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Abstract2

We propose two data-driven, optimization-based frameworks (simulation-optimization3

and bi-objective optimization) to account for production variability in the operations4

planning stage of the Sales and Operations Planning (S&OP) of an enterprise. Pro-5

duction variability is measured as the deviation between historical planned (target)6

and actual (achieved) production rates. A statistical technique, namely, quantile re-7

gression is used to model the distribution of deviation values given planned production8

rates. Scenarios are constructed by sampling from the distribution of deviation val-9

ues and used as inputs to the proposed optimization-based frameworks. Advantages10

and disadvantages of the two proposed frameworks are discussed. The applicability11

of the proposed methodology is illustrated with a detailed analysis of the results of12

a motivating example and a real-world production planning problem from a chemical13

company.14
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1 Introduction17

Sales and Operations Planning (S&OP) is a business and decision-making process through18

which a company makes certain that tactical plans in every business area balance demand and19

supply for products. Therefore, S&OP links the corporate strategic plan to daily operations20

plans. The overall result of the S&OP process is an operating plan to allocate company21

resources1.22

Attempts in the literature to systematically survey case studies of the S&OP process23

adopt the Capability Maturity Model (CMM)2. A recent review that surveys some maturity24

models is available3. Maturity models define stages for the S&OP process that include25

activities such as meetings, demand forecasting, integration of procurement, production,26

and distribution plans, and performance measurements. Figure 1 illustrates typical stages in27

the S&OP process. We note that uncertainty and variability affect decisions in both stages 128

(Sales Planning) and 2 (Operations Planning). Forecasting demand for products takes into29

account future market conditions that are not known exactly (i.e., demand uncertainty), and30

the operation of plants is subject to unplanned events and imperfect implementation (i.e.,31

production variability).32

Figure 1: Typical stages in the S&OP process. Adapted from4.

The Operations Research and Management Science (OR&MS) and Process Systems En-33
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gineering (PSE) communities have contributed with optimization-based tactical production34

planning models as well as solution strategies for different industry sectors. An extensive35

literature survey about models for tactical production planning and scheduling with un-36

certainty considerations is available5,6. It classifies the literature based on the production37

planning area and the modeling approach. Production planning and scheduling problems in38

the chemical, petrochemical, and pharmaceutical industries are also reviewed in the litera-39

ture7,8. The authors identify typical sources of uncertainty in different applications and how40

they are usually modeled in the context of optimization under uncertainty.41

Some works have considered hybrid simulation and optimization to account for uncer-42

tainty in generating tactical production plans. For instance, Li et al.9 studied a dedicated43

remanufacturing system of electronic products with stochastic batch arrival times. The sys-44

tem is modeled in the discrete-event simulator Arena R© 10.0 by Rockwell Software, and its45

objective is to analyze the effect of operational changes on the profit performance of this46

dedicated remanufacturing system. The optimization approach was based on Genetic Al-47

gorithms. Lim et al.10 propose a simulation-optimization approach for managing S&OP48

in a problem related to the automotive industry. The stochastic parameter is the demand49

that is assumed to be uniformly distributed. The simulation part is coded in the Java pro-50

gramming language, and the optimization formulation accounts for multiple criteria through51

ε-constraints (see Subsection 4.2). We note that, on the one hand, there has been a modest52

effort to address the effect of uncertainty in the activities pertaining to sales and procurement53

planning; on the other hand, there is limited work on incorporating production variability54

in the operations planning stage.55

In this work, we focus on the operations planning stage of the S&OP process (see Fig-56

ure 1). More specifically, we propose two data-driven optimization-based approaches to57

account for uncertainty (in this case, production variability) when generating a tactical pro-58

duction plan. The production variability is quantified as the deviation between historical59

planned and actual production rates. The statistical technique of quantile regression11 is60
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used to model the distribution of deviation values for a given planned rate. This distribution61

is then sampled from in order to construct scenarios. The main contributions of this work62

are summarized below.63

• Statistical modeling via quantile regression of historical production data to quantify64

production variability;65

• Simulation-optimization and bi-objective optimization frameworks to account for pro-66

duction variability when generating a tactical production plan in the S&OP process;67

and68

• Generated tactical production plan with tradeoff information between average profit69

and risk (i.e., Pareto efficient frontier).70

This paper is organized as follows. Section 2 defines the problem and presents the high-71

level methodology. Section 3 provides a brief overview of classical and quantile regression,72

which are statistical techniques that can be used to model historical production variability.73

Section 4 describes the two proposed optimization-based solution strategies to incorporate74

production variability in the operations planning stage of the S&OP process. The proposed75

approach is illustrated by two numerical examples in Section 5: motivating example and76

industrial case study. In the latter, we propose modeling approaches to account for highly77

integrated networks. Conclusions are drawn in Section 6.78

2 Problem Statement and Methodology79

The approach proposed in this work is illustrated with an application related to the Chemical80

Process Industry (CPI). In particular, we deal with Enterprise-wide Optimization (EWO)81

decisions of highly-integrated chemical production sites, which produce basic chemicals and82

their downstream derivatives12. However, we note that the proposed methodology is general83

and can be applied to other types of industries.84
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For this problem, we consider a process network of chemical plants and focus on the85

effects of production variability in the operations planning stage. We assume that the future86

monthly demand is given and is deterministic over the planning horizon. Also given is the87

minimum/maximum installed production capacity of each plant and its production costs.88

Transportation and inventory holding costs, inventory capacity, and initial inventory are89

given. Future planned maintenance outages of production plants may also be given. Given90

a multi-period linear programming (LP) production planning model for the given process91

network (similar to the model presented elsewhere13, excluding capacity expansion consid-92

erations), the objectives are two-fold: (1) propose a production plan incorporating historical93

production variability data, and (2) measure the performance of the proposed plan in the94

form of a tradeoff between average profit and risk. Production variability is incorporated in95

a two-stage the stochastic programming production planning formulation whose details are96

given in Subsection 4.2.97

The overall strategy to generate production plans by taking into account the variability98

of S&OP data is shown in Figure 2. From available historical data that consist of actual99

and planned production rates, quantile regression models (see Section 3) are built and used100

to characterize the production variability, i.e., deviation between planned and actual rates.101

Deviation values are then sampled from these statistical models and used in an optimization-102

based framework to generate production plans with profit vs. risk tradeoff information (see103

Section 4). We propose and discuss the advantages and disadvantages of two different frame-104

works: (1) a simulation-optimization approach, and (2) a bi-objective optimization approach.105

Figure 2: Overall strategy to account for historical production variability when generating
production plans.
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3 Modeling Production Variability with Quantile Re-106

gression107

In this section, we first provide a brief overview of classical and quantile regression analysis,108

then we illustrate how the latter can be used to model production variability. The notation109

for this section is as follows. LetX and Y denote the predictor (or covariate or input) and the110

response (or output) random variables whose values are denoted by x and y, respectively. For111

example, we may define X as the planned production rate and Y as the deviation between112

planned and actual rates. We restrict the discussion to continuous random variables only.113

In regression analysis, the regression model is generally written as,114

Y = f(X) + ε (1)115

where f(·) is a mathematical formula that expresses the relationship between X and Y , and116

ε is the random error term assumed to have mean zero, homoskedastic (i.e., its variance117

is constant over the range of X values), and uncorrelated with X 14. In linear (classical)118

regression, for example, f(X) = β0 + β1X, where β0 and β1 are parameters to be estimated.119

Nonlinear parametric and nonparametric functions can also be used to model the relationship120

between X and Y .121

We want to predict Y values for given X values. In classical regression, we write122

Ŷ = E[Y |X = x] (2)123

where Ŷ denotes the predicted response variable and E[·] is the expectation operator. In124

other words, Ŷ is the mean of Y values conditional on X = x. Therefore, for a distribution of125

X, the result of a classical regression analysis is a single point (the mean) of the distribution126

of Y .127

A more general approach to regression analysis is quantile regression11. A quantile is128
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the value that divides a data set in two subsets. The 50th 100-quantile (also called 50th
129

percentile or median) separates the higher half of a data set from the lower half. In other130

words, there is at most 50% probability that a random variable will be less than the median.131

The 4-quantiles are called quartiles, the 5-quantiles are called quintiles and so on. In this132

paper, we will use quantile and 100-quantile interchangeably.133

In quantile regression, the predicted Y values correspond to quantiles of the distribution134

of Y conditional on X = x. Mathematically,135

Ŷ = Qα[Y |X = x] (3)136

where Qα[·] denotes the 100α-th quantile and α ∈ [0, 1] is the probability level. Similarly to137

classical regression, quantile regression can be performed parametrically (linear and nonlinear138

models such as smoothing splines) as well as nonparametrically (e.g., kernel smoothing15).139

Figure 3 illustrates regression analysis in the general case. In the general case of regression140

analysis, the objective is to model the relationship between the distribution of X and the141

distribution of Y , i.e., to predict FY (y) from FX(x), where FY (·) and FX(·) are the cumulative142

distribution functions of Y and X, respectively. Classical regression provides the mean143

whereas quantile regression provides any quantile of the distribution of Y conditional on144

X = x.145

Figure 3: General case of regression analysis. Classical regression only provides mean output,
whereas quantile regression provides any point of the output distribution.

The proposed approach for using quantile regression to model production variability in146
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S&OP data is as follows. From historical planned and actual production rates, the deviation147

between them is calculated as ∆ = Plan−Actual. The regression analysis consists of regress-148

ing ∆ on Plan, i.e., obtain the regression function Qα[∆|Plan = planned value] for a given149

probability level α. Finally, a distribution of ∆ values given a planned value can be obtained150

by estimating quantiles for several probability levels (e.g., α = {0, 0.01, . . . , 1}). Figure 4151

shows an example of a ∆ vs. Plan plot for a given chemical plant and the estimated quantiles152

conditional on two different planned values. The top plot shows that the distribution of ∆153

values (i.e., conditional quantiles) varies depending on the planned value. This can also be154

seen from the bottom plots, where the range of ∆ values is larger for the planned value of155

10w.u. (weight units, bottom left plot) than for the planned value of 1.5w.u. (bottom right156

plot).157

Figure 4: Example of modeling production variability with quantile regression, where ∆ =
Plan− Actual. Legend: (a) ∆ vs. Plan plot, (b) estimated quantiles conditional on Plan =
10 w.u. (weight units), and (c) estimated quantiles conditional on Plan = 1.5 w.u..

Remark. As will be discussed in the next section, it may be difficult or impossible to158

employ a quantile regression model to generate samples within an optimization formulation.159

One possible approximation is to disregard the covariate in the quantile regression (i.e., the160

Plan values), and generate samples from the distribution of the ∆ values alone. This is the161
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approach taken in the numerical examples discussed later in this paper.162

4 Simulation and Optimization Frameworks163

The objective of the proposed approach is two-fold: (1) account for historical production164

variability when generating an optimal Sales and Operations Planning (S&OP) production165

plan, and (2) provide tradeoff information about the generated plan in the form of average166

profit vs. risk. We describe two optimization-based frameworks whose potential advantages167

and disadvantages are listed in Table 1. The frameworks are detailed in the next two sub-168

sections.169

Table 1: Potential advantages (+) and disadvantages (−) of optimization-based frameworks.
Legend: Sim-Opt = Simulation-Optimization framework, Bi-Opt = Bi-Objective Optimiza-
tion framework, ∆|Plan = deviation conditional on planned values in the context of quantile
regression (see Section 3), DFO = Derivative-Free Optimization.

Sim-Opt Bi-Opt

+ Easy to accommodate for arbitrary
∆|Plan;

− Expensive simulations as number of sce-
narios increases;

− No explicit handling of constraint viola-
tion;

− Decrease in efficiency if high-
dimensional DFO problem.

+ Simultaneous generation of plan and
minimization of risk;

+ Explicit handling of constraint violation;

− Difficult or impossible to accommodate
for arbitrary ∆|Plan;

− Optimization model may be large and
nonlinear.

4.1 Simulation-Optimization Framework (Sim-Opt)170

The Simulation-Optimization framework (Sim-Opt) consists of alternating between a sim-171

ulator and a Derivative-Free Optimization (DFO)16 solver as illustrated in Figure 5. The172

purpose of the DFO solver is to set the production target (i.e., generate the S&OP produc-173

tion plan). For a new proposed plan, ∆ values are generated using quantile regression and174

used to form scenarios to be evaluated by the simulator. In the simulator, the production175
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rates of the plants that are subject to variability are fixed to the respective plan proposed176

by the DFO minus the respective ∆ value, i.e., Production Rate = Production Target−∆.177

Recall that ∆ = Plan − Actual; therefore, by subtracting the estimated ∆ value from the178

production target, we estimate the actual production rate for a plant.179

Figure 5: Schematic of the Sim-Opt framework. The DFO solver sets the production targets
based on which the ∆ values are estimated and form scenarios for the simulator. The
simulator evaluates the current production target and returns a distribution of financial
performance values (profit, cost etc.).

The simulator can be a black-box S&OP software or a production planning optimization180

model that acts as a simulator by fixing certain “input” variables, such as production rates.181

Different scenarios containing ∆ values are passed to the simulator, which evaluates the182

impact of the proposed plan on a performance metric, such as profit or cost. Note that each183

scenario is independent of the other, which makes this approach amenable to parallelization.184

A recent review on DFO solvers and algorithms is available17. We note that some limita-185

tions of DFO include the decrease in efficiency for high-dimensional optimization problems186

and the number of necessary function evaluations (i.e., calls to the simulator, which may be187

computationally expensive due to the number of scenarios) in order to achieve significant188

progress. In the type of problem addressed in this paper, if the production rate of a plant is189

indexed by time periods and the planning time horizon considered has twelve time periods,190

then for each plant that is subject to variability, twelve decision variables are needed.191

One of the objectives of this paper is to show how a tradeoff curve of average profit192

vs. risk (Pareto efficient frontier) of the proposed production plan can be used in the anal-193
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ysis of results. This tradeoff curve can be obtained by applying a bi-criterion approach to194

the Sim-Opt framework as explained as follows. For the case of a black-box simulator, in195

which no model is available, multi-objective DFO algorithms can be used to construct the196

Pareto efficient frontier. The literature on multi-objective DFO is generally divided into two197

classes: Direct Search Methods (DSM) of directional type and Evolutionary Multi-objective198

Optimization (EMO) algorithms. Reviews are available18,19. If an optimization model is199

used as the simulator, then standard multi-objective optimization techniques can be used,200

such as the ε-constraint method (see Subsection 4.2)20,21.201

4.2 Bi-Objective Optimization Framework (Bi-Opt)202

The Bi-Objective Optimization framework (Bi-Opt) simultaneously proposes a production203

plan and minimizes the risk of operating a such plan under production variability consider-204

ation. This is accomplished by solving an optimization problem, which requires the produc-205

tion planning optimization model to be fully known. The proposed optimization model is206

a bi-objective two-stage stochastic program22 whose first-stage variables are the production207

targets and second-stage variables are the remaining variables of the model (e.g., flows and208

inventory). The two objectives are the average profit value to be maximized and a risk209

measure (e.g., financial risk) to be minimized.210

A general deterministic equivalent model of the bi-objective two-stage stochastic program211

is as follows,212

min
xs,PT

Risk(xs, PT )

max
xs,PT

f0(PT ) +
∑
s∈S

psfs(xs)

s.t. g(xs) ≤ 0 ∀ s ∈ S

PRs = PT −∆s ∀ s ∈ S

(4)213

where the first objective minimizes risk while the second objective maximizes the expected214

profit. In equation (4), PT are the first-stage production target variables, while xs is a vector215
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of two-stage decision variables (including the production rate variables, PRs) that is defined216

for each scenario s ∈ S, ps is a constant vector of probability of scenario s, f0(·), fs(·),217

and g(·) are linear functions that define the multi-period LP planning model. In this paper,218

functions f0(·) and fs(·) correspond to the first- and second-stage profit terms, respectively,219

whereas functions g(·) represent linear material and inventory balances and capacities.220

A major contribution of this paper is to model production variability as shown in the221

last set of equality constraints of equation (4). This set of constraints fixes PRs to the222

production target (PT ) minus the deviation value for a given scenario s (∆s). Recall that223

subtracting ∆s from the production target (i.e., production plan) results in the estimated224

actual production rate. Also, note that PT is not indexed by scenarios, since it is a vector225

of first-stage variables. The production target is the production plan that is sought to be226

implemented in practice.227

The bi-objective optimization problem in equation (4) can be cast as a single-objective228

model using standard multi-objective optimization techniques as mentioned in the previous229

section. The ε-constraint method results in two possible models,230

max
xs,PT

f0(PT ) +
∑
s∈S

psfs(xs)

s.t. Risk(xs, PT ) ≤ ε

g(xs) ≤ 0 ∀ s ∈ S

PRs = PT −∆s ∀ s ∈ S

(5)231

or,232

min
xs,PT

Risk(xs, PT )

s.t. f0(PT ) +
∑
s∈S

psfs(xs) ≥ ε

g(xs) ≤ 0 ∀ s ∈ S

PRs = PT −∆s ∀ s ∈ S

(6)233

where ε is a threshold value that represents the maximum risk (equation (5)) or minimum234
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average profit (equation (6)) the decision maker is willing to have. The Pareto efficient235

frontier can be constructed by varying the value of ε and resolving the optimization problem.236

If the objective function to be maximized in equation (4) is a financial performance237

indicator (e.g., profit or cost, if minimization), then one possibility is to use a financial238

risk measure for the expression of Risk(·, ·). Different financial risk management strategies239

have been proposed in the literature23. Some of these risk measures are presented below.240

Note that each measure operates on the distribution of values of the financial performance241

indicator.242

• Variance: It is a measure of the spread of a distribution that operates symmetrically243

on all values with respect to the expected value. Minimization of variance can be244

interpreted as the minimization of the square of the L2-norm between the financial245

performance in a scenario and the average financial performance over all scenarios.246

Risk2(xs, PT ) =
∑
s∈S

ps
[
fs(xs, PT )− f̄(xs, PT )

]2
(7)247

where f̄(xs, PT ) = ∑
s∈S psfs(xs, PT ) is the expected value of the distribution of profit248

values.249

• Semivariance: It is a deviation measure similar to the variance, but it operates on

values above or below the expected value. It is also similar to downside risk where the

threshold is the expected value of a distribution.

Risk2+(xs, PT ) =
∑
s∈S

ps
[
fs(xs, PT )− f̄(xs, PT )

]2
+

(8)

Risk2−(xs, PT ) =
∑
s∈S

ps
[
f̄(xs, PT )− fs(xs, PT )

]2
+

(9)

where [a]+ = max{0, a}.250

• Mean Absolute Deviation (MAD): The MAD (also known as the average absolute devi-251
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ation about the mean) also measures the dispersion of a distribution, but in an absolute252

sense. Analogously to the variance, its minimization can be seen as the minimization253

of an L1-norm.254

Risk1(xs, PT ) =
∑
s∈S

ps
∣∣∣fs(xs, PT )− f̄(xs, PT )

∣∣∣ (10)255

• Maximum Absolute Deviation: It is analogous to the MAD, but its minimization is256

equivalent to minimizing the L∞-norm24.257

Risk∞(xs, PT ) = max
s∈S

∑
s∈S

ps
∣∣∣fs(xs, PT )− f̄(xs, PT )

∣∣∣ (11)258

• Conditional Value-at-Risk (CVaR)25: It is also called expected shortfall and is a259

quantile-based risk measure similarly to Value-at-Risk (VaR), which is the quantile260

of a distribution for a given probability level α.261

RiskCVaRα(xs, PT ) = γ − 1
1− α

∑
s∈S

ps [−fs(xs, PT )− γ]+ (12)262

where γ ∈ R (additional variable).263

5 Numerical Examples264

The proposed approach to deal with production variability in the operations planning stage265

of the Sales & Operations Planning (S&OP) process is illustrated with a motivating example266

and an industrial case study. The two-stage scenario tree for the stochastic models has its267

node values (outcomes) fixed to the sampled ∆ values from the quantile regression analysis,268

and the probabilities of the scenarios, ps, were calculated using the data-driven scenario269

generation approach26 (see L2 DMP formulation).270

All optimization models were implemented in AIMMS 3.1327 and solved on a desktop271
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computer with the following specifications: Dell Optiplex 990 with 4 Intel R© CoreTM i7-2600272

CPUs at 3.40 GHz (total 8 threads), 8 GB of RAM, and running Windows 7 Enterprise. All273

linear programming (LP) and convex quadratically-constrained programming (QCP) models274

were solved with Gurobi 5.6.275

The Sim-Opt approach consists of a main script in MATLAB28 in which the DFO algo-276

rithm fminsearchbnd1 (Nelder-Mead simplex search algorithm) sets the production targets277

PT that are fixed in the AIMMS model (the simulator). In other words, the DFO algo-278

rithm proposes a production plan, which is evaluated by the simulator (two-stage stochastic279

programming model). In order to perform a comparison between Sim-Opt and Bi-Opot ap-280

proaches, we used the same ∆ values in both, even though the Sim-Opt can accommodate281

the sampling of ∆ values conditional on the proposed production plan.282

5.1 Motivating Example283

The goal of the motivating example is to demonstrate that different allocation schemes284

of chemicals in a process network are obtained when production variability is considered285

and some risk measure is adopted. Typically, only the margin (sales from revenue minus286

operating cost) of individual products is used as a criterion for deciding their allocation287

throughout the network. By also accounting for production variability, larger amounts of a288

feedstock chemical may be allocated to lower-margin, but potentially more reliable plants289

(to be defined in the next paragraph) than to higher-margin, but less reliable plants that290

“compete” for the same raw material. Even though this may seem counter-intuitive at first,291

we show through this example the trade-off between the expected or average overall profit292

and the risk of choosing an allocation scheme, i.e., less risk with allocation favoring low-293

margin and more reliable plants vs. high risk with allocation favoring high-margin and less294

reliable plants. Please recall that by reliability we mean the spread of ∆ values around zero,295

1The function fminsearchbnd extends MATLAB’s built-in function fminsearch by considering
bounds on the decision variables. The bounds used in the computational experiments were the
plant minimum/maximum capacities. See http://www.mathworks.com/matlabcentral/fileexchange/
8277-fminsearchbnd--fminsearchcon for implementation (retrieved on March 22, 2015).
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i.e., the deviation of actual production rates from the respective planned values. A detailed296

analysis of the results is given to illustrate the applicability of the proposed methodology.297

The process network is shown in Figure 6. Each plant produces a single product, which298

receives the same name as the plant that produces it. Therefore, we will use plant and prod-299

uct interchangeably. The main objective is to demonstrate the different allocation schemes300

of chemical A to the downstream plants (B–G) between deterministic and stochastic (risk301

neutral and averse) solutions by considering production variability of the downstream plants.302

Note that the order of plant’s reliability is the reverse of the order of plant’s margin (revenue303

from sales minus operating costs), i.e., the most reliable plant (G) is the lowest-margin plant,304

whereas the less reliable plant (B) is the highest-margin one. In this context, reliability is305

represented by the spread of the deviation between historical planned and actual production306

rates (∆ values) around the origin, which is along the lines of a root mean square calcula-307

tion. In other words, a more reliable plant means ∆ ≈ 0, i.e., it is more likely to actually308

achieve its planned values proposed in the operations planning stage of the S&OP process.309

Please note that, in this paper, we do not refer to reliability in the sense of maintainability310

or probability of failures of a system or component.311

Figure 6: Process network structure of the motivating example. Plant reliability is related to
the spread of the deviation between historical planned and actual production rates around
the origin. Specifically in this example, the more reliable a plant is, the lower its margin is.
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The multi-period, LP production planning model is similar to the one presented in13, but312

excluding capacity expansion decisions. That is, the model consists of simple input-output313

relationships of material and inventory balances. Possible demand and plant capacity vio-314

lations are captured with non-negative slack variables added to the respective constraints315

and penalized in the objective function. When production variability is taken into account,316

the deterministic equivalent model of the two-stage stochastic production planning model317

can be generically written as in equation (4), where the proposed S&OP production plan318

or target, PT , is a vector of first-stage variables. The model also has slack variables that319

capture unsatisfied demand and capacity violations that are penalized in the objective func-320

tion. Twenty scenarios (samples from the quantile regression analysis) were considered in321

all stochastic models. We perform a detailed analysis of the results of four cases defined as322

follows:323

Case 1. Deterministic324

– No production variability, i.e., ∆s = 0.325

– Identifier: 1. Det326

Case 2. Risk Neutral Stochastic with Fixed Production Target327

– Production variability is considered, i.e., ∆s 6= 0.328

– Fixed the values of production targets, PT , to the optimal production rates ob-329

tained by solving Case 1.330

– The purpose of this case is to evaluate the performance of the deterministic pro-331

duction plan in an uncertain environment.332

– Identifier: 2. Stoch Fix333

Case 3. Risk Neutral Stochastic with Variable Production Target334

– Similar to Case 2, but with variable production targets, PT .335
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– Production targets (first-stage decisions) are optimally set while taking into ac-336

count the historical variability in production rates.337

– Identifier: 3. Stoch Var338

Case 4. Risk Averse Stochastic (Bi-Opt Framework)339

– Similar to Case 3, but with two objective functions, one of them measuring risk.340

– Identifier: 4. Bi-Opt341

We should note that Cases 1–3 give rise LP models since the underlying planning model342

is linear, while Case 4 gives rise to a convex QCP model, because we use the variance of343

the profit as the risk measure. The QCP model is convex because the variance is taken344

with respect to the profit, which is a linear function, and the scenario probabilities are non-345

negative; thus, the Risk(xs, PT ) function is a sum of non-negative quadratic terms. Let346

us first focus on the results obtained with the Bi-Opt approach (Subsection 4.2), and then347

comment on its differences with the Sim-Opt approach (Subsection 4.1). We begin with348

Cases 1–3, and then discuss Case 4, which has Case 3 as a special case.349

5.1.1 Cases 1, 2, and 3350

We start the analysis by comparing average overall margin and its standard deviation for the351

first three cases. The overall profit (or simply profit) is the difference between the revenue352

from the sale of all products and total costs (operating and inventory). Operating costs353

are proportional to production rates, and inventory costs are proportional to the amount354

of chemicals stored in each period. As it can be seen in Table 2, adjusting the production355

target (Case 3) in the face of production variability yields more profitable and less risky356

(smaller standard deviation) production plans. In other words, production targets obtained357

with the deterministic model (Case 1) yield lower average profit with larger spread (higher358

risk) when production variability is taken into account (Case 2). In addition, some plant359

capacity violations were observed in the solution of Case 2, which is clearly undesirable. The360
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optimization results convey that the value of simultaneously proposing the production targets361

and accounting for production variability is (320.60 − 272.84) m.u. = 47.77 m.u. (monetary362

units) on average.363

Table 2: Average profit and its standard deviation in monetary units (m.u.) for Cases 1–3
in the motivating example. The standard deviation of the profit is a measure of its spread,
i.e., financial risk.

Case
1. Det 2. Stoch Fix 3. Stoch Var

Average 375.15 272.84 320.60
Std Dev – 28.30 25.82

The difference in average profitability between the solution of Case 2 and Case 3 is also364

explained by the average overall service level (SL) defined in equation (13). The overall SL365

is the complement of the fraction of total demand satisfied from sales of all products.366

E[SL] = 1−
∑
s∈S psSaless

Total Demand (13)367

The overall SL for the deterministic solution (Case 1) is 100% (i.e., all demand is satisfied),368

and the average overall SL for Case 2 and Case 3 is 82.68% and 92.24%, respectively. The369

breakdown of unmet demand for each product is given in Table 3. From Case 2 to Case370

3, the demand satisfaction of high-margin products (B, C, and D) increases relatively more371

than for the low-margin products (E, F, and G). In fact, the demand satisfaction of product372

G, which is produced by the most reliable and lowest-margin plant, actually decreased in373

Case 3. When analyzing the results of Case 4 later on, it will be clear that the solution of374

Case 3 favors more allocation of product A to the high-margin plants, since the objective375

function (profit) is not constrained by any risk measure (i.e., more risky condition).376
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Table 3: Average unmet demand in weight units (w.u.) for each product in Case 2 and Case
3 in the motivating example.

Product Case
2. Stoch Fix 3. Stoch Var

B 64 6
C 55 10
D 41 4
E 34 10
F 18 10
G 8 34

The amounts of chemical A allocated to the six downstream plants are shown in Table 4,377

which complements the results shown in the previous table. As it would be expected after378

the analysis of unmet demand, in Case 3, relatively more amounts of A are allocated to379

high-margin plants than for low-margin ones. The negative percentage change for plant G380

(lowest-margin) means that it receives less A in Case 3 than in Case 2.381

Table 4: Average allocated amounts of A in weight units (w.u.) to each downstream plant in
Case 2 and Case 3 in the motivating example. The percentage change column is the relative
change between the two cases, i.e., (Case 3− Case 2)/Case 3.

Plant Case
2. Stoch Fix 3. Stoch Var Change

B 160 204 28%
C 96 143 49%
D 131 164 25%
E 147 178 21%
F 343 356 4%
G 148 111 −25%

Let us analyze the results for Case 4. The goal is to evaluate the impact of controlling382

some measure of risk by including an additional constraint (ε-constraint) on the allocation383

scheme of chemical A to downstream plants. Consider two subcases of Case 4: Subcase384

4.A uses an explicit financial risk measure (variance of profit) and Subcase 4.B uses the385

individual expected service level for one of the high-margin products.386
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5.1.2 Subcase 4.A: Variance of Profit387

The ε-constraint in equation (4) takes the following form,388

Risk(xs, PT ) =
∑
s∈S

ps
[
Profits(xs, PT )− Profit(xs, PT )

]2
≤ ε (14)389

where Profits(·, ·) denotes only the profit calculation of the objective function, i.e., excluding390

penalized slack variables, and Profit(xs, PT ) = ∑
s∈S psProfits(xs, PT ) is the average profit.391

In this subcase, ε is interpreted as the maximum allowed variance of profit and has units of392

(m.u.)2, where “m.u.” stands for monetary units.393

Note that Case 3 is a special case of Subcase 4.A in which ε takes a large enough value394

so that the constraint is not active at the solution, i.e., the financial risk is unconstrained395

and the model becomes risk neutral. Thus, the solution to Case 3 represents the condition396

of maximum variance of the profit, which is the right-most point in the Pareto efficient curve397

of average profit vs. variance (or standard deviation) of profit in Figure 7. In addition to the398

solution of Case 3, the bi-objective optimization model (convex QCP) was solved ten times399

for different values of ε, ranging from 60 to 600 with a stride of 60, and the solutions are400

represented by points on the Pareto efficient frontier. Note that from left to right the spread401

of the profit across scenarios increase, i.e., more risky solutions.402
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Figure 7: Pareto efficient frontier for Subcase 4.A in the motivating example. “m.u.” stands
for monetary units. Error bars represent 95% confidence intervals on the average values.

Figure 8 shows the same Pareto efficient frontier together with the average overall service403

level (SL) as defined in equation (13). Note that there is an increase in the average overall404

SL for the solutions from points P1 to P2, and after point P2 until point P3 the average405

overall SL levels off. Therefore, we classify the solutions as belonging to two regions: Region406

I (less risky) and Region II (more risky). After point P2, the amount of A allocated to all407

downstream plants remains practically the same with the exception of the least and most408

reliable plants, B and G, respectively. As the ε value increases (more risky condition), there409

is a shift of the amount of A allocated from G to B.410
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Figure 8: Pareto efficient frontier and average overall service level for Subcase 4.A in the
motivating example. “m.u.” stands for monetary units.

Figure 9 shows the allocation amounts of A to the downstream plants for each point in411

the Pareto efficient curve for the two plants in the extremes of the reliability-margin scale.412

The same overall trend is observed for the other plants: more A is allocated to less reliable,413

high-margin plants (B, C, and D) as risk (ε value) increases; conversely, less A is allocated414

to more reliable, low-margin plants (E, F, and G) from left to right in the figure.415
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Figure 9: Allocation scheme for two downstream plants in Subcase 4.A in the motivating
example. Plant B is the less reliable and highest-margin, whereas plant G is the most reliable
and lowest-margin of the downstream plants. The ε value denotes the variance of the profit
(financial risk). “w.u.” and “m.u.” stand for weight and monetary units, respectively.

5.1.3 Subcase 4.B: Average Service Level of Product C416

The ε-constraint in equation (4) takes the following form,417

Risk(xs, PT ) = 1−
∑
s∈S psSalesC

s

Total Demand ≤ ε (15)418

where SalesC
s indicates that only sales for product C are considered, thus the ε-constraint is419

a calculation of the complement of the average individual service level (SL) of product C. In420

this subcase, ε is interpreted as the maximum allowed fraction of unmet demand of product421

C and is dimensionless. It can be expressed as a percentage, e.g., ε = 1% means that at most422

1% of the demand of product C can be unmet, or equivalently, at least 99% of the demand423

of C must be satisfied.424
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The motivation behind this subcase is two-fold: (1) it uses a non-conventional form of425

the ε-constraint for the risk (i.e., not an explicit financial risk measure); (2) the average426

SL of the high-margin product C in the solution of Case 3 is 93.85%, and it is desired to427

evaluate the impacts of enforcing a higher average SL of this valuable product on the overall428

profitability of the production plan.429

Figure 10 shows the Pareto efficient curve of the average profit vs. average individual430

service level of product C. In addition to the solution of Case 3, the bi-objective optimization431

model (LP) was solved four times for different values of ε (5%, 4%, 3%, and 2%). In this432

motivating example, 99% (i.e., ε = 1%) or higher average SL of product C is not feasible.433

Note that as the average SL of C increases, the overall average profit decreases and its spread434

(represented by the error bars) increases. Even though more demand of product C is met435

from left to right, the overall production plan becomes less profitable on average.436

Figure 10: Pareto efficient frontier for Subcase 4.B in the motivating example. Error bars
represent 95% confidence intervals on the average values. “m.u.” stands for monetary units.

Figure 11 helps explain the result in the previous figure. The average overall SL decreases437

as the average individual SL of product C is forced to increase. In other words, by requiring438

higher SL for product C, there is a shift of A allocated from other plants to plant C in439
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order to ensure its desired SL. Consequently, the individual demand satisfaction of the other440

products decreases from left to right in the figure.441

Figure 11: Effect of increasing average service level of product C on average overall service
level in Subcase 4.B in the motivating example.

5.1.4 Computational Statistics442

To conclude the analysis of the motivating example, Table 5 presents the computational443

statistics of the optimization models solved in the four cases. The time corresponds to the444

wall time, including loading and solving the models. The time listed under Subcases 4.A445

and 4.B corresponds to the average wall time for all points in the Pareto efficient frontier in446

each subcase. Recall that Cases 1 through 3 are LP models, Subcase 4.A contains convex447

QCP models, and Subcase 4.B has LP models.448

Table 5: Computational statistics for optimization models in all cases and subcases in the
motivating example.

Case and Subcase
1. Det 2. Stoch Fix 3. Stoch Var 4.A Bi-Opt 4.B Bi-Opt

Variables 5,186 101,778 101,874 101,874 101,874
Constraints 3,602 73,482 73,482 73,483 73,483
Time [s] 2.59 4.38 5.05 5.31 5.12
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5.1.5 Sim-Opt vs. Bi-Opt449

We note that Cases 1 and 2 are the same for both Sim-Opt and Bi-Opt frameworks, since450

they correspond to the deterministic problem (no production variability) and the stochastic451

problem with fixed production targets (no proposed production plan), respectively. The452

Sim-Opt framework for Case 3 took 1,000 iterations (imposed limit), 1,160 function eval-453

uations (i.e., calls to the simulator, which is the two-stage stochastic programming model454

implemented in AIMMS), and 10,745 seconds to achieve an expected profit of 294.43 m.u.,455

while the Bi-Opt framework yielded an expected profit of 320.60 m.u. in less than 5 seconds.456

In addition, the solution of the Sim-Opt framework exhibited 91.36% expected overall service457

level, which is lower than that obtained with the Bi-Opt framework (94.24%).458

The number of decision variables in this case is 72, since they correspond to the monthly459

production targets of 6 plants for a time horizon of one year. Moreover, every call to the460

simulator takes approximately 7 seconds, while the time spent by the DFO algorithm per461

iteration is negligible. These two factors make the Sim-Opt framework more computationally462

intensive than the Bi-Opt approach, in spite of having more flexibility for sampling ∆ values463

conditional on proposed production targets. Similar observations were made for the solution464

of Case 4 with the Sim-Opt approach.465

5.2 Industrial Case Study466

The industrial test case concerns the optimal production planning of chemical sites. Each467

site contains several plants that are highly integrated. The plants can also transfer products468

between sites. The chemical sites contain more than 12 production facilities and manufac-469

ture several products. The time horizon of one year is divided into monthly time periods.470

The objective of the optimization model is to maximize the total profit. Due to confiden-471

tially reasons, we only discuss the modeling changes from the motivating example and the472

computational results.473

In Case 2 of the motivating example, the production targets, PT , are fixed to the corre-

27



sponding production rates obtained from the solution of the deterministic model (Case 1).

The goal is to evaluate the performance of the production targets proposed by the determin-

istic model when production variability is taken into account. In order to perform a similar

study on a highly integrated system, some modeling modifications may be necessary. If the

general deterministic equivalent form of the two-stage stochastic programming model (see

equation (4)) describes a highly integrated system, the equality constraint that captures the

production variability,

PRs = PT −∆s ∀ s ∈ S (16)

for fixed PT , may cause infeasibility. For instance, it may not be feasible to satisfy material474

and inventory balances in the network by imposing such a constraint on production rates with475

fixed production targets. To circumvent this potential problem, we propose two modifications476

to the implementation of Case 2 for a highly integrated system: (1) unfix the production477

target decision variables, PT , and (2) penalize the deviation of the production targets set by478

stochastic model from the corresponding values obtained in the solution of the deterministic479

model, PTdet (a constant parameter vector). Therefore, the general optimization problem480

for Case 2 is rewritten as follows:481

min
xs,PT

Risk(xs, PT )

max
xs,PT

f0(PT ) +
∑
s∈S

psfs(xs)− ψ · ||PT − PTdet||p

s.t. g(xs) ≤ 0 ∀ s ∈ S

PRs = PT −∆s ∀ s ∈ S

(17)482

where ψ is a penalty factor and || · ||p is an Lp-norm. In order to preserve the linearity of483

the production planning model used in this work, we employed the L1-norm, which resulted484
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in the following formulation:485

min
xs,PT

Risk(xs, PT )

max
xs,PT

f0(PT ) +
∑
s∈S

psfs(xs)− ψ · (PT+ + PT−)

s.t. g(xs) ≤ 0 ∀ s ∈ S

PRs = PT −∆s ∀ s ∈ S

PT − PTdet = PT+ − PT−

PT+, PT− ≥ 0

(18)486

where PT+ and PT− capture the positive and negative deviations.487

The high degree of integration in the network also has to be considered in the statistical488

modeling. If two plants are directly connected (e.g., plant A feeds plant B), then it may not489

be realistic (and likely lead to infeasibilities) to consider them independent from the point490

of view of production rates. In other words, deviations from plan in an upstream plant may491

affect production in a downstream plant, and vice versa.492

Different approaches can be used to account for this dependence between plants for493

which production variability is taken into account. If only ∆ values are used to characterize494

production variability (i.e., the covariate Plan values are disregarded), then we propose the495

following approaches (illustrated in Figure 12) for any two connected plants A and B:496

• Assume a parametric classical regression model for the ∆ values between the upstream497

and downstream plants, and from the generated samples of one of the plants, calcu-498

late the corresponding (expected) sample of the other plant. For example, if a linear499

regression model such as ∆Plant B = β0 + β1 ·∆Plant A is considered, then (1) estimate500

the regression function (in this case, the model parameters β0 and β1) by regressing501

∆ values of Plant B on ∆ values of Plant A, then (2) generate samples of ∆ values502

for Plant A, and finally (3) calculate the corresponding ∆ values for Plant B using the503

linear model.504
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• Similar to the previous approach, but instead assume a nonparametric classical regres-505

sion model for the ∆ values between the upstream and downstream plants. In other506

words, the regression model is generally written as ∆Plant B = g(∆Plant A), where g(·)507

is the nonparametric regression function (e.g., kernel regression15). Follow the same508

three-step procedure discussed in the previous approach.509

• Estimate the joint distribution of ∆ values for both plants A and B, i.e., obtain510

F̂ (∆Plant A,∆Plant B), and then sample from this estimated multivariate distribution.511

• Perform bootstrap resampling29, i.e., sample with replacement data points from the512

original data set. As in the previous approach, the samples constitute the outcomes513

(i.e., scenarios) in the stochastic programming framework.514

Figure 12: Illustration of the three proposed approaches to account for dependence of the
∆ values for directly connected plants in the network. The relationships between the ∆
values of the upstream and downstream plants are captured by: (a) linear regression (LR),
(b) kernel regression (KR), (c) estimated joint distribution, and (d) bootstrap resampling.
“w.u.” stands for weight units.
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When the Plan values are taken into account in modeling production variability (i.e.,515

the quantile regression approach discussed in Section 3), then the problem essentially be-516

comes modeling the relationship between conditional distributions, ∆Plant B|PlanPlant B given517

∆Plant A|PlanPlant A. A general approach would be to estimate the joint conditional distribu-518

tion of all random variables involved, F̂ (∆Plant A,∆Plant B|PlanPlant A,PlanPlant B), and then519

sample from this estimated multivariate distribution. This general approach may pose com-520

putational and algorithmic challenges. An approximate approach to generate samples of521

∆Plant B|PlanPlant B given ∆Plant A|PlanPlant A is described in the following steps:522

1. Obtain the estimated distribution of ∆Plant A|PlanPlant A, F̂A(∆Plant A|PlanPlant A), and523

sample from this conditional distribution. Let the samples be denoted by SA.524

2. Repeat the previous step replacing “A” with “B”.525

3. Obtain the estimated distribution F̂S(SB|SA), and sample from this conditional526

distribution. These final “approximate” samples relate ∆Plant B|PlanPlant B given527

∆Plant A|PlanPlant A.528

Table 6 presents the computational statistics of the optimization models solved in the529

four cases. We report both solution times (CPU times for the solver) and wall times (includes530

loading and solving the models), which become significant as the problem instance increases.531

Similar to the Motivating Example, Cases 1–3 and Subcase 4.B are LP models, while Subcase532

4.A contains a convex QCP model.533

Table 6: Computational statistics for optimization models in all cases and subcases in the
industrial case study.

Case and Subcase
1. Det 2. Stoch Fix 3. Stoch Var 4.A Bi-Opt 4.B Bi-Opt

Variables 124,116 2,447,057 2,446,913 2,446,914 2,446,913
Constraints 88,790 1,777,313 1,777,241 1,777,243 1,777,242

Solution Time [s] 0.45 9.17 10.22 15.61 17.43
Wall Time [s] 15.26 50.17 53.77 60.20 62.76
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The Sim-Opt framework for Case 3 was run for 100 iterations (imposed limit), 181 func-534

tion evaluations (i.e., calls to the two-stage stochastic programming model implemented in535

AIMMS), and 10,130 seconds to achieve an expected profit of 1, 293.45 m.u., while the Bi-Opt536

framework yielded an expected profit of 1, 299.81 m.u. in less than 54 seconds of wall time.537

Moreover, the solution of the Sim-Opt framework yielded 97.92% expected overall service538

level, which is lower than that obtained with the Bi-Opt framework (98.60%). Similar to the539

motivating example, the number of decision variables for the DFO algorithm is 72 (monthly540

production targets for 6 plants and time horizon of one year). Each call to the AIMMS541

model takes approximately 80 seconds, which contributes significantly to the overall solution542

time of the Sim-Opt framework. Similar observations were made for the solution of Case 4.543

6 Conclusions544

In this paper, we have addressed uncertainty in the operations planning stage of the Sales545

& Operations Planning (S&OP) process of a manufacturing company. The uncertainty is546

attributed to production variability, which is caused by unplanned events that can result547

in actual production rates lower or higher than their planned values. In order to model548

production variability, we defined ∆ as the deviation between historical planned and actual549

production rates, and used quantile regression to predict quantiles of the distribution of ∆550

conditional on planned production rates. The predicted quantiles form samples or scenarios551

in a two-stage bi-objective stochastic programming production planning model, whose first-552

stage variables are the production plans or targets that are sought to be implemented in553

practice. One objective represents the financial performance of the production plan (e.g.,554

profit), whereas the other is a risk measure (explicitly financial or not).555

The applicability of the proposed approach was illustrated with a motivating example556

and an industrial case study. The motivating example consisted of a small process network557

with a feedstock plant that serves six plants. The downstream plants are sorted in reverse558
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order of reliability and margin, i.e., the most reliable plant is also the lowest-margin one,559

and the less reliable plant is the highest-margin one. The motivation behind this was to560

show that depending on the maximum desired level of risk, the optimization model decides561

to allocate more of the feedstock chemical to more or less reliable plants. In other words,562

the optimization model considers not only the individual margin of the plants, but also their563

reliability in order to obtain a solution with maximum expected profit. For the industrial564

case study, we proposed modeling approaches to address the connectivity in the network,565

which may create dependence in production variability profiles.566
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