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ABSTRACT 

In this work we address the problem of solving multiscenario optimization models 

that are deterministic equivalents of two-stage stochastic programs. We present a 

heuristic approximation strategy where we reduce the number of scenarios and obtain an 

approximation of the original multiscenario optimization problem. In this strategy, a 

subset of the given set of scenarios is selected based on a proposed criterion and 

probabilities are assigned to the occurrence of the reduced set of scenarios. The original 

stochastic programming model is converted into a deterministic equivalent using the 

reduced set of scenarios. A mixed-integer linear program (MILP) is proposed for the 

reduced scenario selection. We apply this practical heuristic strategy to four numerical 

examples and show that reformulating and solving the stochastic program with the 

reduced set of scenarios yields an objective value close to the optimum of the original 

multiscenario problem. 
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1.  INTRODUCTION 

 Optimization under uncertainty is a major issue in solving real world problems. 

Uncertainty is a common feature that presents itself during the operation or design of any 

system. There is an abundance of literature in the area of optimization under uncertainty 

involving several applications. Some of these include: production planning (Clay and 

Grossmann, 1997; Cheng et al., 2003), scheduling (Birge and Dempster, 1996; 

Balasubramanian and Grossmann, 2002), optimal chemical process synthesis (Acevedo 

and Pistikopoulos, 1998; Liu and Sahinidis, 1996; Rooney and Biegler, 2003), electricity 

production (Takriti et al., 1996; Nowak et al., 2005). Usually problems with uncertainty 

are represented as stochastic programming problems (Birge and Louveaux, 1997) or as 

deterministic flexibility problems (Grossmann et al., 1983). The focus of this work is on 

solving two-stage stochastic programs with recourse, where we have some uncertain 

parameters that either follow a continuous distribution or take on a finite set of values. 

The aim in such problems is to determine the 1st stage decision variables such that the 

sum of the 1st stage costs and the expected value of the 2nd stage costs is minimized. 

Other approaches for solving problems under uncertainty include robust optimization, 

probabilistic programming, fuzzy optimization, and dynamic programming. Sahinidis 

(2004) presents a recent review of problems under uncertainty along with the approaches 

used to solve such problems. 

 Algorithms for stochastic integer programs have been presented by Ahmed et al. 

(2004), Carøe and Tind (1997), Carøe and Schultz (1999), Klein Haneveld et al. (1995, 

1996) among other authors. Norkin et al. (1998) have developed a branch and bound 

technique for global optimization of nonconvex nonlinear stochastic programs, where 

stochastic lower and upper bounds are made to converge with some confidence levels. In 

two-stage stochastic programming with recourse, a common approach is to discretize the 

uncertain parameter space and formulate a deterministic equivalent of the stochastic 

program, which leads to a multiscenario optimization problem (Dantzig, 1963). A single 

combination of the values of the uncertain parameters leads to a particular scenario. In 

this discretization approach there are usually a number of uncertain parameters in a 
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system and these are assumed to take on a finite set of values. All possible combinations 

of these values lead to an explosion in the number of scenarios. This greatly increases the 

size of the optimization problem, making it very hard to solve. To overcome this 

problem, approximation methods have been developed to solve the stochastic program 

with fewer scenarios and still obtain a close to optimal solution. Novak and Kravanja 

(1999) have presented a reduced dimensional stochastic optimization technique where 

they determine a subset of the vertices of the feasible polyhedral space of the uncertain 

parameters and their corresponding weights to approximate the expected value of the 

objective function of the original problem. Dupačová et al. (2003) have also proposed a 

scenario reduction technique based on a different probability metric. Sampling methods 

(e.g. Monte Carlo sampling) are also quite attractive to convert the continuous space of 

uncertain parameters into a smaller discrete space. Sample Average Approximation 

(SAA) has also been used to solve stochastic mixed-integer nonlinear programs (for 

example see Wei and Realff, 2002).    

In this work we address the problem of reducing the number of scenarios in 

multiscenario optimization problems. We use a similar idea as given in Novak and 

Kravanja (1999), and Dupačová et al. (2003) to select a subset of scenarios from a given 

larger set for solving the stochastic program. The goal is that the optimal objective of the 

full scenario problem is closely approximated by the optimal objective value of the 

reduced problem. A mixed-integer linear programming (MILP) model is presented for the 

selection of the subset of scenarios. The remainder of the paper is organized as follows. 

Section 2 presents the problem statement, while the heuristic strategy to approximate the 

original multiscenario problem is given in Section 3. Numerical examples on which the 

approach was applied are given in Section 4, and finally Section 5 summarizes the 

conclusions. 

 

2.  PROBLEM STATEMENT 

We are given a two-stage stochastic program whose deterministic equivalent has 

S  separate scenarios with different realizations of uncertain parameters. Each of these 
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scenarios has a certain probability of occurrence. The uncertain parameters that make up 

these scenarios take on a finite set of values. The probabilities of this finite set of values 

for each uncertain parameter add up to 1. This discrete finite set is either given, or else it 

can be computed from a continuous distribution (see Luceno, 1999).  

The goal of this paper is to develop an approach where we can select a subset S ′  

of scenarios from the original set of scenarios ( S ) with new probabilities given to each of 

the S ′  scenarios, and approximate the optimal objective value of original multiscenario 

problem as closely as possible with the reduced number of scenarios. This means that on 

solving the reduced dimensional problem (with fewer scenarios), we get an objective 

value close to one of the original multiscenario problem with S  scenarios. The problem 

at hand is to devise an MILP (or a linear programming (LP)) formulation that allows us to 

select a subset of the scenarios, and gives us their associated probabilities that would help 

in approximating the original optimization problem. We are also interested in getting 

some bounds on the theoretical error estimates.  

 

3.  APPROXIMATION STRATEGY 

 Two-stage stochastic programs are often converted to deterministic multiscenario 

optimization problems, by discretizing the uncertain parameters in a finite set of 

scenarios. Such problems grow larger with the number of scenarios. A multiscenario 

model with a scenario set S can be expressed as follows:  
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where Ss ∈  is a single scenario in the multiscenario problem. d is the set of 1st stage 

decision variables, while sx  is the set of 2nd stage variables in scenario s. sθ  is the vector 

of uncertain parameters in scenario s. 0(.) =h  and 0(.) ≤g  include the first and second 

stage constraints. Our goal is to approximate the set with S  scenarios with a set with S ′  
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scenarios so that we have a smaller multiscenario problem that yields close to optimal 

expected objective value.  

 

3.1 Selection of subset of scenarios 

 In a multiscenario problem let { } Iii ,,1K== θθ  be the vector of uncertain parameters. 

Let the uncertain parameter iθ  take on a finite set of values given by { }
ii

i
Jj

j
i ,,1K=θ . The 

probability associated with the uncertain parameter iθ  taking on a value ij
iθ  is ij

ip . With 

multiple uncertain parameters, these can be combined together by considering the 

corresponding Cartesian product of all the values of the uncertain parameters to yield the 

set with S  scenarios. The scenario s involves the following vector of uncertain 

parameters { } Ii
j

is
i

,,1K== θθ , and there are a total of ∏
=

=
I

i
iJS

1

scenarios. Assuming 

independent distributions, the probability associated with a scenario s in the original set 

of scenarios is given by ∏
=

==
I

i

j
iIjjjs

i
I

ppp
1

,,2,1 21 K .  

 In order to select a minimum subset from the original set of scenarios, we propose 

the following heuristic criterion: 

Criterion: The sum of the probabilities of the new scenarios in which the uncertain 

parameter value ij
iθ appears is equal to ij

ip . 

 The above criterion should hold for all of the values of each of the uncertain 

parameters. Furthermore, the sum of the probabilities of the reduced set of scenarios 

should be equal to 1. We want to re-arrange the scenario probabilities in such a way that 

the overall probability of occurrence of a particular value of an uncertain parameter 

across different scenarios matches the probability of occurrence of that value for the 

given uncertain parameter. The motivation behind such an approximation is to 

heuristically reduce the approximation error. If the objective function of a multiscenario 

optimization formulation can be approximated as a sum of the functions of the individual 

uncertain parameter values multiplied by the respective probabilities of the scenarios in 
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which they occur its value will be close to ∑∑∑ ∑
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original and the reduced scenario problem can be approximated by the same expression, 

the difference between their values is also expected to be small. 

To illustrate the scenario reduction approach with a small example, consider two 

uncertain parameters 1θ , and 2θ , where each parameter can take on two values. Let 1θ  

take the two values {2,5} each occurring with a probability of 0.5, and let parameter 2θ  

take a value of 30 with a probability of 0.5 and a value of 70 with a probability of 0.5. 

We obtain a set of four scenarios {(2,30), (2,70), (5,30), (5,70)} that result from the 

Cartesian product of {2,5} and {30,70}. These are shown in Fig. 1 and denoted by (1), 

(2), (3) and (4). The probability of occurrence of each of these scenarios is 0.25, which is 

obtained by multiplying the probabilities of the uncertain parameter values in each 

scenario.  

 

 

 

 

 

 

 

 

 

Fig. 1 Scenarios in illustrative example 

Looking at the 1θ  axis, we find that 1θ  takes a value of 2 in scenarios (1) and (4), 

where each of these scenarios occurs with a probability of 0.25, thus making the overall 
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probability of occurrence of the value 2 for 1θ  to be 0.5. The creation of scenarios has 

separated the value of 2 taken by 1θ  into different scenarios. However, the creation of 

scenarios has ensured that the sum of the probabilities of the scenarios in which 1θ  takes 

a value of 2 is the same as the occurrence probability of 1θ  =2, which is 0.5. The same 

analysis is true for the value of 5 taken on by 1θ . When looking at the 2θ  axis, we can 

find an identical analysis for the values taken on by 2θ .  

 To reduce the number of scenarios, we use the idea of reversing this 

disaggregation of uncertain parameter values and their probabilities, and combining back 

the scenarios so that the probabilities of occurrence of the individual uncertain parameter 

values remain intact. One possible re-combination is shown in Fig. 2a, where scenario (2) 

is combined with scenario (1), while scenario (4) is combined with scenario (3), leading 

to the new scenarios (1’) and (3’) in Fig. 2b.  

 

 

 

 

 

 

 

 

 

Fig. 2a Re-combination of scenarios in illustrative example 
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Fig. 2b Scenarios with modified probabilities in illustrative example 

 

In Fig. 2b, the individual uncertain parameter values have the same probability of 

occurrence through the scenarios (1’) and (3’), as when the scenarios had not even been 

created. For instance, looking at the 1θ  axis, we see that 1θ  takes a value of 2 only in 

scenario (1’), which has a probability of 0.5 ensuring the probability of occurrence of the 

value 2 for 1θ  to be 0.5.  Similarly for 1θ  =5, this value now occurs only in scenario (3’) 

whose probability is 0.5, meaning that 1θ  =5 occurs with a probability of 0.5 in the 

overall system, which is the probability of occurrence of the value 5 for 1θ . A similar 

analysis holds for the values on the 2θ  axis.  

 The minimum number of reduced scenarios that we can obtain depends also on 

the individual probabilities of the values taken on by the uncertain parameters. To 

illustrate this, let 1θ  now take two values {2,5} each occurring with corresponding 

probabilities of 0.3 and 0.7, respectively. The parameter 2θ  takes a value of 30 with a 

probability of 0.6 and a value of 70 with a probability of 0.4. Combining these two 

uncertain parameters, we obtain four scenarios as shown in Table 1. 
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Table 1. Scenarios for two uncertain parameters in illustrative example 

Scenario s 1θ  2θ  Probability of 
scenario ps 

1 2 30 0.18 
2 2 70 0.12 
3 5 30 0.42 
4 5 70 0.28 

 

 Now on selecting a subset of scenarios from the given set in Table 1, we obtain a 

reduced set of scenarios S ′  (see Table 2) that can be used for approximating the original 

multiscenario problem (P).  

 

Table 2. Reduced set of scenarios for two uncertain parameters in illustrative 

example 

Scenario s' 1θ  2θ  Probability of 
scenario ps' 

1' 2 30 0.3 
2' 5 30 0.3 
3' 5 70 0.4 

 

 The aforementioned criterion is satisfied by the scenarios Ss ′∈′ . For instance, in 

the original problem, 1θ  takes a value of 5 with a probability 0.7. In the reduced set of 

scenarios S ′ , 1θ  takes a value of 5 in s' =2' and in s' =3', and the sum of the probabilities 

of occurrence of s' =2' and s' =3' is 0.7 (= 0.3 + 0.4), ensuring that the proposed criterion 

holds. The same logic holds for each of the values of both the uncertain parameters.  

 To model the selection of scenarios, let the new probability assigned to a scenario 

s be 
IIjjjp ,,2,1 21

ˆ K , a continuous variable. The binary variable 
IIjjjw ,,2,1 21 K  corresponds to the 

existence of the scenario s in the new set of scenarios. The MILP formulation to 

determine the minimum number of scenarios satisfying the proposed criterion is as 

follows: 
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 On solving the MILP model (SG) we obtain the minimum set of scenarios and 

their associated probabilities. The numerical value of the probability corresponding to a 

scenario s with the uncertain parameters { }Ij
I

jj θθθ ,,, 21
21 K  in the reduced set of scenarios is 

*
,,2,1 21

ˆ
IIjjjp K .  

 

Remarks 

1. Since the problem (SG) yields a very large MILP problem, we can consider 

instead a linear programming relaxation (SG-L) to obtain a set of scenarios 

satisfying the proposed criterion. This can be done by eliminating the binary 

variables and modifying the objective function as given in the formulation below: 
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    (SG-L) 

 

The weights in the new objective function involve the known probabilities of the 

existing set of scenarios and are present to drive the optimization to reduce the 

number of scenarios while trying to keep the original set of scenarios that had 

relatively larger probabilities. The solution will be a subset of the initial set of S  

scenarios, although it is not guaranteed to be the minimum number of scenarios 

since the problems (SG) and (SG-L) are not equivalent. 

2. It is also possible to assign weights to the individual terms in (SG) to help select 

scenarios with new probabilities close to their original probabilities. 

3. In this method for determining a smaller number of scenarios, it may be possible 

to identify the worst-case scenarios from among the given discrete set of scenarios 

(that guarantee feasibility of design for all the given discrete scenarios). If such 

scenarios exist, and are easily identified, they can be included in the reduced set 

of scenarios. In the MILP formulation (SG), this would mean assigning a lower 

bound on the probability of the worst-case scenarios (if known) as 
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ε≥− scenarioscaseworstp  where ε  is a small positive number less than or equal to 1. The 

binary variables scenarioscaseworstw −  are also fixed to a value of 1. 

4. The theoretical minimum number of scenarios that can be obtained using this 

method is the maximum of the number of independent values that each uncertain 

parameter can take. The other limiting case is that if no value of an uncertain 

parameter occurs in more than a single scenario in the set S, the number of 

scenarios cannot be reduced with this method. 

 

3.2 Reduced scenario optimization 

 The stochastic optimization problem (P') that uses a reduced set of scenarios S ′  is 

as follows: 
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       (P') 

 All the functions in (P') have the exact same form as the corresponding functions 

in (P). sp ′  is the probability of a selected scenario s′  obtained by solving (SG) or (SG-L). 

The optimal value of the design variable vector obtained by solving (P') is denoted by d̂ , 

and the optimal expected objective value by *z ′ . In case the worst-case scenarios from 

the set S are included in the set S ′ , then d̂  will be feasible for every scenario in the 

original scenario set S  (Grossmann et al., 1983). We can also solve the original problem 

(P) by fixing the design variables in (P) to the value d̂ . Note that this makes the model 

(P) decomposable into S  separate optimization subproblems with each subproblem 

corresponding to a single scenario. Solving (P) by fixing the design variables to the value 

d̂  gives us a locally optimal solution to the original problem where the optimal objective 

value obtained using this method is *~z . 
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 For practical purposes, we can obtain a bound on the error in such an 

approximation as follows: 

(a) The expected objective value is computed by solving each scenario (SPs) 

separately (e.g. wait-and-see approach) or may be approximated by taking a subset of 

scenarios with larger probabilities. The optimal objective values of all considered 

scenarios Ss ∈  are summed to obtain ∑=
s

sB zz ** . 

(b) The objective value of the best found feasible solution so far is *~z  (this value is 

either the global minimum or higher than it). The value of **~ BzzEB −=  is calculated, 

which is an upper bound on the error using the approximation technique. Note that this 

bound may be loose. 

 

4.  NUMERICAL EXAMPLES 

 The proposed scenario reduction and approximation approach is applied to four 

examples. The optimization problems are formulated using GAMS (Brooke et al., 1998) 

and solved on an Intel Pentium IV Windows machine with 512 MB memory. The LP and 

MILP problems are solved using GAMS/CPLEX 9.0 while GAMS/ CONOPT 3.0 is used 

for the nonlinear programming (NLP) problems.  

 

Example 1 This small example is taken from Clay and Grossmann (1997) and 

corresponds to problem (EX1) in that paper. It is a stochastic program with 2 uncertain 

parameters { }21,θθ  and one 1st stage decision variable (d). In order to convert this problem 

into its deterministic equivalent, the uncertain parameters are assigned three values each, 

which leads to the creation of the LP deterministic equivalent with 9 scenarios. The two 

uncertain parameters are given by 1θ  and 2θ , each with 3 values and associated 

probabilities as follows:  

}2.0,6.0,2.0{},2,5.1,1{ 11
11 == jj pθ  

}2.0,7.0,1.0{},2,5.1,1{ 22
12 == jj pθ  

The LP deterministic equivalent is as follows: 
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In the above formulation,  
211 jjx  and 

212 jjx  are the continuous 2nd stage variables 

and 21
21 212,1 . jj

jj ppp = .  

The LP formulation for the deterministic equivalent (E1) with 9 scenarios has 19 

continuous variables and 27 constraints. Solving this model yields an optimal objective 

value of 10.1, where the optimal value of the 1st stage variables is 4.0. We apply the 

scenario reduction technique to this problem and obtain the 4 scenarios in Table 3. 

Table 3. Reduced number of scenarios for example 1 

Scenario s' 1θ  2θ  Probability of 
scenario ps' 

1' 1 1 0.1 
2' 1.5 1.5 0.6 
3' 2 2 0.2 
4' 1 1.5 0.1 

 

The corresponding reduced LP problem has 4 scenarios, 9 continuous variables 

and 12 constraints. It is to be noted that an inspection of the values of the uncertain 

parameters and their corresponding probabilities is used in determining the reduced set of 

scenarios, such that the criterion given in Section 3.1 is satisfied. The MILP formulation 

(SG) is not used to select the scenarios in this example. On solving the reduced scenario 

problem, we obtain the optimum value of 10.1, and the value of the 1st stage variable is 

again 4.0. This means that we have a zero approximation error in this case. Note however 

that the reduced set of scenarios is not unique. Solving the model (P') with different 

scenarios with different probabilities could potentially lead to a value of the design 

variable that is infeasible for the original problem (P). A design variable obtained by 
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solving the approximate model (P') will be feasible for the original problem only if the 

worst-case scenarios from the original set of 9 scenarios are included in the reduced set of 

scenarios used in formulating (P'). 

 

Example 2 We solve the model (EX2P) taken from Clay and Grossmann (1997) as a next 

example. This is an LP with 10 continuous variables and 18 constraints. It has 2 uncertain 

parameters that are assumed to take on 3 values, each leading to a total of 9 scenarios. 

The two uncertain parameters and their distributions are given below: 

}3.0,5.0,2.0{},3,2,1{ 11
11 == jj pθ  

}2.0,6.0,2.0{},3,2,1{ 22
22 == jj pθ  

The formulation corresponding to this example is as follows, 
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where d and 
212 jjx  are the continuous 1st and 2nd stage variables, respectively, and the 

probability 21
21 212,1 . jj

jj ppp = .  

Solving this model, we obtain an optimum expected value of 1.6333, and the 

optimal value of the 1st stage variable is 0.6667. Using the proposed scenario selection 

approach, we can obtain a minimum of 4 scenarios satisfying the proposed probability 

criterion in Section 3.1. The formulation (SG) corresponding to this example is given 

below, 
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Table 4 shows the scenarios obtained by solving the above formulation (SG-E2). 

Table 4. Reduced number of scenarios for example 2 obtained from solving 

model (SG-E2) 

Scenario s' 1θ  2θ  Probability of 
scenario ps' 

1' 1 3 0.2 
2' 2 2 0.5 
3' 3 1 0.2 
4' 3 2 0.1 

 

On solving the reduced dimensional model (P') with the four scenarios shown in 

Table 4 obtained by solving model (SG-E2), we obtain an optimal value of *z′ = 1.6833, 

and the optimal value of the design variable is found to be 0.667. Fixing the value of the 

design variable d to 0.667 in model (E2) and re-solving it we obtain the optimal objective 

value of *~z = 1.6333 which is the same as the optimum of model (P). We also see if we 

can refine the solution by generating the scenarios using model (SG-L). We find that we 

obtain the same set of 4 scenarios, as shown in Table 4, by solving (SG-L) corresponding 

to this example.  
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Example 3 The third example is a larger case study and is taken from Novak and 

Kravanja (1999) with some modifications. This problem corresponds to the design of a 

heat exchanger network with 5 heat exchangers, 2 hot streams, 2 cold streams, and 2 

utilities. The network structure is given is Fig. 3.  

 

 
Fig. 3 Heat exchanger network for example 3 

 

The three temperatures T3, T5 and T9 are uncertain parameters that change during network 

operation. Each of these uncertain parameters is assumed to take on 5 values with 

probabilities )( p  given in Table 5.  

 

 
Table 5 Values and probabilities for uncertain parameters T3, T5, T9 

 
j jT3  (°C) )( 3

jTp  jT5 (°C) )( 5
jTp  jT9 (°C) )( 9

jTp  
1 378.9 0.007 573.9 0.007 293.5 0.007 
2 382.6 0.1545 577.6 0.1545 295.3 0.1545 
3 388.0 0.677 583.0 0.677 298.0 0.677 
4 393.4 0.1545 588.4 0.1545 300.7 0.1545 
5 397.1 0.007 592.1 0.007 302.5 0.007 

 
 

 The optimization problem is formulated as a two-stage stochastic program, which 

is converted to its multiscenario equivalent. There are a total of 125 scenarios in this 

problem. The goal of the design problem is to minimize the expected total cost that 

includes the capital cost of the heat exchangers and the expected utility cost. The heat 
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exchanger areas are the 1st stage design variables, while the heat loads and the 

temperatures that are not fixed are the 2nd stage variables. The multiscenario model (E3) 

is as follows: 
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 In the above model, the subscript s corresponds to a particular scenario. sr ,φ  

pertains to the heat load in heat exchanger r in scenario s. The 1st stage design variable rA  

pertains to the area of heat exchanger r. T3,s , T5,s , T9,s are the values of the respective 

uncertain parameters, T3, T5 and T9, in scenario s. The coefficient ps denotes the 

probability of occurrence of scenario s, and is calculated by multiplying the individual 

probabilities of the values of the uncertain parameters which occur in that scenario s. The 

model (E3) with 125 scenarios is a nonconvex nonlinear program with 2,005 continuous 

variables and 2,375 constraints. On solving this model, we obtain the optimal solution of 

$45,223.07 with the following optimal values of the design variables: 

A1 = 15.34 m2, A2 = 2.37 m2, A3 = 6.32 m2, A4 = 1.99 m2, A5 = 2.31 m2. 

 Applying our scenario reduction approach to this example, where we first solve 

the MILP model (SG) for this problem, we obtain 5 scenarios (see Table 6). 

 

Table 6. Reduced number of scenarios for example 3 

Scenario s′  sT ′,3 (°C) sT ′,5 (°C) sT ′,9 (°C) sp ′  

1' 378.9 573.9 293.5 0.007 
2' 382.6 577.6 295.3 0.1545 
3' 388.0 583.0 298.0 0.677 
4' 393.4 588.4 300.7 0.1545 
5' 397.1 592.1 302.5 0.007 

 

 On using the above 5 scenarios in problem (E3), reformulating it and solving it, 

we obtain a nonconvex NLP model with 86 variables and 96 constraints. The optimal 

objective of this reduced problem is $45,310.08, which is 0.2% higher that the optimum 

of the original multiscenario problem with 125 scenarios. The optimal values of the 

design variables so obtained are 1Â  = 15.28 m2, 2Â  = 2.43 m2,  3Â  = 6.38 m2, 4Â  = 1.98 

m2, 5Â  = 2.31 m2. On solving the 125 scenario model (E3) by fixing the design variables 

to the optimal values obtained by solving the reduced model, we obtain an expected cost 

of *~z = $45,225.36 which is almost the exact solution of the original stochastic program. 

In terms of the computational times for solving the optimization problems, it takes 20.2 

CPU s to solve (E3), while the reduced dimensional problem with 5 scenarios is solved in 



 21 

just 0.24 CPU s. On fixing the design variables (areas of heat exchangers) in the model 

(E3), we are able to solve it in 9.8 CPU s to obtain *~z = $45,225.36. 

 

Example 4 The last example is a modified version of the one used by Acevedo and 

Pistikopoulos (1998) and Wei and Realff (2004). The original problem involves the 

production of 5 products from 5 raw materials using 11 different processes (Fig. 4). In 

this problem, the uncertain parameters are the maximum availabilities of raw materials, 

and the demands for products. The continuous decision variables are the capacities for the 

processes, whereas the binary variables denote the selection of the required processes.   

 

 
Fig. 4 Process network for example 4 

 

 The deterministic model for this example is based on basic mass balances and is 

described as follows. 
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 In Fig. 4, the nodes are either splitters or mixers. ),( 1unitunitF is the mass flow 
rate from a source ‘unit’ to a destination ‘unit1’. For a splitter ‘split’ connected to a 
source ‘unit’ and destinations ‘unitq’, the mass balance is given by, 
 

∑=
q

qunitsplitFsplitunitF ),(),(  

For a mixer ‘mix’, with input connections from ‘unitq’ and an output to ‘unit’, the 
mass balances are, 
 

),(),( unitmixFmixunitF
q

q =∑  

 A raw material j with flowrate ‘RMj’ is assumed to come from an inlet ‘sourcej’, 

jRMunitsourceF jj ∀=),(  

 A product i with mass flow rate ‘Pi’ is assumed to go out to a destination ‘outi’, 

iPoutunitF ii ∀=),(  

 The sum of the mass flows to a process k from inlet sources ‘unitq’ is equal to 

‘ISk’, 

kISprocessunitF k
q

kq ∀=∑ ),(  

 The mass flow from a process k to a destination ‘unit’ is equal to ‘OSk’, 

kISunitprocessF kk ∀=),(  

 Other balances include: 

 Yield relations    kISPCOS kkk ∀=  

 Desired production   iDP ii ∀≤  

 Availability of raw material  jRMMaxRM jj ∀≤  

 Logic constraints   kQMIIS kkk ∀≤− 0    

      kyQMaxQ kkk ∀≤− 0  

  

 

The objective function is given by, 
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The symbols in the previous equations are summarized as follows: 

iD  is the uncertain demand for product i (parameter) 

kDC  is cost for process k 

),( 1unitunitF  is the mass flow rate in the stream between unit and unit1 

kFC  is the fixed cost of process k (parameter) 

kIS  is the mass flow in input stream to process k (variable) 

kQMax  is the maximum volume capacity of process k (parameter) 

jRMMax  is the maximum availability of raw material j which is uncertain (parameter) 

kMI  is the mass flow to volume relationship constant for process k (parameter) 

kOC  is the operating cost of process k (parameter) 

kOS  is the mass flow in output stream to process k (variable) 

iP  is the mass flow of product i (variable) 

kPC  is the yield constant for process k (parameter) 

kQ  is the capacity of process k (variable) 

jRM  is the mass flow of raw material j (variable) 

ky  is the binary variable for selection of process k (binary variable) 

jα  is the cost of raw material j (parameter) 

iβ  is the price of product i (parameter) 

Since iD  and jRMMax  are uncertain parameters, the above model is converted 

into a two-stage stochastic program, which is then re-formulated as a deterministic 

multiscenario model by discretizing the uncertain parameters. kQ  and ky  are the first 

stage decision variables while the flows in the system, raw material consumptions, and 
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product flows are the second stage variables. The objective is to minimize the negative of 

the profit function, 

In the multiscenario formulation, the uncertain parameters are, 41, K=iDi , and 

41, K=jRMMax j , and each of these is assumed to taken to two values. 5D  and 

5RMMax  are assumed to be known and constant. The values for all the parameters used 

in this example 4 can be seen in Table 7 where the two levels of the eight uncertain 

parameters and their probabilities can also be found.  

In this example we obtain an exact solution considering all the scenarios, and 

compare that optimal value of the objective function with those obtained using the 

proposed approach and by using Sample Average Approximation (SAA). 

 

Table 7. Parameters used in the model for example 4 
Process k 1 2 3 4 5 6 7 8 9 10 11 
PCk 13 15 17 14 10 15 16 11 13 15 17 
MIk 18 20 15 20 20 21 15 15 25 15 20 
OCk 400 400 400 400 400 400 400 400 400 400 400 
DCk 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 
FCk 400 2500 3500 300 4500 2500 300 2200 2800 2700 2500 
Max Qk 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 

 

Product i 1 2 3 4 5 

Di 28 32 27 31 29 32 28 31 30 

p(Di) 0.3 0.7 0.35 0.65 0.65 0.35 0.5 0.5 1 

 

Raw 
material j 

1 2 3 4 5 

Max RMj 33 36 34 37 32 35 35 36 35 
p(Max RMj) 0.4 0.6 0.45 0.55 0.55 0.45 0.5 0.5 1 

 

The multiscenario problem with 256 scenarios consists of 11 binary variables, 

17,165 continuous variables, and 19,212 constraints. By solving the full multiscenario 

problem, we find that only processes 4, 7, 8, 10 and 11 are in operation 

( 11,10,8,7,41 == kyk ) and the optimal objective function value is -63677.5. This 
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MILP model solves in only 0.3 CPU s. Table 8 shows the values for the design capacity 

variable kQ . 

Table 8. Design variable values obtained from solution of full multiscenario problem  

k 4 7 8 10 11 
Qk 0.121 0.129 0.182 0.142 0.091 

 

Using the proposed method in the paper, a reduced set of scenarios along with 

their probabilities is obtained by solving model (SG) corresponding to this example and 

the results are shown in Table 9. The reduced scenario problem has only 5 scenarios and 

11 binary variables, 348 continuous variables, and 387 constraints. 

 

Table 9. Reduced set of scenarios for example 4 

 

On using the reduced set of scenarios, reformulating and solving the problem, the 

optimal objective value is found to be -63754.5. The solution time for the reduced 

scenario model is 0.03 CPU s. If we fix the values of kQ  and ky  in the full multiscenario 

model to those obtained by solving the reduced scenario problem, we obtain an objective 

function value of -63643.8 which is within 0.05% of actual optimal objective function 

value. We should note that though the solution times for the original and the reduced 

scenario problems are very small, they show the potential of the proposed approach to 

reduce computational times for much larger problems.   

Finally, we find the solution provided by the SAA method and an interval for the 

solution with a confidence limit of 95% (see Wei and Realff, 2004). A statistical lower 

limit on this interval (-63,715.4) is found by solving the stochastic program 10 times each 

Scenario s′  Max 
RM1 

Max 
RM2 

Max 
RM3 

Max 
RM4 

D1 D2 D3 D4 sp ′  

1 33 34 35 35 28 27 32 28 0.3 
2 33 34 35 35 32 31 29 28 0.1 
3 36 34 35 35 32 31 29 28 0.05 
4 36 37 32 35 32 27 32 28 0.05 
5 36 37 32 36 32 31 29 31 0.5 
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with 10 randomly selected samples (scenarios). The statistical upper limit (-62,947.8) is 

found by formulating a multiscenario problem with 50 scenarios randomly selected from 

the given set of 256 scenarios, and solving it with fixed values of the first stage decision 

variables obtained during calculation of the lower statistical limit on the confidence 

interval for the solution. Since we sampled scenarios from a finite population, 

adjustments were made in the calculation of the statistical limits. The optimal objective 

value using the proposed approach also lies between the statistic limits computed by the 

SAA method.  

 

6.  CONCLUSIONS 

 This work has presented a new practical heuristic strategy for solving two-stage 

stochastic programming problems formulated as deterministic multiscenario optimization 

problems.  The idea consists of replacing a given set of scenarios, obtained by 

discretization of the uncertain parameter space, by a smaller set of scenarios and thus 

approximating the optimization problem in a reduced space. The proposed criterion for 

selecting a subset of given set of scenarios is that the overall probability of occurrence of 

a particular realization of any uncertain parameter in the final set of scenarios should be 

equal to the probability of the uncertain parameter taking on that particular value. This 

criterion has to be satisfied for each uncertain parameter in the model. We presented an 

MILP formulation as well as a relaxed LP model for determining a minimum subset of 

scenarios from a given scenario set such that this criterion is satisfied. The stochastic 

programs were reformulated with the smaller set of scenarios in order to obtain 

approximate models. The application of this heuristic technique on numerical examples 

has shown that we obtain close to optimal solutions using the approximate model with the 

smaller number of scenarios. This method would also complement other sampling based 

optimization methods as this heuristic can be applied to the samples collected from an 

infinite space to further simplify the problem.  
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