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Abstract 

We address the flows involved in a real supply chain and discuss how they can be integrated for supply 

chain management. A scheduling model is proposed based on a State-Task Network representation to 

schedule order transactions and manufacturing operations in a make-to-order chemical plant. The 

proposed model is compared to scheduling models that focus on either the order transactions or the 

manufacturing operations. The advantage of the integrated approach is found in the accuracy of the 

solutions attained, whereas the siloed models produce suboptimal or infeasible solutions. Each model is 

compared in a stochastic discrete event simulation environment. An integrated scheduling model is also 

presented, which includes information, financial, and material flows along a three-echelon supply chain. 

This integrated model serves as a starting point for developing decision-support systems that take a more 

comprehensive view of the complex relationships amongst the different flows involved in real supply 

chains. 

Keywords: Supply chain management, business processes, financial modeling, chemical process 

scheduling, logistics, inventory management. 

1. Introduction 

Management of real supply chains requires effective decision making across the different levels of time 

and space in the supply chain. Depending on the time scales of the decisions being made, these can be 

categorized as operational (short-term), tactical (mid-term), or strategic (long-term) (Shapiro, 1999). 

These decisions are made across and within the various geographically distributed actors in the supply 

chain, as well as the different business units and departments of the enterprises involved. Supply chain 

components include suppliers, manufacturing sites, distribution centers, and markets/customers, each of 

which are placed along the different tiers of the supply network. Supply chains also involve enterprise 

departments such as billing, accounting, sourcing, customer service, logistics, production, and 

maintenance. Each of these components and departments is managed by various agents that are 

constantly required to manage risk and respond to disruptions. The distributed nature of decision-making 

across the supply chain often results in a decentralized and siloed approach to supply chain management. 

Competing interests and priorities often lead to inefficiencies and hinder the ability of decision-makers to 

face and overcome the various challenges that can arise throughout the supply network. 

Overcoming the challenges faced by real supply chains requires an integrated approach to supply chain 

modeling and management. Throughout the academic literature, most approaches to supply chain 

modeling fall into one of the following categories: bottom-up approaches or top-down approaches 

(Shapiro, 1999). Top-down methods focus on the operational decisions within supply chain management 

(e.g., design, planning, and scheduling) (Shah, 2005). On the other hand, bottom-up methods focus on the 

transactional processes in the supply chain, which are modeled in information management systems, such 
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as Enterprise Resource Planning (ERP) systems (Shapiro, 1999). In the Process Systems Engineering (PSE) 

community, the need for a holistic approach to supply chain management has been emphasized, requiring 

a paradigm shift from operation-based decision support systems to integrated decision frameworks that 

account for the different areas (e.g., accounting, research and development, sustainability) and flows 

(material, financial, and information) that make up real supply chains (Laínez and Puigjaner, 2012). With 

the advent and widespread drive towards digitalization in the fourth industrial revolution, a clear 

opportunity has emerged for a more holistic approach to supply chain management. This endeavor 

requires viewing supply networks as systems that unite physical, information, and financial flows, with 

multiple interactions across the enterprise where material, data, humans, and intelligent agents interact 

in a coordinated fashion (Büyüközkan and Göçer, 2018). 

Academic research in driving this transformation to supply chain management is still in its infant steps. 

However, important work has begun to move the PSE community in this direction. One such development 

in this space is that of Guillen et al. (2006), who present a planning/scheduling model for a chemical supply 

chain that integrates process operations and financial decisions. Their work is unique in that the objective 

of the supply chain planning and scheduling is to maximize shareholder equity, which is modeled via a 

cash flow model. This work highlights the value obtained when financial and material flows are integrated 

in supply chain operations. The authors contrast the integrated approach to a sequential and hierarchical 

approach where financial decisions are made in response to the optimization of the physical operation of 

the supply chain. The authors show that sequential decision making, as is typically done in real enterprises, 

results in reduced shareholder equity and less balanced financial and inventory loads. Another work that 

proposes integrating financial and physical flows in supply chains is that of Comelli et al. (2008), which 

implements activity-based costing and payment terms in supply chain tactical planning. Although these 

works and others are valuable in integrating physical and financial flows in supply chains, they do not 

consider the information flows in supply chain business processes, which are key drivers in real supply 

chains and an area that has received very little attention in PSE. 

Information flows in a supply chain are managed by end-to-end business processes, which encompass the 

transactions that occur on various requests along a supply chain. These requests can be external customer 

orders, which are governed by the order-to-cash process, or inventory replenishment orders, which are 

governed by the source-to-pay process. Scheduling of events in business processes has been studied 

principally by the computer science and information systems communities (Xu et al., 2010). The business 

process scheduling in these works targets purely transactional business processes, such as banking 

processes that are executed in the cloud (Hoenisch et al., 2016). However, when business processes 

involve physical goods, such as in material procurement or physical goods sales, the associated business 

processes become tightly coupled with the material flows and processes in the system. Although 

scheduling business processes in this context has not received much attention, their close integration with 

physical and financial flows is critical in chemical supply chains, where business processes like the order-

to-cash process depend on the availability of inventory and the manufacturing of goods. 

The present work seeks to address this gap in the supply chain management literature and bridge the two 

approaches to supply chain modeling discussed by Shapiro (1999). As a first step in accomplishing this, a 

framework is presented to integrate the material flows in a chemical batch plant with the information 

flows in the order fulfillment process. Prior work by the authors includes the development of scheduling 

models to optimize the order transactions in the order-to-cash process (Perez et al., 2021), which have 

then been integrated with discrete event simulation in a digital twin framework for supply chain business 
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processes (Perez et al., 2022). However, this prior work focuses primarily on the information flows in the 

supply chain and represents any physical processes as nodes in the transactional process network with a 

lumped process duration. In this work, we provide a more comprehensive and detailed approach, which 

integrates manufacturing scheduling models with the order-to-cash process model. This approach 

provides a more complete and accurate view of the supply chain by accounting for both material and 

information flows. The use of chemical production and material availability models enables an accurate 

representation of the processing times in the chemical manufacturing steps, which in turn allows the 

optimization models to find better solutions when scheduling customer orders. The present work also 

takes a step further by presenting an integrated model that brings together the various material flows 

across the supply chain, including raw material suppliers, manufacturing sites, distribution centers, and 

final customers. Coupled to this supply chain model are models for batch production scheduling at 

manufacturing sites, inventory management at storage locations, order-to-cash business transactions at 

demand facing nodes, source-to-pay transactions at supply facing nodes, and financial assets, liabilities, 

and shareholder equity. This integrated model is built using concepts from both the State-Task Network 

(Kondili et al., 1993) and Resource-Task Network (Pantelides, 1994) paradigms. Furthermore, this work 

builds on the prior work by Guillen et al. (2006) and Perez et al. (2021, 2022) to take a step forward in the 

development of a holistic digital supply chain management system that couples all major supply chain 

flows: information flows in ERP systems, material flows in production and distribution processes, and 

financial flows in accounting processes. 

The paper is structured as follows: the different components and flows in a supply chain are described 

and modeled via Task Network models in Section 3. These models include a graphical (network-based) 

abstraction to describe the material, information, and financial flows and processes in a supply chain. For 

each representation, a discrete-time Generalized Disjunctive Programming (GDP) optimization model is 

defined. An illustrative example is given in Section 4 to integrate the detailed chemical plant scheduling 

models with the order-to-cash process in a dynamic (online) scheduling environment. The benefits of an 

integrated model over a transaction-focused or material-focused model are presented. Section 5 

describes a holistic Task Network representation that brings together all of the processes described in 

Section 3 for the scheduling of supply chain material, financial, and transactional processes. Section 6 

presents concluding remarks and future directions to extend the work presented here. 

2. Nomenclature 

 Description 

Sets  

𝑎 ∈ 𝐴 Agents 
𝑎 ∈ 𝐴𝑙 Agents capable of executing transaction 𝑙 
𝑖 ∈ 𝐼 Processes 

𝑖 ∈ 𝐼𝑘
𝑝𝑟𝑒𝑑

 Processes producing state 𝑘 (predecessor processes) 

𝑖 ∈ 𝐼𝑘
𝑠𝑢𝑐𝑐  Processes consuming state 𝑘 (successor processes) 

𝑖 ∈ 𝐼𝑠𝑢𝑝𝑒𝑟  Super-transaction tasks used in integrated model 
𝑗 ∈ 𝐽 Processing equipment 
𝑗 ∈ 𝐽𝑖  Processing equipment used for process 𝑖 
𝑘 ∈ 𝐾 States 

𝑘 ∈ 𝐾𝑎𝑟𝑟𝑖𝑣𝑒𝑑  Raw material arrival states 

𝑘 ∈ 𝐾𝑓𝑒𝑒𝑑 Feedstock material states 

𝑘 ∈ 𝐾𝑖𝑛𝑣 Inventory storage states 
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𝑘 ∈ 𝐾𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑  Fulfilled (delivered) material states at external customers 

𝑘 ∈ 𝐾𝑝𝑟𝑜𝑑  Finished product material states 

𝑘 ∈ 𝐾𝑠ℎ𝑜𝑟𝑡𝑓𝑎𝑙𝑙 Inventory position shortfall states 

𝑘 ∈ 𝐾𝑠𝑡𝑜𝑟𝑒 Downstream finished product storage states  
𝑘 ∈ 𝐾𝑠𝑢𝑝𝑒𝑟  States connected to a super-transaction task 

𝑘 ∈ 𝐾𝐴𝑃  Accounts payable state 

𝑘 ∈ 𝐾𝐴𝑅 Accounts receivable state 

𝑘 ∈ 𝐾𝑀𝑇𝑂  Make to order material states 

𝑙 ∈ 𝐿 Transactions 

𝑙 ∈ 𝐿𝑠
𝑝𝑟𝑒𝑑

 Transaction producing information state 𝑠 (predecessor transaction) 

𝑙 ∈ 𝐿𝑘
𝑝𝑟𝑒𝑑

 Interface transaction producing material state 𝑘 

𝑙 ∈ 𝐿𝑠
𝑠𝑢𝑐𝑐  Transaction consuming information state 𝑠 (successor transaction) 

𝑙 ∈ 𝐿𝑘
𝑠𝑢𝑐𝑐  Interface transaction consuming material state 𝑘 

𝑙 ∈ 𝐿𝑜
𝑠𝑢𝑝𝑒𝑟

 Issue Goods & Receive Payment super-transaction for order 𝑜 

𝑠 ∈ 𝑆 Information states 

𝑡 ∈ 𝑇 Timepoints 
(𝑜, 𝑙, 𝑎) ∈ Ω Active business process tasks (transaction 𝑙 on order 𝑜 by agent 𝑎) 

Parameters  

𝛼𝑖,𝑗, 𝛽𝑖,𝑗 Fixed and variable operating cost factors for process 𝑖 performed on equipment 𝑗 
𝛾𝑙,𝑎  Cost of preempting (interrupting) transaction 𝑙 being performed by agent 𝑎 

𝜌𝑖,𝑘
𝑐𝑜𝑛𝑠 Consumption ratio for state 𝑘 involved in process 𝑖 

𝜌𝑖,𝑘
𝑝𝑟𝑜𝑑

 Production ratio for state 𝑘 involved in process 𝑖 

𝜌𝑖,𝑘,𝜃
𝑓𝑖𝑥𝑒𝑑

 Fixed production/consumption ratio for state 𝑘 in process 𝑖 started 𝜃 periods ago 

𝜌𝑖,𝑘,𝜃
𝑣𝑎𝑟  Variable prod. /cons. ratio for state 𝑘 in process 𝑖 started 𝜃 periods ago 

𝜏𝑖,𝑗,𝑘  Time to produce state 𝑘 in process 𝑖 in equipment 𝑗 

𝜏𝑖,𝑗  Total duration of process 𝑖 in equipment 𝑗 
𝜏𝑜,𝑙,𝑎 Total duration of transaction 𝑙 by agent 𝑎 on order 𝑜 

𝑡𝑜
𝑟, 𝑡𝑜

𝑒, 𝑡𝑜
𝑑, 𝑡𝑜

𝑙𝑠 Release, earliest fulfillment, due, and lost sales dates for order 𝑜  

𝑝𝑘  Price of material 𝑘 
𝑞𝑜,𝑘  Amount of material 𝑘 required to fulfill order 𝑜 
𝑞

𝑜
 Amount of finished good requested in order 𝑜 

𝑤𝑘 Weighing coefficient for state 𝑘 

𝑧𝑜 Profit (or revenue) of order 𝑜. Continuous variable in Example 1. 

𝑅𝑂𝑃𝑘 Reorder point for material 𝑘 

𝑇𝐼𝑃𝑘  Target inventory position for material 𝑘 

𝑆𝑘
𝑚𝑖𝑛, 𝑆𝑘

𝑚𝑎𝑥 Lower and upper bounds on the level of state 𝑘 

𝑉𝑖,𝑗
𝑚𝑖𝑛, 𝑉𝑖,𝑗

𝑚𝑎𝑥  Lower and upper bounds on the batch size of process 𝑖 in equipment 𝑗 

𝑉𝑖
𝑚𝑖𝑛, 𝑉𝑖

𝑚𝑎𝑥  Lower and upper bounds on the batch size of task 𝑖 

Continuous Variables 

𝑡𝑜
𝑒𝑥𝑖𝑡 Time that order 𝑜 is fulfilled 
𝐵𝑖,𝑡 Batch size for task 𝑖 started at time 𝑡 

𝐵𝑖,𝑗,𝑡  Batch size for task 𝑖, 𝑗 (process 𝑖 in equipment 𝑗) started at time 𝑡 
𝑁𝑖,𝑡 Task 𝑖 started at 𝑡 
𝑆𝑘,𝑡 State level for state 𝑘 at time 𝑡 

𝑆𝑘,𝑡
𝑚𝑎𝑥 Upper bound on state 𝑘 at time 𝑡 
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𝑆𝑜,𝑡
𝑒𝑥𝑖𝑡 Removal (fulfillment) of order 𝑜 at time 𝑡 

𝑆𝑘,𝑡
𝑑𝑒𝑚𝑎𝑛𝑑 External demand (removal) of state 𝑘 at time 𝑡 

𝑆𝑘,𝑡
𝑠𝑢𝑝𝑝𝑙𝑦

 External supply (addition) of state 𝑘 at time 𝑡 

Boolean Variables 

𝐵𝐿𝑜 Order 𝑜 is fulfilled late (backlogged) 
𝐷𝑜,𝑡 Order 𝑜 delivered at time 𝑡 

𝐿𝑆𝑜 Order 𝑜 is a lost sale 

𝑂𝑇𝑜 Order 𝑜 is fulfilled on-time 
𝑊𝑖,𝑡 Task 𝑖 starts at 𝑡 

𝑊𝑖,𝑗,𝑡 Task 𝑖, 𝑗 (process 𝑖 in equipment 𝑗) starts at time 𝑡 

3. Supply Chain Component Models 

As introduced previously, real supply chains are complex networks that link various entities 

(geographically distributed physical assets, business units, organizations, and enterprises), which interact 

throughout the different levels of decision-making (operational, tactical, and strategic). The links between 

these entities can be divided into three general types of flows: information, material, and financial (Laínez 

and Puigjaner, 2012). Figure 3.1.1 provides a diagram of the different components in a real supply chain 

as they interact with each of these flows. At the enterprise level, information flows are governed by 

business processes, in which information flows into and out of a network of transactional events. These 

business processes are managed via enterprise resource planning (ERP) systems. Material flows are found 

within and between physical supply chain nodes (suppliers, manufacturing sites, and distribution centers). 

Physical events control the flow of materials as they are transported, stored, and transformed from raw 

materials, to intermediates, and ultimately to finished goods and byproducts. Financial flows occur 

whenever a commercial transaction takes place, such as when raw materials are purchased, finished 

goods are sold, operational expenses are paid for, capital is invested, and dividends are disbursed. From 

an accounting perspective, at each financial transaction a balance is made between assets, liabilities, and 

shareholder equity. Each financial flow increases or decreases the amount in each of these financial 

categories.  

Although each of the three types of flows are managed by different organizations within an enterprise, 

the next generation supply chain must account for the interwoven nature of these flows throughout the 

supply network. These types of flows are discussed and modeled in the next subsections. 
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Figure 3.1.1. Components and flows in a real supply chain. 

3.1 Material Transformation Processes 

One of the main physical processes in a supply chain, and especially in a chemical supply chain, is that of 

processes that transform matter into different physical and chemical forms. The material transformation 

processes in a supply chain occur in manufacturing facilities (i.e., chemical plants), where production 

schedules are usually required to produce the desired finished goods subject to resource limitations and 

demand for the different products. Chemical process scheduling is a key area of PSE and has been studied 

for several decades. Many mathematical formulations have been proposed to obtain schedules that are 

optimal for some desired performance indicator, such as cost or makespan. The reader is referred to key 

reviews in the area of chemical batch scheduling for further detail on the various models available 

(Harjunkoski et al., 2014; Maravelias, 2021; Méndez et al., 2006).  

In this work, we model material processes and flows in a supply chain using the State-Task Network (STN) 

model (Kondili et al., 1993; Shah et al., 1993), which is a discrete-time mixed-integer programming 

scheduling model that represents a process as bipartite graphs with state nodes (e.g., materials) and task 

nodes (e.g., unit operations). In this model, tasks consume or produce the states associated with each 

task.  State balances are performed at each timepoint along the scheduling horizon. The STN model can 

be used to model continuous, batch, or semi-continuous processes (Maravelias, 2021). An example of a 

STN bipartite graph representation of a chemical plant is given in Figure 3.1.2, which models the chemical 
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plant presented in Kondili et al. (1993). The plant shown is a batch plant with three raw materials (A, B, 

and C), four intermediate materials (HotA, AB, BC, and E), two final products (P1 and P2), two 

multipurpose reactors (50 and 80 kg capacity), one heater (100 kg capacity), and one distillation column 

(200 kg capacity). There are five unit operations in the batch plant: Heating, Reaction 1, Reaction 2, 

Reaction 3, and Separation. Processing times, intermediate storage capacities, and reaction 

stoichiometries (on a mass basis) are given in Figure 3.1.2, where task nodes are aggregated by unit 

operation (e.g., Reaction 1 in the 50 kg Reactor and Reaction 1 in the 80 kg Reactor are represented by a 

single blue rectangular node). Storage limits for raw materials and final products are not considered, but 

could be included if desired. The general plant topology given in Figure 3.1.2 contains key features of 

material transformation processes, including processes with single and multiple inputs and outputs, 

material recycles, storage capacity limits, resource constraints, and intermediate material draws. With 

these features, the proposed mathematical scheduling model can be readily extended to more complex 

physical processing networks. 

 

Figure 3.1.2. Compact STN diagram for the chemical batch plant in Kondili et al. (1993). States are 

indicated by circular nodes and tasks by rectangular nodes. Capacities and processing times are shown 

under each unit operation. Tank capacities are shown for the intermediate materials. Unit operation 

reaction stoichiometries (referred to as bill of materials in supply chain) are shown on a mass basis over 

each directed edge. 

We now describe the STN model for the plant (Kondili et al., 1993) in the form of a Generalized Disjunctive 

Programming (GDP) model (Castro et al., 2018; Grossmann and Trespalacios, 2013). The principal model 

constraint is a state balance about each material state node as given in (3.1.1), where the amount of state 

𝑘 at timepoint 𝑡 (𝑆𝑘,𝑡) is updated from its the value in the previous timepoint (𝑡 − 1) by: 

 Adding any amount produced from batches of material in tasks 𝑖, 𝑗 (process 𝑖 performed on 

equipment 𝑗) triggered 𝜏𝑖,𝑗,𝑘  periods ago (𝐵𝑖,𝑗,𝑡−𝜏𝑖,𝑗,𝑘
), 

 Subtracting any amount consumed in batches of material that have entered production in the 

current period (𝐵𝑖,𝑗,𝑡), 
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 Adding any external supply of material (𝑆𝑘,𝑡
𝑠𝑢𝑝𝑝𝑙𝑦

), and 

 Subtracting any external demand for the material (𝑆𝑘,𝑡
𝑑𝑒𝑚𝑎𝑛𝑑).  

𝜌𝑖,𝑘
𝑝𝑟𝑜𝑑

 and 𝜌𝑖,𝑘
𝑐𝑜𝑛𝑠 are the production and consumption ratios for material in state 𝑘 in process 𝑖, sets 𝐼𝑘

𝑝𝑟𝑒𝑑
 

and 𝐼𝑘
𝑠𝑢𝑐𝑐  are the physical process predecessors and successors to node 𝑘, and set 𝐽𝑖 is the set of 

equipment that can perform process 𝑖. 

𝑆𝑘,𝑡 = 𝑆𝑘,𝑡−1 + ∑ 𝜌𝑖,𝑘
𝑝𝑟𝑜𝑑

⋅ ∑ 𝐵𝑖,𝑗,𝑡−𝜏𝑖,𝑗,𝑘

𝑗∈𝐽𝑖𝑖∈𝐼𝑘
𝑝𝑟𝑒𝑑

− ∑ 𝜌𝑖,𝑘
𝑐𝑜𝑛𝑠 ⋅ ∑ 𝐵𝑖,𝑗,𝑡

𝑗∈𝐽𝑖𝑖∈𝐼𝑘
𝑠𝑢𝑐𝑐

                       

+ 𝑆𝑘,𝑡
𝑠𝑢𝑝𝑝𝑙𝑦

− 𝑆𝑘,𝑡
𝑑𝑒𝑚𝑎𝑛𝑑 

∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 

(3.1.1) 

(3.1.2) is a disjunction constraint that allows the batch of material 𝐵𝑖,𝑗,𝑡 from task 𝑖, 𝑗, starting at timepoint 

𝑡 to have a nonzero value between a minimum batch size 𝑉𝑖,𝑗
𝑚𝑖𝑛  and a maximum batch size 𝑉𝑖,𝑗

𝑚𝑎𝑥  if the 

task is triggered at time 𝑡, meaning 𝑊𝑖,𝑗,𝑡 = 𝑇𝑟𝑢𝑒. Otherwise, the bounds on the batch size reduce to zero. 

[
𝑊𝑖,𝑗,𝑡

𝑉𝑖,𝑗
𝑚𝑖𝑛 ≤ 𝐵𝑖,𝑗,𝑡 ≤ 𝑉𝑖,𝑗

𝑚𝑎𝑥] ⋁ [
¬𝑊𝑖,𝑗,𝑡

𝐵𝑖,𝑗,𝑡 = 0
] ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖, 𝑡 ∈ 𝑇 (3.1.2) 

The cardinality constraint in (3.1.3) allows at most 1 task triggering Boolean variable to be true from the 

set of processes that equipment 𝑗 can execute within a window of 𝜏𝑖,𝑗 − 1 periods, where Γ(𝑛,⋅) is the at 

most n predicate (Perez and Grossmann, 2023) and 𝜏𝑖,𝑗  is the total duration of task 𝑖, 𝑗. This cardinality 

rule is the logical equivalent to the knapsack constraint on the reformulated binary variables 

(∑ ∑ 𝑊𝑖,𝑗,𝑡′
𝑡
𝑡′=𝑡−𝜏𝑖,𝑗+1𝑖∈𝐼𝑗

≤ 1) proposed by Shah et al. (1993) for the STN model. The constraint ensures 

that processing equipment cannot begin another batch before the current batch has completed. Although 

cardinality rules are not used in the traditional GDP formulation, they have been recently introduced in 

an extended GDP formulation to allow higher-order logic constraints such as this resource assignment 

constraint (Perez and Grossmann, 2023). 

Γ(1, 𝑊𝑖,𝑗,𝑡′   ∀𝑖 ∈ 𝐼𝑗 , 𝑡′ ∈ {𝑡 − 𝜏𝑖,𝑗 + 1, … , 𝑡}) ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (3.1.3) 

The variable domain and bounds for the GDP STN model are given in (3.1.4) – (3.1.6). The external supply 

and demand of material (𝑆𝑘,𝑡
𝑠𝑢𝑝𝑝𝑙𝑦

 and 𝑆𝑘,𝑡
𝑑𝑒𝑚𝑎𝑛𝑑) are usually parameters, but can in some cases be modeled 

as variables in the space of the non-negative reals. The lower and upper bounds on a material state are 

given by 𝑆𝑘
𝑚𝑖𝑛 and 𝑆𝑘

𝑚𝑎𝑥, respectively, which can be used to enforce a minimum and maximum inventory 

level for material 𝑘. 

𝐵𝑖,𝑗,𝑡 ∈ ℝ: 0 ≤ 𝐵𝑖,𝑗,𝑡 ≤ 𝑉𝑖,𝑗
𝑚𝑎𝑥 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖, 𝑡 ∈ 𝑇 (3.1.4) 

𝑆𝑘,𝑡 ∈ ℝ: 𝑆𝑘
𝑚𝑖𝑛 ≤ 𝑆𝑘,𝑡 ≤ 𝑆𝑘

𝑚𝑎𝑥  ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 (3.1.5) 

𝑊𝑖,𝑗,𝑡 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖, 𝑡 ∈ 𝑇 (3.1.6) 
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In discrete-time scheduling applications, the objective function defined by the feasible space given in 

(3.1.1) – (3.1.6) depends on the desired targets, but is usually a minimization of cost or a maximization of 

profit, where operating costs can be modeled as being proportional to the batch size of each task (with 

some fixed setup cost if desired), and sales are driven by the price of the materials demanded. Additional 

model features such as cleaning steps (e.g., changeovers) and non-equipment resource availability can 

also be included in the STN formulation (Méndez et al., 2006). However, when such features are desired, 

it is often advantageous to switch over to a RTN model (Brunaud et al., 2020). 

3.2 Supply Chain Inventory Processes 

We refer to inventory processes in a supply network as the processes that regulate the storage and 

distribution of inventory throughout the supply chain network. Some key terms in this space are: 

 Safety stock: the inventory held to buffer against fluctuations (uncertainty) in demand and supply. 

 Cycle stock: the inventory used to satisfy demand during a replenishment cycle. 

 Inventory backlog: the inventory promised to customers (internal and external) that is overdue 

(e.g., due to a stockout). 

 Inventory level: the difference between the on-hand inventory and inventory backlog. 

 Inventory position: inventory “owned” at a location. Owned means that backlogs are deducted, 

and incoming inventory (in-transit) is included. This is equivalent to the sum of the inventory level 

and the replenishment orders that have already been placed. 

 Reorder point: the parameter which triggers a replenishment order when the inventory position 

is less than or equal to its value. 

 Replenishment policy: the decision rule used to determine 1) when to place a replenishment order 

and 2) the size of the order. Different types of policies exist, including order-up-to (s, S) and fixed-

order-quantity (r, Q) (Brunaud, Laínez-Aguirre, et al., 2019). Among these policies a key decision 

is how inventory is monitored, which can be periodic or continuous (Shenoy and Rosas, 2018). 

We propose a STN formulation for inventory control in a supply chain. Using a STN formulation allows 

integrating inventory decisions with other supply chain decisions in Example 2 (see Section 5). This 

formulation monitors the target inventory position shortfall (PS) as an additional state node to trigger a 

replenishment order when the position shortfall is at least equal to the difference between the target 

inventory position of material 𝑚 (𝑇𝐼𝑃𝑚) and the reorder point (𝑅𝑂𝑃𝑚). Figure 3.2.1 illustrates the STN 

structure for the supply of material A in the Kondili plant from the previous section. The green node 

represents a new state node that measures the inventory required to reach the target inventory position 

for feedstock A. This state represents the complement of the inventory position and is bounded between 

0 and 𝑇𝐼𝑃𝐴. A shortfall of 0 indicates that the inventory position of A is at its target. The reorder point 

𝑅𝑂𝑃𝐴 is the inventory position at which a replenishment order of 𝐴 is triggered. This value is often 

calculated by summing the cycle and safety stocks to ensure that the demand over the supply lead time 

can be met up to a certain level of uncertainty (Eruguz et al., 2016).  



H. Perez et al. (2023) 

10 
 

 

Figure 3.2.1. Example STN representation for the supply and monitoring of inventory. 

For the replenishment to occur, there is a transportation task that links the supply of raw material A at 

the external supplier with the amount of A available at the plant. This transportation task takes two inputs, 

the availability of material A at the supplier node, and the position shortfall (PS) of A at the plant. Each 

time the Heating unit operation is triggered, the PS level increases by the amount of A that was consumed 

(𝜌𝐻𝑒𝑎𝑡,𝑃𝑆
𝑝𝑟𝑜𝑑

= 1). Note that the PS level increases when the Heating step is triggered, rather than when it 

ends. This results in a minor change to the state balance from (3.1.1), which is shown in (3.2.1), where the 

−𝜏𝑖,𝑗,𝑘  in the time index of the Batch variable in the second term is removed. The minimum “batch size” 

for the transportation event is set to 𝑉𝑇𝑟𝑎𝑛𝑠,𝑗
𝑚𝑖𝑛 = 𝑇𝐼𝑃𝐴 − 𝑅𝑂𝑃𝐴. This ensures that the replenishment can 

only be triggered when the inventory position drops to or below the reorder point 𝑅𝑂𝑃𝐴, at which point, 

the position shortfall is “consumed” to reach the target inventory position. See Appendix A for a numerical 

example of these inventory dynamics.  

𝑆𝑘,𝑡 = 𝑆𝑘,𝑡−1 + ∑ 𝜌𝑖,𝑘
𝑝𝑟𝑜𝑑

⋅ ∑ 𝐵𝑖,𝑗,𝑡

𝑗∈𝐽𝑖𝑖∈𝐼𝑘
𝑝𝑟𝑒𝑑

− ∑ 𝜌𝑖,𝑘
𝑐𝑜𝑛𝑠 ⋅ ∑ 𝐵𝑖,𝑗,𝑡

𝑗∈𝐽𝑖𝑖∈𝐼𝑘
𝑠𝑢𝑐𝑐

 
∀𝑘 ∈ 𝐾𝑠ℎ𝑜𝑟𝑡𝑓𝑎𝑙𝑙, 𝑡 ∈ 𝑇 (3.2.1) 

By defining a state for the inventory position shortfall in the STN model, classical inventory policies for 

supply networks such as the order-up-to or (s, S) policy can be integrated with material transformation 

processes. The example shown here represents an order-up-to policy with continuous review. Periodic 

review can also be represented by fixing the transportation trigger Boolean variable 𝑊𝑇𝑟𝑎𝑛𝑠,𝑗,𝑡 to 0 for 

all 𝑡 not belonging to a review period. Fixed-order-quantity policies can also be modeled by fixing the 

lower and upper bounds on the transportation “batch size” 𝐵𝑇𝑟𝑎𝑛𝑠,𝑗,𝑡 to equal the fixed order size. 

3.3 Business Processes 

The principal end-to-end business processes in a supply chain are the source-to-pay (S2P), forecast-to-

plan (F2P), plan-to-produce (P2P), plan-to-move (P2M), inquiry-to-order (I2O), and order-to-cash (O2C) 

processes. These processes map the necessary steps that need to be performed between each end in the 

process. For example, the order-to-cash process contains the transactions that occur on a customer order 

until the goods are delivered, and payment is received from the customer on the invoice sent. These 

processes are often described as being linear, as the one shown in Figure 3.3.1A. However, in practice, 

they can be much more complex, involving parallel paths, alternate paths, and recycles to address 

inconsistencies and respond to system disturbances. Figure 3.3.1B illustrates some of the complexities 

observed in real business processes. 
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Figure 3.3.1. A) ideal linear order-to-cash process network (left), B) real order-to-cash process network 

with parallel events, alternate paths, recycles, and exceptions (right).  

For the purposes of the work shown in this paper, we focus primarily on the order-to-cash (O2C) and 

source-to-pay (S2P) business processes because they link the enterprise supply chain to external 

customers and suppliers. However, the models presented here can be extended to the other relevant 

business processes. We note that although Figure 3.3.1A gives the main steps in the order-to-cash 

sequence, the actual event names and connections can vary among different enterprises. The same is true 

for other business processes. Prior work has shown that business processes can be modeled as flexible 

flowshop or jobshop networks where orders are processed by agents that execute the various 

transactions at each stage in the network (Perez et al., 2021). With this flexible flowshop/jobshop 

modeling approach, business processes can be scheduled via heuristics or mathematical optimization. In 

our prior work, classical models from chemical batch scheduling were extended to applications in business 

processes. Among the different scheduling models compared, the discrete-time State-Task Network (STN) 

and Resource-Task Network (RTN) models proved to be advantageous for modeling business processes 

due to their model tightness and amenability to significant model reduction by commercial solvers during 

presolve (Perez et al., 2021). 

The general RTN representation of a business process model is given in Figure 3.3.2, which shows orders 

1, … , |𝑂| transitioning through states 1, … , |𝑆| as they flow down the business process. The transition from 

one state to another occurs when a business transaction is performed (e.g., run credit check, create 

delivery, and record goods issue). Each of the transactions 1, … , |𝐿| are executed by an agent, which can 
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be a computer-based agent in the case of robotic process automation (RPA) (van der Aalst et al., 2018) or 

a human agent (e.g., planner, scheduler, customer service representative). The double arrow on the agent 

nodes indicates that agents are consumed (locked) during a transaction and produced (released) when a 

transaction ends.  

 

Figure 3.3.2. Detailed RTN representation of a business process network. Rectangular nodes represent 

task 𝑜, 𝑙, 𝑎 for transactional event 𝑙 ∈ 𝐿 that is executed on order 𝑜 ∈ 𝑂 by agent 𝑎 ∈ 𝐴. Circular nodes 

indicate the network resource 𝑜, 𝑠 for order 𝑜 ∈ 𝑂 in information state 𝑠 ∈ 𝑆, or the individual 𝑎 ∈

𝐴 that is used in each transactional node. 

Although Figure 3.3.2 provides the most general and flexible graphical representation of a business 

process using RTN, the scheduling model used for these processes in this work is a STN, which can be 

viewed as a specialized version of the RTN. As a more general formulation, RTN is particularly effective 

when: 1) identical resources are used, 2) resources are consumed or produced in discrete or continuous 

quantities, or 3) changeover (e.g., cleaning) steps are required between tasks (Brunaud et al., 2020; 

Méndez et al., 2006). For business processes, most agents are unique, consumption and production of 

order states occur only at the beginning and end of a transaction, and changeover events are not required 

since these are not material processing tasks. In addition to being well suited for business process 

scheduling, prior work has shown that using STN for business processes results in models with fewer 

variables and constraints, which speeds up the scheduling optimization (Perez et al., 2021). The STN model 

representation is equivalent to that of Figure 3.3.2 without the agent nodes. Instead, each order 

subnetwork is linked implicitly with agent assignment constraints (analogous to (3.1.3)). The detailed STN 

model is presented in Perez et al. (2022), and is reproduced in Appendix B in GDP form. 

3.4 Financial Processes 

Financial processes govern the cash flow throughout the supply chain. Previous research in this area in 

PSE includes that of Yi and Reklaitis (2004), who model cash as a storage unit in a batch storage network. 

Their work shows that integrating material and financial flows allows obtaining a more accurate network 

design that ensures that cash inventory is not depleted. As mentioned in the Introduction (Section 1), 
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Guillén et al. (2006) integrate material planning and scheduling decisions with financial ones, accounting 

for the various financial entities in a supply chain, and proposing an objective function that targets 

maximizing shareholder equity. Other works in the literature discuss applications of financial models in 

supply chain, with some addressing their integration with physical flows (Abdollahzadeh et al., 2018; 

Comelli et al., 2008; Kees et al., 2019; Pfohl and Gomm, 2009). Integrating financial flows with inventory 

modeling allows modeling working capital, which is the sum of inventory assets and accounts receivable, 

minus accounts payable. 

We propose modeling the financial balance sheet of an enterprise as a RTN. This allows us to model supply 

chain financial processes in a way that can be linked with the other supply chain process models discussed 

in this paper. The balance sheet of a company is a financial statement that balances the assets in a 

company with the sum of its liabilities and shareholder equity, which enables the company to finance its 

assets and operations. Some examples of how financial transactions are logged in the balance sheet at a 

high level are given below: 

 Purchase of raw materials: The increase in inventory assets is equal to the increase in accounts 

payable (liability) owed to the supplier and shipper. 

 Production of finished goods: The assets decrease by the value of the raw materials consumed 

and increase by the value of the finished goods produced at that location. The net change in asset 

value is balanced with the accounts payable for production (e.g., operating expenses). 

 Shipping a finished product from one location to another: The value of the supply chain assets 

changes by the difference in the value of the assets at the receiving node and the value of the 

assets at the supplying node. This change is balanced by the accounts payable for shipping. 

 Sale of finished goods: The assets increase by the accounts receivable associated with the sale, 

and decrease by the value of finished goods sold. This change in assets is balanced by the accounts 

payable for delivery (liability) and the increase in profit, which is initially recorded as a sale in the 

income statement and eventually as retained earnings (shareholder equity) in the balance sheet. 

For the proposed dynamic financial modeling in this section, profit from sales is recorded as 

shareholder equity. 

 Paying expenses: When the liability for accounts payable is decreased by fulfilling the respective 

payments, the cash (asset) decreases by an equal amount. 

 Receiving payments: When customers pay for the goods received, the net change in assets is zero. 

The assets decrease by the amount received for accounts receivable, which increases the cash 

(asset) by that same amount. 

 Paying dividends: When dividends are paid out to shareholders, the cash (asset) decreases by the 

same amount that the earnings (shareholder equity) decrease. 

In aligning with the Task Network approach used in the previous sections to model material and 

information processes, we propose a new application of RTN to represent financial processes. RTN was 

chosen to model financial processes instead of STN because invoices are produced and consumed in 

discrete quantities, while assets and liabilities are produced and consumed in variable (continuous) 

quantities, which can be explicitly modeled with RTN. Furthermore, the concept of financial entities such 

as assets, liabilities, and shareholder equity can intuitively be referred to as financial resources. Figure 3.4 

shows the RTN graph where assets, accounts payable, accounts receivable, earnings, cash, dividends, and 

invoices are modeled as resources. On the left side of the graph, receiving inventory (asset value) is a 
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financial transaction that produces the inventory asset and an invoice that must be paid. This transaction 

also increases the level of the accounts payable resource. The payment delay task represents the time 

allowed by contract for paying an invoice (payment terms). When the invoice payment transaction is 

performed at the end of the payment terms, the accounts payable resource is consumed, along with the 

invoice and the cash required for the payment. On the right side of the graph, selling inventory (asset 

value) is a financial transaction that produces an invoice sent to the customer, accounts receivable, and 

earnings (shareholder equity). Depending on the nature of the sale, it can also add to the level of the 

accounts payable for any shipping costs. Once the payment terms on the customer invoice expired, the 

customer is expected to pay the invoice, which consumes the accounts receivable and produces cash 

(asset). The cash can then be used to pay dividends, during which the shareholder equity decreases by 

the amount paid out to shareholders.  

 

Figure 3.4. RTN representation of assets, liabilities, shareholder equity, and invoice states being 

transformed by supply chain financial processes. 

It has now been shown that task network models (STN and RTN) can be applied not just to physical entities 

and processes, but also to information states and transactions, as well as financial entities and 

transactions. Thus, the STN and RTN models have been extended from their original use case in chemical 

batch scheduling to novel applications in inventory control, business processes, and dynamic accounting 

modeling, which are all key components in a real supply chain. Taking this modeling approach can then 

be used to optimize integrated flows in a supply chain, as is shown in the next sections. 

4. Example 1: Integrating business processes scheduling with batch chemical process scheduling 

This section illustrates how business processes can be modeled alongside material transformation 

processes using mathematical optimization, discrete event simulation, and the integration of these two 

for online scheduling in a simulation environment. The example given highlights the benefits of an 

integrated model for a make-to-order specialty chemicals plant, which allows finding the optimal 

sequencing of customer order transactions and production batches to maximize the profit generated from 

order fulfillment.  

Consider the STN of a simplified order fulfillment business process given in Figure 4.1, which includes a 

create sales order step, followed by a credit check, which then enables two parallel transactions (create 

& send invoice and create shipment documents), followed by a goods issue step, meaning that the goods 
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are sent to the customer. The system has two agents, one performs the order creation, credit check, and 

invoicing steps, and the other performs the document creation and goods issue steps. All transactions 

have a duration of 1 h on average. Note that since there are two parallel paths in the network, the credit 

check step produces two identical order states (Order Checked A and Order Checked B) to enable both 

paths, while maintaining all order states bounded by 0 and 1. 

 

Figure 4.1. STN for a simplified order fulfillment process with agents assigned and processing durations 

indicated in each task node. 

Executing this order fulfillment process without considering the material transformation processes, 

assumes that the supply of products is unlimited or available immediately upon request. This is usually 

not the case in real systems, especially those that are make-to-order such as specialty chemicals. We now 

describe a model that integrates the order fulfillment process with the processes in the chemical batch 

plant used to manufacture the specialty chemicals. For the chemical batch plant, we use the Kondili et al. 

(1993) plant from Section 3.1. Figure 4.2 shows the integrated STN model for this system.  

 

Figure 4.2. Integrated STN for order fulfillment and chemical batch processing. Assigned agents and 

mean processing times are indicated in the transactional task nodes. Equipment capacities and 

processing times are indicated in the physical task nodes. Material capacity limits, if any, are indicated in 

the material state nodes. 

The link between the business process and the manufacturing process occurs at the material input and 

output interfaces. Once a make-to-order request enters the system and is approved (i.e., passes the credit 
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check step), the raw material inventory for that order is released to manufacturing (becomes available). 

This is seen in the STN graph where the Credit Check transaction “produces” material in the A, B, and C 

material states. The second linkage between the two models occurs at the goods issue step, which cannot 

be executed until the material requested by the customer is available. The goods issue transaction 

consumes not just the order invoiced and order documented states, but also consumes the amount of P1 

or P2 material requested by the customer.  

Since the touch points between the models occur at the material boundaries, the models can be 

integrated with linking constraints that involve the triggering of the transactional events at the interface 

(Credit Check and Issue Goods transactions), and the external supply and demand on the physical model 

(𝑆𝑘,𝑡
𝑠𝑢𝑝𝑝𝑙𝑦

 and 𝑆𝑘,𝑡
𝑑𝑒𝑚𝑎𝑛𝑑 continuous variables for 𝑘 ∈ {𝐴, 𝐵, 𝐶, 𝑃1, 𝑃2} from Section 3.1, respectively). The 

linking constraints are given in (4.1) – (4.2), where the supply and demand of material states are linked to 

the “batch sizes” of the transactions upstream (𝐿𝑘
𝑝𝑟𝑒𝑑

) and downstream (𝐿𝑘
𝑠𝑢𝑐𝑐) of the feedstock (𝐾𝑓𝑒𝑒𝑑) 

and product (𝐾𝑝𝑟𝑜𝑑) material states. 𝑞𝑜,𝑘  is the amount of material 𝑘 required to fulfill order 𝑜. For 

product nodes, this amount is the order quantity, and for feedstock nodes, this amount can be obtained 

by propagating the reaction stoichiometries up the network.  

𝑆𝑘,𝑡
𝑠𝑢𝑝𝑝𝑙𝑦

= ∑ 𝑞𝑜,𝑘 ⋅ ∑ 𝐵𝑜,𝑙,𝑎,𝑡−𝜏𝑜,𝑙,𝑎

𝑎∈𝐴𝑙𝑜∈𝑂

 ∀𝑘 ∈ 𝐾𝑓𝑒𝑒𝑑 , 𝑙 ∈ 𝐿𝑘
𝑝𝑟𝑒𝑑

, 𝑡 ∈ 𝑇 (4.1) 

𝑆𝑘,𝑡
𝑑𝑒𝑚𝑎𝑛𝑑 = ∑ 𝑞𝑜,𝑘 ⋅ ∑ 𝐵𝑜,𝑙,𝑎,𝑡

𝑎∈𝐴𝑙𝑜∈𝑂

 ∀𝑘 ∈ 𝐾𝑝𝑟𝑜𝑑 , 𝑙 ∈ 𝐿𝑘
𝑠𝑢𝑐𝑐 , 𝑡 ∈ 𝑇 (4.2) 

The domains and bounds for the material supply and demand variables are given in (4.3) – (4.4).  

𝑆𝑘,𝑡
𝑠𝑢𝑝𝑝𝑙𝑦

∈ ℝ: 0 ≤ 𝑆𝑘,𝑡
𝑠𝑢𝑝𝑝𝑙𝑦

≤ ∑ 𝑞𝑜,𝑘

𝑜∈𝑂

 ∀𝑘 ∈ 𝐾𝑓𝑒𝑒𝑑 , 𝑡 ∈ 𝑇 (4.3) 

𝑆𝑘,𝑡
𝑑𝑒𝑚𝑎𝑛𝑑 ∈ ℝ: 0 ≤ 𝑆𝑘,𝑡

𝑑𝑒𝑚𝑎𝑛𝑑 ≤ ∑ 𝑞𝑜,𝑘

𝑜∈𝑂

 ∀𝑘 ∈ 𝐾𝑝𝑟𝑜𝑑 , 𝑡 ∈ 𝑇 (4.4) 

While various objective functions can be used, the simplest one is to maximize the system profit, which is 

the difference between the sum of the order revenues 𝑧𝑜 and the operating costs for each scheduled 

material transformation process as given in (4.5), where 𝛼𝑖,𝑗 is the fixed setup cost, and 𝛽𝑖,𝑗  is the variable 

operating cost ratio for task 𝑖, 𝑗 (process 𝑖 in equipment 𝑗). The integrated model, referred to as IM 

hereafter, is given by the plant scheduling model in (3.1.1) – (3.1.6), the transactional model in (B.1) – 

(B.11) and (B.13) – (B.20) (see Appendix B), and linking constraints and objective function in (4.1) – (4.5). 

max ∑ 𝑧𝑜

𝑜∈𝑂

− ∑ ∑ ∑(𝛼𝑖,𝑗 ⋅ 𝑊𝑖,𝑗,𝑡 + 𝛽𝑖,𝑗 ⋅ 𝐵𝑖,𝑗,𝑡)

𝑗∈𝐽𝑖𝑖∈𝐼𝑡∈𝑇

  (4.5) 

This integrated model is based on the following assumptions: 
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 The plant is make-to-order and raw materials are readily available. However, note that make-to-

stock and material supply considerations can also be included, as shown in Example 2 in Section 

5. 

 Utilities and labor at the plant are not considered. These could be accounted for by explicitly 

modeling these resources, in which case a Resource-Task Network (RTN) (Pantelides, 1994) 

representation is recommended. 

 Task processing times include any setup and material transfer times. Changeovers are not 

considered, but could be introduced with additional constraints (Méndez et al., 2006). 

 Working shifts for agents are not included. These could be included by introducing additional 

constraints on when agents can perform transactions. 

 Customer orders are only fulfilled in their entirety. In other words, order splitting or partial 

fulfillments is not allowed. 

 Order revenue can be modeled as a piecewise linear function as described in Appendix B. 

For Example 1, we also show how the information and material processes can be simulated via discrete 

event simulation (DES). DES is used to validate the integrated model in a stochastic environment via a 

rolling horizon approach. The reader is referred to our prior work on the integration between DES and 

deterministic mathematical optimization for online scheduling of business processes in supply chains 

(Perez et al., 2022). We have extended the digital twin framework presented in Perez et al. (2022) to allow 

for online scheduling of both customer order transactions and chemical batch production.  

Figure 4.3 shows the queueing network representation for DES that corresponds to the integrated STN 

representation in Figure 4.2. The DES model proposed has 6 queues, one for each type of resource in the 

system (Agent 1, Agent 2, 50 kg Reactor, 80 kg Reactor, Heater, and Distillation Column). Note that 

because the two reactors have different capacities, they are modeled as separate queue-server entities. 

For identical reactors, a single queue can be used with two servers, which is analogous to what is done in 

the RTN models when identical processing units are available. There are also 9 buffer tanks that represent 

the material storage units in the system. The contents in the feedstock and intermediate material tanks 

are routed to one of the reactor queues where the reaction to be performed is assigned based on the 

process schedule, reaction recipes, and resource availability. Produced materials are then routed to the 

correct storage tanks based on the recipes for the executed reactions. The heater and distillation column 

do not require routing nodes as they are single-task operating units used at the beginning and end of the 

physical process network.  

On the transactional side, an order routing step is used to send order information to the assigned agent 

queue for processing. For transactions in series, such as the order creation and credit check transactions, 

the order routing routine is single-input-single-output. For parallel transaction pathways and interface 

points, the routing is single-input-multiple-output, multiple-input-single-output, or multiple-input-

multiple-output. For example, when the Credit Check is performed on an order by Agent 1, the order 

routing routine, unlocks material in raw material storage tanks A, B, and C, and sends an order invoicing 

job to the queue of Agent 1 and an order shipment documentation job to the queue of Agent 2. Routing 

decisions are governed by the STN model of the system. 
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Figure 4.3. Queueing network for discrete event simulation of integrated information and material flows 

The STN representation of the transaction-focused model is given in Figure 4.4, where the plant model is 

reduced to a single task for each product type (P1 and P2). The raw materials are lumped into a single 

state and the processing times along each product pathway are aggregated to obtain a total campaign 

duration. The P2 Production pathway includes all the processing steps involved in transforming raw 

materials A, B, and C into P2, with P1 and AB as byproducts. The operating capacities and stoichiometries 

shown in the graph are determined from the equipment and tank capacities at the plant. When running 

this transaction-focused model within the digital twin simulation environment, the DES also uses a lumped 

representation of the plant that operates on production campaign schedules for products P1 or P2. 

The STN representation of the material-focused model is given in Figure 4.5, where the order creation 

and credit check steps are lumped into a single task (Prepare Order), and the transactions occurring in 

parallel to the manufacturing process are ignored. When running this model within the digital twin 

simulation environment, the transactional network is treated as a first-in-first-out (FIFO) system where 

the order priorities for the Prepare Order and Issue Goods transactions can be updated by the STN model. 
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Figure 4.4. STN representation for the transaction-focused model. 

 

Figure 4.5. STN representation for the material-focused model. 

For Example 1, the benefits of the integrated model are shown by comparing the solutions obtained when 

using the integrated model with those obtained from using a transaction-focused model that lumps the 

physical processes into single transaction nodes, and those obtained from a material-focused model that 

lumps the business transactions upstream and downstream of the manufacturing site into single 

processing nodes. For this comparison, we model a system where customer orders arrive continuously at 

random with interarrival times sampled from the 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆 = 1 ℎ) distribution. Material demand for P1 

or P2 in each order is sampled from the positive side of the 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 25 𝑘𝑔, 𝜎 = 5 𝑘𝑔) distribution 

with due dates sampled at random between 7 h and 20 h after each order arrives. The order profit at the 

due date is sampled uniformly between $500 and $1,000 with an early delivery incentive of 20% 

(decreasing linearly within the on-time delivery window), a late penalty of 10%, and a 10% depreciation 
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up to the lost sales date, the latter of which is set at random and represents different customer patience 

levels after the due date. Figure 4.6 shows the temporal evolution of the order profit throughout the 24 

h horizon for the first 10 orders in the system. It can be seen that some orders have a higher profit than 

others throughout their lifetime, while the profit functions of others cross during the scheduling horizon 

(e.g., order 1 and 6 cross at t = 7 h). Overall, 26 orders enter the system during the simulation. The 

congestion in the system is shown in Figure 4.7, where the number of orders at each hour are shown 

throughout the 24 h horizon. The congestion in the system increases until t = 17 h, where the number of 

orders oscillates around 20. 

 

Figure 4.6. Order profit profiles used in Example 1 for the first 10 randomly generated orders (one 

piecewise linear function for each order). 

 

Figure 4.7. System congestion throughout the 24 h horizon. 

Besides the uncertainty in the order arrivals, another area of uncertainty is that of the processing times 

of the human agents performing the business process transactions. This uncertainty is included by 

modeling the processing times for the transactional steps with the positive side of the 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 =

1 ℎ, 𝜎 = 0.1 ℎ) distribution. This distribution is encoded in the discrete event simulation of the process. 

Since the scheduling models are deterministic, the average value is used during online optimization. 

However, if the time in service is nonzero when a scheduling event is triggered, the expected remaining 

processing time is used (i.e., 𝔼[𝜏|𝜏 > 𝛿] − 𝛿 where 𝜏 is the continuous random processing time and 𝛿 is 

the time in service). 
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For each of the models described in this section (integrated, transaction-focused, and material-focused), 

a stochastic discrete event simulation (DES) of the system is run, where the scheduling optimization model 

is triggered during the simulation whenever a new order arrives, for a total of 19 optimization 

(rescheduling) events. For greater detail on the algorithm behind the discrete event simulation model, the 

reader is referred to our work on a digital twin framework for supply chain business processes (Perez et 

al., 2022). When a rescheduling is triggered, the system state (tank levels, active orders, queue states, and 

server states) are used to initialize and run the scheduling model. The duration of these scheduling events 

is the time required to build and solve the optimization problem. The schedules resulting from the 

optimization events are then used to actively update the plant schedule and order priorities in the 

queueing network as shown in Figure 4.8. The DES model was developed in the Julia programming 

language v1.8.3 (Bezanson et al., 2017) by extending the simulation software described in Perez et al. 

(2022), which was used for business processes simulation. The extension allows integrating the business 

process queueing networks with the physical process queueing networks as shown in the above Figure 

4.3. The integrated model (IM) presented is reformulated into a MILP via the Hull reformulation (Balas, 

1998), and solved with Gurobi 9.5.2 using the JuMP modeling language v1.8.1 (Dunning et al., 2017). An 

adaptive rolling horizon approach is used (Perez et al. 2022) with a time discretization of 6 min and an 

optimization time limit of 6 min. The 6 min value was selected based on the coefficient of variation of the 

transactional processing time distributions. The optimization-embedded DES is run on a Windows PC with 

16 GB of RAM and an Intel-i7 3.60 GHz processor.  

 

Figure 4.8. Block schematic for the optimization-embedded DES, where optimization events are 

triggered periodically and dynamically update production schedules and order transaction priorities. 

Since the optimization model is being executed online during the simulation, an additional penalty is 

added to the objective function to discourage preempting transactional events. This is done by replacing 

the objective function in (4.5) with (4.6), where 𝛾𝑙,𝑎 is the cost of preempting transaction 𝑙 being 

performed by agent 𝑎, and Ω is the set of all business process transactions that are active when the 

scheduling event is triggered (𝑡 = 1 in the scheduling model). For the current problem, the following 

parameter values are used: 𝛾𝑙,𝑎 = $0.01, 𝛼𝑖,𝑗 = $0.001 (small fixed-setup cost for physical processes), 

and 𝛽𝑖,𝑗 = $0. 

max ∑ 𝑧𝑜

𝑜∈𝑂

− ∑ ∑ ∑(𝛼𝑖,𝑗 ⋅ 𝑊𝑖,𝑗,𝑡 + 𝛽𝑖,𝑗 ⋅ 𝐵𝑖,𝑗,𝑡)

𝑗∈𝐽𝑖𝑖∈𝐼𝑡∈𝑇

− ∑ ∑ 𝛾𝑙,𝑎 ⋅ 𝑊𝑜,𝑙,𝑎,1

(𝑜,𝑙,𝑎)∈Ω𝑡∈𝑇

  (4.6) 

The results obtained from three modeling approaches (integrated, transaction-focused, and material-

focused) on this problem set are given in Table 4.1. The largest optimization model sizes for each approach 
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are given in Table 4.2, which correspond to the models optimized at t = 23 h, which is when the last order 

enters the system. See Appendix C for the CPU times and objective function value results of each 

optimization event in the simulation. The operating schedules obtained with the integrated and 

transaction-focused models are given in Figure 4.9. The results show that the integrated model provides 

a solution that is superior to that of the transaction-focused model by 8% in terms of profit, and fulfills 4 

more orders on-time. The inferior performance of the transaction-focused model is a result of ignoring 

the availability of individual processing units at the plant and instead viewing the plant as a single 

resource. This is observed in the bottom Gantt chart in Figure 4.9, which shows a production schedule 

with three consecutive campaigns of product P2 (see Figure 4.4). Each time a P2 production campaign is 

run, the plant resource is locked for 7 h. As a result of ignoring the individual equipment availability, earlier 

processing steps cannot be used for additional production batches until the 7 h campaign ends, even 

though the equipment required for these processes is idle at the plant. For example, a second heating 

step could be performed simultaneous to one of the reactions or the separation step in the production 

campaign. Instead, the heater remains idle for 6 of the 7 h in the campaign. Another limitation of this 

lumped model is that intermediate storage and interactions between the P1 pathway and the P2 pathway 

are ignored. Thus, if the optimizer schedules a campaign to produce P1, the model does not consider that 

intermediate AB is produced, which could then be used to produce P2 in only 2 h, rather than having to 

run another P2 campaign (7 h). Thus, ignoring the details on the physical process side results in suboptimal 

schedules, which can increase the number of orders that are fulfilled late or become lost sales. 

Table 4.1. Results from the online scheduling for each model. 

Model 
System 
Profit 

Orders  
On-time 

Orders 
Fulfilled 

Integrated $5,958 7 7 

Transaction-focused $5,499 3 7 

Material-focused $0 0 0 

Table 4.2. Largest model size by model. 

Model 
Binary 

Variables 
Continuous 
Variables 

Constraints 
Model 

Generation 
Time* (s) 

Model 
Solution 
Time (s) 

Integrated 68,182 46,781 298,430 4.3 89.1 

Transaction-focused 66,496 12,775 222,951 3.8 22.1 

Material-focused 44,548 62,566 259,414 2.0 8.9 
*Time to construct and send model to solver. 

On the other hand, the material-focused model does not fulfill any orders within the 24 h horizon, 

resulting in $0 profit. Since the scheduling model does not consider the parallel transactional network and 

the availability of agent resources assigned to parallel transactions, the model produces schedules that 

are infeasible in practice. This is observed in Figure 4.10, which shows the actual simulation results 

compared against two instances of the scheduling model (at t = 8 h and t = 14 h). Each of the Goods Issue 

events in the middle and bottom Gantt charts in Figure 4.10 incurs in a resource violation because an 

order can only issue goods after the Send Invoice and Create Shipment Documents step, the former of 

which is done by Agent 1 who is fully booked on creating orders and running credit checks since the start 



H. Perez et al. (2023) 

23 
 

of the simulation. The optimization assigns a higher priority to the Prepare Order transactions such that 

the Send Invoice transactions are always moved to the end of the FIFO queue for Agent 1. Thus, ignoring 

the business process network and agent resource availability results in infeasible schedules that introduce 

significant delays in fulfilling customer orders. These delays often result in inventory buildup (see Figure 

4.11), and late order fulfillments or cancellations. Such a disconnect between plant scheduling and the 

timing of transactional processes is what generally occurs in practice. 
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Figure 4.11. Product tank levels over time for material-focused model. The drop in P2 at t = 45 h is for 

the only order that gets shipped to the customer in the simulation (Order 26). 

5. Example 2: Integrating business, financial, and physical processes throughout the supply chain 

network 

This section illustrates how the different components in a real supply chain (see Figure 3.1.1) can be 

integrated in a holistic STN model. The model from Section 4 for the integrated order fulfillment process 

at the Kondili batch plant is extended to model not just the material transformation site (plant), but also 

include three material suppliers for raw materials A, B, and C, as well as a distribution center downstream 

of the plant for storing finished good P1. Unlike Example 1, P1 is managed as a make-to-stock material. 

P2 remains as a make-to-order product. Figure 5.1 depicts this supply chain topology with three external 

customers, one placing orders for P1 at the distribution center, another placing orders for P1 at the 

distribution center and P2 at the plant, and a third placing orders for P2 at the plant. This small supply 

chain allows capturing the four processes described in Section 3: material transformation processes at 

the plant; inventory processes between the suppliers and the plant, and the plant and the distribution 

center; order-to-cash between the demand facing nodes (plant and distribution center) and the 

customers, and source-to-pay between the suppliers and the plant; and financial modeling of accounts 

payable, accounts receivable, and cash.  

 

Figure 5.1. Supply chain topology used in Example 2. 
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The integrated Task Network graph for this process is illustrated in Figure 5.2. With this representation, 

the discrete event simulation model used in Example 1 can also be extended to simulate the entire supply 

chain with its associated processes if desired. However, this section focuses on developing an integrated 

scheduling model that accounts for each of these supply chain components. By including the financial 

elements in this representation, the objective of the optimization problem can be defined in terms of the 

Cash, Accounts Payable, and Accounts Receivable nodes. 

To avoid cluttering the network representation, the following are not shown in Figure 5.2: 

 Inventory processes for raw materials B and C. These processes are analogous to the one for raw 

material A. Note that since the enterprise is assumed to include the plant and distribution center, 

the inventory process for P1 at the warehouse does not require the source-to-pay transactions 

used in the procurement of raw materials. However, cash assets are consumed to cover 

transportation expenses. 

 Connections between the Order Invoiced and Order Documented states and the Issue & Receive 

Pay transactions for Customers 1 and 2. These connections are identical to those used for 

Customer 3. 

 Connections between Issue & Receive Pay and Accounts Receivable, Cash, Agent 3, and Agent 5 

nodes for Customers 2 and 3. These connections are identical to those used for Customer 1. 

 Connections between the Cash state node (green) and the various processing steps in the plant, 

as is done with the transportation task for P1 between the plant and the distribution center. These 

connections represent how cash is consumed by the operating costs for the physical processes. 

The integrated model is a hybrid of a STN and a RTN. The network is defined as a STN for all nodes and 

tasks except for the Interfaces of Type III and Type IV (enclosed in red rectangles in Figure 5.2), which are 

modeled as RTN super-transactions. The interface regions are modeled as follows: 

5.1 Type I Interface 

The first interface region is the interface between the order-to-cash process and the plant, which links the 

Credit Check transaction and material state E. This interface point differs from the way in which the order 

fulfillment and material transformation processes were integrated in Example 1. Since raw materials are 

supplied from an external supplier now and an inventory policy is in place, a state limit balance analogous 

to the resource limit balance from Wassick and Ferrio (2011) is used instead. The state limit balance is 

formulated as shown in (5.1), where the upper bound on a make-to-order (MTO) material 𝑘 ∈ 𝐾𝑀𝑇𝑂 (e.g., 

material E) becomes a variable that is indexed over time. This upper bound is updated at 𝑡 from its value 

at 𝑡 − 1 by adding the amount of upper bound produced when the interface transaction 𝐿𝑘
𝑝𝑟𝑒𝑑

 (e.g., Credit 

Check) completes and deducting the amount of material consumed by all downstream (successor) physical 

processes 𝑖 ∈ 𝐼𝑘
𝑠𝑢𝑐𝑐  (e.g., Separation). The production ratio used is 𝑞𝑜,𝑘, which is the amount of material 

E required to execute order 𝑜. (5.1) ensures that no more P2 can be produced until another order passes 

its respective credit check.   

𝑆𝑘,𝑡
𝑚𝑎𝑥 = 𝑆𝑘,𝑡−1

𝑚𝑎𝑥 + ∑ 𝑞𝑜,𝑘 ⋅ ∑ ∑ 𝐵𝑜,𝑙,𝑎,𝑡−𝜏𝑜,𝑙,𝑎

𝑎∈𝐴𝑙𝑙∈𝐿𝑘
𝑝𝑟𝑒𝑑𝑜∈𝑂

− ∑ 𝜌𝑖,𝑘
𝑐𝑜𝑛𝑠 ⋅ ∑ 𝐵𝑖,𝑗,𝑡

𝑗∈𝐽𝑖𝑖∈𝐼𝑘
𝑠𝑢𝑐𝑐

 

∀𝑘 ∈ 𝐾𝑀𝑇𝑂, 𝑡 ∈ 𝑇 

(5.1) 
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5.2 Type II Interface 

The second interface region is the source-to-pay interface linking the plant and the raw material suppliers. 

The Procure Inventory transaction includes the replenishment triggering and an order placement steps. 

This transaction and the state nodes connected to it can be treated with the traditional STN formulation 

for physical processes.  

5.3 Type III Interfaces 

The third interface regions occur at the Receive Material & Pay Supplier super-transactions, which link the 

source-to-pay, physical, and financial processes and flows upstream of the plant. This super-transaction 

includes three sub-transactions that are assumed to occur in tandem when receiving a raw material 

supply: Receive Raw Material (performed by Agent 4 with a duration of 1 h), Wait for Accounts Payable 

Terms (duration of 6 h), and Pay Supplier (performed by Agent 6 with a duration of 1 h). Because the nodes 

connected to the Receive Material & Pay Supplier task are consumed/produced at various points in the 8 

h duration of the super-transaction, the RTN model is better suited for this task.  

The levels of the resource nodes involved are controlled by the resource balance in (5.2), where 𝑁𝑖,𝑡 signals 

that task 𝑖 has been triggered at 𝑡, 𝐵𝑖,𝑡 is the batch size of the task, 𝜌𝑖,𝑘,𝜃
𝑓𝑖𝑥𝑒𝑑

 is the fixed 

production/consumption ratio, and 𝜌𝑖,𝑘,𝜃
𝑣𝑎𝑟  is the variable production/consumption ratio. These parameters 

are defined in Table 5.1. A time offset parameter 𝜃 is used to indicate the time relative to when a task is 

triggered, which allows for production/consumption at different time points during the task duration. 

Disjunction (5.3) is similar to (3.1.2) with the addition of 𝑁 for the fixed consumption and production of 

the agent resources. The variable domains for the new variables introduced are given in (5.4) – (5.6). Note 

that since the processing units (agents) are nodes connected to the task node, the equipment index 𝑗 is 

dropped from 𝑊 and 𝐵. 

𝑆𝑘,𝑡 = 𝑆𝑘,𝑡−1 + ∑ ∑(𝜌𝑖,𝑘,𝜃
𝑓𝑖𝑥𝑒𝑑

⋅ 𝑁𝑖,𝑡−𝜃 + 𝜌𝑖,𝑘,𝜃
𝑣𝑎𝑟 ⋅ 𝐵𝑖,𝑡−𝜃)

𝜏𝑖

𝜃=0𝑖∈𝐼𝑘

 ∀𝑘 ∈ 𝐾𝑠𝑢𝑝𝑒𝑟 , 𝑡 ∈ 𝑇 (5.2) 

[

𝑊𝑖,𝑡

𝑁𝑖,𝑡 = 1

𝑉𝑖
𝑚𝑖𝑛 ≤ 𝐵𝑖,𝑡 ≤ 𝑉𝑖

𝑚𝑎𝑥
] ⋁ [

¬𝑊𝑖,𝑡

𝑁𝑖,𝑡 = 0

𝐵𝑖,𝑡 = 0
] ∀𝑖 ∈ 𝐼𝑠𝑢𝑝𝑒𝑟 , 𝑡 ∈ 𝑇 (5.3) 

𝐵𝑖,𝑡 ∈ ℝ: 0 ≤ 𝐵𝑖,𝑡 ≤ 𝑉𝑖
𝑚𝑎𝑥  ∀𝑖 ∈ 𝐼𝑠𝑢𝑝𝑒𝑟 , 𝑡 ∈ 𝑇 (5.4) 

𝑁𝑖,𝑡 ∈ ℝ: 0 ≤ 𝑁𝑖,𝑡 ≤ 1 ∀𝑖 ∈ 𝐼𝑠𝑢𝑝𝑒𝑟 , 𝑡 ∈ 𝑇 (5.5) 

𝑊𝑖,𝑡 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑖 ∈ 𝐼𝑠𝑢𝑝𝑒𝑟 , 𝑡 ∈ 𝑇 (5.6) 

 

 

 

Table 5.1. Temporal scaling factor, 𝜌, for the Receive & Pay tasks. All values are for variable 

consumption/production, except for the Agent resources, which are fixed consumption/production ratios. 
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  Time Offset, θ 

Resource/State 0a 1b 7c 8d 

A Arrived -1 - - - 

A (Plant) - 1 - - 

Agent 4 -1 1 - - 

Agent 6 - - -1 1 

Accounts Payable - pA - -pA 

Cash - - - -pA 
aStart Receive A sub-process 
bStart Wait for Payment Terms sub-process 
cStart Pay Supplier A sub-process 
dPayment Complete 

5.4 Type IV Interfaces 

The fourth interface regions occur at the Issue Product & Receive Pay super-transactions, which link the 

order-to-cash, physical, and financial processes and flows downstream of the plant. This super-transaction 

includes three sub-transactions that are assumed to occur in tandem when fulfilling a customer order: 

Issue Goods to Customer (performed by Agent 3 with a duration of 1 h), Wait for Accounts Receivable 

Terms (duration of 3 h), and Receive Payment for Invoice (performed by Agent 5 with a duration of 1 h). 

Once again, the RTN model in (5.2) – (5.6) is used. Since each of these super-transaction tasks 𝑖 is order 

specific, the indices 𝑜, 𝑙 should be used in place of 𝑖. The 𝜌𝑜,𝑙,𝑘,𝜃
𝑓𝑖𝑥𝑒𝑑

 and 𝜌𝑜,𝑙,𝑘𝜃
𝑣𝑎𝑟  parameter values are given in 

Table 5.2. Note that for Accounts Receivable and Cash nodes, the 𝜌 parameters are not constant because 

the order revenue 𝑧𝑜 changes with time. To avoid introducing bilinear terms, 𝑧𝑜 can be precomputed for 

all 𝑡 ∈ 𝑇. Thus, 𝜌𝑜,𝑙,𝑘,𝜃
𝑣𝑎𝑟  is replaced with 𝑧𝑜,𝑙,𝑡,𝜃, which is defined in (5.7). This ensures that when the Issue 

Product & Receive Pay task is triggered in this example at 𝑡′ (𝑁𝑜,𝑙,𝑡′ = 1), the Accounts Receivable (AR) 

increases by 𝑧𝑜,𝑡′+1 when 𝑡 = 𝑡′ + 1 and 𝜃 = 1 (1 period into the Issue & Collect task, which is when the 

Issue Goods sub-transaction completes and the order revenue value is set), and then decrease by 𝑧𝑜,𝑡′+1 

when 𝑡 = 𝑡′ + 5 and 𝜃 = 5 (5 periods into the Issue & Collect task, which is when the invoice payment is 

received).  

𝜌𝑜,𝑙,𝑘,𝜃
𝑣𝑎𝑟 = 𝑧𝑜,𝑙,𝑡,𝜃 = {

𝑧𝑜,𝑡−𝜃+1 if 𝑘 = 𝐴𝑅, 𝜃 = 1    

−𝑧𝑜,𝑡−𝜃+1 if 𝑘 = 𝐴𝑅, 𝜃 = 5    
𝑧𝑜,𝑡−𝜃+1

0
if 𝑘 = 𝐶𝑎𝑠ℎ, 𝜃 = 5
otherwise               

   

∀𝑜 ∈ 𝑂, 𝑙 ∈ 𝐿𝑜
𝑙𝑖𝑚, 𝑘 ∈ {𝐴𝑅, 𝐶𝑎𝑠ℎ}, 𝜃 ∈ {0, … , 𝜏𝑙}, 𝑡 ∈ 𝑇 

(5.7) 

 

 

 

Table 5.2. Temporal scaling factor, 𝜌, for the Issue & Receive Pay tasks. All values are for variable 

consumption/production, except for the Agent resources, which are fixed consumption/production ratios. 

  Time Offset, θ 
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Resource/State 0a 1b 4c 5d 

P1 (DC) -qo - - - 

P1 Shortfall qo - - - 

P1 Fulfilled (Cust 1) - qo - - 

Agent 3 -1 1 - - 

Agent 5 - - -1 1 

Accounts Receivable - zo - -zo 

Cash - - - zo 
aStart Issue P1 to Customer 1 sub-process 
bStart Wait for Payment Terms sub-process 
cStart Collect Payment P1 (Customer 1) sub-process 
dPayment Collected 

Of the states connected to the aggregated boundary tasks 𝐼𝑙𝑖𝑚, the Cash node is the only one that is also 

connected to other processing tasks in the network (Heating, Reaction 1, Reaction 2, Reaction 3, 

Separation, and Transport P1). Each time one of these processing tasks is performed, there is a fixed and 

variable operating cost, which consumes the Cash inventory. Instead of modeling these costs via Accounts 

Payable, we assume that these operating costs are paid immediately from the Cash asset at the end of 

each processing task. This means that the consumption/production ratios for the Cash node are all zero 

except for 𝜃 = 𝜏𝑖  for each cost-incurring processing task 𝑖. However, in practice, these costs can be 

modelled via Accounts Payable with specified payment terms (e.g., utility bill payment dates) as is done 

in this model with the raw material sourcing costs (see Type III interfaces in Section 5.3). 

5.5 Objective Function 

The objective function of the integrated system modeled is given in (5.8), which maximizes the change in 

shareholder equity across the scheduling horizon, which is the difference between the change in assets 

(Cash and Accounts Receivable, AR) and the change in liabilities (Accounts Payable, AP). While the initial 

values for AR and AP can be set to 0, an initial cash level must be set. Otherwise, production at the plant 

cannot occur until cash is collected from sales at the distribution center. The objective function also 

includes penalties for the following: 

 The slack between the level on the inventory holding tanks (𝐾𝐼𝑛𝑣) A, B, C, and P1 (DC) at the end 

of the scheduling horizon (𝑡 = |𝑇|) and the initial inventory levels (full tanks). The slack is 

weighted by parameter 𝑤𝑘. This encourages the optimizer to restore the inventory levels by the 

end of the scheduling horizon. 

 The state levels for the Material Shortfall (𝐾𝑠ℎ𝑜𝑟𝑡𝑓𝑎𝑙𝑙) and Raw Material Arrived (𝐾𝑎𝑟𝑟𝑖𝑣𝑒𝑑) states, 

weighted by parameter 𝑤𝑘. This encourages continuous replenishment of inventory holding tanks 

A, B, C, and P1 (DC) and immediate receipt of raw materials as they arrive at the plant. 

max 𝑍 = (𝑆𝐶𝑎𝑠ℎ,|𝑇| − 𝑆𝐶𝑎𝑠ℎ,0) + (𝑆𝐴𝑅,|𝑇| − 𝑆𝐴𝑅,0) − (𝑆𝐴𝑃,|𝑇| − 𝑆𝐴𝑃,0)   

− ∑ 𝑤𝑘 ⋅ (𝑆𝑘,0 − 𝑆𝑘,|𝑇|)

𝑘∈𝐾𝐼𝑛𝑣

− ∑ ∑ 𝑤𝑘 ⋅ 𝑆𝑘,𝑡

𝑘∈𝐾𝑠ℎ𝑜𝑟𝑡𝑓𝑎𝑙𝑙∪𝐾𝑎𝑟𝑟𝑖𝑣𝑒𝑑𝑡∈𝑇

 (5.8) 



H. Perez et al. (2023) 

32 
 

For Example 2, a monolithic scheduling optimization is performed on the integrated system described in 

this section (see Figure 5.2). Since Example 1 already showed the benefits of an integrated model over 

single-focused model, this comparison is not made in Example 2. Instead, this example is used to present 

an instance of the fully integrated model that accounts for the major flows involved in supply chain 

operations. To the best of our knowledge, such a model has not been reported in the literature of supply 

chain management. The major assumptions of such a model are (in addition to those described in the 

model for Example 1 in Section 5): 

 Invoice payment terms are fixed and invoices are paid/collected when the payment terms expire. 

In other words, the model does not consider late payments on invoices. 

 Shipping times are fixed and replenishment orders can be shipped immediately after they are 

processed. Explicitly accounting for limited shipping resources (e.g., trucks) could be 

accommodated in the model if desired. Raw material supply limitations could be accounted for 

by introducing an additional task at the supplier to prepare the amount of material that needs to 

be shipped. 

In Example 2, 43 customer orders enter the system at random during a 48 h horizon with interarrival times 

sampled from the 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆 = 1 ℎ) distribution, meaning that approximately 1 order enter the system 

each hour. The characteristics of the customer orders are given in Table 5.3. The prices used for raw 

materials are 𝑝𝐴 = $5.00 ∕ 𝑘𝑔, 𝑝𝐵 = $3.75 ∕ 𝑘𝑔, 𝑝𝐶 = $4.75 ∕ 𝑘𝑔. For the weighting parameters in the 

objective function (5.8), 𝑤𝑘 = 2 ⋅ 𝑝𝑘. Although the price of P1 is order specific, a fixed weighting 

parameter 𝑤𝑃1 (𝐷𝐶) = $20.00 ∕ 𝑘𝑔 is used in (5.8). The inventory parameters used for the inventory 

holding tanks A, B, C, and P1 (DC) are given in Table 5.4. Each of these tanks operates under a basestock 

policy (order-up-to) with continuous review. The initial tank levels for these tanks are set to the inventory 

position targets (full tanks). All other tanks are assumed to be empty at t = 0 h. The fixed and variable cost 

parameters for the processing tasks at the plant and the shipping of P1 from the plant to the distribution 

center are given in Table 5.5. An initial Cash level of $3,000 was selected to ensure that physical processes 

can be executed before cash enters the system from the orders fulfilled. The exact initial investment 

required to avoid running out of cash is discussed later. For the raw material supply nodes, the maximum 

state level is set to 0, to ensure that any inventory requested by the plant is immediately shipped once 

the plant performs the necessary procurement task.  

Table 5.3. Customer order characteristics for each material type 

 Parameter P1 P2 

Number of Orders 22 21 

Customer 1 16 0 

Customer 2 6 9 

Customer 3 0 12 

Material Quantity (kg) Normal(μ=40, σ=10) Normal(μ=50, σ=10) 

Revenue ($ thousands) Uniform(0.5, 1.0) Uniform(1.0, 1.5) 

Early Fulfillment Incentive 20% 20% 

Fixed Late Penalty 10% 10% 

Late Fulfillment Depreciation 10% 10% 

Due Date – Early Date Uniform(4, 12) Uniform(7, 12) 
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Lost Sale Date – Due Date Uniform(1, 6) Uniform(1, 6) 

 

Table 5.4. Safety stocks and inventory position targets for Example 2. 

 Parameter Safety Stock (kg) Position Target (kg) 

A (Plant) 34.8 174.1 

B (Plant) 37.2 186.1 

C (Plant) 20.6 164.4 

P1 (Distribution Center) 20.0 100.0 

Table 5.5. Fixed (𝜌𝑖,𝐶𝑎𝑠ℎ,𝜏𝑖

𝑓𝑖𝑥𝑒𝑑
) and variable (𝜌𝑖,𝐶𝑎𝑠ℎ,𝜏𝑖

𝑣𝑎𝑟 ) cash consumption ratios for operating tasks. 

 Task Fixed Cost ($) Variable Cost ($/kg) 

Heating 10.00 1.50 

Reaction 1 10.00 1.37 

Reaction 2 10.00 1.28 

Reaction 3 10.00 1.38 

Separation 10.00 1.38 

Transport P1 10.00 3.00 

The scheduling problem was solved with the same hardware and software versions used in Example 1. 

The model and solution statistics are given in Table 5.6. The problem is solved to a 4.3% relative optimality 

gap tolerance in 58 min. Gurobi presolve significantly reduced the model size by 59%, 90%, and 76% for 

the number of discrete variables, continuous variables, and constraints, respectively. 

Table 5.6. Model sizes and computational statistics for Example 2. 

Parameter Value 

MIP Solution   

MIP Solution $9,754  

Optimality Gap 4.3% 

Nodes Explored 88,757  

Cuts Applied 3,180 

CPU Time (s) 3,482  

Original Model Size   

Binary Variables 11,417 

Integer Variables 0 

Continuous Variables 15,096 

Constraints 16,174 

Reduced Model Size   

Binary Variables 4,655 

Integer Variables 1 

Continuous Variables 1,543 
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Constraints 3,950 

The best feasible schedule found is given in Figure 5.3. The Gantt chart shows that 19 of the 43 customer 

orders are fulfilled with fulfillment statistics reported in Table 5.7. The resulting schedule yields the 

following observations, 

 The most congested resources are Agents 1, 2, and 4. Adding additional resources for the order-

to-cash steps and procurement tasks can potentially enable fulfilling more orders throughout the 

horizon.  

 Most of the reaction and heating batches at the plant are performed at or near the equipment 

capacity with some idle slots in the plant operation.  

 Replenishment of A, B, C, and P1 (at the distribution center) are performed with 1, 1, 4, and 2 

trucks respectively. 

Table 5.7. Order fulfillment statistics for Example 2. 

Fulfillment Status P1 P2 

Early 7 8 

Customer 1 5 0 

Customer 2 2 4 

Customer 3 0 4 

On-time 1 2 

Customer 1 1 0 

Customer 2 0 0 

Customer 3 0 2 

Late 1 0 

Customer 1 0 0 

Customer 2 1 0 

Customer 3 0 0 
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The inventory levels for the storage tanks operating with basestock inventory policies are given in Figure 

5.4. The level in Tank A drops below the safety stock between t = 8 h and t = 11 h, but has no stockouts. 

The level in Tank B is well above the safety stock throughout the scheduling horizon, indicating that a 

lower inventory target could be used for this tank. Tank C stocks out between t = 12 h and t = 17 h, 

suggesting that the inventory target should be increased for this tank. P1 at the distribution center stays 

at or above the safety stock for most of the horizon, except for period 45. Inventory levels are restored to 

their initial values for all tanks except Tank C, which is 92% full at the end of the horizon.  

The dynamic accounting ledger for the supply chain is shown in Figure 5.5. The cash assets decrease during 

the first 12 periods, until enough revenue enters to offset the operating expenses. After t = 12 h, the cash 

levels have a general upward trend. The accounts payable are maintained below $1,053 and the accounts 

receivable do not exceed $3,604. The proposed schedule expects a net increase in cash of $8,247, with 

$365 in accounts payable and $3,368 in accounts receivable at the end of the simulation horizon. The 

dynamic cash profile in this integrated model can be used to gain valuable financial insights on the system 

being modeled. These include, 

 An initial investment of at least $1,099 is required to avoid the system from becoming cash 

constrained at t = 14 h. If the initial cash level is below this value, the solution provided will no 

longer be feasible. This type of information is valuable in determining the amount of initial cash 

required to maximize shareholder equity. 

 The rate of cash consumption in the system is $228/h on average (see Figure 5.6). At this rate of 

cash out-flow, the system would become cash constrained at t = 18 h if no payments are received 

for outstanding customer invoices. Since the first order is fulfilled at t = 8 h, the longest payment 

delay that the system can handle is 10 h. This type of information can be used to evaluate the 

payment terms a company has agreed to with its customers to ensure that the system does not 

become cash constrained. 

 The rate of cash creation in the system is $511/h on average (see Figure 5.7), which is substantially 

greater than the rate of cash consumption. This results in a net cash flow of $283/h on average.  

The return on investment (ROI) in this system is 3.75, which makes the system attractive from a 

financial point of view. This ROI corresponds to an average interest rate of 21% for each of the 48 

periods. Another valuable metric is the net unit return, which is approximately $14 per kg of 

product on average. For orders with an average of 45 kg of material, this results in a margin of 

$645 per order. For a system with these high margins, the focus can shift from minimizing costs 

to maximizing yield and throughput while ensuring that quality specs are met.  

These financial metrics give valuable insights when it comes to assessing the value of holding inventory in 

the supply chain. Financial departments in companies often view holding inventory as a problem because 

capital is tied up in storage. However, when the expected interest rates from the supply chain operations 

are greater than the interest rates obtained from other financial activities (e.g., buying government 

bonds), holding inventory can be more easily justified. The model can also be used to understand the 

impact of reducing inventory levels by quantifying the impact of inventory reductions on shareholder 

equity. If reductions in inventory result in greater stockouts, lost sales, and loss in revenue, such decisions 

can be identified as financially undesirable. Note that the model can be augmented to include other 

financial flows (e.g., taxes, time value of money, and bank loans for the initial cash investment) if desired. 

Doing so will give more accurate financial metrics. 
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Figure 5.4. Inventory profiles for A, B, C, and P1 (Distribution Center) storage tanks in solution found for 

Example 2. 
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Figure 5.5. Dynamic accounting ledger for solution found in Example 2. 

 

Figure 5.6. Cash levels if no income is received (assuming no accounts receivable are closed) in Example 

2. 

 

Figure 5.7. System income in Example 2. 
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6. Conclusions 

This work presents a novel approach to integrating material, information, and financial flows in a supply 

chain. The enabling technology for such an integration is the novel application of the State-Task Network 

and Resource-Task Network scheduling models to model the key components and flows in the supply 

chain. Among these is a STN representation of inventory policies in a supply chain, which allows encoding 

commonly used policies such as order-up-to and fixed-order-quantity policies with either continuous or 

periodic review of inventory levels. The key in modeling such policies is to introduce an artificial state that 

represents the amount by which the inventory position is below its target. This allows controlling 

inventory not by the on-hand level, but by the inventory position, which accounts for in-transit inventory 

as is traditionally done in inventory control policies. Another novel application of Task Network models is 

in representing the financial processes occurring in a supply chain via a RTN that allows tracking the major 

resources in a financial balance sheet: assets, liabilities, and shareholder equity. The STN model for the 

order-to-cash process used in prior work is also extended to apply it to the source-to-pay business process 

for raw material procurement in connection with the inventory control model. 

By representing the different components of a real supply chain using Task Network-based models, these 

can be linked to obtain integrated models that account for the relationships between the components in 

a supply chain. Two examples of this integration were presented. In the first example, the order-to-cash 

process is linked with the STN model of a batch chemical plant in a make-to-order supply chain. In this 

example, the interaction between the order-to-cash process and the manufacturing plant is in the 

availability of raw materials, which are enabled once an order has been cleared for manufacturing in the 

enterprise resource planning (ERP) system. The draining of finished goods is then linked to the Goods 

Issue transaction of the order-to-cash process. This integrated transactional-physical scheduling model is 

compared against a transaction-focused model that lumps the physical processes into one task node for 

each product, and a material-focused model that only considers upstream and downstream transactions 

to the plant. Each of these models is used for online scheduling in a DES that captures uncertainty in order 

processing times, order arrivals, and order characteristics, as is the case in a real supply chain. The single-

focused models underperform the integrated model because they either ignore intermediate storage at 

the plant and the relationships between the different production pathways, which yields suboptimal 

solutions, or they ignore the resource limitations and transactions that must occur in parallel to 

manufacturing, which results in solutions that are infeasible in practice. The infeasibility demonstrated in 

the illustrative example is indicative of actual circumstances encountered in industrial supply chains.  The 

lack of rigorous coordination between manufacturing scheduling and order processing often leads to 

telephone calls and email exchanges between schedulers and customer service representatives to 

ultimately resolve conflicts between their respective domains. The proposed modelling approach is a first 

attempt to integrate the information and material involved in a digital supply chain. 

The second example extends the model from the first example to introduce material sourcing from 

upstream suppliers, which includes both the procure-to-pay business process and the inventory control 

processes. Material distribution at a downstream warehouse is also added with customers placing orders 

directly at the plant or at the downstream distribution center. A dynamic accounting ledger is also 

included in this integrated model, allowing for a more complete representation of cash flow in a supply 

chain. The objective function of the model is to maximize shareholder equity, referring to the difference 
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between assets and liabilities in the supply network. This model combines elements from the STN and 

RTN formulation to reduce the network model complexity and decrease the number of discrete variables.  

The integrated models presented in this paper represents an important step towards integrating the 

approaches to supply chain management discussed by Shapiro (1999), and attaining the vision for holistic 

supply chain management promoted by Laínez and Puigjaner (2012). Future directions that can be taken 

with the integrated RTN/STN model presented include developing case studies that rely on industrial data. 

This will create opportunities to address potential issues with varying time scales between business 

process transactions and material flow processes, as well as potential challenges with modeling large scale 

systems. The former can be addressed by extending modeling approaches that integrate systems with 

varying time scales as those discussed by Brunaud et al. (2019). The latter can be addressed via model 

decomposition, such as decomposing by the customer order or type of process (business, physical, and 

financial) in a Lagrangean decomposition approach (Guignard and Kim, 1987). Other methods that can be 

considered for dealing with the curse of dimensionality are to look to reinforcement learning methods 

(Hubbs et al., 2020) and distributed decision making via multi-agent systems (García-Flores and Wang, 

2002; Lara and Wassick, 2023). These can be trained on simulation models that are built upon the Task 

Network modeling abstraction of the integrated supply chain processes presented in this work. 
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Appendix A: Inventory Policy Dynamics 

Figure A shows the temporal evolution of inventory throughout several replenishment cycles under an (s, 

S) order-up-to policy. Consider a demand of A modeled by the 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 70𝑘𝑔, 𝜎 = 10𝑘𝑔) 

distribution. With a lead time of 8 periods, the expected demand over the supply lead time is 560 kg. For 

a 96% service level target, a safety stock of 50 kg is used, resulting in a total stock of 610 kg, which is 

enough to satisfy 96% of the demand over the supply lead time on average. These values are used to 

define the (s, S) policy with a reorder point of 610 kg and a target inventory position of 1,170 kg. At t = 8 

h, the inventory position of A has dropped below the reorder point and the position shortfall has exceeded 

the 560 kg threshold (𝑇𝐼𝑃𝐴 − 𝑅𝑂𝑃𝐴), triggering a replenishment order from the upstream supplier. When 

the replenishment order is triggered, the inventory position target is restored, and the position shortfall 

drops to 0 kg. This replenishment order is received at t = 16 h (after the 8 h lead time). Note that the on-

hand inventory replenishment observed at t = 8 h is for the order placed at t = 0 h.  
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Figure A. Inventory position, inventory level, and position shortfall for material A in each period at the 

Plant over 30 periods. Quantities are in multiples of 100 kg. 

Appendix B: Business Process STN Model 

The business process STN model is an extension of the GDP STN model from Section 3.1. The equivalent 

mixed-integer linear programming (MILP) model is given in Perez et al. (2022). Using the notation from 

Section 3.1, the set of states is defined as 𝐾 = {(𝑜, 𝑠): 𝑜 ∈ 𝑂, 𝑠 ∈ 𝑆}, where 𝑂 is the set of orders and 𝑆 is 

the set of information states. The set of processing steps is 𝐼 = {(𝑜, 𝑙): 𝑜 ∈ 𝑂, 𝑙 ∈ 𝐿}, where 𝐿 is the set of 

process transactions. The set of processing equipment is 𝐽 = {𝑎: 𝑎 ∈ 𝐴}, where 𝐴 is the set of agents in 

the business process. Since information flows in discrete quantities from one state to another, the states 

are bounded between 0 and 1 and are consumed/produced in their entirety. This results in “batch sizes” 

of 1 and production/consumption ratios of 1. Although this seems to violate mass conservation in tasks 

with more than one input states, this is not a concern since information is not conserved in the same 

sense as mass is. This is analogous to how moles are not conserved in a chemical reaction. External supply 

of information to states only occurs at the starting information state (𝑠 = 1) of each order when the order 

enters the system (𝑡 = 𝑡𝑜
𝑟, where 𝑡𝑜

𝑟  is the release time of order 𝑜). External demand of information from 

the system only occurs at the final information state (𝑠 = |𝑆|) of the business process when the variable 

𝑆𝑜,𝑡
𝑒𝑥𝑖𝑡 = 1. Thus, (3.1.1) – (3.1.3) becomes (B.1) – (B.5). 

𝑆𝑜,𝑠,𝑡 = 𝑆𝑜,𝑠,𝑡−1 + ∑ ∑ 𝐵𝑜,𝑙,𝑎,𝑡−𝜏𝑜,𝑙,𝑎

𝑎∈𝐴𝑙𝑙∈𝐿𝑠
𝑝𝑟𝑒𝑑

− ∑ ∑ 𝐵𝑜,𝑙,𝑎,𝑡

𝑎∈𝐴𝑙𝑙∈𝐿𝑠
𝑠𝑢𝑐𝑐

+ 𝑆𝑜,𝑠,𝑡
𝑠𝑢𝑝𝑝𝑙𝑦

− 𝑆𝑜,𝑠,𝑡
𝑑𝑒𝑚𝑎𝑛𝑑 

∀𝑜 ∈ 𝑂, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 

(B.1) 

𝑆𝑜,𝑠,𝑡
𝑠𝑢𝑝𝑝𝑙𝑦

= {
1, if 𝑠 = 1, 𝑡 = 𝑡𝑜

𝑟

0, otherwise        
 ∀𝑜 ∈ 𝑂, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (B.2) 
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𝑆𝑜,𝑠,𝑡
𝑑𝑒𝑚𝑎𝑛𝑑 = {

𝑆𝑜,𝑡
𝑒𝑥𝑖𝑡 if 𝑠 = |𝑆|

0 otherwise
 ∀𝑜 ∈ 𝑂, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (B.3) 

[
𝑊𝑜,𝑙,𝑎,𝑡

𝐵𝑜,𝑙,𝑎,𝑡 = 1
] ⋁ [

¬𝑊𝑜,𝑙,𝑎,𝑡

𝐵𝑜,𝑙,𝑎,𝑡 = 0
] ∀𝑜 ∈ 𝑂, 𝑙 ∈ 𝐿, 𝑎 ∈ 𝐴𝑙 , 𝑡 ∈ 𝑇 (B.4) 

Γ(1, 𝑊𝑜,𝑙,𝑎,𝑡′   ∀𝑜 ∈ 𝑂, 𝑙 ∈ 𝐿𝑎, 𝑡′ ∈ {𝑡 − 𝜏𝑜,𝑙,𝑎 + 1, … , 𝑡}) ∀𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇 (B.5) 

The delivery of an order is modeled with the disjunction in (B.6). There is a direct mapping between the 

Boolean variable 𝐷𝑜,𝑡, which True if the order is fulfilled (delivered) at 𝑡, and the continuous variable 𝑆𝑜,𝑡
𝑒𝑥𝑖𝑡. 

Therefore, when reformulating to a MILP, the continuous variable 𝑆𝑜,𝑡
𝑒𝑥𝑖𝑡 can be replaced by the binary 

variable obtained from 𝐷𝑜,𝑡. This disjunction also fixes the time an order is fulfilled 𝑡𝑜
𝑒𝑥𝑖𝑡 to the timepoint 

in which 𝐷𝑜,𝑡 = 𝑇𝑟𝑢𝑒. 

[

𝐷𝑜,𝑡

𝑆𝑜,𝑡
𝑒𝑥𝑖𝑡 = 1

𝑡 = 𝑡𝑜
𝑒𝑥𝑖𝑡

] ⋁ [

¬𝐷𝑜,𝑡

𝑆𝑜,𝑡
𝑒𝑥𝑖𝑡 = 0

0 ≤ 𝑡𝑜
𝑒𝑥𝑖𝑡

] ∀𝑜 ∈ 𝑂, 𝑡 ∈ 𝑇 (B.6) 

The disjunction in (B.7) allows distinguishing if the order is one of the following: 

 Fulfilled on-time (𝑂𝑇𝑜 = 𝑇𝑟𝑢𝑒), which occurs when the order is fulfilled between the early due 

date 𝑡𝑜
𝑒 and the final due date 𝑡𝑜

𝑑,  

 Backlogged (𝐵𝐿𝑜 = 𝑇𝑟𝑢𝑒), which occurs when the order is fulfilled after the due date and by the 

lost sale date 𝑡𝑜
𝑙𝑠, or 

 Lost-sale (𝐿𝑆𝑜 = 𝑇𝑟𝑢𝑒), which occurs when the order is not fulfilled.  

In the lost-sale disjunct, the fulfillment time is set to 0, which forces (B.6) to select 𝐷𝑜,𝑡 = 𝐹𝑎𝑙𝑠𝑒 ∀𝑡 ∈ 𝑇 

(note that 𝑇 = {1, … , |𝑇|}), meaning the order is not fulfilled. It is assumed that 𝑡𝑜
𝑒 < 𝑡𝑜

𝑑 < 𝑡𝑜
𝑙𝑠. If 𝑡𝑜

𝑑 = 𝑡𝑜
𝑙𝑠, 

then the backlog disjunct should be excluded from (B.7), indicating that orders become lost sales after 

their due date. Depending on which disjunct is selected from (B.7), a different function (𝑓1,𝑜, 𝑓2,𝑜, and 𝑓3,𝑜) 

is used to determine the profit of the order 𝑧𝑜. These functions can take different forms, but for the 

purposes of this work, they are assumed to be linear as discussed in (Perez et al., 2022). The cardinality 

clause in (B.8) ensures that exactly 1 of the disjuncts is selected, where Ξ(𝑛,⋅) is the exactly n predicate 

(Perez and Grossmann, 2023). The propositional logic constraints in (B.9), (B.10), and (B.11) link 

disjunction (B.7) with disjunction (B.6), so that the order fulfillment Boolean variable 𝐷𝑜,𝑡 is aligned with 

the appropriate final order condition (𝑂𝑇𝑜, 𝐵𝐿𝑜, or 𝐿𝑆𝑜) depending on the timepoint in which it occurs. 

Note that the double implications in (B.9) and (B.10), and the forward implication in (B.11) are redundant 

as a result of the relationships between the fulfillment time variable 𝑡𝑜
𝑒𝑥𝑖𝑡 and the Boolean variables in 

(B.7) and (B.6). Nonetheless, they are included to explicitly represent these links and provide clarity. 

[

𝑂𝑇𝑜

𝑡𝑜
𝑒 ≤ 𝑡𝑜

𝑒𝑥𝑖𝑡 ≤ 𝑡𝑜
𝑑

𝑧𝑜 ≤ 𝑓1,𝑜(𝑡𝑜
𝑒𝑥𝑖𝑡)

] ⋁ [

𝐵𝐿𝑜

𝑡𝑜
𝑑 + 1 ≤ 𝑡𝑜

𝑒𝑥𝑖𝑡 ≤ 𝑡𝑜
𝑙𝑠

𝑧𝑜 ≤ 𝑓2,𝑜(𝑡𝑜
𝑒𝑥𝑖𝑡)

] ⋁ [

𝐿𝑆𝑜

𝑡𝑜
𝑒𝑥𝑖𝑡 = 0

𝑧𝑜 ≤ 𝑓3,𝑜(0)
] ∀𝑜 ∈ 𝑂 (B.7) 

Ξ(1, {𝑂𝑇𝑜 , 𝐵𝐿𝑜 , 𝐿𝑆𝑜}) ∀𝑜 ∈ 𝑂 (B.8) 



H. Perez et al. (2023) 

46 
 

𝑂𝑇𝑜 ⇔ ⋁ 𝐷𝑜,𝑡

𝑡∈{𝑡𝑜
𝑒,…,𝑡𝑜

𝑑}

 
∀𝑜 ∈ 𝑂 (B.9) 

𝐵𝐿𝑜 ⇔ ⋁ 𝐷𝑜,𝑡

𝑡∈{𝑡𝑜
𝑑+1,…,𝑡𝑜

𝑙𝑠}

 
∀𝑜 ∈ 𝑂 (B.10) 

𝐿𝑆𝑜 ⇔ ⋀ ¬𝐷𝑜,𝑡

𝑡∈𝑇

 ∀𝑜 ∈ 𝑂 (B.11) 

For scheduling business processes, the objective used is that of maximizing system profit given in (B.12).  

max ∑ 𝑧𝑜

𝑜∈𝑂

   (B.12) 

The domains and bounds for the variables used in this GDP model are given in (B.13) – (B.20). The full GDP 

model is given by (B.1) – (B.20). 

𝐵𝑜,𝑙,𝑎,𝑡 ∈ ℝ: 0 ≤ 𝐵𝑜,𝑙,𝑎,𝑡 ≤ 1 ∀𝑜 ∈ 𝑂, 𝑙 ∈ 𝐿, 𝑎 ∈ 𝐴𝑙 , 𝑡 ∈ 𝑇 (B.13) 

𝑆𝑜,𝑠,𝑡 ∈ ℝ: 0 ≤ 𝑆𝑜,𝑠,𝑡 ≤ 1 ∀𝑜 ∈ 𝑂, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (B.14) 

𝑆𝑜,𝑡
𝑒𝑥𝑖𝑡 ∈ ℝ: 0 ≤ 𝑆𝑜,𝑡

𝑒𝑥𝑖𝑡 ≤ 1 ∀𝑜 ∈ 𝑂, 𝑡 ∈ 𝑇 (B.15) 

𝑡𝑜
𝑒𝑥𝑖𝑡 ∈ ℝ: 0 ≤ 𝑡𝑜

𝑒𝑥𝑖𝑡 ≤ 𝑡𝑜
𝑙𝑠 ∀𝑜 ∈ 𝑂 (B.16) 

𝑧𝑜 ∈ ℝ ∀𝑜 ∈ 𝑂 (B.17) 

𝐷𝑜,𝑡 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑜 ∈ 𝑂, 𝑡 ∈ 𝑇 (B.18) 

𝐵𝐿𝑜 , 𝐿𝑆𝑜 , 𝑂𝑇𝑜 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑜 ∈ 𝑂 (B.19) 

𝑊𝑜,𝑙,𝑎,𝑡 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} ∀𝑜 ∈ 𝑂, 𝑙 ∈ 𝐿, 𝑎 ∈ 𝐴𝑙 , 𝑡 ∈ 𝑇 (B.20) 

Appendix C: Optimization results from Example 1 

The duration of the optimization runs triggered for each model within the discrete event simulation are 

shown in Figure C. The time to solve the model grows as more orders enter the system, as expected. The 

integrated model, generally takes longer to solve, followed by the transaction-focused model, and then 

by the material-focused model. This trend is expected and is supported by the number of binary variables 

in each model as given in Table 4.2, which indicates the size of the largest model in each case. The largest 

model size corresponds to the model run at t = 23 h, which is when the last order enters the system during 

the 24 h simulation run. For the optimization runs that reach the allotted time limit of 360 s, the relative 

optimality gap is less than 4% for the integrated model, and less than 2% for the transaction-focused 

model. The expected system profit with each of the models is shown in Figure C, which also increases with 

each consecutive optimization run. This is expected because more orders in the system create a greater 

opportunity for making profit. The exception is the material-focused model, which sees a decline in the 

expected profit after t = 14 h due to the infeasible schedules produced by this model. The expected profits 

exceed those from the simulation because the optimization has an adaptive rolling horizon that runs the 



H. Perez et al. (2023) 

47 
 

scheduling until the last lost sales date for the orders in the system, which exceeds the 24 h simulation 

horizon. This extends the scheduling horizon up to 51 h, which occurs in the last optimization run and 

corresponds to the lost sales date for the last order (Order 26).  

 
Figure C. Time to build and solve the scheduling model (top) and expected profit from the scheduling 

models (bottom) obtained each time a new order enters the system in Example 1. 


