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Abstract 

In this paper we address the production planning of parallel multi-product batch reactors with 

sequence-dependent changeovers, a challenging problem that has been motivated by a real 

world application of a specialty chemicals business. We propose two production planning 

models that anticipate the impact of the changeovers in this batch processing problem. The 

first model is based on underestimating the effects of the changeovers that leads to an MILP 

problem of moderate size. The second model incorporates sequencing constraints that yield 

very accurate predictions, but at the expense of a larger MILP problem. In order to solve 

large scale problems in terms of number of products, reactors or length of the time horizon, 

we propose a decomposition technique based on rolling horizon scheme and also a relaxation 

of the detailed planning model. Several examples are presented to illustrate the performance 

of the proposed models. 

 

Introduction  

 

Batch manufacturing units help companies respond to fluctuating customer demands by 

being able to shift production between many products. This flexibility however introduces 

complexity in the production planning process making it hard to assess the true production 

capacity of these units. Understanding the accurate representation of the capacity of the 

manufacturing facilities has a significant financial impact since it results in the increased 

ability to satisfy committed orders and also helps identifying new market opportunities. 

                                                 
∗ Author to whom correspondence should be addressed. E-mail: grossmann@cmu.edu 



 2

 

The aim in production planning is to determine the production capacity in terms of high level 

decisions such as production levels and product inventories for given marketing forecasts, 

and demands over a long time horizon ranging from several months up to a year. Typically, 

planning models are linear and simplified representations that are used to predict production 

targets and material flows. Generally the production targets obtained at this level are overly 

optimistic since the effect of changeovers is neglected. Changeovers occur when production 

on one line is changed from one product to another. These changeovers may be associated 

with changing the operating conditions (temperature, pressure) or with the cleaning of the 

equipment. If the changeovers are sequence-dependent, then the utilization of the capacity 

will depend on the sequence in which products are produced on the units. Depending on the 

magnitude of the changeovers, they can significantly reduce the capacity available for 

production. Therefore, failing to take into account these change-over times can result in over 

estimation of the available production capacity and overly optimistic production targets, 

which may not be realized at the scheduling level. Hence, there is an incentive to develop 

models and approaches that can accurately represent the available production capacities of 

assets by accounting for the sequence-dependent changeovers. 

 

Several tactical production models have been proposed that address the problem of 

determining the available production capacity. As one example McDonald and Karimi (1997) 

present a multiperiod midterm planning model for semi-continuous processes where the main 

goal is optimal allocation of assets to production tasks in order to satisfy the fluctuating 

demands over an extended horizon. Actual timing and sequencing of production campaigns 

are not determined. However, minimum run lengths are imposed to alleviate the effect of 

sequence-dependent changeovers. As another example, Bok et al (2000) present a 

multiperiod planning model for continuous process networks over a short time horizon 

ranging from 1 week to 1 month. The proposed model incorporates inventory profile, 

intermittent supplies and production shortfalls. The effect of changeovers is reflected through 

costs. In order to take into account sequence-dependent change-over costs without increasing 

the size of the model, the authors adopt one day time periods and enforce the condition that 
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each process should be operated with exactly one production scheme during each one-day 

periods.  

 

An alternative approach for addressing the production capacity determining problem could 

be to formulate a simultaneous planning and scheduling model that spans the entire planning 

horizon of interest. However, the limitation with this approach is that when typical planning 

horizons are considered, the size of the detailed scheduling model becomes intractable due to 

the potential exponential increase in computation. The traditional approach of addressing this 

issue has been to follow a hierarchical strategy (Bitran and Hax, 1977) in which the planning 

problem is solved first to define the production targets. The scheduling problem, which is 

reduced to a sequencing subproblem, is solved next so as to meet the targets set by the 

planning. The problem with this approach is that a solution determined at the planning level 

does not necessarily lead to feasible schedules and most of the work that has been reported 

applies heuristic techniques to overcome the feasibilities that occur in the scheduling problem 

and does not guarantee global optimal solutions.  

 

Bassett et al (1996) proposed a decomposition scheme for multipurpose batch plants where 

an aggregate planning problem is solved in the upper level, and detailed scheduling problems 

are independently solved for each planning period in the lower level. The authors apply 

heuristic techniques that make use of shifting of operations to overcome the inconsistencies 

between planning and scheduling. Subrahmanyam et al (1996) proposed a hierarchical 

decomposition scheme for batch plants, where the planning problem is updated at each 

iteration by disaggregating the aggregate constraints for all infeasible scheduling 

subproblems within the planning problem. Stefansson et al (2006) proposed a planning and 

scheduling approach based on a hierarchically structured moving horizon framework for 

multipurpose batch plants. On each level of the hierarchically structured framework, they 

propose optimization models to provide support for relevant decisions where each level 

differs regarding the scope and availability of the information. A second method for dealing 

with the computational difficulties is to use aggregation of constraints. Wilkinson et al (1996) 

used such an approach to obtain approximate solutions to the large scale production and 

distribution planning problems for multi-site production sites that are represented with 
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Resource Task Network (Pantelides, 1994). In the proposed approach the authors split the 

planning horizon into smaller portions denoted as the aggregated time periods (ATP). They 

describe each ATP by aggregated variables each of which is equivalent to a weighted sum of 

the corresponding detailed variables over the time intervals. The aggregate formulation is 

then generated by replacing groups of related variables from the detailed formulation with 

corresponding aggregated variables in order to reduce the size of the problem. Birewar and 

Grossmann (1990) proposed a multiperiod linear programming (LP) formulation for the 

simultaneous planning and scheduling of multiproduct batch plants with flowshop structure. 

In this formulation, the batches that belong to the same products are aggregated and 

sequencing considerations are accounted for at the planning level by approximating the 

makespan with the cycle time. Another approach for addressing the simultaneous planning 

and scheduling problem is the bi-level decomposition. Erdirik-Dogan and Grossmann (2006) 

have proposed a bi-level decomposition algorithm where they decompose the original 

detailed model into an upper level planning and a lower level planning and scheduling 

problem. Since the former yields an upper bound and the latter a lower bound, convergence 

is achieved when the bounds lie within a given tolerance. Finally, a recent approach by Sung 

and Maravelias (2007) consists in using the production attainable region (PAR) framework 

for production planning problems. These authors propose replacing the scheduling models 

(e.g. STN model) with an approximation of the feasible region in which the scheduling 

model is projected onto relevant planning variables such as production flows using a 

numerical procedure for finding convex hulls.  

 

This paper has been motivated by a real-world application in the Dow Chemical Company. 

The specific goal is to propose multiperiod MILP models for planning of parallel multi-

product batch reactors that anticipate the impact of sequence-dependent changeovers as 

accurately as possible, while determining production levels, inventory levels and allocation 

of products to available equipment. We also investigate solution strategies such as rolling 

horizon approach and relaxation of the detailed planning model for reducing the 

computational expense of large problems. The paper is organized as follows. In the following 

section the problem definition is presented. We then introduce the relaxed planning model 

where the effects of the changeovers are underestimated. In section 3, we describe the 



 5

detailed planning model that incorporates sequencing constraints. The rolling horizon 

decomposition algorithm and the relaxed detailed planning model are presented in section 4. 

Finally, the application of the proposed models is illustrated with several examples.     

 

1. Problem Statement 

 

The problem we will address in this paper is as follows (see Figure 1). Given is a plant that 

contains batch reactors that operate in parallel. The batch reactors are to be used to 

manufacture intermediates and final products. A subset of the final products is produced in a 

single reaction stage, while the remaining final products require intermediates, thus involving 

two reaction stages. Each final product is fed to a dedicated storage tank. In order to 

formulate this problem we assume that we are given the products each reactor can produce, 

as well as the batch times and batch sizes for each product and the corresponding reactor. 

While the batch times and batch sizes are fixed, the number of batches of each product is a 

variable that is to be determined. Sequence-dependent changeover times and the total time 

each reactor is available in each month are given. Given are also raw material costs and 

availability, and storage tanks with associated capacities. Given is also a production horizon 

composed of a certain number of time periods given by due dates in which demands are 

specified as lower bounds. The problem is to determine the optimal production plan in terms 

of monthly production quantities and inventory levels so as to maximize the profit. 

 

Reaction 1

Reaction 2

Reaction 3

F1

F2

F3

F4

A

B

C

R1 R2

A

B

C

Reaction 1

Reaction 2

Reaction 3

F1

F2

F3

F4

F1

F2

F3

F4

A

B

C

R1 R2

A

B

C

 
Figure 1. Representation of the problem  
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2. Relaxed Planning Model (RP) 

 

We first propose an aggregate planning model that is based on a network that involves two 

type of nodes: one for tasks i and one for products j. The nodes are connected with streams 

that represent the flow of material. Each task i is characterized by a main product j. However, 

each product j can be consumed by other tasks i.  

 

This model is based on the idea of ignoring detailed timing constraints and sequencing 

constraints, while accounting for some lower bounds for the changeovers for each assigned 

product. The goal of the planning model is to determine the optimal production quantities for 

each unit over a long range horizon (6-12 months), while taking into account the unit 

capacities, raw material availabilities, raw material costs, product prices and storage 

capacities. The decisions that we are concerned with are (i) the assignment of task i to unit m 

at each time period t, , ,i m tYP , (ii) number of each batches of each task i in each unit m at each 

period t, imtNB , (iii) corresponding amount of material processed by each task i, imtFP , and 

(iv) inventory levels of each product j at each time period t, jtINV . The objective is to select 

these decisions in order to maximize profit in terms of sales minus inventory, operating and 

changeover costs. 

 

The MILP model (RP) for the production planning problem is as follows: 

 

a) Material handled and capacity requirements: 

, ,imt imt imt mFP Bound YP i I m t≤ ⋅ ∀ ∈         (1) 

The amount of material that will be carried out by task i in unit m at time period t is limited 

by the maximum batch capacity times the largest number that the task can be repeated 

( t imH BT ), which leads to imt t im imBound H Q BT= ⋅ . Note that constraint (1) forces the batch 

size to be zero if task i is not assigned to unit m at time t. 
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The batch size of each task in each equipment is fixed to imQ  . Therefore, the amount of 

material consumed or produced by task i to unit m during time t, has to be at least the 

capacity of the unit m when processing task i. 

, ,
imt im imt m

FP Q YP i I m t≥ ⋅ ∀ ∈        (2) 

 

b) Number of batches of each product: 

, , , , , , ,i m t i m t i m mNB FP Q i I m t= ∀ ∈   (3) 

Constraint (3) determines the total number of batches of each task performed by the 

corresponding task in each unit at each time period. It should be noted that in the above 

inequality it is important to treat , ,i m tNB  as an integer variable in order to predict tighter 

bounds of the objective function in (11). 

 
c) Mass Balances on the state nodes 

We define set ( )PS j to be the index set of tasks i that produce product j, and ( )CS j as the 

index set of tasks i that consume product j. Then the mass balance is given by constraint (4), 

where for each product j the total amount of purchases plus the amounts produced within the 

network must be equal to the sum of sales, and the total consumption within the network plus 

the change in the inventory level. 

       1 ,
j i j i

jt ji imt jt ji imt jt jt
i PS m M i CS m M

P FP S FP INV INV j tρ ρ
−

∈ ∈ ∈ ∈

+ = + + − ∀∑ ∑ ∑ ∑  (4) 

We should note that since the detailed timing of production is neglected, the mass balances 

are handled in an aggregate manner. For products that are produced in two stages, the model 

makes sure that the mass balance holds within each time period. However, the model does 

not guarantee the assignment of the intermediate product required for the production of the 

end product before the assignment of the end product. 

 

d) Demands 

, , ,j t j tS D j t≥ ∀          (5) 

Constraint (5) is added to ensure that demands that vary throughout the planning horizon are 

met and that the production may be exceeded. 
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e) Changeover times and costs 

In this model, detailed timing constraints and sequencing constraints are ignored, and 

therefore exact changeover times and costs are not computed. However, the idea here is to 

account for lower bounds for changeovers by selecting a minimum changeover time for each 

assigned product so that the knowledge of the exact sequence is not required. This model 

yields tighter production estimates than a simpler model that totally ignores the changeovers. 

We define the parameter { }, , ',
, ' ( ), '

i m i i m
i i IM m i i

TR Min τ
∈ ≠

= as the minimum changeover time for each 

product i, which is added to the processing time  for each assigned product for each unit, for 

each time period. As an example, consider Figure 2 in which products A, B and C are 

assigned to period t (Figure 2a) and products A and C are assigned to period t+1. 
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Period t

,A RTR

A B C

,B RTR ,C RTR,A RTR
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Figure 2. Assignments of products and minimum changeover times 
 
 

, , , , , , ,
m m

i m t i m i m i m t t
i I i I

NB BT TR YP H m t
∈ ∈

⋅ + ⋅ ≤ ∀∑ ∑      (6)  

 

Constraint (6) defines the time balance such that the summation of the batch times of the 

assigned products plus the summation of the minimum changeover times for the assigned 

products must be less than or equal to the available time for reactor m at time period t. Note, 

however, that since we do not know the exact sequence of production at each time period, we 

cannot predict whether the production on the line at the end of each time period has been 

changed to another product or not. For cases where the last product of time period t and first 
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product of the subsequent period t+1 corresponds to the same product, constraint (6) results 

in an overestimation of the changeover times (See Figure 3). 
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Figure 3. Overestimation of changeover times 

 

 In order to avoid this overestimation, we neglect the changeover times across adjacent weeks. 

In this way, the total number of changeovers assigned will be equal to the total number of 

products minus one. Therefore, the maximum of the minimum changeover times should be 

subtracted from constraint (6), as is shown in constraints (7) and (8).  

 

, , , , , ,m t i m i m t mU TR YP i I m t≥ ⋅ ∀ ∈        (7) 

{ }, , ,
m

m t i mi I
U Max TR m t

∈
≤ ∀         (8) 

, , , , , , ,
m m

i m t i m i i m t m t t
i I i I

NB BT TR YP U H m t
∈ ∈

⋅ + ⋅ − ≤ ∀∑ ∑     (9) 

 

In this way, according to constraint (9), the summation of the batch times of the assigned 

products plus the summation of the minimum changeover times for each assigned product 

minus the maximum of the minimum changeover times should be less than or equal to the 

total available time.  

, , , ,
m

m t i i m t
i I

U TR YP m t
∈

≤ ⋅ ∀∑         (9a) 

Note that constraint (9) can lead to weak relaxations for widely different values of the 

minimum changeover times of the assigned products. In order to tighten the formulation we 

introduce constraint (9a). Constraint (9a) makes sure that maximum of the minimum change 

over times is less than the summation of the minimum changeover times of the assigned 

products. 

 

Constraints (10a) and (10b) are introduced to account for the changeover costs and they are 

developed in analogy to constraints (7), (8) and (9). We define { }
, ',,

, ' ( ), ' i i mi m trans
i i IM m i i

TRC Min C
∈ ≠

= to 
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be the minimum changeover cost for each task assigned to unit m during time t.  

  

, , , , , ,m t i m i m t mUT TRC YP i I m t≥ ⋅ ∀ ∈        (10a) 

{ }, , ,
m

m t i mi I
UT Max TRC m t

∈
≤ ∀         (10b) 

The term , , , ,( ( ) )
m

i m i m t m t
t m i I

TRC YP UT
∈

⋅ −∑∑ ∑ , which is an underestimation of the changeover 

costs, is then subtracted from the objective function.  

, , , ,( ) ,
m

m t i m i m t
i I

UT TRC YP m t
∈

≤ ⋅ ∀∑        (11) 

 

Finally, we introduce constraint (11) to tighten the formulation. Constraint (11) ensures that 

the maximum of the minimum changeover costs is less than the summation of the minimum 

changeover costs of the products that are assigned to unit m during time period t. 

   

f) Objective function  

The profit is given by the sum of sales revenues, the inventory costs, the operating costs, the 

changeover costs within each time period. 

, , , ,( ( ) )
m

m

RP inv oper
jt jt jt jt it imt

j t j t i I m t

i m i m t m t
t m i I

Max Z cp S c INV c FP

TRC YP UT
∈

∈

= ⋅ − ⋅ − ⋅

− ⋅ −

∑∑ ∑∑ ∑∑∑

∑∑ ∑
  (12) 

Remarks: 

1. The relaxed planning model described by constraints (1)-(12) assumes sequence 

independent changeovers resulting in underestimation of changeover times and costs. 

2. Due to the underestimation of the effect of the changeovers, (RP) can result in 

overestimation of the available production capacities. However, being a low 

dimensional model (compared to the detailed planning model), it has the advantage of 

requiring lower computational efforts. 

 

3. Detailed Planning Model (DP) 

Although the relaxed planning model (RP) accounts for the lower bounds of the changeover 

times, for scenarios with high demand rates where the capacity utilization becomes 
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significant, or for the scenarios where the difference of the changeover times is high, (RP) 

might lead to a significant overestimation of the available production capacity. Therefore, we 

propose the detailed planning model (DP), which is in essence similar to the (RP) model. 

However, instead of accounting for only lower bounds of the changeovers as in constraint (9), 

we account for sequence-dependent changeovers by introducing sequencing constraints 

without determining the detailed timings of the tasks. Hence, the assignment constraints and 

the mass balances are the same as the (RP) model, but in order to handle the sequence-

dependent changeovers, we introduce new sequencing variables and constraints that yield 

more accurate estimations for changeovers in the time balance constraint and the objective 

function will be modified. 

 

The MILP model (DP) is as follows: 

 

a) Material handled and capacity requirements: 

, ,imt imt imt mFP Bound YP i I m t≤ ⋅ ∀ ∈        (1) 

, ,imt im imt mi m tFP Q YP I∀≥ ⋅ ∈       (2) 

b) Number of batches of each product: 

, , , , , , ,i m t i m t i m mNB FP Q i I m t= ∀ ∈   (3) 

c) Mass Balances on the state nodes 

1 ,
j i j i

jt ji imt jt ji imt jt jt
i PS m M i CS m M

P FP S FP INV INV j tρ ρ −
∈ ∈ ∈ ∈

+ = + + − ∀∑ ∑ ∑ ∑  (4) 

d) Demands 

, , ,j t j tS D j t≥ ∀          (5) 

e) Changeover times and costs: 

In order to account for the sequence-dependent changeover times and costs, we propose to 

find the minimum changeover time sequence within the assigned products within each time 

period, while maximizing the profit and satisfying the demands at the due dates. In this way, 

the determination and allocation of number of batches of each task and their sequencing are 

determined simultaneously. The idea for the sequencing is to generate a cyclic schedule 

within each time period that minimizes changeover times amongst the assigned products, and 
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then to determine the optimal sequence by breaking one of the links in the cycle as described 

in Birewar and Grossmann (1990). As will be seen, the proposed sequencing constraints can 

be regarded as a relaxation of the traveling salesman problem (Nemhauser and Wolsey, 

1988). 

 

To generate a cyclic schedule, the decisions to be made concern the sequence of production 

that is represented by the binary variable mtiiZP ' , which becomes 1 if product i precedes 

product i’ in unit m at time period t, and zero otherwise. To obtain a specific sequence, the 

location of the link to be broken is determined with, mtiiZZP ' , which becomes 1 if the link 

between products i and i’ is to be broken, otherwise it is zero (see example in Figure 4). 

P1

P2

P3P4

P5
ZP P1, P2, m, t = 1

ZP P2, P3, m, t = 1

ZZP P3, P4, m, t =1

..

..

..

P1

P2

P3P4

P5
ZP P1, P2, m, t = 1

ZP P2, P3, m, t = 1

ZZP P3, P4, m, t =1

..

..

..  
Figure 4.  Cylic schedule and the location of the link to be broken. 

 

The following logic constraints are proposed for generating a cyclic schedule within each 

time period: 

 

''
, ,imt ii mt mi

YP ZP i I m t⇔ ∀ ∈∨  (13) 

' ' ' , ,i mt ii mt mi
YP ZP i I m t⇔ ∀ ∈∨  (14) 

According to logic proposition (13), product i is assigned to unit m during period t if and 

only if there is exactly one transition from product i to product i’ in unit m at time period t. 

Similarly, according to proposition (14), product i’ is assigned to unit m at period t if and 

only if there is exactly one transition from any product i to product i’ in unit m at time period 

t. 
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These constraints can be mathematically written as follows (see also Sahinidis and 

Grossmann, 1990): 

'
'

, ,imt ii mt m
i

YP ZP i I m t= ∀ ∈∑        (15) 

' ' ' , ,i mt ii mt m
i

YP ZP i I m t= ∀ ∈∑        (16) 

 

Constraints (15) and (16) will generate a cyclic schedule within each time period provided no 

subcycles are obtained. The total number of links (changeovers), NL , within each cycle will 

be equal to the total number of products assigned to that time period. According to the 

location of the link that is to be broken, a total of NL  different schedules can be generated 

from each cycle. In order to determine the optimal sequence amongst the NL  possible 

sequences, the cycle will be broken at the link with the highest changeover time. We 

introduce the binary variable mtiiZZP '  to represent location of the link to be broken to obtain 

the specific sequence (see example in Figure 5).  

P1

P2

P3P4

P5

P2, P3, P4, P5, P1 ZZP P1, P2, m, t = 1

P3, P4, P5, P1, P2 ZZP P2, P3, m, t = 1

P4, P5, P1, P2, P3 ZZP P3, P4, m, t = 1

P5, P1, P2, P3, P4 ZZP P4, P5, m, t = 1

P1, P2, P3, P4, P5 ZZP P5, P1, m, t = 1

P1

P2

P3P4

P5

P2, P3, P4, P5, P1 ZZP P1, P2, m, t = 1

P3, P4, P5, P1, P2 ZZP P2, P3, m, t = 1

P4, P5, P1, P2, P3 ZZP P3, P4, m, t = 1

P5, P1, P2, P3, P4 ZZP P4, P5, m, t = 1

P1, P2, P3, P4, P5 ZZP P5, P1, m, t = 1
 

Figure 5. Derivation of the schedule. 

 

Equation (17) states that exactly one of the links in the optimal cycle can be broken. 

'
'

1 ,
m m

ii mt
i I i I

ZZP m t
∈ ∈

= ∀∑∑         (17) 

Also, according to inequality (18), a link cannot be broken if the corresponding pair is not 

selected in the cycle. 

' ' , ' , ,ii mt ii mt mZZP ZP i i I m t≤ ∀ ∈        (18) 
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We should note that if the cyclic schedule implied by (13)-(14) has no subcycles then 

constraints (15)-(18) will lead to a sequence in which the changeovers are exactly taken into 

account. In the case when there are subcycles, these constraints will lead to subsequences as 

seen in Figure 6. While these will not correspond to a complete feasible sequence, they do 

correspond to a valid lower bounding representation for the changeover times, which in turn 

leads to a valid upper bound to the profit. Since in the planning model we are not concerned 

with detailed scheduling, this does not pose any difficulty.  

T1 T2

A, B, C, D, E T1 B, C, D T2

A

B

C

E D

B

D C

T1 T2

D C C D BE

A B

T1 T2

A, B, C, D, E T1 B, C, D T2

A

B

C

E D

B

D C

T1 T2

D C C D BE

A B

 
Figure 6. Subcycles leading to a valid upper bound  

 

We should also note that in constraints (15) and (16), products i and i’ may correspond to the 

same product. Forcing i and i’ to be different would lead to infeasible schedules for the cases 

where only a single product is assigned to unit m in time period. On the other hand, allowing 

the constraints to hold true for i = i’, would yield schedules consisting of self loops (see 

example in Figure 7)  as this leads to zero change-over times, and consequently to a more 

optimistic bound for the profit.  
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P1
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P1
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Figure 7. Subcycles for multiple products  

 

In order to overcome the above difficulty, we introduce the following expression where we 

allow a self changeover (a product followed by the same product) if and only if that product 

is the only product assigned to that unit during that time period. That is, 

' ' , ,[ ]
i iimt i mt iimt mYP YP ZP i I m t
≠
¬ ∀ ∈∧ ∧ ⇔     (19) 

According to expression (19), if product i is assigned in unit m at time period t, and none of 

the products i’ different than i are assigned in the same unit at the same time period, then 

product i can be followed by product i. Also, if product i is followed by product i in unit m at 

period t, then only product i is assigned in unit m for period t and none of the products i’ 

other than i are assigned to the same unit at the same time period. The expression in (19) can 

be written mathematically as follows: 

, , , , ,imt i i m t mYP ZP i I m t≥ ∀ ∈        (20) 

, , , ', , 1 , ' , ' , ,i i m t i m t mZP YP i i I i i m t+ ≤ ∀ ∈ ≠       (21) 

, , , , , ', ,
'
'

, ,

m

i i m t i m t i m t m
i i
i I

ZP YP YP i I m t
≠
∈

≥ − ∀ ∈∑       (22) 

The total changeover time within each period, ,m tTRNP , is then given by the summation of the 

changeover times corresponding to each existing pair ( , ', ,i i m tZP ) minus the changeover time 

corresponding to the link that is broken from the sequence ( , ', ,i i m tZZP ).  

, , ' , ', , , ' , ', ,
' '

,
m m m m

m t i i i i m t i i i i m t
i I i I i I i I

TRNP ZP ZZP m tτ τ
∈ ∈ ∈ ∈

= ⋅ − ⋅ ∀∑ ∑ ∑∑    (23) 
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Note that changeover costs are assumed to be directly proportional to changeover times. 

Furthermore, the variable , ', ,i i m tZZP  has a negative coefficient in the time balance and a 

positive coefficient in the objective function. Therefore, the model will choose the link 

corresponding to the pair with the highest changeover time as the link to break the optimal 

cycle. Therefore, the optimal sequence obtained at each time period will correspond to the 

sequence with the minimum changeover times. 

 

In order to be able to account for the changeover times and costs across adjacent weeks, we 

need to determine the first and last element of each sequence obtained at each time period.  

These elements correspond to the pair where the cycle is broken to form the sequence. 

According to their relative position in the cycle, the head of the cycle will correspond to the 

first element and the tail will correspond to the last element (see example in Figure 8). 

P1

P2

P3P4

P4

ZZP P1, P2, M, T = 1

Tail

Head

P2 P3 P4 P5 P1

First 
element

Last 
element

P1

P2

P3P4

P4

ZZP P1, P2, M, T = 1

Tail

Head

P2 P3 P4 P5 P1

First 
element

Last 
element  

Figure 8. First and last elements of the sequence 

 

Defining the binary variables , ,i m tXF  and , ,i m tXL for the first and last tasks in the sequence, the 

implication in (24) states that if at least one of the links that point from any product i to 

product i’ is broken, then product i’ becomes the first product in the optimal sequence 

obtained for unit m during time period t. Similarly, according to the implication in (25) if at   

least one of the links pointing from product i to any product i’ is broken, then product i 

becomes the last product in the optimal sequence obtained for unit m during time period t. 

Note that with constraint (17), we guarantee that in each unit during each time period, exactly 

one link in the cycle can be broken. 

, ', , ', , ' , ,
m

i i m t i m t mi I
ZZP XF i I m t

∈
⇒ ∀ ∈∨   (24) 
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, ', , , ,'
, ,

m
i i m t i m t mi I

ZZP XL i I m t
∈

⇒ ∀ ∈∨       (25) 

 

The implications in (24) and (25) can be expressed mathematically as follows: 

', , , ', , ' , ,
m

i m t i i m t m
i I

XF ZZP i I m t
∈

≥ ∀ ∈∑       (26) 

, , , ', ,
'

, ,
m

i m t i i m t m
i I

XL ZZP i I m t
∈

≥ ∀ ∈∑       (27) 

Furthermore, exactly one product must be the first to be processed, and exactly one product 

must be the last to be processed. This is represented with constraints (28) and (29). 

1 ,
m

imt
i I

XF m t
∈

= ∀∑   (28) 

1 ,
m

imt
i I

XL m t
∈

= ∀∑   (29) 

Note that if only one type of product is assigned, then that product gets to be both the first 

and the last product. 

 

The changeover time across adjacent time periods depends on the last product of the current 

time period, imtXL , and the first product of the next time period, ' 1i mtXF +  (see example in 

Figure 9). 

XLi, m, t

P1t P2t P4 P1t+1 P2t+1

XFi’, m, t+1

T T+1

XLi, m, t

P1t P2t P4 P1t+1 P2t+1

XFi’, m, t+1

T T+1  
Figure 9. Changeovers across adjacent time periods 

 

Constraint (30) defines the sequence-dependent changeover variable , ', ,i i m tZZZ which becomes 

1 if product i at time t is followed by product i’ at time t+1 in unit m. Since the changeover 
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costs are minimized in the objective function, the variable , ', ,i i m tZZZ  can be treated as 

continuous, , ', ,0 1i i m tZZZ≤ ≤ . 

{ }, ', , , , ', , 1 1 , ' , ,i i m t i m t i m t mZZZ XL XF i i I m t T t+≥ + − ∀ ∈ ∈ −     (30) 

 

Another way of enforcing the same condition is to use the following set of constraints 

(Sahinidis and Grossmann, 1990): 

  
, ', , , ,

'

, ,
m

i i m t i m t m
i I

ZZZ XL i I m t
∈

= ∀ ∈∑            (30a) 

{ }, ', , ', , 1 ' , ,
m

i i m t i m t m
i I

ZZZ XF i I m t T t+
∈

= ∀ ∈ ∈ −∑      (30b) 

According to (30a), exactly one changeover occurs from product i at the end of time period t 

in unit m, if and only if i is the last produced last at time period t. Similarly, according to 

(30b), exactly one changeover to product i’ occurs at the beginning of time period t+1 in unit 

m if and only if product i’ is produced the first at time period t+1 in unit m. Constraints (30a) 

and (30b) yield a tighter formulation than constraint (30), and require fewer constraints. 

 

Finally, the following constraint corresponds to the time balance. It states that the total 

allocation of production times plus the total changeover time within that time period 

(constraint 23) plus the changeover time to the adjacent period (constraints 30a and 30b) 

cannot exceed the available time for each unit. 

, , , , , ', , '
'

,
m m m

i m t i m m t i i m t ii t
i I i I i I

NB BT TRNP ZZZ H m tτ
∈ ∈ ∈

⋅ + + ⋅ ≤ ∀∑ ∑∑    (31) 

 

f) Objective function 

, ' , ', , , ', , , ', ,
'

( )
m

m m

p inv oper
jt jt jt jt it imt

j t j t i I m t

trans
i i i i m t i i m t i i m t

i I i I m t

Max Z cp S c INV c FP

c ZP ZZP ZZZ
∈

∈ ∈

= ⋅ − ⋅ − ⋅

− ⋅ − +

∑∑ ∑∑ ∑∑∑

∑∑∑∑
  (32) 

The last term of the objective function stands for the changeover costs: the first term in the 

summation accounts for the changeover costs within each cycle, the second term stands for 
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the changeover cost of the link that was broken, and the last term stands for the changeover 

costs of the changeovers that occur across adjacent weeks.  

 

Remarks: 

1. For the cases where all the products are produced in a single stage and there are no 

subcycles, the detailed planning model yields the exact scheduling solution since the 

information of the timing of the individual batches is not required for this case. 

2. As was pointed out before, the formulation of the DP model given by equations (1)-(4), 

(12)-(31), might exhibit subcycles. In this case although no complete sequences are obtained, 

constraints (15)-(18) represent a relaxation and hence a valid bounding representation. The 

upper bound on the profit, however, will be higher compared to the case where there are no 

subcycles since the corresponding solution will result in an underestimation of the actual 

changeover times. Subcycles could be eliminated by the introduction of subtour elimination 

constraints as described in Birewar and Grossmann (1990). 

3. Each cycle is broken at the link corresponding to the highest changeover time within that 

cycle. This is ensured by the fact that changeover times are directly proportional to 

changeover costs and also the variable responsible from breaking the cycle ( , ', ,i i m tZZP ) has a 

positive coefficient in the objective function. 

4. The proposed detailed planning model (DP) is significantly larger in size than the relaxed 

planning model (RP) (see the examples in section 5), but predicts tighter upper bounds on the 

profit. 

6. Minimum number of  batches can be imposed by the following constraint: 

, , , , , ,i m t i i m t mi m tNB MRL YP I≥ ⋅ ∀ ∈       (33) 

where iMRL is the parameter denoting the minimum number of  batches. 

 

4. Solution Strategies 

The MILP models presented in the previous sections can be solved directly with branch and 

bound enumeration procedures. For large problems and long time horizons, however, the 

computational expense for solving the detailed planning (DP) model can be high. Therefore, 
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we consider as alternative a rolling horizon algorithm and also a relaxed version of the 

detailed planning model. 

 
4.1. Rolling Horizon Approach 

In this section, we describe a forward rolling horizon algorithm, which is a heuristic approach 

used to reduce the computational expense for solving the detailed planning model.  Instead of 

solving the entire planning horizon with the detailed planning model, we decompose the 

problem into a sequence of sub-problems that are solved recursively (Dimitriadis et al, 1997). 

In each sub-problem only the initial part of the horizon is modeled with the detailed planning 

model (DP) and the rest of the horizon is modeled with the relaxed planning model (RP). The 

solution of the detailed part is then fixed giving rise to the next sub-problem. 

 

As shown in Figure 10, with each sub-problem the time periods covered by the detailed 

model grows succesively whereas the time periods covered by the relaxed model shrinks. 

The computational cost of the problem is kept low despite the growing DP blocks by fixing 

the binary variables for the assignment and sequencing to their optimal values obtained in 

previous sub-problems. This recursive scheme continues until the entire planning horizon is 

solved with DP. 

 

DP RP

DP RPDP

DP RPDP DP

DP DP DP DP

Fixed

FixedFixed

FixedFixed

Fixed

Sub-Problem 1

Sub-Problem 2

Sub-Problem 3

Sub-Problem 4

DP RPDP RP

DP RPDPDP RPDP

DP RPDP DP

DP DP DP DP

Fixed

FixedFixed

FixedFixed

Fixed

Sub-Problem 1

Sub-Problem 2

Sub-Problem 3

Sub-Problem 4

 
Figure 10. Rolling horizon algorithm 
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Although it is possible to fix all the continuous and the binary variables to their optimal 

values obtained in previous sub-problems, we fix only the binary variables responsible from 

the assignment, imtYP , and the sequencing, 'ii mtZP  in order to reduce infeasibilities. 

 
Another decision concerns the length of the planning horizon that will be solved by the 

detailed planning model in each sub-problem. Depending on the computational effort 

required to solve the detailed planning models, a two period (week) rolling horizon or a three 

period (week) rolling horizon approach might be adopted instead of one in order to increase 

the accuracy of the solution (see Figure 11). 
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Figure 11. Rolling horizon with (a) two periods, (b) three periods 

 

We should note that the sequence-dependent changeovers across adjacent periods are 

accounted for within each detailed time block. However, they are neglected at the boundary 

between the detailed time block and the aggregated time block.  
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4.2. Relaxed Detailed Planning Model 

The relaxed planning model (DP*) is in essence the same with the detailed planning model 

which was described with constraints (1)-(5), (15)-(18), (20)-(23), (26)-(29), (30a)-(30b), 

(31-33) with the exception that in (DP*) we declare the variable number of batches ( , ,i m tNB ) 

to be continuous variables as opposed to integer variables. Since we are maximizing the 

profit, (DP*) will yield a valid upper bound on the profit. And as will be seen by the results, 

declaring the variable , ,i m tNB as continuous variables can significantly reduce the 

computational expense.  

 
5. Examples 

The application of the proposed models RP, RP*, DP, DP* and the rolling horizon algorithm 

(RH) will be illustrated with examples. Model RP is described by constraints (1)-(9), (9a), 

(10a)-(11b), (11), (12) and (33) where as in model RP* we eliminate constraints (9a) and 

(11). Models DP and DP*  on the other hand involve constraints (1)-(5), (15)-(18), (20)-(23), 

(26)-(29), (30a)-(30b), (31)-(33). For the representation of the rolling horizon algorithm (RH), 

(DP) is used for representing the detailed blocks whereas (RP*) is used to denote the 

aggregate blocks.  

 
In this section we present four different examples, with the last example corresponding to an 

industrial-sized problem. It should be noted that all the models presented in this paper have 

been implemented in GAMS 22.3 and solved with CPLEX 10.1 on an 2X Intel Xeon 5150 at 

2.66 GHz machine. The data for Example 1 is given in Appendix A and the data for all the 

other examples are available upon request. It is also interesting to note that no subcycles were 

obtained in any of the examples. 

 
Example 1 

This example consists of five different products, A-E to be processed on two reactors.  Each 

reactor can process only a subset of products (see Figure 12). Namely reactor R1 can process 

products A, B and E, whereas reactor R2 can process products C and D. All the products 

except product B are produced in a single stage, whereas product B requires product a as an 

intermediate.  
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Figure 12. Schematic representation of Example 1 

 
Example 1a. 

The model and solution statistics for a planning horizon of 6 weeks for detailed planning 

model (DP), detailed planning model with continuous number of batches (DP*), relaxed 

planning (RP) and rolling horizon (RH) is given in Table 1. The first three columns indicate 

the problem sizes in terms of number of binary variables, number of continuous variables and 

number of equations. The fourth column shows the CPU s and the last column shows the 

profit that was obtained. All of the solutions presented in Table 1 are obtained for a 0% 

optimality tolerance. The detailed planning model (DP) yields a profit of $4,599,724 in 9 

CPUs whereas the relaxed planning model overestimates the profit by 53.4% to $7,057,649 

due to underestimating the changeover times and costs. Relaxing the integer number of 

batches condition (DP*) resulted in 6.82% overestimation in profit yielding a profit of 

$4,913,459. For the application of the rolling horizon algorithm, the length of the detailed 

time block is selected as 2 weeks and thus the problem is solved in 3 iterations. As can be 

seen from Table 1, the rolling horizon resulted in the exact solution as the detailed planning 

model (DP). Note that the size reported for the rolling horizon algorithm corresponds to the 

size of the third iteration, in other words to the last iteration. Since at each iteration we do not 

fix all variables, but only the binary variables representing the assignments and the sequence 

within each week, the total number of constraints in the last iteration is the same as the 

detailed model. However, there is a slight decrease in the number of variables. 
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Table 1. Model and Solution Statistics of Example 1 for 6 Weeks of Planning Horizon 

method
number of 

binary variables
number of 

continuous variables
number of 
equations

time
(CPU s)

solution 
($)

detailed planning (DP) 276 452 567 9 4,599,724
detailed planning (DP*) 246 452 567 7.5 4,913,459
relaxed planning (RP) 60 175 289 0.64 7,057,649
rolling horizon (RH) 204 444 567 1.5 4,599,724

 
*continuous number of batches 

Table 2. Objective Function Cost Items for Example 1 for 6 Weeks 

($)
detailed

 planning
detailed

 planning *
relaxed 

planning
rolling 
horizon

sales 10,187,300 10,771,300 11,809,100 10,187,300
operating costs 3,806,240 3,974,750 4,368,080 3,806,240
inventory costs 31,336 33,091 23,371 31,336
transition costs 1,750,000 1,750,000 360,000 1,750,000
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12,023,000
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 planning
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planning
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horizon

sales
operating costs
transition costs
inventory costs

 
Figure 13. Objective function terms for Example 1 for 6 Weeks 
 
In Table 2, the objective function cost items in ($) are shown for the proposed models and the 

rolling horizon algorithm (see also Figure 13). As can be seen from Table 2, the relaxed 

planning model overestimates the sales by 16%, and underestimates the changeover costs by 

80% compared to the detailed model. If we are to analyze the results obtained by (DP*), we 

can see that (DP*) overestimates the sales by 6% due to non-integer number of batches 

whereas it yields the exact changeover costs as the detailed planning model (DP). 
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Figure 14. Optimal schedule generated by (DP) for Example 1a 
 
Figure 14 shows the number of batches of each product and the optimal sequence predicted 

for each time period in each unit. The solution did not exhibit any subcycles. Note, however, 

that despite the fact that product B required product A as an intermediate and that the initial 

inventory level for product A was zero, product B was assigned before product A. This is due 

to the fact that the mass balances are handled in an aggregate manner and the model tends to 

minimize the total changeover times and costs. Although the model ensures that the mass 

balances hold within each time period, it does not guarantee the assignment of the 

intermediate before the end product. Therefore, the schedule obtained by the detailed model 

does not correspond to a feasible schedule. 

 
Example 1b. 

This example is essentially the same as Example 1b except for the extension of the planning 

horizon to 12 weeks. Table 3 shows the model and solution statistics for this example, 

whereas Table 4 shows the objective function items in terms of sales, operating costs, 

inventory costs and changeover costs. Once again the solutions reported for Example 1b were 

obtained for a 0% optimality tolerance. The detailed planning model yielded a solution of 

$9,501,060 in 153 CPUs, which is 51% more accurate than the result obtained from the 

relaxed planning model, but with the expense of increasing the solution time 10 times and 

increasing the number of variables 3 times. While (DP*) overestimates the total profit by 7% 

compared to (DP), its computational requirements were reasonable. The rolling horizon 

algorithm on the other hand overestimated the total profit by only 2%, while reducing the 

CPU time by a factor of 7. 
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Table 3. Model and Solution Statistics of Example 1 for 12 Weeks of Planning Horizon 

 

method
number of 

binary variables
number of 

continuous variables
number of 
equations

time
(CPU s)

solution 
($)

detailed planning (DP) 552 908 1143 153 9,501,060
detailed planning (DP*) 492 908 1143 29.89 10,120,472
relaxed planning (RP) 120 349 577 14.76 14,351,686
rolling horizon (RH) 372 900 1143 22.8 9,343,221

 

 
Figure 15 shows the cost items in ($) for (DP), (DP*), (RP) and (RH). Note that, 

underestimating the effects of the changeovers in the relaxed planning model resulted in 11% 

overestimation in the total sales value and 83% underestimation in the changeover costs 

compared to the detailed planning model. 
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Figure 15. Objective function terms for Example 1 for 12 Weeks 
 
Example 1c. 

Table 5 shows the results for the same 5 products, 2 reactors example for a time horizon of 

24 weeks. For 0% optimality gap the detailed planning model yielded a profit of $17,939,396 

in 22,000 CPUs; when the optimality gap is set to 5% it yields a profit of $17,570,013 in 279 

CPUs. 

 
In the last row of Table 5, we show the results of the relaxed planning model (RP*) when 

none of the tightening constraints (9a), (9b) and (11) are added to the model. 
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Table 5.Model and Solution Statistics for Example 1 for 24 Weeks  

method
number of 

binary variables
number of 

continuous variables
number of 
equations

time
(CPU s)

solution 
($)

detailed planning (DP) 1104 1820 2295 22000 17,939,396
detailed planning (DP*) 984 1820 2295 164 19,102,539
relaxed planning (RP) 240 697 1153 15904 27,413,277
relaxed planning (RP*) 240 697 1009 160 30,477,546  
 
In Table 6, the objective cost items for (RP) and (RP*) are compared. Note that due to the 

absence of the tightening constraints, (RP*) underestimates the changeover costs by 173%. 

Also note that (RP) predicts the profit more accurately (11%) compared to (RP*) but at the 

expense of increasing the CPU time by a factor of 99. As can be seen from Table 6, (RP*) 

results in negative changeover costs. The reason for this is the variable tmUT ,  has a positive 

cost coefficient in the objective function and in the absence of constraint (11) the model 

tends to set tmUT , to the maximum available value since we are maximizing the profit. 

 
Table 6. Objective function items for RP* and RP for Example 1c 

($)
relaxed 

planning*
relaxed 

planning
sales 47,152,800 46,209,744
operating costs 17,595,240 17,243,335
inventory costs 140,014 113,132
transition costs -1,060,000 1,440,000

 
Table 7 shows the effect of optimality tolerance on the rolling horizon algorithm. As the 

results suggest, decreasing the tolerance results in more accurate values of the objective 

function but at the expense of increased solution times. 

 
Table 7. Effects of Tolerance on the Rolling Horizon Algorithm for Example 1c 

method
time

(CPU s)
solution 

($)
rolling horizon (RH) (0%) 1283 17,446,011
rolling horizon (RH) (1%) 1180 17,286,999
rolling horizon (RH) (5%) 38.51 15,874,108  
 
Example 2. 
 
In this example, there are 3 reactors (R1-R3) and 8 products (A-H) where all the products are 

produced in a single production stage. Each reactor can process a subset of the products (see 

Figure 16).  
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Figure 16. Schematic representation of Example 2 

 

Table 8 shows the problem sizes and the solution times for 6 weeks. The results presented are 

obtained for 0% optimality gap. Although, even for this small instance the detailed planning 

model requires more than 900 times the computational effort of the relaxed planning model, 

it results in 14% more accurate estimation of the profit compared to the relaxed planning 

problem. In fact, since in this example all the products are produced in a single production 

stage, and there are no subcycles in the solution (see figure 17a), the schedule obtained by the 

detailed planning model corresponds to the actual schedule.  

 
Table 8. Model and Solution Statistics for Example 2 for 6 Weeks  

method
number of 

binary variables
number of 

continuous variables
number of 
equations

time
(CPU s)

solution 
($)

detailed planning (DP) 864 1327 1483 1667 11,819
detailed planning (DP*) 792 1327 1483 96 12,211
relaxed planning (RP) 144 349 553 1.75 13,460
rolling horizon (RH) 624 1,291 1,483 322 11,377  
Figure 17, compares the number of batches of products and the sequences generated by DP 

and DP* where the number of batches are regarded as continuous variables. Note that, DP* 

not only results in non-integer number of batches but also different sequences for each unit 

and each time period compared to DP. 
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Figure 18a presents the variation of the profit for DP*, RP and RH for 5% optimality gap for 

planning horizons of 6, 12, 18 and 24 weeks. Figure 18b displays the corresponding CPU 

times on a logarithmic scale. 
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Figure 17. Comparison of DP and DP* for Example 2 for 6 Weeks 
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Figure 18.  Results for Example 2 for 6 – 24 Week 
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Example 3. 
This example is much larger in size compared to Example 1, specifically there are 10 

products (A-K) and 4 reactors (R1-R4). Products B and G are produced in two stages and 

require intermediates A and F respectively. As can be seen from Figure 19, reactor R1 can 

process products A, B and E, reactor R2 can process products C and D, R3 can process F, G 

and K, and finally R4 can process products H and J. 
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Figure 19. Example 3 with 10 Products and 4 Reactors 
 

Example 3a. 

In Example 3a, we present the results for a planning horizon of 6 weeks. Table 9 shows the 

model size and statistics for this example. The first row stands for the results obtained by the 

detailed planning model (DP) whereas the second row presents the results for (DP*) detailed 

planning model with continuous number of batches. The third row and the fourth row show 

the results for relaxed planning model (RP) and the rolling horizon approach (RH), 

respectively. The results shown in this table are obtained for a 0% optimality gap. The 

relaxed planning model overestimates the profit by 40% whereas (DP*) overestimates the 
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total profit by 7%. The rolling horizon approach resulted in the exact same solution as the 

detailed model. 

 
 
Table 10 presents the objective function items for the models corresponding to Table 9. It 

shows that the relaxed planning model overestimates the total sales by 12% and 

underestimates changeover costs by 60% with respect to the detailed planning model. (DP*) 

on the other hand, overestimates the total sales by only 5%  while resulting in the same total 

changeover costs with the detailed planning model (DP).   

 
 
Table 9.Model and Solution Statistics for Example 3a for 0% optimality tolerance  

method
number of 

binary variables
number of 

continuous variables
number of 
equations

time
(CPU s)

solution 
($)

detailed planning (DP) 552 903 1133 56.421 9,199,448
detailed planning (DP*) 492 903 1133 18 9,826,918
relaxed planning (RP) 120 349 469 12.56 12,901,329
rolling horizon (RH) 408 887 1133 7.17 9,199,448

 
 
Table 10.Objective Function Items for Example 3a for 0% Optimality Tolerance  

($)
detailed

 planning
detailed

 planning*
relaxed 

planning
rolling 
horizon

sales 20,374,600 21,342,600 22,778,000 20,374,600
operating costs 7,612,480 7,949,500 8,489,600 7,612,480
inventory costs 62,671 66,182 47,071 62,671
transition costs 3,500,000 3,500,000 1,340,000 3,500,000

 

 
Table 11 compares the number of batches obtained by the detailed planning model and the 

relaxation of the detailed planning model where the number of batches was declared as 

continuous variables. 

 
Example 3b. 

In part b of Example 3, we extend the planning horizon to 12 weeks. Table 12 presents the 

results obtained for (DP), (DP*), (RP) and (RH) for 0% optimality tolerance. The detailed 

planning model yields a profit of $ 18,951,172 in 27,000 CPUs on the other hand if the 

optimality gap is set to 5%, then a profit of $ 16,681,769 is obtained in 3,500 CPUs.  As 

Table 12 suggests, (DP*) overestimates the profit by 7% with respect to (DP), whereas (RP) 

overestimates the profit by 44% with respect to (DP).  
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Table 11. Comparison of Number of Batches obtained by (DP) and (DP*) for Example 3a  

T1 T2 T3 T4 T5 T6
A in R1 2 6 0 0 4 10
B in R1 2 4 2 0 3 0
E in R1 6 0 7 11 3 0
C in R2 4 0 4 6 2 0
D in R2 2 8 2 0 5 8
F in R3 2 6 0 0 4 10
G in R3 2 4 2 0 3 0
K in R3 6 0 7 11 3 0
H in R4 4 0 4 6 2 0
J in R4 2 8 2 0 5 8

T1 T2 T3 T4 T5 T6
A in R1 2 6.437 0 0 3.203 10.5
B in R1 2 4 2 0 3 0
E in R1 6 0 7.2 11.2 4.051 0
C in R2 3 0 2 7 2 0
D in R2 3.9 8.4 4.5 0 5.15 8.4
F in R3 2 6.437 0 0 3.203 10.5
G in R3 2 4 2 0 3 0
K in R3 6 0 7.2 11.2 4.051 0
H in R4 3 0 2 6.717 2 0
J in R4 3.9 8.4 4.5 0 5.15 8.4

Number of batches obtained from (DP)

Number of batches obtained from (DP*)

 
 
 
Table 12. Objective Function Items for Example 3b for 0% Optimality Tolerance  

method
number of 

binary variables
number of 

continuous variables
number of 
equations

time
(CPU s)

solution 
($)

detailed planning (DP) 1104 1815 2285 27000 18,951,172
detailed planning (DP*) 984 1815 2285 308 20,205,487
relaxed planning (RP) 240 697 1033 435 27,310,348
rolling horizon (RH) 744 1799 2285 1192 17,246,014  
 

Example 3c. 

We extend the planning horizon to 24 weeks in this example. The detailed planning model 

becomes computationally very expensive to solve this example. Therefore, we present the 

results for (DP*), (RP) and (RH). 

 
Tables 13 and 14, display the sizes and results for 5% and 3% optimality tolerances, 

respectively. The last three rows of both tables correspond to the rolling horizon algorithm by 

using 2, 3 and 4 detailed time periods per iteration. As the results suggest, the accuracy 

increases as the number of detailed time periods increase but at the expense of increased 

solution times. 
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Table 13. Problem Sizes for Example 3c  

method
number of 

binary variables
number of 

continuous variables
number of 
equations

detailed planning (DP*) 1968 3639 4589
relaxed planning (RP) 480 1393 1873
rolling horizon (RH) (2B) 1416 3623 4589
rolling horizon (RH) (3B) 1452 3623 4589
rolling horizon (RH) (4B) 1488 3623 4589  
 
 
Table 14. Results for Example 3c for 3% and 5% optimality tolerance  

method
time

(CPU s)
solution 

($)
time

(CPU s)
solution 

($)
detailed planning (DP*) 17977 44,927,589 890 44,782,747
relaxed planning (RP) 428 54,793,780 30 54,122,362
rolling horizon (RH) (2B) 1199 37,570,228 158 38,605,704
rolling horizon (RH) (3B) 2464 40,303,229 165 39,047,238
rolling horizon (RH) (4B) 2932 40,967,510 1196 39,625,581

3% 5%

 
 
Example 4 

In this final example we present an industrial-sized case study that consists of 15 Products 

and 6 reactors. Figure 20 shows which products can be processed by each of the units. Table 

15 presents the results for a planning horizon of 48 weeks for 6% optimality tolerance. Since 

this problem is much larger compared to the previous examples, both in terms of size and the 

length of the planning horizon considered, the detailed planning model became very 

expensive to solve, and hence we present only the results for the relaxed planning (RP) 

model and rolling horizon (RH). As we have mentioned before, in the rolling horizon 

algorithm, we only fix the binary variables denoting the assignments and sequencing within 

each time period. In the last row of Table 15, we show the results for the rolling horizon 

algorithm where all the binary variables are fixed through the iterations. Fixing all the binary 

variables reduce the computational time by a factor of 5 however, at the cost of decreasing 

the accuracy by 2%. 
Table 15. Results for Example 3c for 3 % optimality tolerance  

method

number of 
binary 

variables

number of 
continuous 
variables

number of 
equations

time
(CPU s)

solution 
($)

relaxed planning (RP) 2,592 5,905 9,361 362 224,731,683
rolling horizon (RH) 10,092 25,798 28,171 11,656 184,765,965
rolling horizon (RH**) 1,950 25,798 28,171 4,554 182,169,267  
** All binary variables fixed 
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Figure 20. Batch processing plant of Example 4 

 

Figure 21 shows the variation of profit and CPU time for Example 4 with respect to 6, 12, 24 

and 48 weeks of planning horizons.  
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Figure 21. Variation of Profit ($) and CPU time with respect to periods for Example 4 
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6. Conclusions 

This paper has addressed the production planning of parallel multi-product batch reactors 

with sequence-dependent changeovers. We have proposed two alternative MILP models for 

handling sequence-dependent change-over times and costs. Both models determine the 

allocation of products to available equipment, number of batches of each product for each 

unit, each time period as well as production and inventory levels. The difference between the 

two models lies in the handling of the sequence-dependent change-over times. The first 

model (RP) is based on underestimating the effects of changeovers, and therefore results in 

an overestimation of sales and the profit. The second model (DP), on the other hand, 

explicitly accounts for scheduling via sequencing variables and constraints. Due to its ability 

to incorporate scheduling at the planning model, it results in more accurate production plans 

compared to (RP). In fact, in the absence of sub-cycles in the solution and for the case of a 

single stage, (DP) produces the exact production schedule as a corresponding detailed 

scheduling model would. However, as has been shown with numerical results, there is a 

trade-off between the extent of scheduling decisions incorporated and the size of the resulting 

problem. The detailed planning model (DP) yields more realistic production plans compared 

to (RP) but at the expense of increasing the number of binary variables, continuous variables 

and the number of constraints.  

 

The results have shown that the detailed planning model has good computational 

performance for modest sized problems, but it becomes computationally expensive for large 

scale problems. In order to tackle large problems without giving up significantly  the solution 

quality, we have presented a rolling horizon algorithm (RH) and a relaxation of the detailed 

planning model (DP) in which the number of batches is treated as a continuous variable. The 

rolling horizon provides a lower bound on the profit, and for small problems it tends to yield 

the same solution as the detailed planning model, whereas for larger problems it 

underestimates the profit typically by up to 10%. Relaxing the detailed planning model by 

declaring the number of batches as continuous variables (DP*) over estimates the profit by 

up to 8% but greatly decreases the computational effort. 
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Appendix A 

Data for Example 1: 

 
Table A1. Batch Sizes and Batch Times for Example 1 

Batch Size (lb)
R1 R2

A 80,000 80,000
B 96,000 96,000
C 120,000 120,000
D 100,000 100,000
E 150,000 150,000

Batch Time (hrs)
R1 R2

A 16 16
B 10 10
C 25 25
D 20 20
E 15 15

 
 
 
Table A2. Changeover Times and Changeover Costs for Example 1 

Product
Product A B C D E

Transition times (hrs)
A 0 25 30 20 35
B 22 0 42 8 40
C 25 5 0 15 32
D 22 12 28 0 17
E 29 4 45 21 0

Transition costs ($)
A 0 250 300 200 350
B 220 0 420 90 400
C 250 50 0 150 320
D 220 120 280 0 170
E 290 40 450 210 0
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Table A3. Selling Price and Cost Data for Example 1 

Product
operating
costs ($/lb)

selling
price 
($/lb)

inventory 
costs

($/(lb w))
A 0.35 0.95 0.01496
B 0.34 0.99 0.01339
C 0.36 0.9 0.01418
D 0.37 1 0.01539
E 0.3 0.85 0.01618  
 
Table A4. Minimum Number of Batches for Example 1a, 1b, and 1c  

Min Run Lengths (hrs)
6 Weeks 12 Weeks 24 Weeks

A 2 2 2
B 2 2 3
C 2 2 2
D 2 2 3
E 2 2 2  
 
Table A5. Lower Bounds for Demands for Example 1a 

Demand (lb/w)

Product
time period

1
time period

2
time period

3
time period

4
time period

5
time period

6
A 80,000 80,000 80,000 160,000 320,000 80,000
B 192,000 384,000 96,000 96,000 192,000 96,000
C 240,000 120,000 120,000 120,000 240,000 120,000
D 200,000 100,000 100,000 200,000 300,000 200,000
E 150,000 300,000 150,000 100,000 150,000 300,000  
 
Table A6. Lower Bounds for Demands for Example 1b 

Demand (lb/w)

Product
time period

1
time period

2
time period

3
time period

4
time period

5
time period

6
A 80,000 80,000 80,000 160,000 320,000 80,000
B 192,000 384,000 96,000 96,000 192,000 96,000
C 240,000 120,000 120,000 120,000 240,000 120,000
D 200,000 100,000 100,000 200,000 300,000 200,000
E 150,000 300,000 150,000 100,000 150,000 300,000

Product
time period

7
time period

8
time period

9
time period

10
time period

11
time period

12
A 160,000 80,000 80,000 160,000 80,000 160,000
B 192,000 192,000 96,000 96,000 192,000 192,000
C 240,000 480,000 120,000 120,000 240,000 120,000
D 100,000 300,000 200,000 200,000 300,000 100,000
E 300,000 150,000 300,000 150,000 150,000 300,000  
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Table A7. Lower Bounds for Demands for Example 1c 

Demand (lb/w)

Product
time period

1
time period

2
time period

3
time period

4
time period

5
time period

6
A 80,000 80,000 80,000 160,000 320,000 80,000
B 192,000 384,000 96,000 96,000 192,000 96,000
C 240,000 120,000 120,000 120,000 240,000 120,000
D 200,000 100,000 100,000 200,000 300,000 200,000
E 150,000 300,000 150,000 100,000 150,000 300,000

Product
time period

7
time period

8
time period

9
time period

10
time period

11
time period

12
A 160,000 80,000 80,000 160,000 80,000 160,000
B 192,000 192,000 96,000 96,000 192,000 192,000
C 240,000 480,000 120,000 120,000 240,000 120,000
D 100,000 300,000 200,000 200,000 300,000 100,000
E 300,000 150,000 300,000 150,000 150,000 300,000

Product
time period

13
time period

14
time period

15
time period

16
time period

17
time period

18
A 160,000 80,000 320,000 160,000 320,000 80,000
B 192,000 384,000 96,000 192,000 384,000 96,000
C 240,000 120,000 120,000 240,000 0 120,000
D 400,000 300,000 100,000 100,000 100,000 200,000
E 300,000 0 300,000 150,000 300,000 300,000

Product
time period

19
time period

20
time period

21
time period

22
time period

23
time period

24
A 80,000 320,000 80,000 80,000 160,000 160,000
B 192,000 384,000 768,000 384,000 192,000 384,000
C 120,000 480,000 120,000 120,000 240,000 480,000
D 100,000 200,000 400,000 200,000 100,000 400,000
E 300,000 150,000 150,000 0 300,000 150,000
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Nomenclature: 

Indices 

, 'i i  tasks 

j  products 

m  units 

t   time periods 

t  last time period 

Sets 

I  set of tasks 

mI  set of tasks that can be processed in unit m 

jPS  set of tasks that produce product j 

jCS  set of tasks that consume product j 

M  set of units 

iM  set of units that can process task i 

Parameters 
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imtBound  maximum amount of material that can be processed by task i in unit m 

during time period t  

,i mBT  batch processing time of task i in unit m 

,i mQ  batch size of task i in unit m 

jiρ  mass balance coefficient for the production of product j by task i 

jiρ  mass balance coefficient for the consumption of product j by task i 

,j tD  demand for product j at the end of time period t 

,i mTR  minimum changeover time for task i in unit m 

, ',i i mτ  changeover time required to change the operation from task i to task i’ in unit 

m 

tH  duration of the tth time period 

,i mTRC  minimum changeover cost for task i in unit m  

oper
itc  operating cost of task I in unit m 

inv
jtc  inventory cost of product j at the end of time period t 

jtcp  selling price of product j at the end of time period t 

, ',
trans
i i mc  changeover costs of changing the production from task i to i’ in unit m 

Variables 

, ,i m tYP  binary variable denoting the assignment of task i to unit m at each period t 

imtNB  integer variable denoting number of each batches of each task i in each unit m 

at each period t 
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imtFP  amount of material processed by each task i 

jtINV  inventory levels of each product j at each time period t 

jtP  the total amount of purchases of product j during time period t 

,j t
S  sales of product j at the end of time period t 

,m tU  maximum of the minimum changeover times of products assigned to unit m 

during time t 

,m tUT   maximum of the minimum changeover costs of products assigned to unit m 

during time t 

'ii mtZP  binary variable becomes 1 if product i precedes product i’ in unit m at time 

period t, 0 otherwise 

'ii mtZZP  binary variable which becomes 1 if the link between products i and i’ is to be 

broken, otherwise it is zero 

,m tTRNP  total changeover time for unit m within each period 

, ,i m tXF  binary variable denoting the first task in the sequence 

, ,i m tXL  binary variable denoting the last task in the sequence 

, ', ,i i m tZZZ  changeover variable denoting the changeovers across adjacent periods 


