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Abstract 

Energy industries face the challenge on how to design networks to gather flows from unconventional 
assets due to the relative short lifetime of the wells. The optimal design of the network of pipelines and 
processing facilities is a challenging problem from both combinatorial and nonlinear viewpoints. To date, 
real instances of this problem cannot be solved to global optimality unless limited assumptions are 
adopted. We propose a systematic algorithm to address the optimal planning of gathering networks in a 
multiperiod horizon. It relies on the strategic selection of links on which fluid-dynamic equations are 
imposed. By relaxing constraints, the resulting mixed-integer programming models are still complex from 
the combinatorial standpoint, but they can be solved in reasonable computational times. The algorithm 
progressively adds constraints to the potential arcs, seeking for the global optimal solution by selectively 
tightening relaxations. Results show that computational times can be reduced by two orders of 
magnitude.   

1. Introduction 

The optimization of networks of pipelines and facilities to gather, process and deliver unconventional oil 
and gas has received increasing attention from the research community since the shale boom (Drouven 
et al., 2023). Rapid productivity decline curves of unconventional wells challenge facility planners to make 
accurate decisions more frequently. Economic returns from unconventional assets are often modest and, 
as a result, planning facilities and expansions across shale formations is critical for energy companies to 
stay profitable. Over time, significant advances in horizontal drilling and hydraulic fracturing technologies 
have facilitated the exploitation of shale resources, but the need for computational tools to aid 
operational and planning decisions remains high. In response to this need, recent contributions from the 
mathematical programming field have addressed the optimal design and operation of shale gathering 
networks, with different levels of detail. Some of them assume tree-like networks carrying multiphase 
flows, with given pressure drops per segment or echelon (Cafaro and Grossmann, 2014; Montagna et al., 
2021). Others present generalized frameworks in which the oil and gas networks are built following no 
predetermined number of echelons (Montagna et al., 2022; Wen at al., 2022), but liquid and gas streams 
are separated at source nodes and flow through separate pipelines.  
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A common assessment in all of these contributions is that the optimization problem is difficult due to two 
sources of complexity: (a) the combinatorial nature of the network design, and (b) the nonlinear 
correlations to calculate head losses according to the pipeline diameter (sizing decisions), which are often 
non-convex. In fact, for rather small problems, in our computational experiments not a single feasible 
solution has been found after one day of computation using global optimization solvers like BARON (Ryoo 
and Sahinidis, 1995). Even after applying decomposition strategies, which are not able to converge to the 
actual global optima, solutions found show optimality gaps over 5% (Montagna et al., 2021). The aim of 
this work is to build an optimization algorithm to consistently solve the design of generalized gathering 
networks to global optimality in reasonable CPU times. This algorithm is essential if more realistic and 
challenging instances of the problem are to be addressed in the future. 

Related work 

Comprehensive reviews on shale optimization models can be found in Gao and You (2017) and Drouven 
et al. (2023). In 2014, Cafaro and Grossmann develop a mixed-integer nonlinear programming (MINLP) 
model for the strategic design and planning of shale gas networks, comprising pipelines, compressors and 
processing plants. Concave cost functions are used to represent economies of scale to determine the size 
of facilities and pipelines, which are treated as continuous variables. For simplicity, reference gas 
pressures at intermediate nodes are given. Through a more detailed representation, Drouven and 
Grossmann (2017) seek to optimally plan well development tasks explicitly accounting for pressure 
profiles across shale gas pipeline networks. This work demonstrates that operating costs from gas 
compression can be reduced significantly by properly handling pressures over time. Although the network 
design is out of the scope in this case, more complex nonlinear equations are used to calculate pressure 
drops and compression power. In both contributions, tailored solution algorithms are proposed to address 
non-convexities and solve real-world problems from the Appalachia. It is interesting to note that when 
the structure of the pipeline network needs to be optimally determined, research works tend to simplify 
the modeling of hydraulic equations, usually assuming linear correlations (Wang et al., 2018). In fact, given 
the challenges posed by MINLP formulations, combinations of metaheuristics have also been tried (He et 
al., 2019). In the latter work, genetic algorithms are combined with simulated annealing strategies to 
improve the local optimization ability of the first method. Interconnection of oil wells and manifolds is the 
main decision to make, yielding an optimization problem of discrete nature and combinatorial complexity. 
The main drawback of metaheuristics is that the global optimum is only guaranteed for an infinite number 
of trials, and no reference to the best possible solution is provided. 

With a focus on facilities rather than pipelines, Tan and Barton (2016) develop a multiperiod MILP model 
to dynamically allocate mobile plants to wellpads, aiming to process shale gas production through more 
flexible and robust designs. A two-stage stochastic programming approach is proposed to address 
uncertainty in future gas production, demand and price. Facilities to install at any node are basically two: 
gas-to-liquids plants converting methane into heavier hydrocarbons, and liquefaction plants to obtain 
liquefied natural gas (LNG). Like in previous models, the optimal time to buy, sell and allocate plants is 
determined through 0-1 variables that permit to maximize the expected NPV of the shale gas production. 
A real case study from the Bakken shale formation (U.S.) is solved with the proposed model.  Similarly, 
Allen et al. (2019) address the sizing and allocation of modular facilities that can be relocated according 
to realizations of uncertain productivity scenarios. Many skids or modules can work in parallel at every 
node. A novel multistage stochastic programming model is developed, which is based on a tree of 
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multidimensional nodes accounting for size, technology and location of facilities, as well as production 
forecast scenarios. More recently, Hong et al. (2020a) propose an extension of the previous model that 
includes wellpad production start times as decisions variables, such as the model by Cafaro and 
Grossmann (2014). In contrast to Allen et al. (2019), productivity curves are treated as deterministic data. 
This work shows the benefits of integrating well development plan with facilities sizing and expansion 
decisions. 

Back to pipeline networks, Hong et al. (2020b) seek to solve the optimal design of gathering systems over 
natural gas reservoirs with a greater level of detail, i.e. using a 3D representation of the surface of the 
field. Nonlinear correlations for pipeline pressure drops along irregular terrain profiles are approximated 
by piece-wise linear functions, yielding an MILP approach. Pipeline routes are selected from a reduced set 
of alternatives that are generated by an ant-colony algorithm, which is run before the MILP. The optimal 
location of a centralized processing facility is also a model decision, seeking to minimize the net present 
cost of pipeline network. Later on, Zhou et al. (2022) consider a variety of pressurization methods to 
optimize shale gas transportation, seeking to minimize purchase and operating costs of compressor units 
across a given gathering network. The latter models are applied for validation to real-world gas fields in 
China. 

One of the first approaches to consider shale oil gathering networks has been developed by Montagna et 
al. (2021). A comprehensive mixed-integer nonlinear programming (MINLP) formulation is proposed to 
design a pipeline network connecting shale oil wells to tank batteries for the separation of gas and water 
from the production stream. Starting production times and productivity profiles from all wellpads are 
given data. The model accounts for detailed multiphase pressure drop calculations to size the pipeline 
diameters according to the product flow to handle over time (Lockhart and Martinelli, 1949). Like most 
contributions addressing the optimal design of pipeline networks, reference values for inlet and outlet 
pressures at the segments are given beforehand to simplify the pipeline sizing equations. Besides that, 
the formulation assumes that facilities and pipeline interconnections should configure a treelike network 
with a fixed number of echelons (Cafaro et al., 2022). Due to production traceability, multiphase flows 
cannot be split until reaching the battery assigned for phase separation. The model proves to be 
computationally intractable even for rather small instances. To overcome that limitation, the authors 
propose a bi-level decomposition strategy comprising: (1) a nonconvex NLP formulation that includes all 
the fluid dynamic equations to estimate the multiphase transportation capacity of the pipelines, and (2) 
an MILP formulation for the network design and pipeline sizing. A real case study with a challenging 
superstructure of alternatives is addressed in this work to build a gathering network that comprises a total 
of 40 wellpads with an average of 6 wells per pad, over a 4-year horizon. The model proposes 20 potential 
nodes for junctions and 5 potential locations for tank batteries. Moreover, there are 3 alternative 
diameters for the pipelines and 3 tank battery capacities to choose from. After executing the solution 
algorithm, a near optimal solution is obtained after 12 hours of computation (5.2% optimality gap). 
Despite being much better than the one reported by global optimizers, the algorithm does not guarantee 
that there are no better alternatives, and lacks a strategy for finding better solutions and bounds. 

Finally, Montagna et al. (2022) present a generalized framework in which the oil and gas gathering 
networks are built following no predetermined number of echelons. There is a set of generic nodes to be 
connected to reach the final destinations. In any of these nodes, facilities for merging, storing, purifying, 
processing and/or delivering flows are installed to make the oil and gas flows be ready for delivery or use. 
One of the major differences with regards to the models with a fixed number of echelons is that the flow 
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direction may be reversed in any pipeline segment over the time horizon. Besides that, given that the 
number of segments connecting a source node to a delivery node is optimally determined by the model, 
an additional challenge is to track pressures along the paths. Together with the network design one should 
accurately define the inlet and outlet pressures at every segment for every time period. By including 
intermediate pressures as decisions variables, flowrates and flow directions can be optimally handled 
along the time horizon to make a better use of the pipeline transportation capacity. However, nonlinear 
constraints are required, thus posing further challenges on the modelling and computation. In this case, 
only single-phase pipelines segments are addressed. MILP (mixed-integer linear) and MIQCP (mixed-
integer quadratically constrained) models are proposed for oil and gas gathering networks, respectively. 
A real-world problem comprising 150 wellpads arranged in 15 rows is tackled in this work. There are 4 
alternative locations to deliver processed shale oil and gas flows, 3 alternative pipeline diameters, and 
any row is a candidate location to install (and expand) processing and/or delivery facilities for both fluids. 
However, the superstructure of potential interconnections is significantly reduced by the authors to cope 
with combinatorial complexity. Even after simplification, the natural gas model comprises roughly 70,000 
constraints (of which 18,000 are quadratic) and 48,000 variables (14,000 of which are integer). After 12 
hours of computation, the global optimality cannot be proved.  

Therefore, with the aim of overcoming significant limitations of the solution strategies presented in the 
literature so far, a systematic algorithm is proposed in this work to aid the optimal design of generalized 
gathering networks.  

2. Problem statement  

The optimization problem addressed in this work can be stated as follows. Given: 

(a) A set of time periods comprising a multi-period, long-term planning horizon. 

(b) A set of production sites (individual wells or wellpads), their production start times and expected 
productivity profiles (including gas-to-oil and water-to-oil ratios).  

(c) Potential locations and existing sites for facilities, alternative capacities per component, capital 
expenditures and operating costs.  

(d) Potential locations for junction nodes, capital expenditures and operating costs.  

(e) Potential and existing locations for delivery points and their capacities.  

(f) A superstructure of interconnections among nodes, where pipelines can be installed. 

(g) A finite set of alternative pipeline diameters to build the network, their installation costs per unit of 
length and the operational expenditures.   

(h) Estimated pressures at the well-heads, minimum inlet pressures at junctions, processing facilities 
and delivery points.  

The goal is to design an integrated network of pipelines and surface facilities to gather flows, separate 
phases, process product streams and deliver both shale oil and shale gas production over the time horizon, 
while maximizing the net present value of the project. Wellpads need to be connected to separation 
and/or processing units through flowlines, and processing units are further connected among themselves 
through liquid and/or gas pipelines to finally deliver the product flows to the market. The problem is to 
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optimally determine the number, location and size of processing facilities, together with the network of 
pipelines (diameters and lengths). The time for facility investments and expansions is also critical, and 
economies of scale also play a key role. We should note that typically the time periods are given in months, 
quarters or years. Figure 1 illustrates the components of the problem on a simple network. 

In the most general case, the pressures at every node in the network are also variables of the problem, 
which are computed according to the flow properties, the selected diameters and the distances between 
the nodes, by applying fluid-dynamic equations. However, production curtailment is not allowed at any 
point in time to avoid undesirable effects in the response of the wells after bottom pressures 
manipulation.  In other words, in line with Montagna et al. (2021), “choking” wells is not allowed and 
expected production should be fully processed. 

 

Figure 1 - Simple scheme of the components of the optimization problem for shale oil/gas gathering network design. Two 
alternative solutions from the superstructure are shown. Arrow widths represent different pipeline diameters. 

3. Model assumptions 

Optimization models for the design of pipeline networks can be distinguished among those for which the 
number of echelons (sequence of arcs or pipeline segments connecting a production node to a final 
delivery node) is predetermined, and others for which this number is undetermined (see Cafaro et al., 
2022 for more details). Although formulations in both cases are different, the algorithms proposed in this 
work are general enough to tackle both. The following model assumptions are valid for any network 
structure:         

1. Production nodes i may be individual wells, wellpads or rows of wellpads, depending on the level 
of aggregation of the problem. Geographical locations of production nodes are known data. 

2. Development plan for shale oil and/or shale gas wells is given beforehand. It includes: 
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a. Number of wells to develop at each production node.  

b. Drilling and completion period of the wells in the production node.  

c. From the previous points, the productivity 𝑝𝑟!,#,$ of oil, gas and water at every node i for every 
period over the time horizon can be forecasted. Wellhead pressures 𝑝#,$

%& are also given. 
Production curtailment through bottom pressure manipulation is not allowed at any time 
over the planning horizon. 

3. A finite set of alternative sizes for processing facilities 𝑓𝑘',!  is available. Some of them may be 
basic two-phase separators (horizontal or vertical vessels) to primarily split the liquids from the 
raw gas when the flow exits the wellheads while others may be integrated facilities featuring 
complex configurations meant to dewater, purify and desalt the oil, and/or conveniently dry the 
natural gas, before delivering them to midstream distributors. The latter are usually called tank-
batteries.  

4. Each production stream (comprising liquid and/or gas phases) leaving a wellpad needs to reach a 
processing facility through a series of pipeline segments called flowlines. After phase separation, 
further processing may be required and flows later converge into downstream facilities for 
storage, compression and/or delivery. 

5. Possible locations for processing facilities, storage and delivery nodes (generically denoted by j) 
are given. Minimum flow pressures 𝑝()* required at the inlet section of processing facilities are 
also known. 

6. Pressures at each junction node are balanced down to the minimum pressure among the flows 
reaching that node on every time period. 

7. The pressure of the flows cannot be boosted by building compressor stations at intermediate 
nodes. Furthermore, neither choking wells nor flaring gas is allowed.   

8. Pipeline diameters are selected from a finite set of alternatives (dÎ D) that are commercially 
available. Only one pipeline segment can be installed between a pair of nodes along the time 
horizon.  

4. Mathematical formulation 

In general terms, optimization models for the design of gathering networks and surface facility planning 
are multi-period formulations that comprise three main parts: topological aspects (network design and 
surface facilities planning), fluid dynamics calculations and objective function. All the sets of parameters, 
variables and equations of the mixed-integer nonlinear programming (MINLP) models used in this work 
are presented in the Supplementary Material for completeness. In this section we just focus on variables 
and constraints that are relevant to the proposed solution algorithm.    

4.1 Topological aspects  

Depending on the flexibility of the network to build, we distinguish among problems with fixed and 
undetermined number of echelons. The first ones assume that there is a set of nodes (producers) that 
need to be connected to second level nodes (junctions), which in turn need to be connected to third level 



 7 

nodes, and so on and so forth until reaching the demand nodes in “n” unidirectional steps or echelons. 
Note that the number of segments can be less than the proposed number of echelons if nodes of 
subsequent levels are located in the same site. In the second case, there is a set of generic nodes (either 
sources, intermediate and/or processing nodes) that need to be connected among themselves to reach 
the final destinations. One of the major differences of the latter with regards to the models with a fixed 
number of echelons is that the flow direction may be reversed in any pipeline segment over the time 
horizon. In any case, facilities for merging, storing, separating and/or processing flows should be installed 
at some node/s to make the product flows be ready for delivery or use. 

In both types of models there are basically three blocks of constraints: mass balances, facility planning 
and pipeline sizing constraints. As generically represented by Eq. (1), the aim of this optimization problem 
is to make source nodes iÎIsource deliver their given production flows (prc,i,t) to one or more nodes j that 
collect the components cÎC and subsequently send them to other nodes in the network until reaching 
the delivery nodes. The set of arcs A stands for potential interconnections between nodes where pipelines 
can be installed.  

𝑝𝑟!,#,$ = & 𝐹!,#,(,$
(:(#,()∈/

														∀𝑖 ∈ 𝐼0*%1!2 , 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇 (1) 

In turn, mass balances are imposed at every intermediate node j in the network and they state that the 
summation of all inlet flows equals the outlet flows (see Eq. 2). Note that volumetric units under standard 
conditions are often used, which is equivalent to handling mass flows (e.g., 103 scf = MSCF for gas flows, 
standing for thousand cubic feet of gas under standard conditions of temperature and pressure).   

& 𝐹!,#,(,$
#:(#,()∈/

= & 𝐹!,(,(!,$
(!:((,(!)∈/

														∀𝑗 ∈ 𝐽, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇	 (2) 

If the node j in Eq. (2) splits the incoming flows towards two or more destinations, extra considerations 
should be made to ensure a homogenous mixture of components, requiring bilinear equations (Quesada 
and Grossmann, 1995). However, in oil and gas gathering networks, these equations are usually omitted 
given that the gathered flows need to converge to a single node, in a tree-like configuration (Cafaro and 
Grossmann, 2014).  

Finally, gathered flows converge to delivery/sink nodes 𝑗3ÎJsink, as shown in Eq. (3). Note that material 
balances usually yield linear equalities like (1), (2) and (3), of low complexity from the computational 
perspective. For completeness, a more detailed formulation for pipeline networks with a fixed number of 
echelons is presented in the Supplementary Material.   

& 𝐹!,(,(!,$
(:((,(!)∈/

= 𝑄!,(!,$														∀𝑗3 ∈ 𝐽0#45 , 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇	 (3) 

In the second block of constraints, the overall capacity of the processing facilities installed in a node is 
imposed as an upper bound for the flows reaching that node. Since pipeline connections and facility 
installation and expansions are handled through 0-1 variables, the referred constraints are complicating 
inequalities similar to those of the 0-1 knapsack problem, but under a multiperiod framework and with 
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the possibility of expanding the upper bound on the right hand side. In Eq. (4), the binary variable 𝑦',(,6 
stands for the decision of installing a new facility of size q (with a processing capacity of 𝑓𝑘',!  units of 
component c per day) in node j at time period 𝜏. The installation of more facilities in the same location 
increases the processing capacity of that node. Parameter lt is the lead-time to build the facility, given as 
an integer number of periods. We also introduce the subset 𝑇𝐼	Í	𝑇 to account for particular periods 𝜏 
along the time horizon in which new investments can be made.   

& 𝐹!,#,(,$
#:(#,()∈/

≤ & &𝑓𝑘',! 		𝑦',(,6
'6∈	89

6:$;)$

								∀𝑗 ∈ 𝐽, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇	 (4) 

The third block of constraints deals with pipeline sizing and interconnection. We consider a finite set of 
alternative diameters that are available to build the network. Under the simplifying assumption that the 
pipeline transportation capacity 𝑡𝑐<,#,( 	 is a given parameter, only dependent on the pipeline section and 
length (regardless of the pressures at the inlet and outlet extremes of every segment), pipeline sizing 
constraints can be modelled in linear terms. Eq. (5) avoids flows to be sent through an arc i-j unless a 
pipeline with a proper diameter has been installed between those nodes.  

&𝐹!,#,(,$
!

≤ & &𝑡𝑐<,#,( 		𝑥<,#,(,6
<6∈	89

6:$;)$

								∀(𝑖, 𝑗) ∈ 𝐴, 𝑡 ∈ 𝑇 (5) 

In more detailed MINLP representations like the one used in this work, fluid dynamic conditions across 
the pipeline network are also included in the model and the transportation capacity 𝑡𝑐<,#,(  turns into a 
decision variable. Note that the set of arcs A is given by the superstructure of alternative paths that can 
be used to build the network, which in the most general case grows quadratically with the number of 
nodes. Therefore, cutting off elements from the set A has a significant impact on the computational 
performance of the MINLPs as will be shown in later sections.        

4.2 Fluid-dynamic considerations 

According to the fluid state, the pipeline length and the selected diameter, managing pressures at the 
inlet and outlet extremes of a segment (𝑃#,$ , 𝑃(,$) allows to optimally determine the flowrates at every 
period t. Flowrates and pressure drops are usually correlated by algebraic fluid dynamic equations that 
have been extensively used and validated in practice. For simplicity, we present the nonlinear equations 
that need to be added into the optimization model for the particular case of natural gas pipeline networks, 
based on the Weymouth correlation (Weymouth, 1912). However, the algorithm presented later in this 
work is general enough to handle more complex equations, like the calculation of pressure loss along 
multiphase pipelines (Lockhart and Martinelli, 1949).  

For natural gas pipelines (c = gas), the transportation capacity of a segment i-j with length li,j (in km) and 
diameter Di,j,t (available by period t, in m) is usually estimated by the Weymouth correlation (Weymouth, 
1912), as stated by Eq. (6). Pressures are given in 106 Pa and flowrates in 106 m3/day. 
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𝐹	#,(,$ ≤ 𝛾;=.?	𝑙#,(
;=.??𝑃#,$@ − 𝑃(,$@A

=.?
& 𝐷#,(,6@.AAB
6∈	89
6:$;)$

											∀(𝑖, 𝑗) ∈ 𝐴: 𝑙#,( > 0, 𝑡 ∈ 𝑇 (6) 

The parameter 𝛾 can be obtained from the expression 𝑠C	𝑇 [𝑃*/(0.375 𝑇*)]@, where 𝑠C is the specific 
gravity of the gas in standard conditions (𝑃* = 0.1013 MPa; 𝑇* = 298.15 K) and 𝑇 is its average temperature 
in K. Figure 2 illustrates that correlation for 5 km long pipelines with two different diameters, assuming 𝑇 
= 𝑇*. 

 

Figure 2 – Weymouth fluid dynamics constraints and linearizations for gas pipelines of 5 km length and different pipeline 
diameters 

Since diameters are chosen from a finite set of alternatives (namely d Î D, as stated by assumption 8), Eq. 
(6) can be rewritten as Eq. (7). The 0-1 variable 𝑥<,#,(,$ stands for the installation of a pipeline segment of 
internal diameter 𝛿<  in the arc (i,j) at period t.   

𝐹	#,(,$ ≤ 𝛾;=.?	𝑙#,(
;=.??𝑃#,$@ − 𝑃(,$@A

=.?
	 & &𝛿<			@.AAB𝑥<,#,(,6

<∈D6∈	89
6:$;)$

											∀(𝑖, 𝑗) ∈ 𝐴: 𝑙#,( > 0, 𝑡 ∈ 𝑇 (7) 

Given that, by assumption, only one pipeline segment can be installed in an arc over the time horizon 
(∑ ∑ 𝑥<,#,(,$	𝑡< ≤ 1), at most one term of the summation in Eq. (7) may take a non-zero value.  From the 
latter, if we replace the expressions 𝑃#,$@ and 𝑃(,$@ with the variables 𝑃#,$

0' and 𝑃(,$
0', respectively, and we 

raise both sides of Eq. (7) to the power of 2, we obtain the constraint presented in Eq. (8). Note that by 

assumptions 2 and 5, ?𝑝#)*A
@
≤ 𝑃#,$

0' ≤ ?𝑝#,$
%&A@, where 𝑝#)* is the minimum pressure admitted for a flow 

reaching a processing facility (if installed) at node i, and 𝑝#,$
%& represents the wellhead pressure at the 

source node i at period t. 

𝐹#,(,$@ ≤ 𝛾;E	𝑙#,(
;EQ𝑃#,$

0' − 𝑃(,$
0'R	 & &𝛿<			?.FFG𝑥<,#,(,6

<∈D6∈	89
6:$;)$

											∀(𝑖, 𝑗) ∈ 𝐴: 𝑙#,( > 0, 𝑡 ∈ 𝑇 (8) 
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Through a reformulation of the right-hand side of Eq. (8) based on a big-M relaxation, a linear expression 
is used to account for the selection of diameters (Glover, 1975). In Eq. (9), the big-M parameter 
(𝑑𝑀?.FFG	∆𝑠𝑝#,(HIJ) can be calculated from the maximum diameter in the set D and the maximum 
admissible difference between the square pressures at the extremes of the segment i-j. Both values are 
usually known before solving the optimization problem. 

𝐹#,(,$@ ≤ 𝛾;E	𝑙#,(
;E	[𝛿<?.FFG	(𝑃#,$	

0' − 𝑃(,$
0') + 𝑑𝑀?.FFG	∆𝑠𝑝#,(HIJ(1 − & 𝑥<,#,(,6

6∈	89
6:$;)$

)]			 

∀(𝑖, 𝑗) ∈ 𝐴: 𝑙#,( > 0, 𝑑 ∈ 𝐷, 𝑡 ∈ 𝑇 

(9) 

4.3 Objective function 

In one of its simplest forms, the network design problem for gathering shale production seeks to minimize 
the net present cost of investments comprising pipeline and facility costs, as stated by Eq. (10). Such 
capital expenditures are brought to the present time by means of the discount rate r. Solving the tradeoff 
between these two main terms implies to optimally decide among distributed or centralized network 
designs. The first alternative minimizes pipeline costs by reducing pipeline lengths and diameters, while 
the second prioritizes facility costs, taking advantage of economies of scale associated with larger sizes.   

Min	NPC =&(1 + 𝑟);$ ]&𝑐𝑓',( 		𝑦',(,$
(,'

+ & &𝑐𝑝<,#,( 		𝑥<,#,(,$
<(#,()∈/

^
$

	 (10) 

In summary, the MINLP formulation seeks to minimize Eq. (10) subject to topological and fluid dynamic 
constraints. For more details on specific equations for liquid, gas and multi-phase flows, under different 
network topologies, we refer the reader to Cafaro et al. (2022). Regardless of the complexity of the 
nonlinear correlations used to manage pressure drops along the pipeline segments, it is quite clear at this 
point that avoiding calculations of that kind in certain arcs of the network could be helpful for the 
optimization model. We will discuss this strategy with more detail in the following sections. 

5. Selective Tightening Algorithm for global optimization 

In the MINLP formulation described in previous sections the number of nonlinear constraints is 
significantly large because they are imposed for every potential arc in the superstructure of alternatives. 
From the latter, the global optimization of gathering networks of real size is a major challenge.  By relaxing 
all or a set of nonlinear constraints, we obtain MILP or MINLP models of reduced size that, although 
combinatorically complex, can be solved in reasonable computational times, even for large instances of 
the problem. Taking advantage of this fact, we aim to develop an algorithm that successively adds on the 
fly linear and nonlinear constraints on the current relaxed model in order to converge to the global optimal 
solution.   

5.1 Building blocks 

Valid relaxations of the MINLP 
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A valid lower bound to the global optimal solution can be obtained by solving an MILP approximation 
under the following conditions: 

1. Fluid dynamic constraints (for pipeline sizing, based on pressure/flow correlations) are relaxed. 
This implies that for every arc i-j used to build the network, the cheapest (smallest) diameter will 
be naturally selected by the solution procedure. 

2. The maximum admissible flow for any arc i-j is limited to the capacity of a pipeline with the 
maximum diameter, under the maximum admissible difference of pressures between the nodes i 
and j, assuming that the arc is selected to build the network.  

Note that the optimal solution from the MILP approximation yields a network configuration (set of 
interconnections and facility investment planning) without details on the pipeline diameters that are 
required. Also note that if conditions 1, 2 and 3 apply on a subset of arcs i-j in the superstructure, the 
resulting model will also be a valid relaxation of the full-scale MINLP (imposing fluid-dynamic constraints 
on all arcs), although the reduced model will still be an MINLP. Finally, linear underestimations of the 
pressure drop in the fluid-dynamics equations also yield valid relaxations. 

Finding good feasible solutions 

One of the simplest strategies to find a feasible solution to the full-scale problem is by solving a simplified 
MILP model that assumes direct link between sources and sinks. This is equivalent to assuming a network 
with a single echelon, with no chance to merge flows coming from different wells at intermediate nodes. 
Inlet and outlet pressures are fixed at their maximum and minimum admissible values, respectively, thus 
making it possible to preselect the minimum diameter that can handle production flows from every 
individual node over the time horizon. The resulting network usually has a higher-than-needed cost in 
pipelines because of the following reasons:  

a) Pipelines cannot be shared by nearby wells. This is particularly inefficient when production 
profiles have almost no interference since development times are set apart from each other.  

b) The solution takes no advantage of economies of scale of pipelines.  

As a result, the MILP model with one echelon favors decentralized configurations. From that, such initial 
allocation of wellpads to facilities can be taken as a reference to limit the number of nodes for facility 
location. Note that by progressively increasing the number of echelons, and thus the size of the network 
superstructure, pipeline costs are reduced and lower-cost solutions can be found but the model 
complexity increases significantly. Good feasible solutions can be also found in reasonable times by solving 
smaller MINLPs over a reduced set of arcs in the network superstructure. In fact, if good configurations 
(network topologies) are derived by MILP approximations, they may be used to select specific arcs, size 
the corresponding pipelines and finally build the network.  

A third strategy to find good feasible solutions is to prefix pressures at intermediate nodes, thus leading 
to simpler (linear) pipeline sizing equations (Montagna et al., 2021). Finally, linear approximations (not 
necessarily underestimations) of the pressure drops can also be useful to find efficient configurations. 
However, solving a reduced MINLP model will be also required to finally adopt proper pipeline diameters 
for every segment. Further details on all these strategies are given in the following sections.    

5.2 Selective Tightening Algorithm (STA) 
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A global optimization algorithm can be drawn by successively solving valid relaxations of the full-scale 
MINLP (see Section 5.1). The so-called Selective Tightening Algorithm (STA) seeks to progressively add 
constraints that are potentially binding in the optimal solution. In this way, the number of nonlinear 
constraints is considerably smaller than the ones in the monolithic model, and the solution of the full-
scale problem can be avoided. In the most basic form of the algorithm, successive lower bounds are 
obtained for the problem until both feasibility and optimality are simultaneously reached. The lower 
bound approach of the STA is summarized in Figure 3 and can be stated as follows: 

A. Initialization. Iteration counter k is set to 0 and the subset of arcs SCk Í A on which fluid dynamic 
constraints are imposed is empty. For a problem with a given number of echelons, specify E as this 
number (see Supplementary Material).  

B. Main step. Solving successive relaxations.  

B1.  A relaxation ℛ5 of the full-scale problem is solved by only imposing fluid dynamic constraints 
over the arcs included in SCk. The optimal pipeline network (triplets i-j-d) yielded by this 
relaxation is stored in the solution ℛ5

∗ .  

B2.  Fix the network topology and pipeline sizes (triplets i-j-d in  ℛ5
∗ ) and impose fluid dynamic 

constraints over all the selected arcs. If ℛ5
∗  is feasible, then the network proves to be optimal 

because unconstrained links (not in SCk) can manage flows with the minimum diameter. If 
that is the case, the procedure ends; otherwise, it continues as in B3.  

B3.  Add arcs in ℛ5
∗  into SCk+1 and increase iteration counter k by 1 (see Figure 2).  The main step 

is repeated until convergence. 

Notice that the first iteration yields an MILP formulation since this set SCk of constrained arcs is initially 
empty. It is also important to note that step B1 yields a valid lower bound of the original problem at every 
iteration, and for all the selected segments that are not in SCk the solution procedure will automatically 
assign the smallest possible diameter, to reduce cost. 
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Figure 3 – Basic form of the Selective Tightening Algorithm (STA)  

 

 
Figure 4 – (a) Initial solution with no arc in the set SCk. (b) Links added to SCk+1. (c) Solution from the second relaxation still using 

an unconstrained link (in blue). FD stands for fluid dynamic.  
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5.3 Generalized Solution Approach based on Selective Tightening 

When a specified optimality gap is sufficient from the optimization perspective, relaxation strategies 
(lower bounds) and heuristics to find good feasible solutions (upper bounds) can be combined for faster 
convergence. Strategies presented in Section 5.1 can be added to the procedure with this aim. By 
comparing upper and lower bounds for the problem, the algorithm can be interrupted prematurely after 
reaching a gap termination criterion. This strategy leads to a generalized approach that can be 
summarized as follows: 

A. Initialization. The algorithm is initialized in the same way as in Section 5.2, with no arcs in the 
subset SCk. The initial upper bound 𝑧LM 	is set to infinity.  

B. Main step: Solving successive relaxations and finding feasible solutions 

B1.  A relaxation ℛ5 of the full-scale problem is solved by only imposing fluid dynamic constraints 
over the arcs included in SCk. The optimal solution of the relaxation and the value of the 
objective function are stored in ℛ5

∗  and  𝑧5NL, respectively. 

B2.  If solution ℛ5
∗  is feasible then it is also optimal and the procedure ends. Else, the current 

solution provides a new lower bound for the problem (𝑧NL = 𝑧5NL). In addition, a feasible 
solution can be obtained from  ℛ5

∗  by fixing the network topology and optimizing pipeline 
diameters in a subproblem ℱ5. Let the objective value of this solution be  ℱ5∗ = 𝑧5OL . 

B3.  The feasible solution derived from ℛ5
∗  (step B2) can be stored as a new “best-found” solution 

if 𝑧5OL < 𝑧LM.  

B4.  By comparing the current bounds, the optimality gap can be calculated for the best available 
feasible solution. If the gap satisfies the tolerance 𝜀, the current feasible solution is reported 
as the optimal solution. Otherwise, fluid-dynamic constraints are enforced for unconstrained 
links still present in ℛ5

∗  and added to SCk+1, before updating k. The main step is repeated until 
convergence. 

Note that a single-echelon feasible solution strategy as described in Section 5.1 can be used to set the 
initial upper bound 𝑧LM  to a finite value, usually in short CPU times. Furthermore, other heuristic 
strategies can be run in parallel with the successive relaxations (see parallel task block in Figure 5), which 
can be used to feed the step B3 of the algorithm with improved feasible solutions (upper bounds). Only 
some of them have been presented in Section 5.1. For completeness, some others are described in further 
sections. 

Parallel tasks  

In parallel with the main procedure described in previous sections, reduced optimization problems can be 
solved to feed new feasible solutions into the main program and thus speeding up convergence. This 
section describes two heuristic strategies that may yield good quality feasible solutions. 

Two-step solution approach: Allocating wells’ production to processing facilities configures a class of 
multiperiod bin packing problem that is complemented with the pipeline network design. Pre-allocating 
wellpads to facilities in a master allocation problem may drastically reduce the computational time of 
multi-echelon instances. This strategy comprises two subsequent optimization problems. First, a single 
echelon network configuration with precalculated pipeline diameters is solved. Based on the suggested 
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allocation, a second step model adds strong topological cuts into the multi-echelon model. Equations (11) 
to (14) illustrate topological constraints for a 2-echelon formulation. We introduce routing variables 
𝑤#,#!,( 	 ∈ {0; 1} to indicate that nodes i and j are connected through an intermediate node i’. Eqs. (11), 
(12) and (13) model the equivalence  𝑤#,#!,(  = 1 Û ∑ 𝑥<,#,#!,$P0$<∈D  = 1 Ù ∑ ∑ 𝑥<,#!,(,$!$!:0$(#)<∈D  = 1, 
determining the route i-i´-j according to the upstream and downstream segments i-i’ and i’-j, respectively. 
Note that the upstream segment i-i’ is assumed to be built at the production start time of node i (t = st(i)).  

𝑤#,#!,( ≥ &𝑥<,#,#!,$P0$(#)
<∈D

+& & 𝑥<,#!,(,$!
$!:0$(#)<∈D

− 1													∀(𝑖, 𝑖3) ∈ 𝐴, (𝑖3, 𝑗) ∈ 𝐴	 (11) 

𝑤#,#!,( ≤ & & 𝑥<,#!,(,$!
$!:0$(#)<∈D

									∀(𝑖, 𝑖3) ∈ 𝐴, (𝑖3, 𝑗) ∈ 𝐴		 (12) 

𝑤#,#!,( ≤ &𝑥<,#,#!,$P0$(#)
<∈D

																		∀(𝑖, 𝑖3) ∈ 𝐴, (𝑖3, 𝑗) ∈ 𝐴	 (13) 

In Eq. (14), 𝜃#,(  is a parameter taking value 1 when production node i should be allocated to a processing 
facility j (a result from the first step). If 𝜃#,(  = 1, one and only one routing variable 𝑦#,#!,(  (i.e. using a single 
intermediate node i’) must be activated.    

& 𝑤#,#!,(
#!:(#,#!)∈/	∧(#!,()∈/

= 𝜃#,( 													∀(𝑖, 𝑗) ∈ 𝐼: 𝑖 ≠ 𝑗	 (14) 

Note that the second step model is still an MINLP formulation including fluid dynamic constraints on every 
arc. It is solved to obtain a feasible solution, and later used as an upper bound for the solution algorithm. 
This strategy can be iteratively applied for an increasing number of echelons by generalizing constraints 
(11) to (14), adding intermediate indices i”, i’”, etc., into variables w. Once again, it is important to highlight 
that in the first step, when the number of echelons is reduced, pipeline network costs are overweighted 
and decentralized solutions may be erroneously favored. To mitigate this effect, pipeline cost terms in the 
objective function of the first model can be multiplied by a factor f < 1 such that the total costs in both 
steps are comparable.  

Allocation-Within-Allocation (AWA) procedure: When the number of echelons in the second step of the 
two-step approach is large, the number of integer cuts required for fixing the well-facility allocation grows 
quickly. The AWA is a heuristic algorithm that deals with a larger number of echelons by generating 
clusters of wellpads whose production flows are gathered into a single node. The collecting node of a 
cluster is arbitrary located, typically closer to the most productive wells in the group. In turn, these 
junction nodes can be linked to junction nodes of other clusters, yielding a multi-echelon configuration 
with reduced degrees of freedom. At each iteration, different wellpad clusters are proposed based on 
vicinity (following geographical or temporal criteria), and a reduced set of junction nodes is made available 
at every cluster. Then, using the two-step approach described in the previous section, the AWA algorithm: 
(a) allocates clusters to processing facilities, (b) selects a junction node for production flows coming from 
the wellpads in the same cluster, and (c) builds a pipeline network based on decisions (a) and (b). The 
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AWA is solved in parallel to produce feasible solutions that are fed into the generalized solution procedure 
depicted on Figure 5.  

 

Figure 5 – Generalized Solution Approach based on Selective Tightening Algorithm (STA) 

 
Fixed pressures at intermediate nodes: A simplified model where flow pressures are fixed at intermediate 
nodes, in addition to the production and delivery points, is another strategy to obtain good feasible 
solutions. This feature reduces the complexity in pipeline sizing equations at the expense of trimming the 
feasible region. Since the pressure drops are imposed beforehand, some suitable gathering configurations 
may be omitted. Although the models maintain a very high combinatorial complexity, nonlinear 
constraints are avoided and good quality solutions can be obtained in relatively short CPU times. For 
further details see Montagna et al. (2021) and Cafaro et al. (2022).  

6. Results 

This section presents two case studies that demonstrate the capabilities of the Selective Tightening 
Algorithm against monolithic approaches to the pipeline network design problem. We focus on natural 
gas gathering networks that rely on fluid-dynamic correlations of quadratic, convex form. For the sake of 
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brevity, more complex fluid-dynamic equations like those modeling multiphase flows will be addressed in 
future work. The optimal design of the gas pipeline network is sought to gather the production from shale 
wells and to deliver raw gas to the drying and purification plants at a minimum pressure. In addition to 
the modeling assumptions presented in Section 3, it is assumed that the primary separation of gas from 
liquids (hydrocarbons and water) is performed at the source nodes, and therefore pipelines transport a 
single gas phase. Fluid dynamic correlations suggested by Weymouth (1912) are used to restrict and 
manage pressure drops along the pipeline segments (see Section 4.3). Like in previous works (Montagna 
et al., 2021), splitting flows is not allowed at any node in the network and facilities/pipeline of different 
sizes cannot be installed in the same node/arc at a single time period. The complete MINLP model used 
in both cases is given in the Supplementary Material. Several STA-based solution strategies are 
implemented and compared against monolithic instances to draw conclusions on their effectiveness. 

 
Figure 6 – Left: Spatial arrangement of rows and potential locations for facilities in Case 1. Right: Optimal solution for Case 1 

6.1 Case 1: Illustrative network design problem 

The first case study comprises 9 rows of shale gas wells arranged over a geographical region with an area 
of 108 km2 as shown in Figure 6. We consider 15 planning periods of one year for each of them, gas 
production rates and wellhead pressures at every row are given. Junction nodes can be placed at any row 
in the network. Regarding the installation of processing plants, 6 locations are proposed where successive 
capacity expansions can be carried out over time. Expansions can be made at any point in the time horizon, 
reducing present cash flows both by deferring investments (11% annual rate) and/or by taking advantage 
of economies of scale with larger expansions. As for the pipeline network design, 3 alternative diameters 
(10, 14 and 18 inches) can be selected to meet pressure drop constraints. The network configuration is 
set to a maximum of 3 echelons, i.e., the maximum number of pipeline segments between a row and a 
processing facility is 3. Distances between nodes, pipeline installation costs, facility expansion costs and 
reference pressures are shown in the Supplementary Material. 

The transportation capacity and utilization of reference pipeline segments that converge and emerge 
to/from the junction node in Row 3 (R3) are shown in Figure 7. The times of maximum pipeline utilization 
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are between periods 8 and 12, when Rows 1 and 4 reach their maximum production rates, respectively. 
Figure 8 shows the pressure profiles in these segments, revealing that when the Rows 1 and 2 together 
deliver their maximum flowrate on the path R1-R2-R3, the outlet pressure of Row 4 must be decreased 
to enter the network. The effect is reversed when production coming from Row 4 produce a large pressure 
drop on the segment R4-R3 during time period 12 and pressure at rows R1 and R2 (producing low flow 
rates) need to be reduced. In this way, pressures are managed to reach the processing plant under 
specification. Besides, Figure 9 illustrates the optimal expansion planning for the selected processing 
plant. 

 

Figure 7 – Utilization of pipeline segments that converge/emerge to/from the junction node in Row 3. 

 

Figure 8 – Pressure profile for pipeline segments that converge/emerge to/from the junction node in Row 3. 
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Figure 9 – Processing facility expansion planning in the optimal solution of Case 1 

The monolithic MIQCP optimization model for Case Study 1 involves 14,888 linear constraints, 12,015 
quadratic constraints, 13,861 continuous variables and 3,651 binary variables. When approaching the 
problem in one step, 4,972 seconds of CPU time are required to reach an optimality gap of 10-16 using 
GUROBI 10.0.1 using 16 threads on an Intel Core i9 CPU at 2.9 GHz with 16 GB RAM. The optimal solution 
is shown at the right of Figure 6 and has an objective value of 52.59 MUSD.  The problem is then tackled 
by means of two variants of the STA algorithm. First, the most basic form of STA is used for the design of 
surface facilities by successively improving the lower bounds. The optimal solution is obtained after 5 
iterations and 261 seconds of computation as detailed in Table 1. The last iteration of the STA comprises 
3,195 quadratic constraints, with a reduction of 73.4% in the number of constraints compared to the 
monolithic formulation. Note that the optimal solution of every step is automatically used by the MIQCP 
solver as a warm start for the next iteration. Furthermore, the generalized STA solution framework can 
be used to derive feasible solutions from each relaxation, and to compute the optimality gap. Results from 
this procedure are also shown in Table 1. Figure 10 illustrates convergence steps of the methods.  

 

Figure 10 – Convergence to optimal solution (left) and optimality gap evolution (right) in the solution approaches used to tackle 
the problem 
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Table 1 – Summary of solution strategies for Case 1.  

Approach Iteration Model Type CPU Time 
(s) 

Number of 
quadratic 

constraints 

Objective value 
(M$) 

Optimality gap 
(%) 

Monolithic 
solution - MIQCP 4,972.0 12,015 52.59 (F)† 0.00 

Selective 
Tightening 
Algorithm 

 

1 MILP 240.0 0 47.86 (I) - 
2 

MIQCP 

2.0 1,755 49.92 (I) - 
3 4.0 2,655 52.42 (I) - 
4 6.0 2,925 52.49 (I) - 
5 9.0 3,195 52.59 (F)† 0.00 
Total CPU time 261.0  

Generalized 
Solution 

Approach 

1 MILP 240.0 0 47.86 (I) - 
1-F 

MIQCP 

1.0 1,755 52.74 (F) 9.00 
2 2.0 1,755 49.92 (I) 5.30 

2-F 1.0 2,655 53.17 (F) 5.30 
3 4.0 2,655 52.42 (I) 0.60 

3-F 1.5 2,925 - (I) 0.60 
4 6.0 2,925 52.49 (I) 0.47 

4-F 1.4 3,195 52.90 (F) 0.47 
5 9.0 3,195 52.59 (F)† 0.00 
Total CPU time 265.9  

(F): Feasible solution in the original space. (I): Infeasible solution in the original space. 
† Optimal solution 

6.2 Case 2: Real world network design problem 

This section explores the capabilities of the STA to solve real world instances of the surface facilities 
network design problem. Figure 11 shows the spatial arrangement of wellpads and potential locations for 
processing facilities involved in this case study, which is a modified version of a real-world case study 
presented by Montagna et al. (2021). Figure 11 also shows the time periods T when start of production of 
each well takes place. The region comprises 40 individual wellpads, 20 potential junction nodes and 9 
locations for processing facilities over an area of 3,600 km2. A maximum of 3 echelons is also considered 
to build the network, together with 3 alternative pipeline diameters of 10, 16 and 22 inches. After 
construction, the processing plants can be expanded in their processing capacities by 64´103, 128´103 

and 256´103 Mscfd (106 standard cubic feet per day) at any time period. Economies of scale in pipelines 
and processing facility costs are important. Starting times of wellpads production and their corresponding 
decline curves are given for a planning horizon comprising 120 monthly periods. As in the previous case, 
the network is intended for shale gas gathering, transportation and processing, thus the Weymouth (1912) 
correlation is used to calculate pressure drops at every segment. 
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Figure 11 - Spatial arrangement of wellpads and potential locations for facility placement in Case Study 2 

In its monolithic form, the convex MIQCP formulation involves more than 16,300 binary variables and 
95,000 quadratic constraints. Attempting its solution in a single step, GUROBI 10.0.1 solver yields an 
optimality gap of 2.6% after 20,000 seconds of computation, using 16 threads on an Intel Core i9 CPU at 
2.9 GHz with 16 GB RAM. In this context, four STA-based algorithms are proposed for tackling the problem:  

(1) Basic STA, generating increasingly tighter lower bounds by successively adding hydraulic 
constraints on arcs until convergence to the global optimum. 

(2) Linear STA, adding an ad-hoc linear outer-approximation of the quadratic constraint at every arc 
suggested by relaxations. After convergence, a reduced MIQCP is solved to properly size the 
selected pipeline segments based on quadratic correlations. 

(3) Linear-then-Quadratic STA. When a link is selected for the first time in the optimal solution of a 
relaxation, an ad-hoc linear outer-approximation of the quadratic constraints for fluid dynamics 
is imposed. Later, if another relaxation suggests the same connection, the quadratic constraint 
is finally imposed for that arc.  

(4) Generalized STA, using all capabilities described on Figure 5.  
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Table 2 – Summary of solution strategies for Case 2.  

Approach Iteration Model 
Type 

CPU Time 
(s) 

Cumulative 
CPU Time 

(s) 

Number of 
quadratic 

constraints 

Objective 
value (M$) 

Optimality 
gap (%) 

Monolithic 
solution - MIQCP 20,000 20,000 95,640 356.23 (F) 2.13* 

Selective 
Tightening 
Algorithm  

 

1 MILP 126 126 0 305.16 (I) - 
2 

MIQCP 

145 271 12,960 328.26 (I) - 
3 372 643 18,960 346.51 (I) - 
4 1,322 1,965 24,360 353.04 (I) - 
5 1,413 3,378 25,440 355.76 (I) - 
6 1,439 4,817 27,000 356.12 (F)† 0.00 

Total CPU Time (s) 4,817  

Linear STA 

1 

MILP 

126 126 - 305.16 (I) - 
2 74 200 - 320.25 (I) - 
3 75 275 - 333.91 (I) - 
4 117 392 - 334.77 (I) - 
5 124 516 - 334.77 (I) - 
6 MIQCP 5 521 - 364.10 (F) 2.21** 

Total CPU Time (s) 521  

Linear then 
quadratic STA 

1  
MILP 

 

126 126 - 305.16 (I) - 
2 74 200 - 320.25 (I) - 
3 75 275 - 333.91 (I) - 
4 

MIQCP 

272 547 4,800 342.53 (I) - 
5 493 1,040 11,040 344.98 (I) - 
6 576 1,616 12,000 351.01 (I) - 
7 1,109 2,725 16,080 354.67 (I) - 
8 1,195 3,920 17,960 356.12 (F)† 0.00 

Total CPU Time (s) 3,920  

Generalized 
solution 
strategy 

1 MILP 126 126 - 305.16 (I) - 
1-F 

MIQCP 

8 134 1,655 360.82 (F) 15.27 
2 145 279 12,960 328.26 (I) 9.02 

2-F 12 291 1,695 366.40 (F) 9.02 
3 372 663 18,960 346.51 (I) 3.97 

3-F 10 673 1,508 379.31 (F) 3.97 
4 1,322 1,995 24,360 353.04 (I) 2.16 

4-F 12 2,007 1,734 373.86 (F) 2.16 
5 1,413 3,420 25,440 355.76 (I) 1.40 

5-F 5 3,425 1,443 359.51 (F) 1.04 
6 1,439 4,864 27,000 356.12 (F)† 0.00 

Total CPU Time (s) 4,864  
 (F): Feasible solution in the original space. (I): Infeasible solution in the original space. 

* Relative to the best bound provided by the solver 
** Relative to global optimal solution 

† Optimal solution 

The basic version of the STA (focusing on lower bounds) yields the optimal solution for the problem with 
a total cost of 356.12 M$, which is found after 6 iterations and 4,817 CPU s (see Table 2). Figure 12 shows 
the three optimal locations for the processing facilities, as well as the sizes of the planned expansions and 
their timing. The utilization of the processing plants based on the production streams coming from the 
allocated wellpads is presented in Figure 13. The solution is obtained by including only 28% (27,000) of 
the quadratic constraints comprised in the original problem, in the last iteration.  
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Figure 12 – Optimal network design for Case 2  

Following the Linear STA strategy, the solution of successive MILP formulations with increasing numbers 
of linear constraints converges to an approximate total cost of 334.77 M$ (lower bound). Upon 
convergence, a reduced MIQCP model is solved to properly size the pipelines by fixing the network 
topology and imposing accurate pressure drop constraints over every segment. This approach leads to a 
feasible solution of 364.10 M$ (2.2% gap relative to the actual global optimal solution) after a total time 
of 521 CPU s and 6 iterations before completion. Note that the Linear STA approach yields a better solution 
than the best feasible solution found by the monolithic approach, in less than 3% of the total wall time. 
Third, the Linear-then-Quadratic STA is applied, aiming at imposing linear underestimations of the actual 
quadratic constraints to build tighter linear relaxations before accounting for non-linear, accurate fluid 
dynamic correlations. This approach leads to the global optimal solution, since iterations are executed 
over successive relaxations until convergence to feasibility in the original space. However, linear 
constraints may be enough to exclude network configurations that are clearly unfavorable under fluid 
dynamic conditions. This strategy yields the global optimum depicted in Figure 12 after 3,920 seconds of 
computation, including less than 18,000 quadratic constraints and 26,000 linear fluid dynamic 
underestimations, after 8 iterations. Figure 14 presents a comparison between the proposed approaches.  
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Figure 13 – Processing facility expansion strategy in the optimal solution of Case 2 

 
Figure 14 – Comparison between different approaches for Case Study 2 

Finally, the Generalized STA depicted on Figure 5 yields a feasible solution of 360.15 M$ in the first 
iteration (134 s), which, after 4 iterations adding quadratic constraints (3410 s), guarantees an optimality 
gap of merely 1.4% (see Figure 14).  
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Regarding the network design, the optimal solution determines the installation of processing facilities in 
three different locations. As shown in Figure 12, the location L8 is selected for the initial placement of a 
facility with a processing capacity of 64 MSCF/D (time period T1). Such capacity is then expanded by 64 
MSCF/D in the time period T24. Besides, the wellpads are optimally divided by the model into three clear 
regions. Most of the production of the field is sent to the central facility located at L8, reaching its full 
capacity utilization by T38 (see Figure 13). Two additional gathering lines are installed at the west and 
north-west of the map to accommodate the production of the remaining wells in their closest locations 
(L3 and L1, respectively). The solution makes use of three echelons to convey production from the most 
distant points, but only two are required to gather production from the wells closest to the processing 
plants. Finally, the optimal topology takes advantages of the three alternative diameters, keeping the 
largest and more expensive ones only for final segments, with high flowrates and close to the central 
processing plant in L8. 

7. Conclusions 

This work has addressed one of the challenging problems since the early times of mathematical 
programming for process systems engineering (Mah, 1978), which is how to integrally solve network 
design, pipeline sizing and multiperiod flow allocation problems as a whole, to global optimality. In fact, 
even under the assumption that the pipelines carry single components like natural gas, solving the mixed-
integer nonlinear formulation in a single step takes hours to reduce optimality gap to 2% in moderate-size 
instances. Interestingly enough, monolithic formulations for natural gas pipeline networks have a convex 
relaxation, but the model size can be extremely large (more than 700,000 quadratic constraints). 
Moreover, due to conditional terms involving big-M parameters, relaxations are loose.  

In contrast to nonlinear counterparts, linear estimations converge in minutes but are usually infeasible 
for the original problem and require adjustments to the diameters of the pipes. Furthermore, feasible 
solutions guided by approximate MILPs are still far from optima. Decomposing the problem in successive, 
hierarchical stages is a typical industrial practice aiming at finding feasible solutions in reasonable times. 
However, we have shown that such approaches may have a significant impact on the total costs when 
compared with the global optimal solutions. For real-sized unconventional projects, cost savings can reach 
up to 10%, i.e., tens of millions of dollars in net present costs, which has motivated the algorithmic tools 
developed along this contribution.  

We have devised the so-called Selective Tightening Algorithm (STA) that systematically adds fluid dynamic 
constraints to model relaxations until convergence to the global optimum is achieved. The aim of the 
algorithm is to impose pressure drop (nonlinear) correlations just on particular segments of the network 
superstructure. Every iteration yields a tighter lower bound for the main problem. This process is repeated 
until the pressure drop constraints are satisfied by all the segments comprising the network. The proposed 
algorithm converges in few MIQCP iterations, in reasonable CPU times. STA is able to reduce both the 
total CPU time and the number of quadratic constraints in the last (largest) model by roughly 75%. We 
have also extended the capabilities of STA by adding parallel computations that help finding very good 
feasible solutions (upper bounds), reducing the optimality gap to less than 1% in 10 minutes for real world 
instances of the problem. Such parallel tasks are based on heuristic strategies and linear estimators that 
are inferred from network designs that have been already explored. Additional strategies such as adding 
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linear underestimations and/or tighter constraints in blocks, or the pre-preprocessing of the set of 
candidate pipeline diameters can also accelerate convergence. 

In general terms, we have proved that the STA is an excellent approach for the global optimization of 
large-scale pipeline networks design and operation problems with convex fluid-dynamic correlations. 
However, finding valid relaxations, even for a reduced set of arcs, is far more complex if pressure drop 
estimations follow a non-convex relation with the flow rates. Extensions of the STA aimed at solving non-
convex MINLPs is currently under development. For future work, addressing the risk of failing in the sizing 
of facilities through stochastic programming formulations seems to be an interesting new dimension in 
the tradeoff between economies-of-scale and financial cost. The addition of new wells that were not part 
of the original field development plan can also be accounted for with stochastic programming strategies. 
Finally, pipeline flow reversals can be relevant when dealing with uncertainty, yielding more robust 
solutions. In the effort to address more complex and realistic instances of the problem, results from STA 
are certainly promising. 

 

Nomenclature  

Sets/Indices 

𝐴 = {(𝑖, 𝑗)} Subset of arcs in the superstructure of alternatives 

𝐶 = {𝑐}  Components in the fluid stream 

𝐷 = {𝑑} Alternative pipeline diameters 

𝐼, 𝐽 = {𝑖, 𝑗} Nodes in the network 

𝐼!"#$%& ⊆ 𝐼 Source/Production nodes 

𝐽0#450 ⊆ 𝐽 Sink/Delivery nodes 

𝐾 = {𝑘}  Iteration counter for algorithms  

𝑆𝐶5 ⊆ 𝐴 Subset of fluid dynamic constrained arcs at iteration k 

𝑇 = {𝑡}  Time periods 

𝑇𝐼 ⊆ 𝑇   Time periods when investments are allowed  

Parameters  

𝑐𝑓',(   Cost of a facility expansion of size q in node j 

𝑐𝑝<,#,(  Cost of a pipeline of diameter d from node i to node j 

𝑑𝑀  Maximum available diameter 

𝑓𝑘',!   Capacity of a facility of size q for processing the component c 

𝑙#,(   Length of the pipeline connecting i and j 

𝑙𝑡 Lead-time for pipeline and facility installation 

𝑃*, 𝑇* Pressure and temperature at standard conditions 



 27 

𝑝()*  Minimum flow pressure at processing facility in node j  

𝑝#,$
%&  Wellhead pressure at node i during time period t 

𝑝𝑟!,#,$ Production of component c from node i during time period t  

𝑟 Discount rate for cashflows  

𝑠𝑔 Specific gravity of the gas 

𝑠𝑡#   Production start time of source node i 

𝑡𝑐<,#,(  Transportation capacity of a pipeline with diameter d connecting i and j 

𝛾 Constant of the Weymouth correlation for gas flows 

𝛿<  Numerical value (in inches) of the internal diameter of a pipeline of diameter d  

∆𝑠𝑝#,(	HIJ Maximum difference of square pressures allowed between nodes i and j 

𝜃#,(  Equal to 1 if node i must be connected to facility located in node j and 0 otherwise 

Non-negative Variables 

𝐷#,(,$ Diameter of a pipeline connecting i and j built in period t  

𝐹!,#,(,$ Amount of component c flowing from i to j during period t 

NPC Total net present cost 

𝑃#,$ Pressure at node i during period t 

𝑃#,$
0' = 𝑃#,$@  

Binary variables 

𝑤#,#!,(  = 1 if source node i is connected to facility j through an intermediate node i’  

𝑥<,#,(,$ = 1 if a pipeline with diameter d is built between i and j in period t  

𝑦',(,$ = 1 if facility of size q is installed at node j at time period t 

Optimization problems 

ℱ5 Subproblem k-F of the generalized STA algorithm at iteration k 

ℱ5∗ Optimal solution of the subproblem ℱ5  

ℛ5 Problem relaxation solved at iteration k 

ℛ5
∗  Optimal solution of the relaxed problem ℛ5  

𝑧LM   Objective value of the best solution found for the original problem 

𝑧NL  Best-possible objective value for the original problem 

𝑧M   Objective value of a feasible solution from parallel process 
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𝑧5NL  Lower bound at iteration k 

𝑧5OL  Upper bound at iteration  
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