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Abstract 
  
 We propose a rigorous approach for the operational planning of supply chains considering 
carbon intensity limits in final products. Accurately tracking of these indicators along the value chain 
can be challenging when dealing with bulk products. Production, transportation, blending and 
separation of components yield a complex pooling problem within a network structure. A novel 
mixed-integer nonlinear model is developed to optimize shipping schedules, inventories, processing 
and distribution of products while complying with environmental constraints of different markets. 
The model allows for rigorous monitoring and managing of carbon indicators, as well as for drawing 
important conclusions about sourcing strategies. A decomposition algorithm is presented for this 
problem, which permits obtaining high quality solutions in reasonable times. A global scale case 
study is solved to illustrate the economic impact of operating under carbon intensity limits, as well as 
suggesting alternative operating modes when the penalties on exceeding carbon targets are high. 
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1. Introduction 
 

During the last two decades there has been a significant interest of organizations, researchers and 
governments to develop sustainable production and logistics systems worldwide. As public agencies 
work to establish safe criteria for controlling the environmental impacts of economic activities, 
consumers become more stringent and demand greener products and services. In this context, 
companies are striving to implement effective operations management strategies that rely on precise 
quantitative indicators and specific targets. The carbon footprint, defined as the amount of carbon 
dioxide and other greenhouse gases emitted by direct or indirect human activity, has been one of the 
most important indicators for controlling emissions and building environmental management 
strategies for procurement, production, transportation and inventory management across supply 
chains (Benjaafar et al., 2013). Increasingly, sustainability reports and strict regulations such as 
carbon trading systems, carbon cap and carbon taxes appear to be the most effective ways to promote 
carbon footprint reduction in value chains (Caritte et al., 2015).  To meet these demands and stay 
competitive, companies need to evaluate several important factors. On the one hand, they need to 
assess and identify critical stages in the supply chain where they can implement operational changes 
to reduce environmental impact without compromising business goals. On the other hand, accurate 
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tools are required to track indicators, define goals and measure the progress of changes while 
predicting network behaviors. Furthermore, it may be necessary to collaborate with suppliers of raw 
materials, intermediate products, or logistics services to effectively manage carbon indicators (Ghosh 
et al, 2020). 

Although carbon footprint indicators are currently the primary focus of regulations, there are 
other indicators that can aid in identifying processes and guiding actions to enhance the environmental 
performance of supply chains. In fact, these indicators are increasingly being recognized as new 
benchmarks for evaluating the sustainability of production processes. Carbon intensity (CI) indicators 
seek to assess emissions per unit of economic activity or output of a process and are key elements in 
sustainable operations management. Carbon intensity labels of products and services seem to be one 
of the most promising and effective strategies for the future in terms of specifying the environmental 
quality of goods, providing transparency to consumers, partners and regulators (Burgess and Nye, 
2008; Xu and Lin, 2021; Majer et al., 2022, Taufique et al., 2022).  Furthermore, new perspectives 
are proposed from these indicators for analyzing operations (processing, storage, transportation) and 
related energy consumption to determine their specific contribution to unit emissions, and deciding 
on technological improvements to aid in supply chain planning. However, performing tasks in a 
cleaner way often requires increasing operating costs, reducing throughput or affecting delivery 
times, leading to a significant trade-off between economic performance and sustainability (Martí, 
2015; Mala, 2022). Optimally planning operations in a value chain using rigorous tools allows 
organizations to respond to their customers in the timely delivery of goods and services, while 
respecting environmental constraints or goals. Nevertheless, for many industries, tracking carbon 
intensity indicators accurately along a supply chain is not trivial. 

In this paper, we present a general mathematical programming model that allows planning 
production and logistic operations in an economical way considering carbon intensity constraints 
imposed by different markets. By means of a State-Network-Task (STN) representation (Kondili et 
al., 1993) we accurately monitor the carbon intensity of the products through the operations of the 
supply chain. This monitoring is particularly relevant when dealing with bulk products because 
different streams with different carbon intensities can be mixed to comply with restrictions, like in 
pooling problems (Castro, 2016). Thus, a nonlinear, non-convex formulation is obtained of the 
corresponding mixed-integer nonlinear programming model giving rise to serious challenges when 
seeking for optimal solutions. To tackle these challenges, an efficient decomposition is proposed to 
obtain high quality solutions to large-scale problems in reasonable times. First, a linear approximation 
of the CI is used to define the maritime transportation plan. Then, we refine and calculate precise CI 
indicators in a second subproblem. Given that global scale value chains can involve long-duration 
operations (in the order of weeks), the decomposition strategy is combined with a rolling horizon 
approach to be implemented over extended time horizons. We also discuss the challenges of 
accurately tracking CI, given that bilinear equalities are required to calculate the resulting values. The 
main contribution of this work lies in proposing a novel computational decision-making tool where 
carbon intensity indicators can be monitored, managed and limited stage by stage along the value 
chain. In this approach, the decision on how to execute each task can affect the amount of GHG 
emissions, while the combination of flows throughout the operations will finally lead to optimal 
carbon indicators at the points of delivery. 

The following sections are structured as follows. First, we introduce the concept of carbon 
intensity in the management of sustainable supply chain operations, its usefulness, difficulties and 
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need for strict monitoring. Next, the most important contributions in terms of planning and design of 
supply chains under environmental constraints are reviewed, showing that there is a strong gap in the 
management of operations with accurate monitoring of carbon intensity indicators. We also discuss 
the concept of optimization in supply chain planning and how it can be affected when explicit carbon 
intensity constraints are introduced at each stage. Subsequent sections formally define the problem 
and present the MINLP optimization model. Finally, illustrative and real-world case studies involving 
the transportation, storage and processing of energy products along a global supply chain are 
presented. Conclusions are drawn regarding the economic impact of CI constraints in supply chain 
planning and how carbon penalties can be planned on target overruns. 

 
1.1 Carbon intensity indicators for sustainable supply chains 
 
The operation of sustainable supply chains must be based on quantitative and reliable measures 

of their environmental impact. Carbon intensity indicators refer to a way of assessing the impact of 
industry operations in terms of total GHG emissions and/or consumption per mass unit of product 
being processed (typically measured in tons equivalent of CO2 due to its predominance among GHG). 
The use of these indicators to evaluate the sustainability of supply chains are becoming increasingly 
prevalent, turning critical for companies that aim at commercializing products in stringent markets 
by meeting regulations, to avoid economic penalties and to remain competitive (Ghosh et al., 2020). 
Depending on the nature of the operations, technological specifications and equipment, companies 
may seek to manage carbon intensity indicators by finding more sustainable ways to perform their 
processing and/or logistics tasks, eventually optimizing their value chain. Once the objectives and 
constraints have been defined in terms of carbon intensity targets from business, adapting supply 
chain operations to new standards may require evaluating alternative configurations and to re-assess 
the economic viability of supply chains. In contrast to discrete manufacturing industries, the 
assessment of carbon indicators along the value chain in the process industry becomes more complex 
since in continuous and batch processes bulk components may come from different suppliers and are 
mixed together to yield a common product that is then manufactured through different operations. In 
such cases, the carbon intensity of inlet streams cannot only be different, but also vary over time, 
from which stringent criteria must be established to assess the carbon intensity in the final product. 
Computing carbon footprint per mass unit of product in these cases leads to the need of accurately 
assessing emissions through a pooling problem scheme (Foulds et al., 1992; Adhya et al., 1999) that 
must be integrated with the calculation of carbon intensity indicators from every activity along the 
supply chain.  

Figure 1 shows a simplified superstructure of alternatives for the optimal operation of a global 
supply chain illustrating a wide variety of processing tasks, storage nodes and flows that may 
converge at different points. Accurate calculation of the carbon intensity (CI) indicator at the end of 
the value chain also requires computing it at intermediate points. In such nodes, inlet flows merge 
with the inventory of material available from previous periods, and all of these amounts may have 
different carbon footprint indicators. Keeping track of CI at end points requires managing upstream 
tasks on components that are often shared among products. Thus, a new dimension is added to modern 
supply chains, in particular for the operations management problem, raising the question on how to 
meet the demand for different products under required specification of environmental impact. The 
inclusion of quantitative environmental indicators in the commercialized products poses new 
challenges that must be rigorously addressed.  
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Figure 1 – Simplified superstructure for global supply chain operation 
 
 

1.2 Literature review  
 
 In recent years, relevant work has been focused on developing best practices and gaining a 
better understanding of the effective management of supply chains in a sustainable manner. This trend 
can largely be attributed to the increasing concern of markets and governments to implement policies 
that restrict the environmental impact of operations and facilitate the attainment of objectives outlined 
by international agreements. One of the first clear definitions of sustainable supply chains is 
introduced by Hervani et al. (2005). The authors suggest that the combination of green procurement, 
environmental management of production and circulation across the network, marketing and reverse 
logistics is a key characteristic of a sustainable supply chain.  Sundarakani et al. (2010) formally 
extend the concept by including new aspects such as supplier and sourcing selection, product design, 
packaging and end-of-life management. Carter and Easton (2011) survey and study the most 
important developments of the previous two decades showing a growing trend in the research 
community, and highlighting how the development of sustainable chains can become a license to 
operate businesses in the 21st century. The authors also highlight how the transportation stages are 
often the focus of attention due to their high impact on carbon footprint. Further on, a detailed review 
on the impact of sustainable practices in corporate performance is carried out by Younis et al. (2016). 
This paper explores the importance of decisions such as design, purchase, cooperation and reverse 
logistics on operational, environmental and social performance. Ghosh et al. (2020) analyze the 
impacts of sustainable supply chain management in different industries, recognizing a general shift 
toward adapting existing supply chains to a sustainable scheme rather than designing new ones. The 
authors identify an important gap in designing more specific indicators for planning cleaner processes 
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and the need to incorporate social dimensions into the studies. Although these papers provide insights 
into the management of sustainable operations, they mainly conclude on qualitative implications. 
Nevertheless, most of them agree on the need to develop precise indicators and policies for the 
transformation of supply chain operations management. 
 Numerous contributions explore the trade-off between environmental sustainability and 
economic performance in supply chains (Azapagic and Clift, 1999; Joshi, 2022). From an operations 
research perspective, these contributions assess the impact of environmental constraints, carbon 
market conditions, technologies, and alternative strategies on the design and operation of supply 
chains. An approach that integrates mixed-integer mathematical programming and lifecycle analysis 
(LCA) has been proposed by Hugo and Pistikopoulos (2005) to optimize investments related to the 
design and planning of supply chains. The authors minimize total emissions along with design and 
operating costs. Subramanian et al. (2010) introduce a mathematical modeling approach to combine 
environmental considerations to manufacturing management decisions. In their work, the authors 
determine capacities, inventories and production volumes under environmental goals and constraints. 
They also include carbon credits purchase as decision variables. Guillén-Gonsálbez and Grossmann 
(2009) develop a stochastic approach that integrates LCA principles to simultaneously account for 
net present value (NPV) maximization, while minimizing the environmental impact for a given 
probability level in chemical supply chains. They include design and operational decisions. In turn, 
Ramudhin et al. (2010) present a mixed integer optimization model to simultaneously account for 
logistic costs and environmental penalties under the emission trading system of different markets. 
Accounting for carbon constraints, Garcia-Alvarado et al. (2016) make use of a mixed-integer linear 
programming (MILP) formulation to assess the relationship between green initiatives, production and 
inventories strategies under carbon caps and trade policies. They show how new investments in 
cleaner technologies might be necessary to be profitable under certain carbon market conditions. In 
the same year, Shaw et al. (2016) propose a chance constraint formulation where material flows and 
facility location are decided. They confirm that carbon prices and caps strongly condition material 
flows and the design of the supply chain.  
 It is important to note that the optimal design and planning of sustainable supply chains is not 
exclusive of chemical industries. Govindan et al. (2014) propose a two-stage approach where a two-
echelon location routing problem is solved to economically and environmentally optimize a 
perishable food supply chain network. In their work, costs associated with facilities, transportation 
and emissions are minimized through a tailored metaheuristic strategy. Kellner and Igl (2015) focus 
on food distribution logistics and propose a quantitative analysis to rearrange transport and storage 
flows to reduce carbon footprint. However, the research is focused on only five generic distribution 
alternatives. In turn, Allaoui et al. (2018) tackle the optimal design of agro-food supply chains by 
selecting convenient industry partners and solving a mixed-integer mathematical programming model 
to optimally design the supply chain network by minimizing costs, emissions, water use and 
accounting for job generation. Jiang et al. (2019) propose an MILP formulation that includes partner 
selection, production technology, type of vehicles and recovery materials flows. They address the 
problem of a Chinese beverage company to illustrate how carbon prices may significantly affect 
supply chain design.  

Despite the fact that all these contributions propose optimization approaches for sustainable 
supply chains, they mainly focus on their design. Furthermore, there is scarce research on how to 
manage emissions from materials that have to be labeled and traced throughout the system. In most 
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of these cases, emissions are quantified extensively along the value chain but without accounting for 
different standards imposed by different markets. On the other hand, most of these approaches are 
particular to specific industry supply chains, so generalization is difficult. To the best of our 
knowledge, there is no rigorous tool for the optimal management of supply chain operations that 
allows accurate tracking and administration of carbon intensity indicators at every stage of the value 
chain.  

 
1.3 Problem motivation 

 
In supply chains of global scale, materials and components enter the network through diverse 

sources, often overseas, with different carbon intensity properties. Along the value chain, the 
activities carried out on these materials tend to increase the carbon intensity of the products according 
to how they are performed (e.g., depending on the energy source being used). In this context, an 
important trade-off arises when deciding how to plan and execute operations in order to meet demand 
under CI specification at minimum total cost. More specifically, tasks can be performed in different 
ways affecting not only costs and yield rates (among other productivity measures) but also through 
the magnitude of their carbon impact, often being greener at the expense of higher costs (e.g., 
transporting products by electric trucks instead of diesel trucks). In fact, determining which tasks 
should change operating conditions to reduce either emissions or costs (seeking to meet specifications 
or improve the overall economic performance) is also an important goal. For instance, it might be 
necessary to anticipate the reduction of emissions in the value chain (e.g., at the level of feedstocks) 
in order to obtain a better economic performance towards the final end of the network (e.g., final 
distribution).  

Figure 2 illustrates a simple example of a chemical industry mixing different streams of the same 
feedstock coming from different locations into a common tank. Without loss of generality, it is 
assumed that a single feedstock A can be indistinctly supplied from two sources and is converted to 
a final product B by a sequence of two processes. One of the feedstock streams comes from the main 
facility (S1), whose production has a relatively high carbon emission rate. By contrast, the other 
stream comes from a cleaner source (S2), but needs a transportation task to get to the processing 
facility and mix with the feedstock coming from S1. An important assumption is that materials of 
different CI can be mixed to obtain a blend of materials with a different CI, resulting from the mass 
average of their original properties. From the production perspective, feedstocks from any source and 
blends are equivalent and interchangeable. After that, two sequential processes are performed. Each 
of them can be executed in alternative modes, thus yielding different carbon emissions. If a maximum 
CI is imposed on the final product, it might be required to increase the proportion of feedstock from 
S2 or to reduce emissions at the transportation or processing stages. Generally speaking, tasks across 
the supply chain can reduce their emissions by increasing their execution times, incurring in higher 
costs and/or reducing production yields. That is the case of maritime transportation for which shipping 
material at lower speeds reduces emissions due to lower drags. Similarly, certain processes can 
manage CI by adopting different operation settings. 
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Figure 2 – Illustrative example for carbon intensity management 

 
2. Problem statement  

 
Consider a supply chain whose nodes are connected through material transfer paths that rely on 

logistics and transportation resources. To keep operations running, several tasks might be required, 
such as onshore and offshore transportation, storage and material processing stages. Each of these 
operations can be performed in alternative ways (i.e., using different means of transportation, fuels, 
speeds, catalyst, yields, energy sourcing or type of feedstocks, among others), giving operators the 
chance to reduce carbon dioxide emissions but directly impacting costs. In particular, in this work we 
address a global supply chain including maritime transportation, packing, processing and unpacking 
stages, onshore transportation and storage tasks, as illustrated in Figure 1. More specifically, the 
supply chain planning problem under carbon intensity constraints can be stated as follows.  

Given: (a) a set of source nodes producing feedstocks at known rates and carbon intensity levels; 
(b) storage nodes with tanks of known capacity; (c) customer nodes/markets with known demand 
rates and carbon intensity requirements; (d) a set of transportation maritime resources that can move 
at different speeds; (e) a set of processing tasks to be performed over feedstocks to transform them 
into final products; and (f) a fleet of vehicles using alternative fuels/energy sources to carry out ground 
transportation tasks.  

We seek to determine: (i) the optimal planning of offshore shipments and their corresponding 
speed; (ii) the optimal operations plan of packing and unpacking operations; (iii) the optimal planning 
of processing operations; and (iv) the optimal number of daily onshore shipments to meet customers’ 
demands using different trucks. The optimization model will seek to minimize the total cost of supply 
chain operations, while meeting demands under CI constraints.  
 

2.1 Model Assumptions 
 

1. We assume a given supply chain network structure where connections between sourcing, 
storage points and end customers are predefined (see Figure 1). 

2. Without loss of generality, we consider a single feedstock A that is supplied from different 
sources and converted into the final product B. 

3. The total time horizon is specified and discretized into daily periods. 
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4. Daily production rates of feedstocks at different sources, with different carbon intensities, are 
given data.  

5. Material flows are combined instantaneously at storage points, resulting in a homogeneous 
mixture with mass-averaged carbon intensity. 

6. For the maritime transportation, it is assumed that direct trips and milk-runs of up to two 
destinations can be carried out. In any case, every ship returns to its assigned source node.  

7. No ship can remain loaded by the end the time horizon.  
8. All emissions (CI) from transportation tasks sharing two delivery points are distributed on a 

mass-basis among the destination nodes, according to the material delivered to each of them. 
9. To simplify the CI calculations, ship speeds for maritime transportation are selected from a 

discrete set of alternatives. 
10. For safety reasons, no vessel can carry less than 30% of its capacity on any of the forward 

voyages. 
11. All trips that have started within the current planning horizon must deliver the material before 

the end of the horizon. However, ships are not required to return to their sources within the 
planning horizon. 

12. For processing stages, energy can be acquired from renewable sources (typically wind and 
solar) or from non-renewable sources (typically coal and natural gas). Energy sources can be 
combined on a continuous basis and the energy mix can be adjusted day by day. 

13. There is a finite set of modes of operation for batch processing steps that can be changed on 
a daily basis. 

14. Economic penalties are assumed for delivering material out-of-specification to end 
customers.  

15. Demand that is not met at any period of time incurs in an economic loss for the supply chain. 
 
 
3. Mathematical Formulation  
 

When using mathematical programming techniques to plan supply chain operations, several 
logistic and production activities have to be modeled and specified. In addition, managing carbon 
intensity along the chain means that each of these tasks may perform differently in terms of carbon 
dioxide emissions according to operational decisions. If those tasks have different ways of being 
carried out, which might be tuned in order to properly manage carbon intensity indicators, such 
alternatives should be included in the optimization model. In this section, we present a discrete-time 
State-Task-Network (STN) representation (Kondili et al., 1993) for the optimization of daily tasks 
across global supply chains, under carbon intensity constraints. First, we address feedstock production 
and model maritime transportation tasks accounting for different ship speeds and emissions rates, as 
well as direct and “milk-run” shipments. Second, we present the selection of discrete operating modes 
for certain processing tasks like packing, unpacking and daily batch handling. Third, we develop a 
simplified set of equations to manage finishing tasks for chemical products before delivery (e.g., 
dehydration, compression, liquefaction) consuming energy from alternative sources. On a first block 
of equations (Section 3.1) we present basic physical relations like material balances and inventory 
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tracking at each storage point based on incoming and outgoing flows at each time period. On a second 
block (Section 3.2) we present logical conditions to manage the ship transportation schedule. Finally, 
constraints computing carbon emissions for all stages and overall carbon intensity tracking are 
presented in Section 3.3, which together with the objective function in Section 3.4 defines the MINLP 
optimization model.      

 
3.1 Material Balances and Inventory Tracking 
 
Stage 1: Feedstocks production and packing 
 
The structure of the value chain addressed in this work begins with the production of feedstocks 

at source nodes. We assume that these feedstocks are produced with a time varying pattern, but at 
known yield rates and with given carbon intensities, according to the operating conditions at the 
production stages. Feedstocks enter the source tanks with given carbon intensity measures and merge 
with existing inventories, yielding a new carbon intensity for the total amount of feedstock stored 
and/or sent to downstream processes. Consider a generic feedstock A stored in source s. Equation (1) 
shows how feedstock tanks are loaded at a given feed rate 𝑠𝑠!,#$  during period t, and discharged by 
further transportation through the variable 𝑄𝐹!,#

$,%&#. This inventory balance equation establishes the 
inventory level 𝐼𝑆!,#$ 	of feedstock A at each time period t in source s. Note that, for clarity, continuous 
variables are presented in capital letters while parameters are given in lower case.   
 

𝐼𝑆!,#$ = 𝐼𝑆!,#%&$ + 𝑠𝑠!,#$ − 𝑄𝐹!,#
$,'(#																								∀	𝑠 ∈ 𝑆, ∀	𝑡 ∈ 𝑇 (1) 

  
 Inventory of carbon emissions in source tanks is also tracked in order to keep control of the 
environmental measures of the products that will be later obtained from these feedstocks. 
Furthermore, in our network structure we assume that feedstocks leave the sources by maritime 
overseas transportation that also adds carbon intensity to product streams. Modelling for tracking CI 
properties over feedstocks and products is presented in later sections. 

 
Stage 2: Maritime transportation 

 
Maritime shipping is an essential part of the logistics operations in global supply chains of 

chemicals products. Optimizing overseas transportation implies coordinating multiple ships and 
vessels to make an efficient use of their capacities. In our model, the amount of feedstock A taken by 
ships from tanks of A at s during period t is represented by the variable 𝑄𝑆',!,(),!),#

$,%&# . More specifically, 
variable 𝑄𝑆',!,(),!),#

$,%&# 	in Equation (2) denotes the amount of feedstock A discharged into ship v during 
time period t, which will then move at the speed sp, from source s to port rp.  

 
𝑄𝐹!,#

$,'(# = / / / 𝑄𝑆),!,*+,!+,#	
$,'(#

!+∈./()) *+∈2/(!))∈3(!)

																	∀	𝑠 ∈ 𝑆, ∀	𝑡 ∈ 𝑇 (2) 

 
Besides single-source, single-destination trips, the so-called “milk run” deliveries refer to 

shipments where partial discharges from the ship to two ports visited in a row are made. Both direct 
voyages and milk-run deliveries require the ships to depart fully loaded. However, the milk-run 
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strategy allows the cargoes to be split into two destinations. Equations (3) to (6) account for ship loads 
at each departure node and define the amount that is withdrawn from the source tanks at each time 
period. Equations (4) to (6) include 0-1 decision variables to restrict the size of the cargo when a 
direct trip of ship v goes from source s to receiving port rp at speed sp starting at time t (𝑥𝑣),!,*+,!+,#=1), 
or a milk-run to visit rp and rp’ in a row is selected (𝑥𝑚𝑟),!,*+,*+!,!+,#=1). Continuous variables 
𝑄𝑀𝑅1',!,(),()!,!),# and 𝑄𝑀𝑅2',!,(),()!,!),# determine the amount that should be discharged at ports 
rp and rp’, in that order. On the other hand, variable 𝑄𝐷',!,(),!),# represents the amount of feedstock 
that is taken through a direct trip from source s with destination to port rp, departing at time t. Vessels 
are not allowed to split the load in fractions of less than r % of their total capacity (usually fixed at 
30% for safety reasons). 
 
𝑄𝑆),!,*+,	!+,	#	

$,'(# = 𝑄𝐷),!,*+,!+,# + / (𝑄𝑀𝑅1),!,*+,*+!,!+,#
*+!∈42",$%

+	𝑄𝑀𝑅2),!,*+!,*+,!+,#)	 

∀𝑠 ∈ 𝑆, ∀	𝑟𝑝 ∈ 𝑅𝑃(𝑠), ∀𝑠𝑝 ∈ 𝑆𝑃(𝑣), ∀𝑣 ∈ 𝑉, ∀𝑡 ∈ 𝑇 
(3) 

𝑄𝑀𝑅1),!,*+,*+!,!+,# ≥ 𝜌) 𝑠)5$/ 𝑥𝑚𝑟),!,*+,*+!,!+,# 

∀𝑠 ∈ 𝑆, ∀	𝑟𝑝 ∈ 𝑅𝑃(𝑠), ∀	𝑟𝑝6 ∈ 𝑅𝑃(𝑠), ∀𝑠𝑝 ∈ 𝑆𝑃(𝑣), ∀𝑣 ∈ 𝑉, ∀𝑡 ∈ 𝑇 

 
(4) 

𝑄𝑀𝑅2),!,*+,*+!,!+,# ≥ 𝜌) 𝑠)5$/𝑥𝑚𝑟),!,*+,*+!,!+,# 

∀𝑠 ∈ 𝑆, ∀	𝑟𝑝 ∈ 𝑅𝑃(𝑠), ∀	𝑟𝑝6 ∈ 𝑅𝑃(𝑠), ∀𝑠𝑝 ∈ 𝑆𝑃(𝑣), ∀𝑣 ∈ 𝑉, ∀𝑡 ∈ 𝑇 

 
(5) 

𝑄𝐷),!,*+,!+,# = 𝑠5$/𝑥𝑣),!,*+,!+,# 

∀𝑠 ∈ 𝑆, ∀	𝑟𝑝 ∈ 𝑅𝑃(𝑠), ∀𝑠𝑝 ∈ 𝑆𝑃(𝑣), ∀𝑣 ∈ 𝑉, ∀𝑡 ∈ 𝑇 
(6) 

 
Once ships have reached receiving ports, material is added to tank inventories after a few 

days of dwelling and docking times. Equation (7) tracks the inventory at the receiving ports using 
variable 𝐼𝑅𝑃(),#. Notice that incoming flows are defined by the amounts that have been delivered by 
the sources ∆𝑡 periods before time t, as stated in Equation (8). Also note that ∆𝑡 depends on the type 
of trip (direct or milk run) and the corresponding speed. Variable 𝑄𝑅𝑃',!,(),#

$,*+  refers to the amount of 
feedstock A that is discharged into the port rp in period t with material coming from source s carried 
by vessel v. Moreover, 𝑄𝑈(),# indicates the amount of material that is sent from rp tanks for unpacking 
operations during period t.  

 
𝐼𝑅𝑃*+,#$ = 𝐼𝑅𝑃*+,#%&$ + / / 𝑄𝑅𝑃),!,*+,#

$,78

!∈.$%)∈3"

− 𝑄𝑈*+,#$ 																			∀	𝑟𝑝 ∈ 𝑅𝑃, ∀	𝑡 ∈ 𝑇 
(7) 

𝑄𝑅𝑃),!,*+,		#	
$,78 = / 𝑄𝐷),!,*+,!+,#%∆#",$%,"%& 	

!+∈./'

+ / (𝑄𝑀𝑅1),!,*+,*+!,!+,#%∆#",$%,$%!,"%($) + 𝑄𝑀𝑅2),!,*+!,*+,!+,#%∆#",$%!,$%,"%($* )	
*+!∈42",$%

 

∀𝑠 ∈ 𝑆, ∀	𝑟𝑝 ∈ 𝑅𝑃(𝑠), ∀𝑣 ∈ 𝑉, ∀𝑡 ∈ 𝑇 

(8) 
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Stage 3: Unpacking and processing 

 
 This section presents the modelling of inland processing steps in the supply chain. Processing 
is used here in the broad meaning capturing all activities that produce transformations on a product. 
These stages usually account for unpacking operations (e.g., discharging material from a carrier), 
involving chemical reactions or changes of state (Bontron et al., 2023; Riera et al., 2023). These 
operations can be usually carried out in different ways based on operational targets such as increasing 
performance, reducing emissions or reducing waste. To achieve this, decision makers can resort to 
different catalysts, energy sources, additives or technologies. At extreme conditions, an operation can 
be performed prioritizing yields regardless of emissions, or vice versa.  
 In order to track the carbon intensity on these tasks, and without loss of generality, we assume 
that after the material reaches the port from maritime transportation, processing stages need to be 
performed in site. First, we consider the case in which an endothermic chemical reaction is required 
to unpack material A. Depending on the catalyst and fuel used, the operation provides different yields 
and different emissions rates. Typically, the yield is higher when the operation is performed using 
catalysts or energy requirements that produce higher emissions. Equation (9) shows that part of the 
material received in the port is sent to unpacking operations. The binary variable 𝑥𝑟𝑝*+,:,# is used for 
the selection of the reactor operating mode m. This modeling approach assumes that operation mode 
may be modified every single day. On the other hand, Equations (10) and (11) relate the continuous 
variables accounting for the amount of material that is processed with the 0-1 decisions on the mode. 
Variable 𝑄𝑈(),,,		#	*+ represents the amount of material coming into the reactor using mode m during 
day t, while 𝛼, limits the amount of product A that can be processed according to the selected mode.  

 

/ 𝑥𝑟𝑝*+,:,# ≤ 1
:∈4(*+)

																∀	𝑟𝑝 ∈ 𝑅𝑃, ∀	𝑡 ∈ 𝑇 (9) 

𝑄𝑈*+,#$ = / 𝑄𝑈*+,:,#	
$,78

:∈4(*+)

											∀	𝑟𝑝 ∈ 𝑅𝑃, ∀	𝑡 ∈ 𝑇 (10) 

𝛼:	𝑥𝑟𝑝*+,:,# ≤ 𝑄𝑈*+,:,#	
$,78 ≤ 𝛼D:	𝑥𝑟𝑝*+,:,#																			∀	𝑟𝑝 ∈ 𝑅𝑃, ∀	𝑡 ∈ 𝑇, ∀𝑚 ∈ 𝑀 (11) 

 
Following the proposed structure for the supply chain, assume that the material becomes product 

of type B after reaction, and requires changing its aggregation state. The latter process may need large 
amounts of energy to be performed. Depending on carbon footprint attributed to the material so far, 
the supply chain manager may decide for convenience in buying green energy to carry out these 
processes, use grid energy, or combine energy sources. This kind of processes can be modeled with 
continuous variables, since companies may buy energy from any source in the required amounts. 
Equations (12) and (13) impose that all material flows coming from the reactor need to be processed 
at this stage. Note that parameter 𝛾, stands for the yield of the previous process (chemical reaction) 
depending on the operating mode. Variable 𝑄𝑈(),#

.,*+ indicates the amount of product B produced by 

the chemical reaction stage. In turn, variables 𝑄𝑆(),			#	
//1  represent the amount of product B that is 
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processed using energy coming from the electrical grid (e) and/or a green energy source (g), 
respectively.  

 
/ 𝑄𝑈*+,:,#	

$,78 	𝛾: = 𝑄𝑈*+,#
;,78

:∈4(*+)

																											∀	𝑟𝑝 ∈ 𝑅𝑃, ∀	𝑡 ∈ 𝑇 

 
(12) 

𝑄𝑈*+,#
;,78 = 𝑄𝑆*+,#	< + 𝑄𝑆*+,#	

= 																															∀	𝑟𝑝 ∈ 𝑅𝑃, ∀	𝑡 ∈ 𝑇 (13) 

 
 A different set of dedicated tanks is assumed to be available at ports that store resulting 
product B. Equation (14) defines the inventory balance for these tanks, accounting for incoming 
product flows and outgoing material via onshore transportation. Variable 𝑄𝑅𝑃2,	(),	3,			#	

.,%&#  stands for the 
amount of product B that is sent from port rp to destination node c using trucks of fuel f at time period 
t.  
 
𝐼𝑅𝑃*+,#; = 𝐼𝑅𝑃*+,#%&; + 𝑄𝑈*+,#

;,78 − / / 𝑄𝑅𝑃>,*+,?,#	
;,'(#

?∈5(*+)>∈@(*+)

																					∀	𝑟𝑝 ∈ 𝑅𝑃, ∀	𝑡 ∈ 𝑇 (14) 

 
Stage 4: Onshore transportation  

 
 Once the material is available at the port, trucks are used to deliver orders to customers’ 
nodes. Land transportation must not add more emissions than allowed to reach the destination on 
specification regarding carbon intensity limits. We assume that different types of vehicles are 
available for the company (e.g., electric and diesel trucks). The optimization procedure will determine 
how many deliveries should be made with each of those vehicles in a way that the material reaches 
its destination on spec.  
 Let 𝑛𝑡2,() be the number of trucks of type f available at receiving port rp and 𝜆2 be the number 
of hours per day that a truck of type f is available. Service availability will typically depend on the 
autonomy of electric vehicles and the work shifts for combustion vehicles. Since a large number of 
daily trips are often required to meet demand, a continuous variable can be used to account for them. 
Equation (15) relates the outflow of product B with the total number of trips 𝑁𝑇𝑅>,*+,?,# based on the 
truck capacities 𝜇2. In turn, Equation (16) ensures that the number of trips does not exceed the 
availability of vehicle hours by accounting for the travel time 𝜏*+,? (including backhaul) from port rp 
to customer node c.  

𝑄𝑅𝑃>,	*+,	?,		#	
;,'(# = 𝜇>	𝑁𝑇𝑅>,*+,?,#																												∀𝑓 ∈ 𝐹(𝑟𝑝), ∀	𝑟𝑝 ∈ 𝑅𝑃, ∀𝑐 ∈ 𝐶(𝑟𝑝), ∀	𝑡 ∈ 𝑇 (15) 

/ 𝑁𝑇𝑅>,*+,?,#
?∈5(*+)

𝜏*+,? ≤ 𝜆>	𝑛𝑡>,*+																			∀𝑓 ∈ 𝐹(𝑟𝑝), ∀	𝑟𝑝 ∈ 𝑅𝑃, ∀	𝑡 ∈ 𝑇 (16) 

 Since storage tanks for product B are available at customers nodes, inventory balance is also 
required at the destinations, as stated by Equation (17). Variable 𝐼𝐶3,#.  accounts for the inventory level 
of product B at customer tanks, while parameter 𝜔3,# indicates the demand of product B at time t for 
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node c (given data) Variable 𝑈𝐷3,# refers to unmet demand and is weighted by penalty values in the 
objective function, as will be shown later in this work.  
 
𝐼𝐶?,#; = 𝐼𝐶?,#%&; + / / 𝑄𝑅𝑃>,	*+,	?,			#	

;,'(#

*+∈2/(?)>∈@(*+,?)

−𝜔?,# + 𝑈𝐷?,#								∀𝑐 ∈ 𝐶, ∀	𝑡 ∈ 𝑇 (17) 

 
 

3.2 Logical Constraints for Maritime Transportation Scheduling 
 

Equation (18) makes use of binary variables to allocate resources to maritime transportation 
tasks and set the STN, non-overlapping constraints over the duration of the travelling times. Binary 
variable 𝑥𝑣',!,(),!),#! takes value 1 if ship v is sent from source s to port rp at speed sp starting in day 
t’, and equals 0 otherwise. In turn, the binary variable 𝑥𝑚𝑟',!,(),()!,!),#! indicates the starting day t’ 
of a milk-run of ship v at speed sp departing from source s and visiting ports rp and rp’, respectively, 
in an ordered sequence of partial discharges. Notice that ∆𝑡!,(),!)4#  and ∆𝑡!,(),()!,!)

,(#  are parameters 
accounting for the total duration of the trips depending on the speed sp of the ship v (see Figure 3). 
By assumption 7, variables accounting for trips that cannot deliver the material by the end of the time 
horizon are omitted. 

 

! ! ! ! 𝑥𝑣!,#,$%,#%,&!
&!'&

&!'&(∆&",$%,"%&+ *+#%∈-.$%∈/.(#)#∈-(!)

+ 	 ! ! ! ! ! 𝑥𝑚𝑟!,#,$%,$%#,#%,&!
&!'&

&!'&(∆&",$%,$%!,"%
($+ *+#%∈-.$%#∈/.(#)$%∈/.(#)#∈-(!)

≤ 1																 

∀𝑣 ∈ 𝑉, ∀	𝑡 ∈ 𝑇  

(18) 

 
Figure 3 – Parameters for transportation task durations 

 
The latter integer constraints are usually called backward aggregation inequalities in the STN 

discrete-time model, whose relaxation has proved to be very tight (Shah et al., 1993) especially when 
compared to the initial big-M constraint. For more details on the STN discrete-time representation 
for scheduling problems we refer the reader to the works by Kondili et al. (1993) and Shah et al. 
(1993). For a general review on this topic, see Maravelias (2021). 

∆"!,#$,!$%

∆"!,#$,#$&,!$'#(

∆"!,#$,!$%)

∆"!,#$,#$&,!$'#*

∆"!,#$,#$! ,!$'#)
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3.3 Carbon Inventory Balances and Carbon Intensity Tracking  
 

In parallel to planning operations, monitoring carbon intensity indicators requires quantifying 
emissions from every task. If the carbon footprint of the feedstocks at the sources is tracked over time, 
adding the emissions from maritime transportation leads to the CI of the material unloaded at the 
receiving ports. Figure 4 shows an illustrative example where a ship delivers material from a source 
to a port. The ship transports 25,000 tons of feedstock A whose CI at the origin is 0.1 ton of CO2 per 
ton of A. During the trip (from time t-Dt to t), the vessel emits 2,000 tons of CO2, which are added as 
CI to the transported material. Upon delivery, the material is mixed with 10,000 tons of A already 
stored in the tank, with a CI of 0.5 tons of CO2 per ton of A. The blending process yields a final 
amount of 35,000 tons, from which 5,000 tons are sent to downstream processing stages. Note that 
the stored material (30,000 tons) and the 5,000 tons sent to production share the same CI value of 
0.27 tons of CO2 per ton of feedstock. 

 

 
Figure 4 – Illustrative example of CI calculation at receiving ports 

 
Following a similar procedure, carbon intensity tracking must be carried out from the origin 

to the final destination, at every storage tank. Parameter 𝑐𝑓!,# in Equation (19) indicates the carbon 
footprint of the feedstock produced by source s in period t (given data) while variable 𝐶𝐼𝑆!,# define 
the carbon intensity of the material that is stored in source s at period t. Equations (20) and (21) 
compute extensive carbon dioxide emissions (tons of CO2) coming with the feedstock and added by 
transportation, respectively. Note that the inherent emissions associated with the feedstock must be 
backdated to the time when the ship loads and departs from the source (see parameters ∆𝑡 in Eqs. 20 
and 21, also depicted in Figure 3). The variable 𝐶𝑂2𝑆(),	# in Equation (20) represents the emissions 
associated with the product received at the port in period t. In turn, 𝑐𝑒',!) in Equation (21) is a 
parameter representing emissions from ship v per nautical mile while moving a cargo at speed sp, 
whereas 𝑐𝑟',!) stands for unit emissions of empty ship movements. Note that the latter are evenly 
distributed among the ports visited in the trip.  
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𝐶𝐼𝑆!,# O𝐼𝑆!,#$ + / / / 𝑄𝑆),!,*+,!+,	#'(#

*+∈2/(!))∈3(!)!+A./())

P = 𝑐𝑓!,	#𝑠𝑠!,#$ + 𝐶𝐼𝑆!,#%&𝐼𝑆!,#%&$  

∀𝑠 ∈ 𝑆, ∀	𝑡 ∈ 𝑇 

(19) 

𝐶𝑂2𝑆*+,# = / / / 𝐶𝐼𝑆!,#%∆#",$%,"%
!∈.(*+)

	𝑄𝐷),!,*+,!+,#%∆#",$%,"%&

)∈3(!)!+A./())

+ 𝐶𝐼𝑆!,#%∆#",$%,$%!,"%($) / 𝑄𝑀𝑅1),!,*+,*+!,!+,#%∆#",$%!,$%,"%($)

*+!∈42",$%

+	𝐶𝐼𝑆!,	#%∆#",$%!,$%,"%($* / 𝑄𝑀𝑅2),!,*+!,*+,!+,#%∆#",$%!,$%,"%($*

*+!∈42",$%

 

∀	𝑟𝑝 ∈ 𝑅𝑃, ∀	𝑡 ∈ 𝑇 

(20) 

𝐶𝑂2𝑇*+,	# =/ / / 𝑥𝑣),	!,	*+,	!+,	#%∆#",$%,"%&

!+∈./())

R𝑐𝑒),!+	𝑑!,*+ + 𝑐𝑟),!+	𝑑!,*+U
)∈3(!)!∈.

+ / 𝑥𝑚𝑟),!,*+,*+!,!+,#%∆#",$%,$%!,"%($)

*+!∈42",$%

R𝑐𝑒),!+	𝑑!,*+ + 0.5	𝑐𝑟),!+	𝑑!,*+!U

+ / 𝑥𝑚𝑟),!,*+!,*+,!+,#%∆#",$%!,$%,"%($*

*+!∈42",$%

R𝑐𝑒),!+	𝑑*+,*+! + 0.5	𝑐𝑟),!+	𝑑!,*+U 

∀	𝑟𝑝 ∈ 𝑅𝑃, ∀	𝑡 ∈ 𝑇 

(21) 

 
In addition, variable 𝐶𝑂2𝑇(),	# computes carbon dioxide emissions of direct trips and milk-

runs and assigns them to the corresponding discharged material. As new material is received at the 
port, it is combined with the product stored from previous periods. Rigorously computing their carbon 
content requires the use of bilinear terms. This is also the case when the company receives material 
flows from other companies or activities in the value chain. Equation (22) shows how the extensive 
emissions and the carbon content in the stored material are used to obtain the intensive carbon 
properties of the material that is kept in storage tanks and/or derived for downstream processing at 
time period t (see Figure 4). Note that variable 𝐶𝐼(),#$  represents emissions per unit mass of feedstock 
A stored and dispatched from port rp at time period t, while 𝑄𝑈(),#$  stands for the amount of A sent 
for production at the port. If a product can also be derived to a second stream, the flow has to be 
included in the right-hand side of the equation.  

 
𝐶𝑂2𝑆*+,# + 𝐶𝑂2𝑇*+,# + 𝐶𝐼*+,#%&$ 	𝐼𝑅𝑃*+,#%&$ = 𝐶𝐼*+,#$ R𝑄𝑈*+,#$ + 𝐼𝑅𝑃*+,#$ U		

∀	𝑟𝑝 ∈ 𝑅𝑃, ∀	𝑡 ∈ 𝑇  
(22) 

 
The emissions produced by processing stages are computed in Equation (23), where 𝜃, and 

𝜀 stand for chemical reaction emissions in mode m per unit of product A and emissions from grid 
energy consumption per unit of product B, respectively. Variable 𝐶𝑂2𝑃(),	# collects all the emissions 
generated during one day of processing. In addition, accurate tracking of the carbon footprint of 
product B in the tanks at receiving ports also requires the use of bilinear equations. An extensive 
carbon dioxide emissions balance (tons of CO2) attributed to product B in the tanks is proposed in 
Equation (24). Variable 𝐶𝐼(),#.  in the right-hand side of Eq. (24) conveys the carbon intensity of 
material B stored and discharged into trucks at day t.  
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𝐶𝑂2𝑃*+,# = / 𝑄𝑈*+,:,#	
$,78 𝜃:

:∈4

+ 𝑄𝑆*+,#	< 	𝜀< + 𝑄𝑆*+,#	
= 𝜀=										∀	𝑟𝑝 ∈ 𝑅𝑃, ∀	𝑡 ∈ 𝑇 (23) 

𝐶𝐼*+,#$ 	𝑄𝑈*+,# + 𝐶𝑂2𝑃*+,# + 𝐶𝐼*+,#%&; 	𝐼𝑅𝑃*+,#%&;

= 𝐶𝐼*+,#; O / / 𝑄𝑅𝑃>,*+,?,#	
;,'(#

?∈5(*+)>∈@(*+,?)

+ 𝐼𝑅𝑃*+,#; P											∀	𝑟𝑝 ∈ 𝑅𝑃, ∀	𝑡 ∈ 𝑇 
(24) 

 
As already discussed, monitoring the carbon footprint of the product at customer nodes is 

required to meet the demand on specification. Emissions added by ground transportation must be 
accounted for to determine these values. Equation (25) aggregates the total amount of carbon dioxide 
emissions that should be attributed to the material in customer node c by day t. Truck emissions from 
incoming flows are then added to the carbon dioxide balance in Equation (26) to determine the carbon 
footprint of product B stored at destination tanks and further delivered.  
 

𝐶𝑂2𝑇𝑇?,# = / / 𝑁𝑇𝑅>,*+,?,#	𝜎>	𝑑*+,?
*+∈2/(?)>∈@(*+,?)

										∀	𝑐 ∈ 𝐶, ∀	𝑡 ∈ 𝑇 (25) 

𝐶𝐼𝐶?,#; 	R𝜔?,	# + 𝐼𝐶?,#; U = / / 𝐶𝐼*+,#; 	𝑄𝑅𝑃>,*+,?,#	
;,'(#

*+∈2/(?)>∈@(*+,?)

+ 𝐶𝑂2𝑇𝑇?,# + 𝐶𝐼𝐶?,#%&; 	𝐼𝐶?,#%&;  

∀	𝑐 ∈ 𝐶, ∀	𝑡 ∈ 𝑇 
(26) 

 
Finally, product specifications in terms of carbon footprint are imposed on the final product. 

All operations along the value chain have to be coordinated in order to meet these emissions 
constraints. Equation (27) establishes the carbon intensity bounds on product B for every destination 
node depending on market regulations.  

 

𝐶𝐼𝐶?,#; ≤ 𝑐𝑖?:BC + 𝐶𝐼?,#! 																												∀	𝑐 ∈ 𝐶, ∀	𝑡 ∈ 𝑇 (27) 

 
3.4 Objective function 
 
The economic performance of operations may vary significantly according to their nature. 

Moving ships at lower speeds may provide lower costs and emissions per trip, but may also require a 
larger fleet of ships to keep inventories under control. Lack of ships to remove material from the 
sources may block the feedstock production, while the receiving ports may also fall short. Further 
down the supply chain, processing stages may provide lower yields and/or consume more expensive 
energy when attempting to reduce emissions. That is also the case of truck transportation, where 
moving material with diesel vehicles is usually the cheapest option but more emissions are generated. 
An important trade-off arises when planning operations. On the one hand, companies try to reduce 
emissions to deliver the product on specification. On the other hand, profitably meeting demand often 
requires faster shipments, efficient processes and lower costs along the chain. We present the 
economic terms in the objective function following stages along the supply chain. 
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Maritime shipping costs are modeled in the first term of the RHS of Equation (28) and include 
sailing cost per day (𝑓𝑥𝑐!), fuel cost per nautical mile (𝑣𝑐!), cost of return trip (𝑐!$2&), port admission 
fees (𝑐!,$%

%3$&) and cost of entry at source ports (𝑐!,##$4).  
 

𝑀𝑆𝐶& =! ! ! ! 𝑥𝑣!,#,$%,#%,&	(𝑓𝑥𝑐!	∆𝑡#,$%,#%5& + 2	𝑣𝑐!	𝑑#,$% + 𝑐!$2& + 𝑐!,$%
%3$& +

#%6-.(!)$%∈/.(#)!∈7(#)#∈-

𝑐!,##$4)

+! ! ! ! ! 𝑥𝑚𝑟!,#,$%,$%!,#%,&
#%6-.(!)$%!∈8/(#,$%)$%∈/.(#)!∈7(#)#∈-

6𝑓𝑥𝑐!	∆𝑡#,$%,$%!,#%
9$&

+ 𝑣𝑐!7𝑑#,$% + 𝑑$%,$%! + 𝑑#,$%!8 	+ 𝑐!$2& + 𝑐!,$%
%3$& + 𝑐!,$%!

%3$& + 𝑐!,##$49 
∀	𝑡 ∈ 𝑇 

(28) 

 
 On the other hand, unpacking and processing stages include costs for yielding product B, and 
converting its aggregation state by consuming energy. Equations (29) and (30) calculate these costs 
according to the selected operating strategy. Within these equations, 𝑐,3( represents the unit cost of 
operating the chemical reactor under mode m, 𝑐()/  indicates the unit cost of processing product B with 
energy coming from the electrical grid, and 𝑐()

1  stands for the unit cost of doing so with green energy.  
 

𝐶𝑅𝐶# = / / 𝑄𝑈*+,:,#		
$,78 𝑐:?*

*+∈2/:∈4(*+)

																															∀	𝑡 ∈ 𝑇 (29) 

𝑃𝐶# = / R𝑐*+< 	𝑄𝑆*+,#	< + 𝑐*+
= 	𝑄𝑆*+,#	

= U
*+∈2/

																																∀	𝑡 ∈ 𝑇 (30) 

 
For truck transportation we need to multiply the number of trips to each destination by the 

distance traveled, times the unit transportation cost according to the type of vehicle used (see Equation 
31). Parameter 𝜒> represents the cost per unit of distance delivered by vehicles of type f.  

 

𝑇𝐶# =/ / / 𝑁𝑇𝑅>,*+,?,#
?∈5(*+)

	𝜒>	𝑑*+,?
*+∈2/>∈@

																		∀	𝑡 ∈ 𝑇 (31) 

 
Since storing products in any node may require the use of electrical power to maintain 

pressure and/or temperature conditions, we add Equation (32) to account for the storage costs of 
product B. Parameter 𝜁*+ indicates the cost of keeping one unit of material B in a tank of port rp or 
customer node c during one day.  

 

𝑆𝐶# = 𝜁*+ O / 𝐼𝐶?,#;
?∈5(*+)

+ / 𝐼𝑅𝑃*+,#;

*+∈2/

P																	∀	𝑡 ∈ 𝑇 (32) 

 
Economic penalties are imposed for not meeting the demand of the delivery points or 

delivering the product out of specification. Equation (33) establishes the corresponding overall 
penalty cost. Note that 𝜑? represents a cost per mass unit of CO2 in excess at delivery market c. 
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𝐸𝑃𝐶# =		 / (𝜓?,#	𝑈𝐷?,# + 𝜑? 	𝐶𝐼?,#! 	𝜔?,#)	
?∈5(*+)

															∀	𝑡 ∈ 𝑇 (33) 

 
Finally, Equation (34) establishes the objective function for the optimization model. In 

summary, the MINLP formulation seeks to minimize Equation (34) subject to constraints (1) to (33). 
 

Min 𝑧 = 	/(𝑀𝑆𝐶#
#∈D

+ 𝐶𝑅𝐶# + 𝑃𝐶# + 𝑇𝐶# + 𝑆𝐶# + 𝐸𝑃𝐶#)	 (34) 

 
 
4. Solution approach 
 
 The formulation presented in this work is a non-convex mixed-integer non-linear program 
(MINLP), specifically a mixed-integer quadratically constrained programming (MIQCP) model  
given the bilinear equations for tracking carbon intensity properties along the value chain (see 
Equations 19, 20, 22, 24 and 26). Indeed, solving such a system of non-linear equations can introduce 
serious numerical issues and make the solver fail or produce suboptimal solutions. Moreover, 
addressing large MINLPs monolithically can be intractable even if they have the special structure of 
MIQCP. This section introduces a decomposition strategy aimed at obtaining good quality solutions 
in reasonable computational times. The decomposition approach illustrated in Figure 5 seeks to solve 
an MILP formulation that first addresses the combinatorically intensive part of the problem (i.e., the 
maritime transportation planning) by approximating the carbon intensity measures in an aggregate 
fashion. Then, accurate CI values are adjusted by fixing ship schedules and deciding on successive 
stages of the supply chain through a reduced MINLP formulation. These two models overlap in inland 
stages in order to improve the quality of the solution when solving the MINLPs. The decomposition 
framework is also coupled to a receding horizon strategy that proves to be useful to tackle large 
instances of the problem.  

 
Figure 5 – Sequential decomposition strategy to avoid solving a single large MINLP 

4.1 Carbon intensity approximation 
 
The first stage of the decomposition strategy seeks to solve the ship scheduling problem 

efficiently using a mixed integer-linear programming (MILP) model. For this purpose, equations 
accounting for detailed tracking of carbon intensity along the supply chain are replaced with an 
overall linear approximation of this property at the final nodes. The approximation is made assuming 
that all emissions produced in the different stages of the chain are evenly distributed in the product B 
produced so far. This is performed by averaging the total supply chain emissions over the delivered 
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and stored amount of product B up to day t. Equation (35) accounts for all the emissions from 
transportation and production tasks, as shown in Equations (20), (21) and (23). In turn, Equation (36) 
assesses the total amount of product B stored and delivered up to time t. In the latter equation, 𝛺(),	# 
represents the overall demand of product B at time t to be delivered from the receiving port rp.  

 

𝐺𝐻𝐺𝑇*+,# = /(𝐶𝑂2𝑇*+,# + 𝐶𝑂2𝑃*+,#)
#!E#

																			∀	𝑟𝑝 ∈ 𝑅𝑃, ∀	𝑡 ∈ 𝑇				 (35) 

𝑇𝑃𝐵*+,# =/𝛺*+,#! + 𝐼𝑅𝑃*+,#; − 𝑖𝑟𝑝*+,#
;,787#

#!E#

																									∀	𝑟𝑝 ∈ 𝑅𝑃, ∀	𝑡 ∈ 𝑇													 (36) 

 
By using Equations (35) and (36), a rough estimation of the carbon footprint of product B can 

be obtained. This may imply that even if the material has been produced by processes that generate 
large emissions, the carbon footprint of the material may be lower, by offsetting emissions with 
material produced in other sources or at an earlier time. To rectify this effect, decisions are then 
revisited in the reduced MINLP (second step). Note that, due to the combinatorial nature of the ship 
scheduling problem, a significant reduction in the complexity of the second model is obtained by 
fixing the solution of the maritime transportation problem (first step).  

Besides that, to reduce the decision instances of the MILP approximation, a backward 
calculation of the required emissions is performed to eliminate client nodes from the network. This 
allows the setting of bounds for the CI indicators at the ports, just after the processing stages. To this 
end, it is assumed that all the material in the port will be transported by diesel trucks to the 
destinations. Thus, carbon dioxide emissions are maximized in the last mile delivery and conservative 
constraints are imposed on the estimated carbon footprint that the product must have after arriving at 
the port and being processed. This is captured by Equation (37)  
 
𝐺𝐻𝐺𝑇*+,	# ≤ min

?∈5(*+)
(𝑐𝑖?:BC − 𝜎F7<!<G 	𝑑*+,?/𝜇F7<!<G)	𝑇𝑃𝐵*+,#											∀	𝑟𝑝 ∈ 𝑅𝑃, ∀	𝑡 ∈ 𝑇	

 
(37) 

 
In summary, the MILP subproblem formulation replaces Equations (19), (20), (22), (24) and 

(26) by linear Equations (35), (36) and (37) to solve the combinatorial part of the problem, i.e., the 
maritime transportation. After solving that, offshore ship scheduling decisions (through 0-1 variables 
𝑥𝑣),!,*+,!+,# and 𝑥𝑚𝑟),!,*+,*+!,!+,#) are fixed in the MINLP formulation, and the reduced MINLP is 
solved to optimality by using outer approximation algorithms. 
 
4.2 The receding horizon strategy 
 

The decomposition approach presented in the previous section is embedded into a receding 
horizon solution strategy, where several shorter-term instances are solved in order to tackle a 1-year 
term problem (see Figure 6). This is done by iteratively solving the MILP-MINLP steps over shorter 
time horizons. At every iteration, the time horizon is rolled over the next 30 days, and the MILP-
MINLP sequence is solved for the next 60 days. The operating plan for the first 30 days of the current 
time horizon is fixed and a new iteration follows. The strategy allows solving long-term instances of 
the problem in reasonable CPU times.  
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Figure 6 – Receding horizon strategy to solve over long planning timeframes 
 
 
5.  Results 
 

In this section two case studies are presented to illustrate the capabilities of the proposed 
solution approach and to outline conclusions. First, a small case is addressed to assess the 
combinatorial and nonconvex nature of the problem and to establish guidelines regarding its 
computational complexity. For this, we propose an example with two sources and a single receiving 
port for feedstock A that is then converted through operations into product B, which is afterwards 
distributed to different markets (see Figure 7). Second, the model is used to solve a generalized global 
supply chain network over an extended horizon of one year. A decomposition strategy is proposed 
and analyzed in the extended example to reach quality solutions for real-sized cases. 
 
5.1 Case study 1 
 

A simple case study involving two sources, one intermediate receiving port and ten final 
destinations is presented in this section (see Figure 7). The sources are located far from consumption 
and require overseas shipping to supply the intermediate point. In addition, one of these sources 
provides greener material than the other. Once on land, the material is converted into another product, 
conditioned and transported by trucks to destination nodes. Meeting the demand while managing 
carbon intensity requires to plan operations and selecting among a discrete set of three possible speeds 
for ships (slow, medium and high), three operation modes for process 1 (catalyst 1, 2 or 3), two 
possible energy sources (from the grid or from renewable electricity generation) for process 2 and 
two types of fuel (electric or diesel) for onshore transportation. Each of these activities adds carbon 
emissions to the product according to the way in which they are performed. As expected, carbon 
intensity constraints are imposed at delivery nodes as stated in Equation (27). Figure 7 also includes 
model variables that are relevant for CI calculation.   
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Figure 7 – Network representation for case study 1 
 

The production rates of feedstock A are variable over time, as are their daily carbon intensity 
levels. The demand at delivery nodes is constant over time and noncompliance (due to lack of material 
or excess of CI) is admitted under a given economic penalty. For this example, the planning horizon 
is discretized into days and set to 45 days length. The main parameters of the problem such as tank 
sizes, production and demand rates, production yields in each mode, ship speeds, emissions per speed, 
mode, energy and fuel source, initial conditions and distances between nodes are given in the 
supplementary material. The MINLP model is coded in software GAMS and yields a formulation 
with 4,282 linear equations, 667 bilinear equations, 5,583 continuous variables and 352 discrete 
variables (see Table 1).  

The model is solved both monolithically and by means of the decomposition approach 
proposed in Section 4, combining GUROBI for MILP subproblems and DICOPT for MINLPs. The 
monolithic instance of the problem is solved using the GUROBI MIQCP solver for non-convex 
problems. After 10,000 seconds of computation on an Intel Core i7 CPU (8 cores at 3.5 GHz) with 
16 GB RAM, the solver yields a solution of 19.12 M$ with 1.10% of optimality gap. This objective 
value is 0.6% below the best solution found by the decomposition approach, which reports its best 
feasible solution after 15 seconds of CPU time. More specifically, the solution from the 
decomposition approach yields a total cost of 19.22 M$ and, interestingly, both approaches manage 
to deliver all the required amounts of product B under specification. Similar results are obtained when 
SBB solver is used for the MINLP subproblems. Although branch and bound algorithms like SBB 
are less likely to get trapped in local solutions, most of the discrete variables in the second subproblem 
are fixed from the solution of the MILP approximation in the first step, thus making outer 
approximation solvers like DICOPT also competitive. It is important to highlight that the solution 
from the monolithic approach shows small changes in the way that ships are operated, which yield 
savings in the first processing stage by allowing the use of mode 1 during a few periods. In addition, 
operating the chain unrestricted in terms of CI results in a reduction of 1.82 M$ in total costs, 
delivering the product with almost twice the required carbon intensity (i.e., 6.61 vs 3.38 ton of CO2 
per ton of product B).  
Table 1 – Summary of computational results  

 Description Solution 
approach 

Linear 
Equations 

Bilinear 
equations 

Cont. 
Variables 

Binary 
variables Solver 

CPU 
Time 

(s) 

Optimality 
gap 

Objective 
(M$) 

Case 
study 

1 

2 sources 
1 Receiving 

port 
45 days 
planning 
horizon 

Monolithic 4,282 667 5,583 352 

GUROBI 
MIQCP 

Non-
convex 

10,000 1.10 % 19.12 

Decomposition 
strategy * 4,282 667 5,583 135 

GUROBI 
+ 

DICOPT 
15 0 % 19.23 

Unconstrained 
CI 2,867 - 3,865 352 GUROBI  12 0 % 17.39 

IS!,#$

QF!,#$,%&#

QRP',!,(),#$,*+

IRP(),#$

QU(),,,#	$,*+

xrp(),,,# QS(),	#	.(*/ + QS(),	#	.(00+

QU(),#1,*+

IRP(),#1

QRP2,(),3,	#	1,%&#

NTR2,(),3,#
IC3,#1

xv',!,(),!),#
xmr',!,(),()!,!),#

CI(),#$ CI(),#1

CIS!,#$

CIC3,#1

IC3,#451

CIC3,#451

IRP(),#451

CI(),#451
IRP(),#45$

CI(),#45$
IS!,#45$

CIS!,#45$
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Case 
study 

2 

2 sources 
6 receiving 

ports 
360 days 
planning 
horizon 

Monolithic 314,343 60,070 183,147 62,805 

GUROBI 
MIQCP 

Non-
convex  

15,000 >100 % 2897.45 

Decomposition 
strategy 

(+ receding 
horizon) * 

44,120 8,014 44,927 13,614 
GUROBI 

+ 
DICOPT 

12,600 7.6 %** 522.09 

* Model size corresponding to MINLP instances 
** Optimality gap relative to GUROBI MIQCP non-convex best bound  
 

Figure 8 illustrates the maritime transportation schedule proposed by the best solution found 
with the decomposition strategy. Note that while shipping speeds are a tool for managing emissions, 
keeping inventory levels under control can constrain these strategies. The push and pull effects of 
sources (offer) and markets (demand) reduce the degrees of freedom of the optimization problem. 
However, the model is able to control emissions once the inventories have been stabilized in the first 
part of the planning horizon. The use of a medium speed at the end of the program is mainly driven 
from tightly coordinating inventory levels between sources and port, without much concern for 
carbon intensity due to an end-of-horizon effect. Figure 9 shows inventory levels, as well as carbon 
intensity values at sources and port. Note that a high-speed trip, even coming from the cleaner source, 
produces a substantial rise in carbon intensity levels, which is then reduced by the arrival of new 
material from a low-speed ship on day 29. 

Regarding the first processing stage, operation mode 1 is the most economical and offers a 
maximum yield, but emissions are significantly higher than the other modes. Those emissions must 
be compensated downstream in the chain in order to avoid off-spec product. That is why the solution 
obtained suggests the use of mode 2 for the first 10 days and production under mode 3 from the arrival 
of the first vessel. Mode 3 significantly reduces the yield of product B obtained from A, but also 
diminishes emissions substantially. In turn, the second processing stage is an energy-intensive task, 
whose emissions can be regulated through the purchase of electricity from renewable or conventional 
sources. The energy source used in processing stage 2 appears to be an important, albeit costly, 
emissions adjustment variable (see Figure 10). Reaching this point with a high carbon intensity value 
would produce too expensive energy costs. From that, using cleaner modes in stage 1 appears as a 
better strategy. Final deliveries are made by diesel trucks in virtually all cases, due to their cost 
efficiency in comparison with cleaner fuels. This shows that it would not be convenient to manage 
emissions by means of greener ground transportation modes. Only the farthest destination (250 km 
far from port) requires cleaner transportation in 2 days to make product B arrive under specification. 
Figure 9 shows the inventory profile and carbon intensity over the sources, receiving port and a 
reference customer. Finally, Figure 11 illustrates the economic performance of the three solution 
strategies. 
  

 
Figure 8 – Optimal maritime transportation schedule 
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Figure 9 – Inventory profiles at storage tanks of sources, receiving port and reference customer 

 

 
Figure 10 – Energy source selection for processing stage 2   

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
Time (days)

Source 1 – Inventory and CI profile
Fe

ed
st

oc
k 

A 
(m

as
s 

un
its

)

Ca
rb

on
 In

te
ns

ity
 (m

as
s 

of
 C

O 2
 

pe
r m

as
s 

of
 fe

ed
st

oc
k 

A)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Ca
rb

on
 In

te
ns

ity
 (m

as
s 

of
 C

O 2
 

pe
r m

as
s 

of
 fe

ed
st

oc
k 

A)

Fe
ed

st
oc

k 
A 

(m
as

s 
un

its
)

Source 2 – Inventory and CI profile

Time (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
Time (days)Time (days)

Receiving Port – Inventory and CI profile

Pr
od

uc
t B

 (m
as

s 
un

its
)

Ca
rb

on
 In

te
ns

ity
 (m

as
s 

of
 C

O 2
 

pe
r m

as
s 

of
 p

ro
du

ct
 B

)

Reference delivery node – Inventory and CI profile  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
Time (days)

Ca
rb

on
 In

te
ns

ity
 (m

as
s 

of
 C

O 2
 

pe
r m

as
s 

of
 p

ro
du

ct
 B

)

Pr
od

uc
t B

 (m
as

s 
un

its
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
Time (days)

En
er

gy
 u

se
 (m

as
s 

un
its

 o
f 

pr
od

uc
t B

 o
bt

ain
ed

)

0

50

100

150

200



 24 

 
Figure 11 – Comparison of total cost and CI management for the three solutions approaches 

 
  
5.2 Case study 2 
  

In this section a real size case study is proposed, involving two sources of production and six 
ports of reception and unpacking of the material. An illustrative representation of this case is shown 
in Figure 1. The nodes are distributed around the world assuming that there are two production 
sources in two different continents. Receiving ports are located in pairs in other continents, namely 
(RP1 and RP2), (RP3 and RP4) and (RP5 and RP6) respectively. Each of these pairs supports delivery 
through partial discharge (also known as milk-runs). Nevertheless, a minimum amount of 30% of the 
ships’ capacity is imposed for partial deliveries of the cargoes. Demand, CI requirements, electricity 
prices and storage costs also vary by market, as do the penalties for failure to meet the delivery 
specification. As in the previous case, production source 2 is cleaner than source 1, delivering 
feedstock with lower CI, albeit at a lower production rate. Ship speeds, modes of operation for 
processing stages, emissions and shipping costs are not disclosed for confidentiality reasons. An 
industrial planning horizon of one year is established in order to size and validate the ship fleet, also 
ensuring a proper response to time-varying supply and demand patterns. 

Using a monolithic approach, the formulation yields an intractable optimization model with 
374,413 equations, 60,070 of which are bilinear, 62,805 discrete variables and 183,147 continuous 
variables (see Table 1). The GUROBI MIQCP solver leads to an optimality gap of more than 100% 
(2897.45 with a lower bound of 485.1 economic units) after 10,000 seconds of computation in the 
same PC specs used for Case Study 1. Therefore, the decomposition approach presented in this work 
is coupled to a receding horizon strategy as proposed in Section 4 and used to solve the problem in 
an MILP-MINLP sequence (see Figure 6). The problem has been solved within a wall time of 3.5 
hours with the breakdown between MILPs and MINLPs of 10,260 seconds and 2,088 seconds, 
respectively. 

The solution strategy delivers a solution of 522.1 economic units for the entire year with an 
optimality gap relative to global solver bounds of 7.6%. The maritime schedule obtained is shown in 
Figure 12 accounting for deliveries from sources 1 and 2 to each of the receiving ports, as well as 
inventory and CI profiles at the tank of receiving port 5, for reference. Note that color intensity in the 
Gantt chart represent ship speed. Figure 12 shows how CI is optimally managed (reaching the bound 
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of 5.776 mass units of CO2 per unit of product B) to meet requirements while overall costs are 
reduced. We note that units in Figure 12 have been modified from actual values and are just reported 
for illustrative purposes.  

 

 

 
 

Figure 12 – Maritime schedule, inventories and carbon intensity for a subset of nodes 
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6. Environmental discussion 
 

Some important findings from an environmental viewpoint can be derived from the results 
obtained by the optimization framework. If no limits on carbon emissions are imposed by the markets, 
the carbon intensity of the final products shows an average increase of almost 100%. For the reference 
case study that holds an overall demand of 8,019 tons of the final product B along the timeframe of 
45 days, CO2 emissions increase by 25,901 tons with respect to the CI-constrained case. This can be 
economically valued using the expected cost per ton of CO2 emitted based on its damage potential, 
also known as the social cost of CO2 (Rennert et al., 2022). Currently, this value is estimated at 51 
$/ton, from which it can be stated that the CI limits in the reference case (i.e., using industry data) 
provides an economic reduction in the environmental impact of 1.32 M$. The counterpart of this 
reduction is an increase in the operation costs of the supply chain of 1.82 M$ for the assessed 
timeframe, mainly coming from the need of using cleaner energy in the Processing Stage 2.  

Figure 13 shows the evolution of total costs comprising charges from supply chain operations 
and damage potential of carbon emissions for different CI requirements. With no CI constraints, total 
emissions are valued at 2.7 M$ in the optimal solution, yielding the minimum point in the total cost 
curve. This means that in a context of carbon-trade regulatory framework with a penalty of 51 $ per 
emitted ton, it would be convenient for the company to minimize logistic costs paying for the 
corresponding penalties for carbon emissions. Furthermore, from simple calculations it follows that 
a minimum penalty cost of 93 $ per ton of CO2 is required to match the logistic savings. Nevertheless, 
the effects of adding a new term in the objective function accounting for the social cost of overall 
CO2 emissions might not be the same as setting CI constraints. The latter regulatory framework 
imposes that each unit of delivered product embodies a certain amount of emissions at most, and does 
not allow compensating emissions coming from different regions across the value chain. 

 
Figure 13 – Comparison of total cost for scenarios with different CI limits 

Table 2 shows the contribution of each stage to the average carbon intensity embodied per 
unit of delivered product and to the total cost of the supply chain in the optimal solution. From this 
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breakdown, Process 2 is clearly the most important contributor to carbon emissions. However, this 
process also adds 44.2% to the supply chain operating cost. Reducing emissions in this stage implies 
purchasing cleaner energy to mitigate emissions. In turn, transportation activities may use different 
technologies such as electric vehicles charged by renewables energies, hydrogen-fueled units or 
simply rely on speed reductions in order to lower emissions. The latter strategy, however, can hinder 
the timely meeting of customer demands because lead times are longer. Similarly, Process 1 can make 
use of different discrete modes to reduce carbon emissions but with a reduction in production yields 
that might also impact the performance of the supply chain. Despite this fact, the optimal solution to 
the illustrative example with the specified CI constraints suggests to operate Process 1 at the cleanest 
mode over most of the time due to the relative lower cost per unit of avoided emission. Since 
emissions contributed by this stage cannot be further reduced, CI targets are met by partially procuring 
energy from green sources at the most expensive stage, namely Process 2. Finally, storage of products 
under specific conditions seems not to be a spot to mitigate emissions, since its contribution to carbon 
intensity is quite low.  
 
Table 2 – Contribution to carbon intensity and total costs of each stage in the supply chain for the optimal solution of the 
Case Study 1. 
 

Stage Contribution to CI Contribution to supply chain 
cost 

Transportation 20.5% 11.4% 
Process 1 3.2% 43.6% 
Process 2 76.0% 44.2% 
Storage <1% <1% 

 
Note that, in contrast to previous contributions where total emissions are minimized along 

with costs (Guillén‐Gosálbez et al., 2009), our optimization framework makes use of rigorous 
calculations to accurately attribute emissions to feedstocks, intermediates and products. As shown in 
this work, proper calculations to support CI certification schemes is especially important. 
Nevertheless, discussion on how to proceed is still open. Integrated methodologies that combine 
accurate computation of emissions per unit of product through digital supply chains and digital 
certificate management technologies (e.g., blockchain) seems to be the key for the implementation of 
reliable regulatory systems. The model presented in this work can provide important insights on how 
to compute and manage these indicators in a systematic way. 
 
7. Conclusions 
 

We have presented a novel MINLP model that corresponds to a MIQCP that allows planning 
logistic, production and storage operations at minimum cost, to supply markets imposing different 
requirements on the carbon intensity (CI) of the final products. The need of tracking the CI of bulk 
products results in a large-scale, multi-period pooling problem that includes a set of challenging 
bilinear equations. 

The capabilities of the MINLP formulation proposed in this work have been illustrated by 
addressing global supply chain structures including several types of tasks that can be executed in 
different modes to manage costs and emissions. We show that meeting CI requirements is not always 
much more costly than meeting demand at minimum total cost under unrestricted CI conditions. This 
follows from the fact that there are several stages along the value chain, and some of them can meet 
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emission regulations at relatively low cost. However, critical stages like maritime shipping are more 
constrained. While speeds are adjustable to reduce emissions, the need of coordinating large loads 
along with product availability and room for storage at sources and destinations reduces the 
capabilities of managing CI by means of the transportation schedule. As an illustrative case, average 
reductions of 51.1% in the carbon intensity can be achieved by increasing the operating costs only 
9.5%. In absolute terms, however, the reduction in the carbon emissions can be translated to an 
economic value of 1.32 million USD (from current social cost of CO2) which is still insufficient to 
compensate extra costs.  

The optimization framework proves to be a useful tool for identifying critical operations, 
prioritizing sources and markets, or determining key points for the development of clean technologies. 
Nevertheless, the computational challenges are evident. Monolithic models for real size problems 
comprise more than 62,000 discrete variables and 60,000 bilinear constraints not reaching even a 
good feasible solution after 3 hours of computation. Indeed, the non-convex nature of the problem 
requires complex relaxations to assess the global optimality gap, as well as the development of 
decomposition techniques to obtain good quality solutions in reasonable times.  

The solution strategy proposed in this work approximates product CI using a linear 
formulation that is then refined by a detailed MINLP model. The MILP approximation can be solved 
to optimality in less than an hour of computation for a time horizon of 90 days. Although this approach 
does not represent a rigorous relaxation, it allows to recognize in a first step those activities that 
contribute the most to carbon emissions and to reduce the combinatorial complexity resulting from 
maritime transportation. The algorithm yields solutions that are close to those provided by global 
optimizers on small problems (only 2.6% more costly) and allows solving large-scale problems over 
long-term planning horizons.  

Future research will be focused on the development of more detailed approaches such as 
continuous-time formulations for shipping scheduling, including more transportation modes, deriving 
more accurate emission functions, integrating LCA and addressing uncertainties surrounding the 
emissions data. We also aim to improve decomposition strategies by exploiting key aspects of multi-
period pooling formulations. 
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Nomenclature 
 
Sets 
 
𝐶 Delivery nodes 

𝐶(𝑟𝑝) Delivery nodes that can be supplied from receiving port rp 

𝐹 Fuel types for truck transportation 

𝐹(𝑟𝑝, 𝑐) Fuel types for truck transportation available in the route from receiving port rp to customer c 

𝑀 Operation modes for processing stage 1 

𝑀(𝑟𝑝) Operation modes for processing stage 1 available at receiving port rp 
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MR (s, rp) Additional destinations that are visited through a milk-run when a trip is made from source s 

to receiving port rp 

𝑅𝑃 Receiving ports 

𝑅𝑃(s) Receiving ports that can be supplied from source s 

𝑆 Sources of feedstocks 

𝑆𝑃 Available speeds for ships 

𝑆𝑃(𝑣) Available speeds for ship type v 

𝑇 Time periods in the planning horizon 

𝑉 Available ships 

𝑉(𝑠) Ships operating from source s 

 
Parameters 
 
𝑐:?* Operation cost of Processing stage 1 when mode m is used ($ per unit of feedstock A) 

𝑐𝑓!,	# Carbon intensity of feedstock A from production at source s in time period t (mass of CO2 per unit 

of feedstock A) 

𝑐*+<  Green energy cost at receiving port rp ($ per unit of product) 

𝑐*+<  Grid energy cost at receiving port rp ($ per unit of product) 

𝑐𝑖?:BC Carbon intensity of product B required at delivery node c (mass of CO2 per unit of product B) 

𝑐𝑒),!+	Carbon emissions of vessel v when traveling loaded at speed sp (mass of CO2 per unit of distance) 

𝑐𝑟),!+ Carbon emissions of vessel v when traveling empty at speed sp (mass of CO2 per unit of distance) 

𝑐),*+
+'*# Cost for admitting ship v in receiving port rp ($) 

𝑐)*<# Return maintenance cost for ship v ($) 

𝑐),!!*? Cost for admitting ship v in source s ($) 

𝑑*+,	? Distance between receiving port rp and delivery node c (distance) 

𝑑!,	*+ Distance between source s and receiving port rp (distance) 

𝑑*+,	*+! Distance between receiving port rp and rp’ (distance) 

𝑓𝑥𝑐) Sailing cost of ship v ($ per time period) 

𝑛𝑡2,() Number of available trucks of fuel type f at receiving port rp (-)  

𝑠)5$/ Load capacity of the ship v (mass) 

𝑠𝑠!,#$  Rate of supply of feedstock A to source s during period t from production (mass per time period) 

𝑣𝑐) Fuel cost of ship v ($ per unit of distance) 

𝛼D: Maximum processing amount for operation mode m in processing stage 1 in a time period (mass of 

product A per time period) 
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𝛼: Minimum processing amount for operation mode m in processing stage 1 in a time period (mass of 

product A per time period) 

𝛾: Processing yield from product A to B of operation mode m (unit mass of A per unit mass of B) 

∆𝑡!,*+,!+F  Traveling time from source s to receiving port rp at speed sp (number of periods) 

∆𝑡!,*+,!+F#  Traveling time from source s to receiving port rp at speed sp, including backhaul (periods) 

∆𝑡!,*+,*+!,!+
:*&  Traveling time from source s to the first destination rp in a milk-run also visiting rp’ at 

speed sp (number of periods) 

∆𝑡!,*+!,*+,!+
:*H  Traveling time from source s to the second destination rp in a milk-run previously visiting 

rp’ at speed sp (number of periods) 

∆𝑡!,*+,*+!,!+
:*#  Traveling time from source s to destination rp and second destination rp’ at speed sp, 

including backhaul (number of periods) 

𝜀</= Carbon emissions from grid/green energy consumption (mass of CO2 per unit of product B) 

𝜁*+	Cost of storing product B at receiving port rp ($ per unit of product B) 

𝜃: Carbon emissions from processing stage 1 operating at mode m (mass of CO2 per unit of product A) 

𝜆> Truck availability (time per time period)  

𝜇> Load capacity of trucks using fuel type f (mass) 

𝜌) Minimum cargo ratio in the ship v (-) 

𝜎> Carbon emissions from truck transportation when using fuel type f (mass of CO2 per unit of distance) 

𝜏*+,? Travel time from receiving port rp to delivery node c including backhaul (time) 

𝜑? Unit cost for exceeding the required CI in the delivery point c ($ per mass unit of CO2) 

	𝜒> Cost of truck transportation for fuel type f ($ per unit of distance) 

𝜓?,# Cost for not meeting demand of the delivery point c ($ per unit of product B) 

𝛺*+,	#! Aggregated customer demand of receiving port rp in time period t (mass of product B) 

𝜔?,# Demand of delivery node c in time period t (mass per time period) 

 
 
Variables 
 
𝐶𝐼*+,#$  Carbon intensity of A stored at receiving port rp in time period t (mass of CO2 per unit of A) 

𝐶𝐼*+,#;  Carbon intensity of B stored at receiving port rp in time period t (mass of CO2 per unit of B) 

𝐶𝐼𝑆!,	# Carbon intensity of A stored at source s in time period t (mass of CO2 per unit of A) 

𝐶𝑂2𝑃*+,	# Carbon emissions from production tasks performed at rp in time period t (mass of CO2) 

𝐶𝑂2𝑆*+,	# Carbon emissions attributed to material unloaded in rp in time period t (mass of CO2) 

𝐶𝑂2𝑇*+,	# Carbon emissions from maritime transportation to rp in time period t (mass of CO2) 
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𝐶𝑂2𝑇𝑇?,	# Carbon emissions from truck transportation to c in time period t (mass of CO2) 

𝐶𝑅𝐶# Processing stage 1 associated cost in time period t ($) 

𝐸𝑃𝐶# Economic penalty costs in time period t ($) 

𝐺𝐻𝐺𝑇*+,# Total amount of carbon emissions attributable to receiving port rp up to time t (mass of CO2) 

𝐼𝐶?,#;  Inventory of product B at delivery node c in period t (mass of product B) 

𝐼𝑅𝑃*+,#$  Inventory of feedstock A at receiving port rp in period t (mass of feedstock A) 

𝐼𝑅𝑃*+,#;  Inventory of product B at receiving port rp in period t (mass of product B) 

𝐼𝑆!,#$  Inventory of feedstock A at source s in period t (mass of feedstock A) 

𝑀𝑆𝐶# Maritime transportation costs in time period t ($) 

𝑁𝑇𝑅>,*+,?,# Number of trips from rp to c using trucks of fuel type f in period t (-) 

𝑃𝐶# Cost of processing stage 2 in time period t ($) 

𝑄𝐷),!,*+,!+,# Amount of feedstock A that is sent from source s to port rp by ship v at speed sp in period t 

through direct trip (mass of feedstock A) 

𝑄𝐹!,#
$,'(# Amount of feedstock A withdrawn from source s in period t (mass of feedstock A) 

𝑄𝑀𝑅1),!,*+,*+!,!+,# Amount of feedstock A that is sent from source s to first destination rp by ship v at 

speed sp in period t through milk-run trip (mass of feedstock A) 

𝑄𝑀𝑅2),!,*+!,*+,!+,# Amount of feedstock A that is sent from source s to second destination rp by ship v at 

speed sp in period t through milk-run trip (mass of feedstock A) 

𝑄𝑅𝑃),!,*+,#
$,78  Amount of feedstock A that is loaded into receiving port rp from source s by ship v in period t 

(mass of feedstock A) 

𝑄𝑅𝑃>,	*+,	?,			#	
;,'(#  Amount of product B sent from receiving port rp to delivery point c with trucks using fuel 

type f in period t (mass of product B) 

𝑄𝑆),!,*+,	!+,	#	
$,'(#  Amount of A that is sent from s to rp by ship v at speed sp in period t (mass of feedstock A) 

𝑄𝑆*+,			#	
=  Amount of product B processed in stage 2 using green (renewable) energy at receiving port rp in 

period t (mass of product B) 

𝑄𝑆*+,			#	<  Amount of product B processed in stage 2 using grid (non-renewable) energy at receiving port 

rp in period t (mass of product B) 

𝑄𝑈*+,#$  Amount of feedstock A that is sent to processing stage 1 in rp in period t (mass of feedstock A) 

𝑄𝑈*+,:,		#	
$,78  Amount of A processed through mode m at receiving port rp in period t (mass of feedstock A)  

𝑄𝑈*+,#
;,78 Amount of B that is sent to processing stage 2 at receiving port rp in period t (mass of product B) 

𝑆𝐶# Product B storage cost in time period t ($) 

𝑇𝐶# Truck transportation cost in time period t ($) 

𝑇𝑃𝐵*+,	# Total amount of B delivered and stored up to time t from receiving port rp (mass of product B) 
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𝑈𝐷?,# Unmet demand at delivery node c in time period t (mass of product B) 

𝑥𝑚𝑟),!,*+,*+!,!+,# Binary variable telling if ship v is performing a milk-run from source s to receiving 

ports rp and rp’ at speed sp starting at period t (-) 

 𝑥𝑣),!,*+,!+,# Binary variable telling if ship v is performing a direct trip from source s to receiving port rp 

at speed sp starting at period t (-) 

𝑥𝑟𝑝*+,:,# Binary variable telling if processing stage 1 at receiving port rp performs under operation 

mode m in period t (-) 
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