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Abstract

Lagrangean decomposition has been used to overcome the difficulties in optimizing large-scale supply

chain planning models. Decomposing the problem by time periods has been established as a useful

technique. In this paper a novel decomposition scheme is presented, in which the problem is decomposed

by products. The decomposition is based on a reformulation of knapsack constraints in the problem.

The new approach also allows for simultaneous decomposition by products and time periods, enabling

the generation of a large number of subproblems, with the potential benefit of using parallel computing.

In the case study performed temporal decomposition was more efficient than the other decomposition

schemes. However, a sensitivity analysis indicates that the performance of product decomposition

depends on the parameters of the model, and it can outperform temporal decomposition for some

sets of parameters. Selecting different orders of products does not affect the result, while aggregating

linking constraints can lead to an increase of the Lagrange dual gap. The novel decomposition schemes

proposed provide new alternatives for modelers to design the most efficient optimization algorithms.

1 Introduction

The supply chains of the 21st century are highly complex and spread all across the world (Kearney,

2004). Globalization has brought both access to new markets and increased competition. In this scenario,

making the best possible decisions is critical to remain competitive. Making optimal tactical plans involves

balancing several trade-offs including inventory, transportation, and production costs. The main decisions

are the assignment of production volume to manufacturing facilities, including third parties, inventory

levels, and shipments between facilities. The planning horizons addressed range from 6 to 24 months,

divided in monthly or even weekly time periods. At the same time, a typical supply chain handles hundreds

or thousands of products. The resulting optimization models can be very large, and often require the use
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of decomposition techniques to obtain good solutions in reasonable time.

We propose a novel Lagrangean decomposition scheme based on decomposing the problem by prod-

ucts, and also a decomposition scheme combining temporal and product decomposition. Lagrangean

decomposition (Guignard and Kim, 1987) has been effectively applied to many large-scale optimization

problems (Wang, 2003). Graves (1982) used these techniques for hierarchical planning, decomposing a

large problem into two subproblems. Gupta and Maranas (1999) analyzed the importance of choosing

the appropriate relaxation. Along the same lines. Jackson and Grossmann (2003) used temporal decom-

position for solving a multi-site, multi-period planning problem. Terrazas-Moreno et al. (2011) compared

temporal and spatial decomposition for supply chain planning. They concluded that temporal decomposi-

tion was superior because the relaxation of inventory continuity, generated in temporal decomposition, is

closer to the optimal solution compared to the relaxation of material balances obtained when using spatial

decomposition. Yongheng et al. (2014) used temporal decomposition to solve a planning problem under

uncertainty. Calfa et al. (2013) combined temporal Lagrangean decomposition with bilevel decomposition

for the integration of planning and scheduling. The opportunity of decomposing the problem by problems

is also identified by Van Elzakker et al. (2014). However, they propose a heuristic procedure, while we

generalize these ideas using Lagrangean decomposition.

The update of the Lagrange multipliers is the most critical step of the algorithm, hence, it has been a

matter of intensive research. The update methods are based on three basic methods: subgradient (Fisher,

1985), cutting planes (Kelley, 1960), and bundle methods that combine the first two (Lemarechal et al.,

1981). The cutting plane methods return many unbounded solutions, especially at the beginning at the

first iterations. The bundle methods handle these issues adding stabilization terms. Within the cutting

plane methods, Mouret et al. (2011) allows the multipliers to take values within a band of the value given

by the subgradient, while Oliveira et al. (2013) allow the multipliers to take values in a band defined

by the direction and the opposite direction given by the subgradient method. Both report convergence

improvements compare to plain cutting plane methods. The improvement of the subgradient method

has also been a matter of research. Erlenkotter (1978) proposed a multiplier adjustment method for the

Lagrangian relaxation of the uncapacitated location problem, while Wu and Ierapetritou (2006) use the

Nelder-Mead method to identify search directions for adjusting the Lagrangean multipliers. We propose

a probing method to improve the step size when updating the mutlipliers using the subgradient method.

The paper is organized as follows: Section 2 presents an overview of Lagrangean decomposition. In
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section 3 a representative instance of the problem addressed is described. In section 4 temporal decompo-

sition, product decomposition, and simultaneous product and temporal decomposition are derived. The

probing subgradient method is described in section 5. A case study is presented in Section 6, and the

main results of the paper are summarized in section 7.

2 Lagrangean decomposition overview

Held and Karp (1970) originally proposed the Lagrangean Relaxation for the travelling salesman problem

in which the subtour elimination constraints are dualized. The basic idea is to exploit the structure of many

optimization problems that involve complicating constraints as shown in Fig. 1. These constraints are

added to the objective function with a penalty term proportional to the amount of constraint violation.

The resulting relaxation reduces the computational complexity of the solution procedure, because the

Lagrangean problem is easier to solve than the original problem, and each subproblem can be solved

independently.

Figure 1. Constraint matrix structure exploited in Lagrangean relaxation

Consider the following optimization problem (Guignard, 2003):

P = max
x

= {z = cTx|Ax ≤ b,Dx ≤ e, x ∈ X} (1)

where X = Rn−p+ x{0, 1}p, and where Dx ≤ e are considered to be the complicating constraints. Let λ be

a vector of nonnegative Lagrangean multipliers. The Lagrangean relaxation of (P ) is the following:

LR(λ) = max
x

= {z = cTx+ λT (e−Dx)|Ax ≤ b, x ∈ X} (2)

The feasible region of the relaxation is larger that the original the objective is overestimated, and hence
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its optimal value provides an upper bound of the original problem (P ). The best bound that can be

obtained solving the Lagrangean Dual is:

LD = min
λ
LR(λ) = min

λ
{max

x
= {z = cTx+ λT (e−Dx)|Ax ≤ b, x ∈ X}} (3)

Furthermore, Geoffrion (1974) demonstrated the equivalence between the Lagreangean dual (LD) and

primal relaxation of (P ) denoted by (P ∗).

P ∗ = max
x

= {z = cTx|Dx ≤ e, x ∈ Conv(X)|Ax ≤ b, x ∈ X} (4)

where Conv(X) denotes the convex hull of the set X, and v{·} is the optimal solution of {·}. Then.

v{LP} ≥ v{LR} ≥ LD = v{P ∗} ≥ v{P} (5)

where LP is the LP relaxation of (P ). This relationship is explained by the modification of the original

structure of the problem in Lagrangean Relaxation, since the complicating constraints are removed from

the constraint set and added to the objective function as a penalty term. To overcome this drawback,

Guignard and Kim (1987) proposed Lagrangean Decomposition, which is a special case of the Lagrangean

Relaxation. In Lagrangean Decomposition, instead of relaxing the complicating constraints, the set of

variables that connects the set of complicating constraint to the other set of constraints is duplicated,

generating new equality constraints. Then, the Lagrangean Relaxation is applied to the new problem

by dualizing the new set of complicating variables, namely the new equality constraints. Now every

constraint in the original problem appears in one of the sub-problems. Fig. 2 shows the process to obtain

the Lagrangean Decomposition for an instance of problem (P ), where the set X is the positive integers. It

can also be proved that the upper bound generated from the Lagrangean Decomposition is always at least

as tight as the one from the Lagrangean relaxation (Guignard and Kim, 1987). The bound of Lagrangean

Decomposition can be further tightened by adding surrogate constraints, resulting in subproblems with

overlapping constraints.

Another way of looking at Lagrangean decomposition is as a way to reach consensus in a disagreement

between one or more parts. The subproblems share a connection expressed in terms of the linking

constraints. When dualizing these constraints, the subproblems do not necessarily agree on the value
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Figure 2. Process to obtain the Lagrangean Decomposition

of the shared variables. To resolve this disagreement they ask a third party to put a price on their

disagreement. This price is the Lagrangean multiplier. The iterative procedure proposes new prices at

each iteration until the parts agree as much as possible. This way of solving the disagreements makes

Lagrangean decomposition the algorithm of choice for decentralized decision-making (Kelly and Zyngier,

2008; Granada et al., 2012; Boyd et al., 2011).

3 Problem description

In order to clarify the presentation of the algorithms described in the following sections it is convenient

to define a motivating problem. The problem is later used as case study in Section 6. Consider a set of

production facilities, i ∈ I, serving a number of customers, j ∈ J as shown in Fig. 3. A maximum demand

forecast, Djpt, is given at each customer for every product, p ∈ P , at every time period, t ∈ T . The length

of each time period, not necessarily uniform, is Lt. The objective is to determine the production and

shipping plan to maximize the profit. The production plan is described by the production time θipt and
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the production amount xipt. Both variables are linked by a fixed production rate Rip. The unit production

cost per amount of product is γip. When a product is produced in a given time period t, a setup time

σip with corresponding setup cost αp is incurred. The binary variable indicating the occurrence of a

production run is yipt. After production, the amount shipped to each customer, fijpt, is decided, with the

corresponding transportation cost Cij . The product that is not sent to customers is kept as inventory,

sipt, with unit holding cost Hp. All the product arriving at a customer zjpt is sold at price βp.

θipt, xipt, yipt, sipt

fijpt
zjpt

Figure 3. Supply chain network for the first problem

The problem is formulated as a mixed-integer linear programming model (MILP), defined by Eqs.
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(6)–(12).

M : Max
∑
j

∑
p

∑
t

βpzjpt −
∑
i

∑
p

∑
t

(αpyipt + γiptxipt +Hpsipt)

−
∑
i

∑
j

∑
p

∑
t

Cijfijpt (6)

s.t. Ripθipt = xipt ∀i, p, t (7)∑
p

(θipt + σipyipt) ≤ Lt ∀i, t (8)

θipt ≤ yiptLt ∀i, p, t (9)

sipt = sipt−1 + xipt −
∑
j

fijpt ∀i, p, t (10)

∑
i

fijpt = zjpt ∀j, p, t (11)

zjpt ≤ Djpt ∀j, p, t (12)

xipt, θipt, sipt, fijpt, zjpt ≥ 0, yipt ∈ {0, 1} (13)

The profit to be maximized is given by Eq. (6), and it is equal to the difference between the income and

the costs, which include setup costs, production costs, inventory holding costs, and transportation costs.

The production time and production amount are related by Eq. (7). Eq. (8) ensures the production time

limit is not exceeded, while Eq. (9) ensures that the binary variable indicating when an item is produced

is set to one if there is production time consumed. Eq. (10) represents the system inventory balance.

Finally, Eqs. (11) and (12) define the amount sold and an upper bound for sales, respectively.

4 Lagrangean decomposition schemes

4.1 Temporal decomposition

Temporal decomposition is a well established algorithm to solve large instances of problem (M). The

goal of temporal decomposition is to break the problem into individual subproblems of one or more

time periods. For example, a model with a planning horizon of 6 months can be decomposed into 6

one-month subproblems, or three subproblems of two months each. In the problem, time periods are

linked by inventory balance constraints (Eq. 10), which relate the inventory at the end of period t with

the inventory at the end of period t − 1. These constraints can be dualized to obtain the Lagrangean
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relaxation (Geoffrion, 1974) of the problem, i.e. transferring the constraint to the objective function with

a penalty term referred as Lagrange multiplier. Fig. 4 is a graphical representation of the inventory

balance constraint.

Figure 4. Inventory balance constraints

To obtain the Lagrangean decomposition (Guignard and Kim, 1987) of the problem, the model is

reformulated to include auxiliary variables siipt for the initial inventory at period t, and sfipt for the

inventory at the end of the period. In this case the linking constraint is the inventory continuity equation

(Eq. 15) enforcing that the initial inventory at period t must be equal to the inventory at the end of

period t − 1. The problem is decomposed by dualizing the continuity constraints. Fig. 5 illustrates the

formulation for this decomposition.

sfipt = siipt + xipt −
∑
j

fijpt ∀i, p, t (14)

sfipt−1 = siipt ∀t > 1 (15)

Figure 5. Reformulation of inventory balance constraints for Lagrangean decomposition

Applying this reformulation it is possible to obtain the temporal Lagrange dual (TLD(t)) of problem
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(M).

TLD(t) : Max
∑
j

∑
p

βpzjpt −
∑
i

∑
p

(αpyipt + γiptxipt +Hpsipt)

−
∑
i

∑
j

∑
p

Cijfijpt +
∑
i

∑
p

(λtsf ipt − λt−1siipt) (16)

s.t. Ripθipt = xipt ∀i, p (17)∑
p

(θipt + σipyipt) ≤ Lt ∀i (18)

θipt ≤ yiptLt ∀i, p (19)

sfipt = siipt + xipt −
∑
j

fijpt ∀i, p (20)

∑
i

fijpt = zjpt ∀j, p (21)

zjpt ≤ Djpt ∀j, p (22)

xipt, θipt, sipt, fijpt, zjpt ≥ 0, yipt ∈ {0, 1} (23)

The inventory available at the beginning of the planning horizon is the initial inventory. In other words,

for t = 1, siip1 = InitInvip.

4.2 Product decomposition

Temporal decomposition exploits the natural dynamic structure of time periods, one time period is linked

to the next by the inventory balance. On the other hand, products do not exhibit the same structure,

products usually share capacity of a limited resource, e.g.: production, transportation, and inventory.

The underlying dynamic structure is not clear at first sight, but it can be exposed through reformulation.

In general, products are linked by a knapsack constraint of the following form:

∑
p

ηpxp ≤ C (24)

where xp is the amount of product p, and ηp is the unit consumption factor of xp with respect to resource

C. In model (M), Eq. 8 has this structure, in which the production time is limited by the period length.

To reformulate this constraint it is convenient to think of the planning process as making optimal decisions

about one product at a time. For the first product, the full capacity is available. After the first product
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has been optimized, it is required to know the remaining capacity for the next product. If we denote as

cp the available capacity for product p, then cp is given by Eq. (25).

cp = cp−1 − up−1 ∀p > 1 (25)

up = ηpxp ∀p (26)

To make this reformulation possible, we have also assigned an arbitrary order to products. Later in the

paper we explore the impact of the order of the products in the computational efficiency.

As with temporal decomposition, it is convenient to define auxiliary variables for the initial and

ending capacity for a given product, cip and cfp, the reformulation obtained is shown in Fig. 6, and the

constraints are shown in Eqs. (27) and (28).

Figure 6. Representation of capacity balance constraints for product decomposition

cfp = cip − up ∀p (27)

cfp−1 = cip ∀p > 1 (28)

ci1 = C (29)

In problem (P), Eq. (8) ensures that the sum of the production time of all products do not exceed the

available production time. Even though it is expressed in time units, the available production time limits

the production capacity. It is possible to decompose the problem using the same procedure described in

the previous section for temporal decomposition. To accomplish this auxiliary variables hiip and hfip are

defined to represent the number of production hours available at plant i before and after optimizing a
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given product. The reformulated constraints are Eqs. (30)–(33).

θipt + σipyipt ≤ hiipt ∀pt (30)

hfipt = hiipt − (θipt + σipyipt) ∀pt (31)

hfi(p−1)t = hiipt ∀i, p > 1 (32)

hii1 = Lt (33)

The resulting product Lagrange dual (PLD(p)) is given by Eqs. (34)–(43).

PLD(p) : Max
∑
j

∑
t

βpzjpt −
∑
i

∑
t

(αpyipt + γiptxipt +Hpsipt)

−
∑
i

∑
j

∑
t

Cijfijpt +
∑
i

∑
t

(µipthfipt − µi(p−1)thiipt) (34)

s.t. Ripθipt = xipt ∀i, t (35)∑
p

(θipt + σipyipt) ≤ hiipt ∀i, t (36)

θipt ≤ yiptLt ∀i, t (37)

θipt + σipyipt) ≤ hiipt ∀t (38)

hfipt = hiipt − (θipt + σipyipt) ∀i, t (39)

sipt = sipt−1 + xipt −
∑
j

fijpt ∀i, t (40)

∑
i

fijpt = zjpt ∀j, t (41)

zjpt ≤ Djpt ∀j, t (42)

xipt, θipt, sipt, fijpt, zjpt ≥ 0, yipt ∈ {0, 1} (43)

The derivation from this section has been motivated by the large number of products considered in

supply chain planning. However, the reformulation can be applied to any set sharing a resource in a

knapsack constraint. For example, in the optimization of HVAC systems (Heating, Ventilation and Air

Conditioning), the capacity of the cooling unit is shared among all rooms (Álvarez et al., 2013).
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4.3 Simultaneous product and temporal decomposition

After decomposing the problem (P) by time periods the resulting subproblems have multiple products.

Similarly, when decomposing problem (M) by products, the resulting subproblems are multiperiod. Ap-

plying the same concepts reviewed in the previous sections, it is possible to decompose problem (M) by

products and time periods simultaneously. The network structure of the resulting subproblems is shown

in Fig. 7.

Figure 7. Subproblem network structure of the simultaneous product and temporal decomposition

In Fig. 7 node n1 corresponds to the subproblem for the first product in the first period. In the

structure, some nodes such as node n5 have multiple inputs and multiple outputs. The problem is

decomposed dualizing all the linking constraints, which are represented by the arcs in the diagram.
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The resulting Lagrange dual is given by problem (PTLD(p, t)).

PTLD(p, t) : Max
∑
j

βpzjpt −
∑
i

(αpyipt + γiptxipt +Hpsipt)

−
∑
i

∑
j

Cijfijpt +
∑
i

(µipthfipt − µi(p−1)thiipt)

+
∑
i

(λiptsfipt − λipt−1siipt) (44)

s.t. Ripθipt = xipt ∀i (45)∑
p

(θipt + σipyipt) ≤ hiipt ∀i (46)

θipt ≤ yiptLt ∀i (47)

θipt + σipyipt) ≤ hiipt ∀t (48)

hfipt = hiipt − (θipt + σipyipt) ∀i (49)

sfipt = siipt + xipt −
∑
j

fijpt ∀i (50)

∑
i

fijpt = zjpt ∀j (51)

zjpt ≤ Djpt ∀j (52)

vars (53)

The ability to simultaneously decompose a problem into both time periods and products gives the

flexibility to decide on the number of subproblems. For example, if a planning problem has only 12 time

periods, the maximum number of subproblems obtained when applying temporal decomposition is 12.

However, if the problem has also 50 products, the number of subproblems can be up to 600. This can be

helpful for very large scale problems.

5 An improved subgradient method

The subgradient method has been the most popular choice to update the multipliers in Lagrangean

decomposition. The update formula proposed by Fisher (1985) has been used in a large number of

applications because of its simplicity and ease of computation.

The main drawback of the formula is that its application does not guarantee a descent in the Lagrange
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dual (in case of maximization). Even though the subgradient gives a descent direction, the step size used

might be too large. This could lead a decomposition algorithm diverging from the optimal Lagrange dual

for some iterations. Several more iterations are required to bring the bound value back to the initial

values. In the traditional subgradient the step is taken regardless of the reduction in the Lagrange dual,

and if the function fails to decrease in a specified number of iterations, the step size is decreased. Usually,

the initial step is chosen to be between 0 and 2, and it is halved when the Lagrange dual fails to decrease

in 3 consecutive iterations.

We propose a simple algorithm to avoid taking ascending steps in the search process. The idea is

to probe the value of the candidate step and then decide the length of the step based on the difference

between the current value of the Lagrange dual (zk) and its value at the candidate step (zc). We can

distinguish the following cases:

1. The candidate step improves the bound (zk − zc > δ). Take full step α.

2. The candidate step is similar to the current solution (|zk − zc| ≤ δ). Take half step, α
2 .

3. The candidate step worsens the bound (zc − zk > δ). Take a quarter step, α
4 .

The decisions on the step size rely on the piecewise-convex nature of the Lagrange dual function. Clearly,

if the value of the function at the candidate step is similar to the current value, there is a point between

the current and the candidate solution that minimizes the Lagrange dual function in the current search

direction. Following the same idea, if the bound worsens at the candidate step the point that minimizes

the Lagrange dual function in the current search direction is located closer to the current point. Fig 8

summarizes the cases. The method is computationally more intensive than the traditional subgradient

Figure 8. Probing subgradient method cases

because more Lagrange dual evaluations are required. Each evaluation is conducted by solving all the
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subproblems for a given value of the Lagrange multipliers. To partially alleviate this issue, when the case

1 is found, i.e. the candidate step improves the bound, the value of zk is immediately updated to save

one evaluation. The extra effort in the computation is compensated by having optimization trajectories

with less divergence, which can be especially useful when the time budget for the iterations is low, for

example, in problems whose subproblems are hard to solve.

6 Case study

The computational performance of the Lagrangean decomposition algorithms proposed is assessed by

applying them to the case study presented in Section 3. The problem considered involves 6 manufacturing

sites and 10 markets, while the number of customers and time periods was varied from 6 to 20. The number

of time periods considered is equal to the number of products to ensure a fair comparison between temporal

and product decomposition. In the entire section, this number will be referred as the size of the problem.

Each time period represents 720 hours. The MILP formulations are modeled in JuMP(Dunning et al.,

2017) and solved with Gurobi 7.5(Gurobi Optimization, 2015) in an Intel i7 machine with 16 Gb of RAM.

Model sizes are shown in Table 1. Since the intention is to evaluate the decomposition schemes, the

optimal solution was provided as a lower bound instead of using a Lagrangean heuristic. The method

used to update the Lagrangean multipliers is the standard subgradient with initial step size of 2, decreasing

the step to half of the current step when no improvement is obtained in 3 consecutive iterations.

Table 1. Model sizes for the case study

Problem size Constraints Variables Binaries

6 2,232 4,032 216
20 24,800 44,800 2,400

6.1 Decomposition schemes comparison

The different ways of decomposing the problem, by product (P), time periods (T), and both, products

and time periods (PT), were compared applying the algorithms to the case study. The effect of the

initial multipliers in the formulation was also studied. Two possible values for the initial multipliers were

considered: 1) zero (λ0 = 0), and 2) the multipliers obtained from solving the LP relaxation (λ0 from LP ).

The results for solution time and optimality gap after 90 seconds are shown in Table 2.

In the case study, the temporal decomposition converged to better bounds than the ones obtained
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Table 2. Comparison of the performance of decomposition schemes for different multiplier initialization
strategies

λ0 = 0 λ0 from LP

P T PT P T PT

Size = 6
Iterations 27 78 907 14 28 855
Avg .Iteration Time (s) 3.48 1.18 0.10 6.43 3.33 0.11
Gap (%) 0.29 0.09 0.46 0.39 0.03 0.37

Size = 20
Iterations 80 113 97 75 104 135
Avg .Iteration Time 1.13 0.78 0.93 1.20 0.87 0.67
Gap (%) 26.36 20.55 66.79 1.24 0.77 2.43

with product decomposition. Even though the number of products and time periods was set to be the

same, the product subproblems took longer to solve than the time period subproblems, which can be

seen in the larger average iteration time. Allowing more iterations, showed that the minimum value for

product decomposition in a problem of size 6 was 0.23%, which is still larger than the gap obtained

with temporal decomposition. In the case study, the termination criterion was chosen to be a time limit,

because when optimizing supply chain planning there is usually a limited time to obtain a solution, in

order to allow the analysis of different scenarios. The temporal decomposition being more efficient than

the product decomposition for the case study can not be generalized. The value of the Lagrangean

relaxation for products decomposition strongly depends on the capacity. In the limiting case, when there

is unlimited production capacity the problem for each product can be solved independently. Fig. 9 shows

the sensitivity analysis of the gap with respect to capacity for product decomposition of size 20. For large

values of capacities the gap decreases to reach very low gaps. The values do not reach zero gap because

of the relative gap setting for solving the subproblems was set to 0.5%.

The sensitivity analysis explicitly shows that the gap obtained using product decomposition depends

on the parameters of the model. For large capacity values, the gaps obtained are even lower than the

gap obtained with temporal decomposition (0.78 %). For small values of capacity, the gap is also small,

because the problem becomes too constrained and finding the optimal solution becomes easier.

Another noteworthy aspect is that the number of products was set to be the same as the number

of time periods for comparison purposes. However, the number of products in supply chain planning

models usually exceeds the number of time periods. In this situation, product decomposition leads to

a larger number of smaller subproblems than temporal decomposition, making it better suited to take
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Figure 9. Sensitivity analysis of gap with respect to capacity for product decomposition of size 20

advantage of parallel computing capabilities. The simultaneous product and temporal decomposition for

6 products and time periods is an example of such situation; the number of subproblems obtained is much

larger (O(n2) where n is the problem size), but with a much lower average iteration time. The tradeoff

is that a larger number of subproblems comes with a larger number of Lagrangean multipliers that need

to be optimized, which could slow down the overall solution time. For the problem with 20 products and

time periods, the average iteration time for simultaneous product and temporal decomposition becomes

similar to the average iteration time for temporal decomposition. A balance is reached in which solving

400 small subproblems takes almost the same time as solving 20 larger subproblems. This indicates that

the number of subproblems must be carefully chosen to balance the average iteration time and the number

of iterations required to converge to the optimal solution.

The success of Lagrangean decomposition is based on the exponential increase of the solution time with

problem size. For example, if a problem is decomposed into two subproblems, the solution time required

to solve both subproblems is much lower than the time required to solve the full problem. However, several

iterations are required and subproblems are solved one time per iteration. If the problem is decomposed

into more subproblems, more iterations are required to converge. The number of subproblems that

minimizes the solution time is problem-dependent. The benefit of the decomposition schemes proposed

is that it provides more options to the modeler in the goal of finding the most efficient algorithm to solve
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a given problem.

The choice of the initial value of the Lagrangean multipliers is also an important factor impacting the

efficiency of the algorithm. In all the cases but the product decomposition of size 6, choosing the initial

multipliers as the multipliers obtained from the LP relaxation allowed to reach a smaller gap. Because

the value of the initial Lagrange dual is smaller for the initial multipliers from the LP relaxation, the gap

that needs to be closed is also smaller. Fig. 10 compares the Lagrange dual (ZLD) with respect to time

for the temporal decomposition of size 20.

Figure 10. Comparison of Lagrange dual value (ZLD) with respect to time for different choices of initial
multipliers

6.2 Aggregation of linking constraints

When solving a Lagrangean decomposition problem it is necessary to find a bound, upper bound in the

case of maximization and lower bound in the case of minimization, that is as tight as the LP relaxation

of the problem. Thus, if the decomposition is applied to a relaxation of the original problem, the result of

the decomposition algorithm also leads to a valid bound for the original problem. Clearly, the quality of

the bound obtained depends on how close is the solution of the relaxation chosen to the optimal solution.

As mentioned before, a larger number of multipliers that need to be optimized translates into a larger

number of iterations to converge to the optimal Lagrange dual. A relaxation of the problem that can

help reducing the number of multipliers can be obtained creating surrogate constraints from the linking
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constraints, i.e. aggregating the linking constraints.

Take for example, the linking constraint for temporal decomposition (Eq. (15)). The constraint is

indexed by the manufacturing site i and the product p. The equation actually represents ip linking

constraints between node t and node t + 1. Surrogates can be constructed by adding the constraints

by either site, product, or both. Fig. 11 provides an example of different aggregation possibilities for

temporal decomposition.

Figure 11. Reduction of number of multipliers by creating surrogates of linking constraints

The different aggregation strategies were applied to the case study, obtaining the results shown in

Table 3. In the table none represents the original formulation without aggregation, i represents the

constraints that were added by manufacturing site, t by time period, p by product, it by site and time

period, and ip by site and product.

The result indicate that the aggregation of linking constraints does not improve the Lagrange dual

gap. In the best case, for temporal decomposition of size 6, the results remain similar while decreasing
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Table 3. Comparison of the results for different aggregation strategies

P T PT

none i t it none i p ip none i

Size = 6
Num. Multipliers 180 30 30 5 180 30 30 5 360 60
Avg. Iteration Time (s) 6.43 0.52 11.12 0.56 3.33 1.05 3.24 1.00 0.11 0.09
Gap (%) 0.39 1.09 0.86 1.09 0.03 0.02 0.06 0.09 0.37 1.24

Size = 20
Num. Multipliers 2280 380 114 19 2280 380 114 19 4560 760
Avg. Iteration Time (s) 1.20 5.29 0.75 3.00 0.87 0.82 0.69 0.54 0.67 0.57
Gap (%) 1.24 4.89 1.47 4.85 0.77 1.02 13.61 16.42 2.43 5.67

the average iteration time, as for the case of aggregation by sites. For temporal decomposition of size 20

aggregation of products significantly worses the Lagrange dual. For product decomposition, aggregations

by site produce the largest increases in the Lagrange dual. For simultaneous product and temporal

decomposition the aggregation reduces the number of multipliers, but the Lagrange dual also worsens.

The observation that the aggregation of linking constraints can lead to the same bound reducing the

number of multipliers is reported by Chen and Guignard (1998). Consistently, in the case study we

obtained some scenarios where the bound is maintained and some where it is worsened.

6.3 Effect of product order

In order to obtain the product decomposition formulation the products are assigned an arbitrary order.

This gives rise to the question about the impact of the order of the products in the results. To answer

this question, product Lagrangean decomposition was applied to 100 random orders of products, for the

problem of size 6 after 50 iterations. The histogram of the results is shown in Fig. 12 The results obtained

Figure 12. Histogram of % gap for 100 random product orders for problems of size 6
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have a low dispersion, and there are now clear outliers. This indicates the order of the products does not

have a significant impact in the solution gap.

6.4 Probing subgradient performance

The efficiency of the improved subgradient method is assessed by comparison of its application to the

traditional subgradient and to the three decomposition schemes analyzed: temporal decomposition, prod-

uct decomposition, and simultaneous product and temporal decomposition. The results of the first 10

iterations for problems of size 6 is shown in Fig. 13 A direct comparison can be made looking closely

Figure 13. Lagrange dual of the first 10 iterations of problems of size 6 using probing subgradient and
traditional subgradient

at the results of iteration 2. For the case of temporal decomposition, the candidate step resulted in a

large increase in the Lagrange dual. By taking a quarter step it was possible to find a point were the

Lagrange dual decreased. For product decomposition the candidate step also produces an increase in the

Lagrange dual. However, in this case the quarter step also did not result in a decrease of the Lagrange

dual. Nevertheless, the effect of picking an ascending value was mitigated.

Both the temporal decomposition, and the product-temporal decomposition show that the traditional

subgradient can recover from diverging, but it takes several iterations to catch up with the bounds obtained

using the probing subgradient. In the product decomposition, the difference is even clearer. The Lagrange

duals obtained after 10 iterations are completely different. These two results combined indicate that the

probing subgradient is a good choice in presence of a low budget of iterations.

7 Conclusions

Product decomposition is a novel decomposition scheme that provides additional options for modelers

to find the most efficient optimization algorithms. The idea of decomposing was motivated by the large
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number of products in some supply chain planning problems. However, the derivation can be applied to

other problems with sets sharing resource in knapsack-like constraints. The results are also useful to design

algorithms similar to rolling horizon, in which the problem is solved one product at a time. The results of

temporal decomposition applied to case study resulted better than the results of product decomposition.

However, the sensitivity analysis indicates that product decomposition can lead to a smaller gap when

capacity is larger, demonstrating that the results depend on the parameters of the model. Furthermore,

both approaches are mathematically equivalent. The only difference is the effect of the relaxation obtained

from the Lagrange dual in the objective function. This effect is problem-specific and depends on the

modeling parameters. The choice between product or temporal decomposition depends on the number of

elements on each set (products and time periods) and the structure of the objective function. Modelers

are encouraged to experiment with both approaches when facing a new supply chain planning problem.

In most applications, the number of products is larger than the number of time periods, making product

decomposition better suited to take advantage of parallelization.

The results of the simultaneous product and temporal decomposition show the tradeoff between num-

ber of subproblems (or multipliers), and the difficulty to converge to the optimal Lagrange dual. A larger

number of subproblems requires a larger number of multipliers, with a lower average iteration time, and a

resulting algorithm with a lower probability to converge to the optimal Lagrange dual. The simultaneous

decomposition is recommended only for cases in which decomposing only by time periods or products still

results in subproblems that are too expensive to solve, with large average iteration times. Aggregation

of linking constraints should also be considered in a case by case basis, as it can be beneficial in some

applications, but not in others. The results indicate that it can lead to reductions in the number of

multipliers while maintaining the quality of the bounds. Together with the decomposition schemes it

represents another lever for modelers to design the most efficient algorithms. On the other hand, the

order of the products did not have much impact on the results.

Finally, the probing subgradient method resulted in a more stable Lagrange dual method, preventing

the Lagrange dual to take large ascending steps with make the algorithm diverge in the first iterations.

The method require the solution of more optimization problems per iteration. therefore, it should only

be used for expensive subproblems, i.e. a large average iteration time.

In summary, product decomposition is a novel approach that provides modelers with more options to

design the most efficient decomposition algorithms and obtain better results.
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Decomposing the problem by products is not consistently better or worse than decomposing by time

periods. This is explained by the mathematical equivalence of both reformulations. This decomposition

scheme is presented as an alternative to modelers to experiment during the implementation of Lagrangean

decomposition. Simultaneous product and temporal decomposition allows to generate a larger number of

subproblems and take greater advantage of parallel computing. The number of subproblems used is also a

matter of experimentation in the implementation phase of the algorithm. Aggregating linking constraints

to reduce the number of multipliers can also lead to improved performance and quality of the bounds

obtained. This offers additional options to optimize the performance of the decomposition algorithms.

The order of products is another lever that can be adjusted to improve the obtained results.
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