ∀𝑖 ∈ ℐ, 𝑡 ∈ 𝒯. It should be noted 

that resources that are consumed/produced in discrete quantities, such as processing equipment, may be 

declared as integer variables if desired. This may, in some cases, be computationally advantageous for the 

MIP solvers. MIP solvers may be able to further reduce model complexity during presolve by variable fixing 

and constraint propagation. Solvers may also more readily exploit integrality constraints when applying 

cutting plane methods (Marchand et al., 2002; Ostrowski et al., 2012).  

2.1.5 Illustrative Example 

Consider a system with one reactor (RX) that transforms raw materials A and B into intermediate C, which 

is immediately distilled in two parallel distillation columns (DC1 and DC2) to produce products D and E, as 

shown in Figure 3. The system begins with zero material inventories and has the following events: 1) a 

shipment of materials A (60 units) and B (40 units) enters at 𝑡 = 1, 2) the reactor runs from 𝑡 = 2 to 𝑡 = 4 

(100-unit batch with a 60A/40B feed ratio), 3) the two columns separate 50-unit batches simultaneously 

from 𝑡 = 4 to 𝑡 = 5, and 4) all products get shipped out at 𝑡 = 6. The RTN representation for this system 

is shown in Figure 4. Resources are consumed when a task starts and produced a task completes. Figure 
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5 shows the resulting schedule and the resource inventory levels at each time point. Note that although 

intermediate C is produced at 𝑡 = 4, it is immediately consumed, causing its inventory to always be zero. 

2.2 Continuous-time Representation 

In order to overcome the limitations of having to specify the number and length of the time intervals in 

the original discrete-time RTN formulation, several alternative continuous-time formulations have been 

proposed by various researchers. The more modern and robust version of this continuous-time 

formulation was developed by researchers in Portugal at the INETI and the Instituto Superior Técnico 

during the early 2000s (Castro et al., 2001, 2004). This formulation considers time as continuous, where 

the system state is monitored at specified time points, the location of which is to be determined. This 

representation can be thought of as having a flexible non-uniform discrete time grid as shown in Figure 2, 

where the modeler sets the number of positions on the temporal axis to monitor, and the optimizer 

decides the best locations for these time points. The assumption here is that tasks can only be triggered 

at of these time points, and can end at any time according to the duration of the task. A major challenge 

of this formulation is in determining the required number of time points. Since the optimal number of 

time points is not known a priori, the common practice is to successively increase the number of time 

points in the set 𝒯 until no significant improvement is seen in the final objective function value. However, 

as pointed out by Castro et al. (2004), this can become intractable and may require fixing variables to 

reduce model complexity and avoid long computational times. See also Lee and Maravelias (2020) for 

discussion of various strategies about this point. 

RX

DC1

DC2

A

D

E

B

 
Figure 3. Flow diagram for illustrative example. 
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Figure 4. RTN representation for illustrative example with discrete (𝜇) and variable (𝜈) consumption and 
production ratios (indices are dropped for simplicity) 

0           1           2           3           4           5           6

Rxn Sep2

Π(A,1) = + 60
Π(B,1) = + 40

Π(D,6) = – 80
Π(E,6) = – 20

Sep1

NRxn,2 = 1
ξSep,4 = 50

ξRxn,2 = 100

  Time Point 
Resource 0 1 2 3 4 5 6 

A 0 60 0 0 0 0 0 
B 0 40 0 0 0 0 0 
C 0 0 0 0 0 0 0 
D 0 0 0 0 0 80 0 
E 0 0 0 0 0 20 0 

RX 1 1 0 0 1 1 1 
DC 2 2 2 2 0 2 2 

 

 

Figure 5. Schedule of events and variable values in illustrative example 

2.2.1 Timing and Sequencing 

The difference between any two time points, 𝑡 < 𝑡′, on the flexible non-uniform time grid is determined 

by the durations of all tasks starting at time point 𝑡 and ending in the interval (𝑡′ − 1, 𝑡′], as given by  (4). 

The task durations can be modelled as having two parts: one composed of a fixed task duration (𝛼𝑖), and 

the other of a variable task duration (𝛽𝑖) that is proportional to the extent of the task. This constraint 

ensures that the time indices on the triggering and extent variables (𝑁𝑖,𝑡,𝑡′ and 𝜉𝑖,𝑡,𝑡′, respectively) are 

mapped to the temporal axis accordingly. It also ensures that the difference between any two time points 

is greater than zero. Note that 𝑡 and 𝑡′ are not necessarily adjacent points on the time grid. The first and 

last time points are fixed to the beginning and end of the scheduling horizon: 𝑇0 = 0 and 𝑇|𝒯| = 𝐻. The 

feasible space defined by (4) can be further reduced by applying it to 𝑡′ ≤ Δ𝑡 + 𝑡, where Δ𝑡 is a parameter 

that represents the maximum number of time periods allowed for a task in the process. 

𝑇𝑡′ − 𝑇𝑡 ≥ ∑(𝛼𝑖 ⋅ 𝑁𝑖,𝑡,𝑡′ + 𝛽𝑖 ⋅ 𝜉𝑖,𝑡,𝑡′)

𝑖∈ℐ𝑟

 ∀𝑟 ∈ ℛ𝐸𝑄 , 𝑡 ∈ 𝒯, 𝑡′ ∈ 𝒯, 𝑡 < 𝑡′ (4) 

2.2.2 Resource Balance 

The resource inventory balance is analogous to that used in the discrete-time formulation. The production 

and consumption terms are split into the two summations in the second term on the right-hand side of 

(5) due to the double time point indexing on the variables. The first summation is for resource production 

and the second for resource consumption. An additional term is added at the end for storage tasks 

associated with resource 𝑟 (ℐ𝑟
𝑆𝑇) to account for the consumption and release of storage resources, which 

is particularly relevant in continuous processes. Additional constraints for these storage tasks are 

presented in Castro et al. (2004). There is also no parameter for external interactions in the base 

formulation since the exact position of the time points is not known a priori and would require additional 

logic-based constraints, which increases model complexity (Perez et al., 2021b). 

𝑅𝑟,𝑡 = 𝑅𝑟,𝑡−1 + ∑ [∑(𝜇𝑖,𝑟
𝑃 ⋅ 𝑁𝑖,𝑡′,𝑡 + 𝜈𝑖,𝑟

𝑃 ⋅ 𝜉𝑖,𝑡′,𝑡)

𝑡′<𝑡

+ ∑(𝜇𝑖,𝑟
𝐶 ⋅ 𝑁𝑖,𝑡,𝑡′ + 𝜈𝑖,𝑟

𝐶 ⋅ 𝜉𝑖,𝑡,𝑡′ )

𝑡<𝑡′

]
𝑖∈ℐ𝑟

+ ∑ (𝜇𝑖,𝑟
𝑃 ⋅ 𝑁𝑖,𝑡−1,𝑡 + 𝜇𝑖,𝑟

𝐶 ⋅ 𝑁𝑖,𝑡,𝑡+1)

𝑖∈ℐ𝑟
𝑆𝑇

 
∀𝑟 ∈ ℛ, 𝑡 ∈ 𝒯 (5) 
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2.2.3 Variable Domains 

The variable domains are the same as in the discrete-time formulation, except 𝑁𝑖,𝑡,𝑡′  is now binary. 

2.3 Discrete-time vs. Continuous-time 

2.3.1 Representation of Time 

Continuous-time mathematical models are more accurate and flexible since time is a variable. On the 

other hand, discretization often introduces rounding error, especially for coarse time grids.  

2.3.2 Model Size 

As the time discretization becomes more refined, discrete-time models become significantly larger. The 

size of the time step needs to be specified by the user to minimize round-off errors that result in low-

quality schedules. This trade-off between tractability and accuracy is relatively straightforward to 

determine by inspecting the system time scales. On the other hand, continuous-time models typically 

require fewer variables. The challenge here lies in determining the number of time points to use, which 

requires a successive manual adaptive refinement, as mentioned previously.  

2.3.3 Linear Relaxations 

Discrete-time formulations have been found to present much tighter linear programming relaxations, 

making them usually faster to solve than continuous-time models, despite their larger model sizes 

(Harjunkoski et al., 2014). Discretization has also become less of an issue with the great advances by MIP 

solvers (e.g., CPLEX, Gurobi, Xpress). 

2.3.4 Objective Functions 

Continuous-time RTN is more amenable to makespan minimization than its discrete-time counterpart, 

which requires specifying the magnitude of the scheduling horizon a priori. On the other hand, discrete-

time RTN handles cost minimization better than the continuous-time model, especially when inventory 

costs are considered, as these introduce nonlinearities in the latter because time is a variable (Méndez et 

al., 2006). In addition to preserving model linearity when accounting for inventory, discrete-time models 

monitor inventory and resources effectively because the monitoring points are fixed on the time grid.  

2.3.5 Discrete-continuous-time Integration 

More recently, efforts have been made to integrate the advantages of both discrete and continuous-time 

scheduling algorithms in work done at the University of Wisconsin – Madison led by Professor Christos T. 

Maravelias, who has since moved to Princeton University (Lee and Maravelias, 2020). Their work, which 

is based on the STN model, proposes solving a coarse discrete-time MIP model to fix key assignment 

decisions and obtain an approximate schedule. A mapping algorithm then maps the approximate solution 

onto unit or material specific temporal grids. A continuous-time linear programming (LP) model then 

refines the initial discrete-time solution and eliminates approximation errors. A similar procedure could 

be applied in RTN to help overcome the challenges of the different model representations and exploit the 

best of both worlds. 
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3. Industry-led Developments 

3.1 Extended RTN Model 

3.1.1 Quality-Based Changeovers 

During scheduling optimization, especially batch scheduling, equipment changeovers are considered 

when transitioning from one family of materials to another due to safety (e.g., chemical stability), 

throughput (e.g., fouling), operational constraints (e.g., time to reach steady state in semi-continuous 

processes), or quality reasons (e.g., product purity). Equipment cleaning tasks are included in the RTN 

framework via an additional changeover task. When the RTN model accounts for changeover tasks, 

duplicate equipment can no longer be aggregated in the same type of resource. Instead, each equipment 

involved in changeovers needs to be treated as its own resource to track which one is clean or needs 

cleaning (Méndez et al., 2006).  

Another type of changeover that is used in industry when a changeover is required for quality reasons is 

that of quality-based changeovers. The idea with this type of changeover is to have the option of forgoing 

an equipment cleaning step when transitioning from one material family type to another by performing 

several sequential batches of the second family in tandem to dilute any residual contamination from the 

first family. This extension was first addressed explicitly by Brunaud et al. (2020). The diagram in Figure 6 

details the general RTN structure for a system with a single unit (e.g., reactor) that can perform two 

different reactions (𝑅𝑥1 and 𝑅𝑥2). The first reaction converts 𝐴 → 𝐸 and the second reaction 𝐵 → 𝐹. 

When transitioning from 𝑅𝑥1 to 𝑅𝑥2, either a cleaning step or a quality-based changeover with 𝑁 + 1 

sequential repetitions of 𝑅𝑥2 can be performed. When transitioning from 𝑅𝑥2 to 𝑅𝑥1, either a cleaning 

step or a quality-based changeover with 𝑀 + 1 sequential repetitions of 𝑅𝑥1 can be performed.  

The RTN structure has four material resources, one for each material. Instead of one resource for the 

reactor, which would be the case for a system neglecting changeovers, there are 𝑁 + 𝑀 + 2 resources 

for the single reactor, representing the single reactor in its clean state (𝑅1𝑐𝑙 and 𝑅2𝑐𝑙) or dirty state (𝑅1𝑑𝑥 

and 𝑅2𝑑𝑦 where 𝑥 ∈ {1, … , 𝑁} and 𝑦 ∈ {1, … , 𝑀} indicate the number of repetitions of the second task). 

The initial values of these resource levels should be such that only one of the reactor states has an initial 

value of one and the rest are zero-valued. This, along with the proper consumption and production ratios, 

ensures that the unit can only be in one state at a time. With a quality-based changeover, instead of two 

reaction tasks, there are 𝑁 + 𝑀 + 2 reaction tasks. As the changeover occurs, impurities in the product 

tank carried over from the previous reaction are gradually diluted. Under this structure, the network 

complexity increases linearly with the number of task repetitions for each quality-based changeover and 

with the number of task transition pairs.  
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Variable Interaction

Discrete Interaction
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a. . .a
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R1
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d2
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a. . .a

Quality-Based Changeover 
Rxn1    Rxn2

(repeat Rxn2 N+1 times)

Quality-Based Changeover 
Rxn2    Rxn1

(repeat Rxn1 M+1 times)  
Figure 6. RTN representation illustrating both quality-chased changeovers and cleaning steps to 

transition between Reaction 1 and Reaction 2 on a single reactor 

3.1.2 External Resource Transfers with Time Windows 

Orders placed by customers or placed on suppliers can be mapped to the Π𝑟,𝑡 term in the resource balance 

((1)) via (6) and (7), respectively (Wassick and Ferrio, 2011). The Π𝑟,𝑡 is separated into two terms to 

distinguish outgoing transfers (Π𝑟,𝑡
𝑜𝑢𝑡) from incoming transfers (Π𝑟,𝑡

𝑖𝑛 ). The set ℛ𝑜  contains the materials 𝑟 

associated with order 𝑜. The summation terms are for external material flows occurring between the early 

acceptance date (𝐸𝑜) and final due date (𝐷𝑜) of each order. It should be noted that the parameters 𝐸𝑜 and 

𝐷𝑜  are converted from time values to time points using the discretization parameter (e.g., 𝐷𝑜 = 5 for a 

10 AM due date on the first day when the discretization time step is 2 hours and time point set 𝒯 is zero-

indexed). In a general sense, orders may also have a minimum and a maximum quantity required for each 

material (𝑄𝑜,𝑟
𝑚𝑖𝑛 and 𝑄𝑜,𝑟

𝑚𝑎𝑥, respectively). Slack variables can also be introduced to ensure that the model 

is feasible even if 𝑄𝑜,𝑟
𝑚𝑖𝑛 is not met. These slacks are penalized in the objective function. 

𝑄𝑜,𝑟
𝑚𝑖𝑛 − 𝑄𝑜,𝑟

𝑚𝑖𝑛,𝑠𝑙𝑎𝑐𝑘 ≤ ∑ −Π𝑟,𝑡
𝑜𝑢𝑡

𝐷𝑜

𝑡=𝐸𝑜

≤ 𝑄𝑜,𝑟
𝑚𝑎𝑥  𝑜 ∈ 𝑂, 𝑟 ∈ ℛ𝑜 (6) 

𝑄𝑜,𝑟
𝑚𝑖𝑛 − 𝑄𝑜,𝑟

𝑚𝑖𝑛,𝑠𝑙𝑎𝑐𝑘 ≤ ∑ Π𝑟,𝑡
𝑖𝑛

𝐷𝑜

𝑡=𝐸𝑜

≤ 𝑄𝑜,𝑟
𝑚𝑎𝑥  𝑜 ∈ 𝑂, 𝑟 ∈ ℛ𝑜 (7) 

3.1.3 Point Orders 

To ensure that external deliveries or shipments are made in a single material transfer, a common 

requirement in make-to-order systems, a point order task can be defined (Wassick and Ferrio, 2011). The 

point order task duration is typically much smaller than the delivery window for the order and is often 

zero (instantaneous order fulfillment). Point orders are included as an additional term in the resource 

balance that has the same form as the standard consumption/production term. The difference here is 

that the summation is applied only in the allowed delivery time point window for each point order 𝑖 (𝐸𝑖 ≤
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𝑡 ≤ 𝐷𝑖 − 𝜏𝑖) as shown in (8). The set ℐ𝑟
𝑃𝑂 is the subset of point order tasks that involve resource 𝑟. The 

bounds on the point order extents (𝜉𝑖,𝑡) are the order limits (𝑄𝑜
𝑚𝑖𝑛 = ∑ 𝑄𝑜,𝑟

𝑚𝑖𝑛
𝑟∈ℛo

 and 𝑄𝑜
𝑚𝑎𝑥 =

∑ 𝑄𝑜,𝑟
𝑚𝑎𝑥

𝑟∈ℛo
) as shown in (9). The constraint in (10) ensures that each point order is triggered at most 

once in the allowed time window. The variable 𝑁𝑖,𝑡 for the point order task 𝑖 should be fixed to zero for 

all other time points. If multiple shipments are feasible, the right-hand side can be replaced with an integer 

value equal to the maximum number of shipments allowed. 

𝑅𝑟,𝑡 = 𝑅𝑟,𝑡−1 + ∑ ∑(𝜇𝑖,𝑟,𝜃 ⋅ 𝑁𝑖,𝑡−𝜃 + 𝜈𝑖,𝑟,𝜃 ⋅ 𝜉𝑖,𝑡−𝜃)

𝜏𝑖

𝜃=0𝑖∈ℐ𝑟

+ ∑ ∑(𝜇𝑖,𝑟,𝜃 ⋅ 𝑁𝑖,𝑡−𝜃 + 𝜈𝑖,𝑟,𝜃 ⋅ 𝜉𝑖,𝑡−𝜃)|𝐸𝑖≤𝑡≤𝐷𝑖−𝜏𝑖

𝜏𝑖

𝜃=0𝑖∈ℐ𝑟
𝑃𝑂

+ Π𝑟,𝑡 

∀𝑟 ∈ ℛ, 𝑡 ∈ 𝒯 (8) 

( ∑ 𝑄𝑜,𝑟
𝑚𝑖𝑛

𝑟∈ℛo

) ⋅ 𝑁𝑖,𝑡 ≤ 𝜉𝑖,𝑡 ≤ ( ∑ 𝑄𝑜,𝑟
𝑚𝑎𝑥

𝑟∈ℛo

) ⋅ 𝑁𝑖,𝑡 ∀𝑖 ∈ ℐ𝑃𝑂 , 𝑡 ∈ 𝒯 (9) 

∑ 𝑁𝑖,𝑡

𝐷𝑖−𝜏𝑖

𝑡=𝐸𝑖−𝜏𝑖

≤ 1 ∀𝑖 ∈ ℐ𝑃𝑂 (10) 

3.1.4 Manipulation of Resource Limits 

Material balances can be written for the resource level limits as well to facilitate operations such as 

material transfers without having to define auxiliary tasks, making the model more scalable (Wassick and 

Ferrio, 2011). This is particularly useful for situations in which total material transfers from one unit to 

another are required (e.g., when transferring the entire contents of a tank to a truck for delivery). In the 

standard RTN model, this requires defining auxiliary storage tasks and storage resources to guarantee that 

the entire contents of a tank are transferred to the truck in a single operation. The downside of doing this 

is that additional integer variables for the auxiliary tasks are introduced. Instead, continuous variables can 

be introduced by parametrizing the resource limits (𝑅𝑟
𝑚𝑖𝑛  and 𝑅𝑟

𝑚𝑎𝑥) with respect to time as shown in 

(11). These new variables (𝑅𝑟,𝑡
𝑚𝑖𝑛 , 𝑅𝑟,𝑡

𝑚𝑎𝑥 ∈ ℝ+) are bounded by the static resource limit parameters as 

indicated in (12). Additional constraints, given in (13) and (14), are then defined for these variables, 

analogous to the resource inventory balance in (1). Discrete and variable resource limit 

production/consumption rates are introduced for the respective resource inventory limits (i.e., 𝜇𝑖,𝑟,𝑡
𝑚𝑎𝑥  and 

𝜈𝑖,𝑟,𝑡
𝑚𝑎𝑥  govern the discrete and continuous consumption of the limit 𝑅𝑟,𝑡

𝑚𝑎𝑥, respectively).  

𝑅𝑟,𝑡
𝑚𝑖𝑛 ≤ 𝑅𝑟,𝑡 ≤ 𝑅𝑟,𝑡

𝑚𝑎𝑥  ∀𝑟 ∈ ℛ, 𝑡 ∈ 𝒯 (11) 

𝑅𝑟
𝑚𝑖𝑛 ≤ 𝑅𝑟,𝑡

𝑚𝑖𝑛 , 𝑅𝑟,𝑡
𝑚𝑎𝑥 ≤ 𝑅𝑟

𝑚𝑎𝑥 ∀𝑟 ∈ ℛ, 𝑡 ∈ 𝒯 (12) 

𝑅𝑟,𝑡
𝑚𝑎𝑥 = 𝑅𝑟,𝑡−1

𝑚𝑎𝑥 + ∑ ∑(𝜇𝑖,𝑟,𝜃
𝑚𝑎𝑥  ⋅ 𝑁𝑖,𝑡−𝜃 + 𝜈𝑖,𝑟,𝜃

𝑚𝑎𝑥 ⋅ 𝜉𝑖,𝑡−𝜃)

𝜏𝑖

𝜃=0𝑖∈ℐ𝑟

 ∀𝑟 ∈ ℛ, 𝑡 ∈ 𝒯 (13) 

𝑅𝑟,𝑡
𝑚𝑖𝑛 = 𝑅𝑟,𝑡−1

𝑚𝑖𝑛 + ∑ ∑(𝜇𝑖,𝑟,𝜃
𝑚𝑖𝑛  ⋅ 𝑁𝑖,𝑡−𝜃 + 𝜈𝑖,𝑟,𝜃

𝑚𝑖𝑛 ⋅ 𝜉𝑖,𝑡−𝜃)

𝜏𝑖

𝜃=0𝑖∈ℐ𝑟

 ∀𝑟 ∈ ℛ, 𝑡 ∈ 𝒯 (14) 
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The new RTN structure for this extension is illustrated in Figure 7, where material in tank 𝐴 is transferred 

to the delivery truck 𝐵. When the transfer task 𝑖 is triggered, the upper limit of resource 𝐴 is consumed 

by 100 units (e.g., 𝜇𝑖,𝐴,𝑡−𝜏𝑖

𝑚𝑎𝑥 = −100), reducing it to zero, and thus forcing the entire resource to be 

transferred to resource 𝐵. Once the transfer task completes, the upper limit of resource 𝐴 is restored 

(e.g., 𝜇𝑖,𝐴,𝑡
𝑚𝑎𝑥 = +100). 

A B

Task

ν = –1.0 ν = +1.0

Resource

Variable Resource 
Interaction

Discrete Resource 
Limit Interaction

0

100

0

100

Resource Limit
Transfer

µmax = ± 100

 

Figure 7. Example of extended RTN representation with resource limit interactions 

3.1.5 Resource Slacks 

Slack variables can be used to introduce soft bounds on resource inventories to produce schedules that 

would otherwise be infeasible. These include not having enough material to produce a full batch at the 

end of the scheduling horizon, or high demand scenarios where it may be allowed model to violate 

material inventory safety stocks (Wassick and Ferrio, 2011). The slacks are penalized in the objective. 

𝑅𝑟,𝑡
𝑚𝑖𝑛 − 𝑅𝑟,𝑡

𝑚𝑖𝑛,𝑠𝑙𝑎𝑐𝑘 ≤ 𝑅𝑟,𝑡 ≤ 𝑅𝑟,𝑡
𝑚𝑎𝑥 − 𝑅𝑟,𝑡

𝑚𝑎𝑥,𝑠𝑙𝑎𝑐𝑘  ∀𝑟 ∈ ℛ, 𝑡 ∈ 𝒯 (15) 

3.1.6 Multiple Task Extents 

Multiple task extents can be used when multiple operations are performed under a single governing task 

(Wassick and Ferrio, 2011). Doing so avoids defining binary variables for the triggering of each operation 

involved. Instead, each operation is triggered by the governing task, 𝑁𝑖,𝑡, which reduces the model 

complexity. To implement multiple task extents, the resource inventory balance in (1) is modified so that 

the task extent and variable interaction parameters are specific to the extent number, 𝑚 (i.e., 𝜉𝑖,𝑚,𝑡 and 

𝜈𝑖,𝑚,𝑟,𝑡, respectively), as shown in (16). The index 𝑚 is also added to the task extent bounds in (3).  

𝑅𝑟,𝑡 = 𝑅𝑟,𝑡−1 + ∑ ∑ (𝜇𝑖,𝑟,𝜃 ⋅ 𝑁𝑖,𝑡−𝜃 + ∑ 𝜈𝑖,𝑚,𝑟,𝜃 ⋅ 𝜉𝑖,𝑚,𝑡−𝜃

𝑚∈ℳ𝑖

)

𝜏𝑖

𝜃=0𝑖∈ℐ𝑟

+ Π𝑟,𝑡 ∀𝑟 ∈ ℛ, 𝑡 ∈ 𝒯 (16) 

Multiple extents can be used to represent different material sizes processed in an operation, such as when 

a material is being split or materials are being combined in ways that cannot be described by single extents 

and consumption/production ratios. These multiple extents are further constrained with inequalities of 

the form shown in (17), where the set 𝒦𝑖 is the set of constraints assigned to the multiple extents in task 

𝑖. These constraints can be used to enforce material balances among the multiple procedures involved in 

the governing task (see the bottle filling task example given in Wassick and Ferrio (2011)). 

𝛾𝑖,𝑘,𝑡
𝑚𝑖𝑛 ≤ ∑ 𝛿𝑖,𝑘,𝑚,𝑡 ⋅ 𝜉𝑖,𝑚,𝑡

𝑚∈ℳ𝑖

≤ 𝛾𝑖,𝑘,𝑡
𝑚𝑎𝑥  ∀𝑖 ∈ ℐ, 𝑘 ∈ 𝒦𝑖 , 𝑡 ∈ 𝒯 (17) 
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3.1.7 Industrial Example: Multiple Extents in a Continuous Processing Plant 

Wassick and Ferrio (2011) show an industrial application at Dow of the extended RTN model for a 

continuous processing chemical plant. In the example, a one-year production schedule for the plant is 

performed using the concept of multiple extents to produce three different isomers. Isomers 1 and 2 can 

be produced in two different grades, and Isomer 3 is produced in a single grade as shown in Figure 8. 

Grade 1 isomers are produced in a single campaign that must last at least 14 days. Grade 2 isomers are 

also produced in a single campaign that lasts no less than 8 days. Campaign transitions take 3 days. Other 

parameters for the chemical plant are given in Table 1.  

Plant

Isomer 1 (Grade 1)

Isomer 1 (Grade 2)

Isomer 2 (Grade 1)

Isomer 2 (Grade 2)

Isomer 3 (Grade 1)
 

Figure 8. Continuous processing plant with three products of different grades1 

The network diagram for the extended RTN model for the problem is illustrated in Figure 9. The diagram 

shown is for Grade 1 isomers. The other half of the network is the same as the one shown, where Grade 

2 is used in place of Grade 1 and only two isomers are produced. A unique feature of this example is that 

time is modeled as a consumable resource. As a result, a non-uniform time grid is used, such that the 

number of time points must be specified a priori. The duration of each task is a single time slot (i.e., 𝜏𝑖 =

1), and the duration of each time slot is dictated by the amount of time resource consumed in each task. 

The time resource is initialized at 365 days and is fixed to 0 at the last time point. Determining the 

minimum number of time points in this discrete-time model is done off-line. A few additional time points 

are then used with dummy tasks that consume no time to ensure that the number of time slots is sufficient 

and ensure that any unnecessary slots are consumed. There is a dummy task for each grade. The dummy 

task for Grade 1 is not shown in Figure 9, but is a task that consumes the Production Plant resource (𝑃𝑃 

node) and the Plant ready for Grade 1 resource (𝑃𝑅𝐺1 node) at the beginning of the time slot and releases 

them at the end of the slot. Note that this task has zero temporal duration because the time resource is 

not involved. 

Table 1. Continuous processing plant parameters2 

Parametera 
Grade 1 Grade 2 

Isomer 1 Isomer 2 Isomer 3 Isomer 1 Isomer 2 

Safety Stock 800 500 100 500 200 
Inventory Capacity 5,000 6,049 1,000 5,000 2,000 

 
1 Adapted with permission Wassick, J.M., Ferrio, J., 2011. Extending the resource task network for industrial 
applications. Computers and Chemical Engineering 35, 2124–2140. Copyright (2011) Elsevier, Ltd. 
2 Ibid. 
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Daily Min. Production 75 50 6 140 20 
Daily Max. Production 126 101 16 149 36 
Daily Demand 95.89 76.71 12.05 21.41 4.33 
Product Margin $269.3 $361.2 $615.5 $674.0 $958.4 
Inventory Cost $27.0 $36.0 $62.0 $67.0 $96.0 
aAll parameters are on a Mlbs basis 

The Produce Grade 1 task has three types of extents: 1) campaign duration, 2) isomer production, and 3) 

isomer shipment. In the first extent type, the purple time resource is consumed (at the end of the time 

slot). The second extent type has three unique extents (one for each Grade 1 isomer), in which the green 

resources for stored isomers are filled with material produced (at the end of the time slot). The last extent 

type has five unique extents (one for each product), in which the green resources for stored isomers are 

drained (consumed) and the blue shipped isomer resources are filled (produced). Extents of the last type 

are indexed at the end of the time slot, allowing the model to monitor stored inventory and shipped 

products at the end of the campaign. Production extents are constrained to be within the production 

limits in Table 1 multiplied by the time duration extent (i.e.,  �̇�𝐺1,𝑚
𝑚𝑖𝑛 ⋅ 𝜉𝐺1,𝑇𝑖𝑚𝑒,𝑡 ≤ 𝜉𝐺1,𝑚,𝑡 ≤ �̇�𝐺1,𝑚

𝑚𝑎𝑥 ⋅

𝜉𝐺1,𝑇𝑖𝑚𝑒,𝑡   ∀𝑚 ∈ ℳ𝐺1,2, 𝑡 ∈ 𝒯 where ℳ𝐺1,2 are the isomer production extents [type 2] in Grade 1). 

Five resources are associated with the chemical plant (orange nodes in Figure 9), representing the plant 

itself (𝑃𝑃 resource) and the four states it can be in: initial state before startup (𝑃𝑆 resource), plant ready 

for production of a certain grade (𝑃𝑅𝐺1 and 𝑃𝑅𝐺2 resources), and plant ready for a grade transition (𝑃𝑇 

resource). Each plant state can be either zero or one and the plant resource (𝑃𝑃) is forced to zero to 

ensure that the plant is always in use after startup. Isomer storage resources (green nodes in Figure 9) are 

bounded by the safety stocks and the inventory capacities given in Table 1. Isomer shipment resources 

(blue nodes in Figure 9) are bounded between zero and the annual demand for that isomer from Table 1. 

In order to avoid unrealistic end-of-horizon effects on the produced schedule, the RTN model is 

constrained so that the ending inventory of each isomer matches its initial inventory: 𝑅𝑟,ℎ − 𝑅𝑟
𝑠𝑙𝑎𝑐𝑘 ≤

𝑅𝑟,0 ≤ 𝑅𝑟,ℎ + 𝑅𝑟
𝑠𝑙𝑎𝑐𝑘   ∀𝑟 ∈ ℛ𝑃  where ℛ𝑃  is the set of green nodes in Figure 9 (stored product resources), 

and 𝑅𝑟
𝑠𝑙𝑎𝑐𝑘 is a slack variable that is penalized in the objective. The objective function that is maximized is 

shown in (18), which includes the annual revenue for shipped resources minus the inventory holding costs 

and penalties for any non-zero slacks. Since time is a variable (resource), nonlinearities in the objective 

are avoided by approximating the inventory cost using the average inventory for each product over the 

horizon: 𝐼𝑟
𝑎𝑣𝑒 = ∑ 𝑅𝑟,𝑡𝑡∈𝒯 𝐻⁄   ∀𝑟 ∈ ℛ𝑃 . The network model consists of 7,567 equations, 2,955 continuous 

variables, and 180 binary variables, and was solved using CPLEX 10.1.0 on a 1.83 GHz CPU. The system 

was optimized in 51 seconds with an optimality gap of 0.06%. The optimized production schedule is shown 

in Figure 10, which shows a larger production scheduled in Grade 1 campaigns. Inventory profiles for each 

product are obtained as shown in Figure 11 for Grade 1 Isomer 1. The average daily product shipping rates 

obtained are quite stable, exhibiting minor variations throughout the year (relative standard deviations 

~0.1%). 

max 𝜙 = ∑ ∑ 𝑝𝑟 ⋅ 𝑅𝑟,𝑡

𝑟∈ℛ𝑆𝑡∈𝒯

− ∑ 𝑐𝑟
𝑖𝑛𝑣 ⋅ 𝐼𝑟

𝑎𝑣𝑒

𝑟∈ℛ𝑃

− ∑ ∑ 𝑐𝑟
𝑚𝑎𝑥 ⋅ 𝑅𝑟,𝑡

𝑚𝑎𝑥,𝑠𝑙𝑎𝑐𝑘

𝑡∈𝒯𝑟∈ℛ𝑃

− ∑ ∑ 𝑐𝑟
𝑚𝑖𝑛 ⋅ 𝑅𝑟,𝑡

𝑚𝑖𝑛,𝑠𝑙𝑎𝑐𝑘

𝑡∈𝒯𝑟∈ℛ𝑃

− ∑ 𝑐𝑟
𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑅𝑟

𝑠𝑙𝑎𝑐𝑘

𝑟∈ℛ𝑃

 (18) 
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Figure 9. RTN diagram for Grade 1 production and product shipment in the continuous processing plant  

 
Figure 10. Production schedule indicating the average daily production for each campaign 
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Figure 11. Optimized inventory profile for Isomer 1 (Grade 1)3 

3.2 State Space Reformulation of Extended RTN Model 

Nie et al. (2014) propose a reformulation of the extended discrete-time RTN model for reactive scheduling 

applications with a moving horizon. The extended RTN model is reformulated to the state space paradigm 

commonly used in process control. The reformulation requires lifting variables to introduce new state 

variables so that the system state can be fully specified at any point in time using the current state 

variables. The input variables in the model are the task assignments (𝑁𝑖,𝑡) and task extents, 𝜉𝑖,𝑚,𝑡. The 

state variables are the resource levels (𝑅𝑟,𝑡), resource limits (𝑅𝑟,𝑡
𝑚𝑎𝑥  and 𝑅𝑟,𝑡

𝑚𝑖𝑛), and task history (lifted 

variables, 𝑁𝑖,𝑡,𝜃 and 𝜉𝑖,𝑚,𝑡,𝜃). The lifted state variables (𝑁𝑖,𝑡,𝜃 and 𝜉𝑖,𝑚,𝑡,𝜃) record the past decisions in the 

system (i.e., the task assignment or extent for task 𝑖 at time 𝑡 that has been running actively for 𝜃 periods). 

Note that the input variables (𝑁𝑖,𝑡 and 𝜉𝑖,𝑚,𝑡) can be considered lifted variables for which 𝜃 = 0. From a 

process control perspective, the external resource transfer term (Π𝑟,𝑡) in the resource inventory balance 

is viewed as a system disturbance. In addition, the following dynamic state evolution equations are 

introduced, 

𝑁𝑖,𝑡,𝜃 = 𝑁𝑖,𝑡−1,𝜃−1 + (𝑁𝑖,𝑡−1,𝜃 − 𝑁𝑖,𝑡−1,𝜃−1) ⋅ ∑ 𝑑𝑖,𝑡−1,𝜃′

𝜃

𝜃′=0

 ∀𝑖 ∈ ℐ, 𝑡 ∈ 𝒯, 1 ≤ 𝜃 ≤ 𝜏𝑖  (19) 

𝜉𝑖,𝑚,𝑡,𝜃 = 𝜉𝑖,𝑚,𝑡−1,𝜃−1 + (𝜉𝑖,𝑚,𝑡−1,𝜃 − 𝜉𝑖,𝑚,𝑡−1,𝜃−1) ⋅ ∑ 𝑑𝑖,𝑡−1,𝜃′

𝜃

𝜃′=0

 
∀𝑖 ∈ ℐ, 𝑚 ∈ ℳ𝑖 , 𝑡 ∈ 𝒯 

1 ≤ 𝜃 ≤ 𝜏𝑖  
(20) 

Fixed binary disturbance parameters, 𝑑𝑖,𝑡,𝜃, are used to model unexpected delays in task durations, such 

that 𝑑𝑖,𝑡,𝜃 = 1 indicates a one period delay at time point 𝑡 on task 𝑖, which has been actively running for 

𝜃 periods. Consecutive disturbance parameters can be used (𝑑𝑖,𝑡,𝜃 , … , 𝑑𝑖,𝑡+𝜏𝑑−1,𝜃) to model longer task 

delays of duration 𝜏𝑑. Figure 12 illustrates an example of the dynamic state evolution of a task with a 2-

period duration that is triggered at 𝑡 = 0 (green state node). Without disruptions, the state evolution is 

𝑁𝑖,0,0 → 𝑁𝑖,1,1 → 𝑁𝑖,2,2. If a 1-period delay occurs at 𝑡 = 1 (𝑑𝑖,1,1 = 1), the evolution is 𝑁𝑖,0,0 → 𝑁𝑖,1,1 →

𝑁𝑖,2,1 → 𝑁𝑖,3,2. If a 2-period delay occurs at 𝑡 = 1, which is equivalent to an additional 1-period delay at 

𝑡 = 2 (𝑑𝑖,2,1 = 1), the evolution is 𝑁𝑖,0,0 → 𝑁𝑖,1,1 → 𝑁𝑖,2,1 → 𝑁𝑖,3,1 → 𝑁𝑖,4,2. 

Using a state space formulation has important advantages. The dynamic state of the system can be fully 

described with the state variables at any given time. Furthermore, the future state of the system can be 

forecast using the input and state variables. This makes this reformulation amenable to advanced process 

control applications, such as model predictive control. 

 
3 Ibid. 
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Figure 12. Sample dynamic state evolution of a 2-period task with different delays4 

3.2.1 Industrial Example: Online Scheduling of a Mixed Batch/Continuous Processing Plant 

Nie et al. (2014) present an industrial application of online RTN scheduling for the processing plant with 

both batch and continuous unit operations depicted in Figure 13. The system consists of two parallel batch 

units that are followed by a serial train with two buffer tanks, a continuous processing unit, another buffer 

tank, and a final continuous unit, in that order. The plant produces five types of products (A – E). Products 

A, C, and D belong to the same product family, and B and E are their own families. Raw materials are 

assumed to be unlimited, except for an intermediate F that can be produced in the batch units and is 

consumed to produce A, B, and E. The system operation is governed by the following characteristics, 

• Batch durations and sizes are fixed, 

• Batch units have a zero-wait transfer policy, 

• Buffer tanks have variable inlet/outlet flow rates, 

• Continuous units have variable processing rates and zero residence times, 

• Continuous units store no inventory, 

• Product mixing is not allowed, 

• Changeover tasks must be considered for different product families in the continuous units, 

• The second continuous unit has a consumable resource (e.g., filter) that requires shutting down 

for its regeneration/replacement, and 

• Materials A – F have unlimited storage capacity. 

The features described above, along with the plant structure and characteristics are modelled using the 

extended state space RTN model. The objective function maximizes is given in (21), which includes the 

revenue for order fulfillment within the specified time windows and penalties for product transition tasks, 

buffer tank inventories, and violating the safety stock levels at the end of the scheduling horizon. Sales 

prices for materials are indexed by 𝑡 (𝑝𝑜,𝑟,𝑡), such that higher revenue is received for early fulfillment. An 

 
4 Adapted with permission from Nie, Y., Biegler, L.T., Wassick, J.M., Villa, C.M., 2014. Extended discrete-time 
resource task network formulation for the reactive scheduling of a mixed batch/continuous process. Industrial and 
Engineering Chemistry Research 53, 17112–17123. Copyright (2014) American Chemical Society. 
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important feature in the model is the small penalty on the buffer tank inventory levels. This is done to 

break the symmetry in the flow transfer profiles when the continuous processing units are operated under 

full capacity. In such instances, the model forces flow from the buffer tanks to occur as fast as possible. 

This avoids oscillatory behavior in the flow profiles, which is operationally favorable. See Nie et al. (2014) 

for model parameter values. 

BU1

BU1

T1 T2 CU1 T3 CU2
Product 
Storage

Intermediate 
Storage 

(Material F)

 

Figure 13. Block flow diagram for plant with batch units (BU), buffer tanks (T), continuous units (CU), and 
storage tanks5 

max 𝜙 = ∑ ∑ ∑ 𝑝𝑜,𝑟,𝑡 ⋅ (−Π𝑟,𝑡)

𝐷𝑜

𝑡=𝐸𝑜𝑟∈ℛo𝑜∈𝑂

− ∑ ∑ 𝑐𝑖
𝑇𝑅 ⋅ 𝑁𝑖,𝑡

𝑡∈𝒯𝑖∈ℐ𝑇𝑅

− ∑ ∑ 𝑐𝑟
𝑖𝑛𝑣 ⋅ 𝑅𝑟,𝑡

𝑡∈𝒯𝑟∈ℛ𝑆𝑇

− ∑ ∑ 𝑐𝑟
𝑚𝑖𝑛 ⋅ 𝑅𝑟,ℎ

𝑚𝑖𝑛,𝑠𝑙𝑎𝑐𝑘

𝑡∈𝒯𝑟∈ℛ𝑃

 

(21) 

The model is used for the deterministic scheduling of the plant with a look-a-head horizon of 72 hours (3 

days). The product orders for each day are indicated in Table 2, where the quantity of each material 

ordered on a given day is 70 units. After the first 24 hours, a rescheduling is performed looking ahead for 

days 2 – 4. Three scenarios are considered: 1) no disruptions, 2) a scheduled 11-hour delay on the first 

batch unit (BU1) starting on day 2, and 3) a scheduled 13-hour maintenance on the last buffer tank (T3) at 

hour 60. Delays are readily introduced in the second scenario using the disturbance parameters in the 

dynamic state evolution equations. The maintenance event is produced by setting the upper resource 

limit of the buffer tank to zero for the 13 hours in the maintenance event. The model in each of the cases 

consists of 140,382 constraints and 143,148 variables (4,380 discrete) and was solved within a 10-minute 

limit using Gurobi 5.5.0. After 10 minutes, the optimality gap was less than 5% in each run. The resulting 

schedule for the first 72 hours is shown in Figure 14 with inventory profiles shown in Figure 15. Similar 

schedules for the next three scenarios are given in Nie et al. (2014). The advantage of the state space RTN 

model is in the implementation of the three scenarios for days 2-4, which are readily initialized with the 

relevant system history from the previous 24 hours of operation stored in the state variables. The 

rescheduling at 𝑡 = 24 is smooth and does not introduce drastic operational changes. The state space 

model is also amenable to responding to system disturbances.  

Table 2. Product orders matrix for materials A – E (all orders are for 70 units)6 

Day A B C D E 

1 X     
2 X  X  X 
3 X X X X  
4 X     X   

 
5 Ibid. 
6 Ibid. 
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Figure 14. Optimal schedule for the first 72 hours in the mixed batch/continuous plant7 

 
Figure 15. Inventory profiles for the first 72 hours in the mixed batch/continuous plant8 

3.3 RTN for Spatial Packing Problems 

Wassick and Ferrio (2011) also present a new application for RTN outside of process scheduling: 1D and 

2D packing problems. The RTN model for 2D strip packing optimization is time agnostic and uses a single 

resource: horizontal (𝑥) floor space at location 𝑦 (𝑅𝑥,𝑦). Thus, the number of resources is equal to the 

number of discrete points on the 𝑥-axis. Instead of tracking each resource over time, the resources are 

tracked along the vertical (𝑦) axis. Each horizontal resource has an initial condition of unity and an upper 

bound of unity: 

𝑅𝑥,−1 = 1 ∀𝑥 ∈ 𝒳 (22) 

0 ≤ 𝑅𝑥,𝑦 ≤ 1 ∀𝑥 ∈ 𝒳, 𝑦 ∈ 𝒴 (23) 

A placement task 𝑖 is defined as placing a rectangular package of type 𝑖 with width 𝑊𝑖 and length 𝐿𝑖  on 

the floor plan. When placing a package, the (𝑥, 𝑦)-coordinates of the bottom left corner of the rectangular 

box must be specified (see red X’s in Figure 17). Thus, instead of indexing the task triggering variable with 

the task 𝑖 and “time” 𝑦 as in the standard RTN model, the triggering binary variable is also indexed by the 

resource 𝑥 (𝑁𝑖,𝑥,𝑦). When a rectangular box is placed at a position (𝑥, 𝑦), it restricts the possibility of 

 
7 Reprinted with permission from Nie, Y., Biegler, L.T., Wassick, J.M., Villa, C.M., 2014. Extended discrete-time 
resource task network formulation for the reactive scheduling of a mixed batch/continuous process. Industrial and 
Engineering Chemistry Research 53, 17112–17123. Copyright (2014) American Chemical Society. 
8 Ibid. 
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placing another box in the positions between 𝑥 and 𝑥 + 𝐿𝑖 − 1 for that same 𝑦-coordinate. Thus, 

triggering the task at position 𝑦, consumes the horizontal resources 𝑅𝑥′,𝑦 for 𝑥 ≤ 𝑥′ ≤ 𝑥 + 𝐿𝑖 − 1 as 

indicated in Figure 16. This in turn implies that a resource 𝑥 is consumed for any boxes of type 𝑖 that are 

placed in a position 𝑥′ ∈ 𝒳𝑖 such that 𝑥 − 𝐿𝑖 + 1 ≤ 𝑥′ ≤ 𝑥. The floor space inventory balance becomes: 

𝑅𝑥,𝑦 = 𝑅𝑥,𝑦−1 + ∑ ∑ ∑ 𝜇𝑖,𝑥,𝜃 ⋅ 𝑁𝑖,𝑥′,𝑦−𝜃

𝑊𝑖

𝜃=0𝑥′∈𝒳𝑖𝑖∈ℐ

 ∀𝑥 ∈ 𝒳, 𝑦 ∈ 𝒴 (24) 
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Figure 16. RTN representation for a 2D strip packing problem 

Note that a resource 𝑥 is consumed when the bottom left corner of a box is placed at position (𝑥, 𝑦), and 

is then restored at the top left corner of the box (vertical position 𝑦 + 𝑊𝑖), meaning a new box can be 

placed on position (𝑥, 𝑦 + 𝑊𝑖). The width of the box can be viewed as the task “duration”. The discrete 

consumption/production ratio 𝜇 takes the following values: −1 when 𝜃 = 0, +1 when 𝜃 = 𝑊𝑖, and 0 

otherwise. As a result, (24) can be expressed as: 

𝑅𝑥,𝑦 = 𝑅𝑥,𝑦−1 + ∑ ∑ (𝑁𝑖,𝑥′,𝑦−𝑊𝑖
− 𝑁𝑖,𝑥′,𝑦)

𝑥

𝑥′=𝑥−𝐿𝑖+1𝑖∈ℐ

 ∀𝑥 ∈ 𝒳, 𝑦 ∈ 𝒴 (25) 

For the simpler 1D strip packing problem, the 𝑥 dimension used in the 2D case can be dropped and the 

system is modeled as having a single resource along the vertical length (𝑦) of the strip. 

3.3.1 Industrial Example: Payload Loading Optimization 

Wassick and Ferrio (2011) present an application of the spatial RTN model to load a semi-trailer for 
payload transport. The objective is to maximize the number of packages that are loaded onto the floor 
space of the semi-trailer. Package stacking is not allowed, and highway weight restrictions enforce a 
maximum total payload weight and a maximum load on the rear (tandem) axle. The weight limitations are 
introduced using the force balance illustrated in Figure 17. The force balance for the packages (𝑚𝑖), the 
king pin (𝐹𝐾), and the tandem (rear) axle (𝐹𝑇) is represented in (26). The total weight constraint is given 
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in (27), the moment balance in (28), and the rear axle weight limit in (29). Four different package types 
allowed on the 10-unit long semi-trailer.  See Wassick and Ferrio (2011) for model parameter values. 
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Figure 17. Semi-trailer force diagram (left) and optimized layout (right) for payload packing problem9 

𝐹𝑇 + 𝐹𝐾 = ∑ ∑ ∑ 𝑁𝑖,𝑥,𝑦 ⋅ 𝑚𝑖

𝑦∈𝒴𝑥∈𝒳𝑖∈ℐ

 (26) 

𝐹𝑇 + 𝐹𝐾 ≤ 𝑊𝑚𝑎𝑥 (27) 

∑ ∑ ∑ 𝑁𝑖,𝑥,𝑦 ⋅ 𝑚𝑖 ⋅ (𝑥 +
𝐿𝑖

2
)

𝑦∈𝒴𝑥∈𝒳𝑖∈ℐ

= 𝐷𝐾 ⋅ 𝐹𝐾 + 𝐷𝑇 ⋅ 𝐹𝑇 (28) 

𝐹𝑇 ≤ 𝐹𝑇
𝑚𝑎𝑥  (29) 

The model objective is to maximize the payload weight (𝐹𝑇 + 𝐹𝐾). The resulting model (131 binary 

variables, 211 continuous variables, and 77 equations) was solved using CPLEX 10.1.1 at the parent node 

(110 iterations) without branching. The optimized loading layout is shown in Figure 17, where 12 boxes 

that weigh a total of 44 units are loaded, placing the maximum allowable load on the rear axle (18 units). 

The spatial RTN model has been successfully applied at Dow to maximize payload and reduce freight costs. 

Additional constraints have also been included to stay within axle load limits, account for rotating 

packages, and other special packaging arrangements. 

3.4 RTN for Transactional Business Process Optimization 

Another interesting application of the RTN model currently under development is for the online 

optimization of business transactional processes in a supply chain (Perez et al., 2021a). Some common 

business processes found in supply chains are the order-to-cash (OTC) and procure-to-pay (PTP) 

processes. These processes describe the end-to-end transactions that must occur on a request (e.g., 

actions that must be performed between when a customer places an order and payment is received for 

the fulfilled order). A digital twin framework has been developed that models supply chain business 

processes as transactional queueing networks. This concept is illustrated in Figure 18. As requests (e.g., 

customer orders) arrive and move downstream, they go through a series of steps that are performed on 

 
9 Adapted with permission Wassick, J.M., Ferrio, J., 2011. Extending the resource task network for industrial 
applications. Computers and Chemical Engineering 35, 2124–2140. Copyright (2011) Elsevier, Ltd. 
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the request (e.g., credit check, import/export customs forms, inventory confirmation, shipment loading, 

and invoice generation). The steps need not be serial, as there may be parallel transactions, as well as 

deviations from the “normal” flow of a request through the system (e.g., to correct errors in the order or 

reschedule a shipment). At each transaction, there are a limited number of resources assigned to that 

transaction (e.g., human or automated agents). Each transaction has a duration that is uncertain and is 

modelled as a continuous probability distribution, which can be specific to the request type, requestor, or 

agent.  

...

...
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Transaction 
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Transaction 
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oO

Customer #L
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..
.

..
.

Customer Orders
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Figure 18. Sample network of transaction queues in the order-to-cash business process 

A digital replica of the real processes is created from input data via a discrete event simulation that has 

an optimization loop as shown in Figure 19. The optimization loop runs as an event in the discrete event 

simulation that takes as its input the current state of the business process (e.g., active requests being 

executed and queued requests at the different transactions in the network), along with the transactional 

network structure, model parameters, request details, and resource mapping. An RTN model of the 

business process is built with these inputs to run a scheduling optimization that maximizes the number of 

orders that are fulfilled on time. The resulting schedule is then translated into queue priorities and any 

task preemptions, which get passed to the simulation. The simulation then continues running with the 

new prioritized queues and preemptions until the optimization loop is triggered again. The RTN model is 

updated with the new system state each time the optimization event is triggered, which can occur on a 

periodic basis or conditional to an event occurring (e.g., system disturbance). Note that the time required 

to solve the optimization is critical as this dictates the duration of the optimization event in the simulation. 

Long optimization run times may result in queue priorities that are no longer relevant if the simulation 

has moved significantly from the original state passed to the RTN model.  



H. Perez et al. (2021) 

22 
 

Stochasticity is introduced in the simulation via uncertainty in processing times, uncertainty in the 

occurrence of an exception that would require a request to take an alternate path in the network or to be 

recycled for reprocessing, uncertainty in request arrival dates, and uncertainty in a customer reneging. 

Initial case studies have shown that using an optimization loop that runs a transactional RTN has potential 

to bring substantial profit gains relative to an unoptimized first-in-first-out (FIFO) method for processing 

incoming orders. 

Discrete 
Event 

Simulation

RTN
Optimization

Incoming Orders Cash
System 

State
Order Priorities 

For Active Queues

 
Figure 19. Integrated simulation-optimization framework 

4. Industrial Impact 

The RTN framework and its extensions have had a substantial impact at Dow As an example, the online 

reactive scheduling using the state space RTN has represented an annual increase in profit of over $5 

million because of improved productivity and more stable operations. Since its implementation, batch 

wait times decreased by over 50%, operating capacity increased by 5%, and the number of manual plant 

interventions decreased by 75% (Hayot, 2017). The technological success of the application of RTN for 

integrated scheduling and dynamic modeling also won a Manufacturing Leadership Award by the Frost & 

Sullivan’s Manufacturing Leadership Council in 2014. 

5. Conclusions 

An overview of the classical RTN modeling framework in both discrete and continuous time has been 

presented in the context of process scheduling optimization, where it has proven to be a mathematically 

compact model, especially for problems with identical processing units and multiple pathways. Extensions 

to the classical model structure have been described, including 1) the network structure for quality-based 

changeovers, 2) constraints for dealing with external material transfers with time windows, 3) constraints 

to ensure the fulfillment of orders in single shipments, 4) resource limit balances to mathematically 

simplify material transfers, 5) constraint modifications to allow for soft constraints (e.g., minor safety 

stock violations), and 6) model complexity reduction via multiple task extents. 

As a result of the modeling flexibility of the RTN, creativity and expertise by the practitioner are often 

required when mapping existing problems onto the resource-task paradigm. For example, resources need 

to be properly defined, along with their interactions in the different stages of a process, which includes 

populating all the necessary modeling parameters and describing the system constraints. Although this 

may not always be as intuitive as in other modeling paradigms, once the mapping is performed, the RTN 

becomes a powerful tool for optimization. The computational advantages of the RTN can then be 

exploited to tackle many different problems, from traditional offline batch scheduling to reactive 

scheduling, spatial packing optimization, and business process optimization. At Dow, such novel 

applications of RTN have and are making a positive impact. 
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From an implementation standpoint, it is important to ensure that RTN model parameters can be 

seamlessly updated by the end user, who is often not the original model developer, to enable its continued 

use in practical applications. Attempts have been made in the past to develop software packages for batch 

scheduling using the RTN paradigm, but these were never commercialized (e.g., gBSS software (Shah, 

1992)). Regardless of whether such a software package is ever developed, the RTN model is expected to 

continue to deliver value to many industries as well as in other applications within the chemical industry. 
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7. Nomenclature 

Sets  

𝑖 ∈ ℐ Tasks or package types 𝑟 ∈ ℛ Resources 
𝑖 ∈ ℐ𝑟 Tasks involving resource 𝑟 𝑟 ∈ ℛ𝐸𝑄 Equipment 

𝑖 ∈ ℐ𝑃𝑂  Point order tasks 𝑟 ∈ ℛ𝑃  Products  
𝑖 ∈ ℐ𝑟

𝑃𝑂  Point order tasks involving material 𝑟 𝑟 ∈ ℛ𝑆 Shipped products 
𝑖 ∈ ℐ𝑟

𝑆𝑇  Storage tasks involving material 𝑟 𝑟 ∈ ℛ𝑆𝑇  Stored materials 
𝑖 ∈ ℐ𝑇𝑅  Changeover (transition) tasks 𝑟 ∈ ℛ𝑜 Materials requested in order 𝑜 
𝑘 ∈ 𝒦𝑖  Constraints on the multiple extent task 𝑖 𝑡 ∈ 𝒯 Time points 

𝑚 ∈ ℳ𝑖  Extents associated with task 𝑖 𝑥 ∈ 𝒳 Horizontal coordinate points 
𝑜 ∈ 𝑂 Orders 𝑥 ∈ 𝒳𝑖 Horizontal resources consumed by task 𝑖 

  𝑦 ∈ 𝒴 Vertical coordinate points 

Parameters  
𝛼𝑖 Constant processing time ratio for task 𝑖 
𝛽𝑖  Proportional processing time ratio for task 𝑖 

𝛾𝑖,𝑘,𝑡
𝑚𝑖𝑛, 𝛾𝑖,𝑘,𝑡

𝑚𝑎𝑥  Upper and lower bounds on constraint 𝑘 associated with the multiple extents in task 𝑖 at time point 
𝑡 

𝛿𝑖,𝑘,𝑚,𝑡 Coefficient for constraint 𝑘 associated with extent 𝑚 of task 𝑖 at time point 𝑡 
Δ𝑡 Maximum number of time periods allowed for a task 

𝜇𝑖,𝑟,𝑡 Discrete consumption/production ratio for resource 𝑟 in task 𝑖 at time point 𝑡 

𝜇𝑖,𝑟
𝐶 , 𝜇𝑖,𝑟

𝑃  Discrete consumption and production ratios for resource 𝑟 in task 𝑖, respectively 

𝜇𝑖,𝑟
𝑚𝑖𝑛, 𝜇𝑖,𝑟

𝑚𝑎𝑥  Discrete consumption/production ratios for the lower and upper limits of resource 𝑟 in task 𝑖, 
respectively 

𝜈𝑖,𝑟,𝑡 Variable consumption/production ratio for resource 𝑟 in task 𝑖 at time point 𝑡 
𝜈𝑖,𝑚,𝑟,𝑡 Variable consumption/production ratio for resource 𝑟 in extent 𝑚 of task 𝑖 at time point 𝑡 

𝜈𝑖,𝑟
𝐶 , 𝜈𝑖,𝑟

𝑃  Variable consumption and production ratios for resource 𝑟 in task 𝑖, respectively 

𝜈𝑖,𝑟
𝑚𝑖𝑛, 𝜈𝑖,𝑟

𝑚𝑎𝑥  Variable consumption/production ratios for the lower and upper limits of resource 𝑟 in task 𝑖 at 
time point 𝑡, respectively 

𝜏𝑖  Duration of task 𝑖 
𝜏𝑑  Duration of delay 𝑑 

𝑐𝑟
𝑖𝑛𝑣  Inventory holding cost for material 𝑟 

𝑐𝑟
𝑚𝑖𝑛, 𝑐𝑟

𝑚𝑎𝑥  Penalty (cost) for violating lower and upper resource limits of resource 𝑟 
𝑐𝑟

𝑠𝑙𝑎𝑐𝑘  Penalty (cost) for not matching initial and end-of-horizon inventory levels of material 𝑟 

𝑐𝑖
𝑇𝑅 Cost for changeover (transition) task 𝑖 

𝐷𝑖 Final due date for point order task 𝑖 
𝐷𝑜 Final due date for order 𝑜 
𝐷𝐾 Distance of the king ping from the front of the semi-trailer (𝑥-direction) 
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𝐷𝑇 Distance of the tandem axle from the front of the semi-trailer (𝑥-direction) 
𝐸𝑖 Early acceptance date for point order task 𝑖 
𝐸𝑜 Early acceptance date for order 𝑜 

𝐹𝑇
𝑚𝑎𝑥  Maximum force that can be exerted on a tandem axle 
ℎ Last time point in set 𝒯  
𝐻 Scheduling horizon (i.e., 𝑇ℎ) 
𝐿𝑖  Length (𝑥-direction) of a box of type 𝑖 
𝑚𝑖 Weight of a box of type 𝑖 
𝑝𝑟  Sales price of product 𝑟 

𝑝𝑜,𝑟,𝑡 Sales price of product 𝑟 in order 𝑜 that is delivered at time point 𝑡 

𝑄𝑜,𝑟
𝑚𝑖𝑛, 𝑄𝑜,𝑟

𝑚𝑎𝑥  Minimum and maximum quantities of material 𝑟 requested in order 𝑜, respectively 

𝑄𝑜
𝑚𝑖𝑛, 𝑄𝑜

𝑚𝑎𝑥  Minimum and maximum quantities of materials in order 𝑜, respectively 

�̇�𝑖,𝑚
𝑚𝑖𝑛, �̇�𝑖,𝑚

𝑚𝑎𝑥 Minimum and maximum production rates for extent 𝑚 in task 𝑖. 

𝑉𝑖
𝑚𝑖𝑛, 𝑉𝑖

𝑚𝑎𝑥  Minimum and maximum limits on the extent for task 𝑖 

𝑉𝑖,𝑚
𝑚𝑖𝑛, 𝑉𝑖,𝑚

𝑚𝑎𝑥  Minimum and maximum limits on extent 𝑚 in task 𝑖 

𝑊𝑖 Width (𝑦-direction) of a box of type 𝑖 
𝑊𝑚𝑎𝑥 Maximum weight allowed on a semi-trailer 

Continuous (non-negative) Variables 

𝜙 Objective function value 
Π𝑟,𝑡 External transfer of resource 𝑟 at time point 𝑡 

Π𝑟,𝑡
𝑖𝑛 , Π𝑟,𝑡

𝑜𝑢𝑡  Incoming and outgoing external transfers of resource 𝑟 at time point 𝑡, respectively 

𝜉𝑖,𝑡 Extent of task 𝑖 at time point 𝑡 

𝜉𝑖,𝑚,𝑡 Extent 𝑚 for task 𝑖 at time point 𝑡 
𝜉𝑖,𝑚,𝑡,𝜃 Extent 𝑚 for task 𝑖 that has been actively running for 𝜃 time periods at time point 𝑡 
𝜉𝑖,𝑡,𝑡′  Extent of task 𝑖 starting at time point 𝑡 and ending at or before time point 𝑡′ 

𝐹𝐾  Force exerted by the king pin on a semi-trailer 
𝐹𝑇  Force exerted by the tandem axle on a semi-trailer 

𝐼𝑟
𝑎𝑣𝑒  Time averaged inventory of material 𝑟 

𝑅𝑟,𝑡 Resource inventory level for resource 𝑟 at time point 𝑡 

𝑅𝑥,𝑦 Horizontal floor space resource level at location 𝑥, 𝑦 

𝑅𝑟
𝑚𝑖𝑛 , 𝑅𝑟

𝑚𝑎𝑥 Minimum and maximum limits for resource 𝑟, respectively 

𝑅𝑟,𝑡
𝑚𝑖𝑛 , 𝑅𝑟,𝑡

𝑚𝑎𝑥 Minimum and maximum limits for resource 𝑟 at time point 𝑡, respectively 

𝑅𝑟,𝑡
𝑚𝑖𝑛,𝑠𝑙𝑎𝑐𝑘 Violation of the lower limit of resource 𝑟 at time point 𝑡 

𝑅𝑟,𝑡
𝑚𝑎𝑥,𝑠𝑙𝑎𝑐𝑘 Violation of the upper limit of resource 𝑟 at time point 𝑡 

𝑅𝑟
𝑠𝑙𝑎𝑐𝑘  Violation of end-of-horizon inventory constraint of material 𝑟 
𝑇𝑡 Time at time point 𝑡 

Discrete Variables 

𝑑𝑖,𝑡,𝜃  Indicator of a one period delay at time point 𝑡 on task 𝑖 that has been actively running for 𝜃 time 
periods 

𝑁𝑖,𝑡 Number of occurrences of task 𝑖 starting at time point 𝑡 

𝑁𝑖,𝑡,𝜃 Number of occurrences of task 𝑖 that have been actively running for 𝜃 time periods at time point 𝑡 

𝑁𝑖,𝑡,𝑡′  Occurrence of task 𝑖 starting at time point 𝑡 and ending at or before time point 𝑡′ 

𝑁𝑖,𝑥,𝑦 Indicator that the bottom left corner of a box of type 𝑖 has been placed with at location 𝑥, 𝑦 
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