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Abstract

The aim of this paper is to introduce a methodology to solve a large-scale mixed integer nonlinear program (MINLP)

integrating the two main optimization problems appearing in the oil refining industry: refinery planning and crude-oil

operations scheduling. The proposed approach consists of using Lagrangian decomposition to efficiently integrate both

problems. The main advantage of this technique is to solve each problem separately. A new hybrid dual problem is introduced

to update the Lagrange multipliers. It uses the classical concepts of cutting planes, subgradients, and trust-regions. The

proposed approach is compared to a basic sequential approach and to standard MINLP solvers. The results obtained on a

case-study and a larger refinery problem show that the Lagrangian decomposition algorithm is more robust than the other

approaches and produces better solutions in reasonable times.
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1. Introduction

The oil refining industry is a prolific field for the application of mathematical programming techniques (see Bodington

and Baker, 1990). Refinery operators have to make decisions on the logistics operation taking into account a large number

of crude-oils, finished products such as liquified petroleum gas, gasoline, diesel fuel, and a wide variety of high flexibility

production units involving many different chemical processes. Furthermore, the economic impact of optimizing operations

can be very significant (see Kelly and Mann, 2003).

The refinery planning problem often involves the pooling problem (see Foulds et al., 1992; Floudas and Visweswaran, 1993;

Quesada and Grossmann, 1995; Audet et al., 2004; Misener and Floudas, 2009), which has been addressed since the early 80s

and usually consists of optimizing feedstocks, unit settings, as well as final product blending and shipping. Some examples of

nonlinear refinery planning problems including pooling constraints and nonlinear process models can be found in Pinto and

Moro (2000), Li et al. (2005), and Alhajri et al. (2008). Although commercial solvers such as GRTMPS (Haverly Systems),

PIMS (Aspen Tech), and RPMS (Honeywell Hi-Spec Solutions) implement successive linear programming algorithms to solve

this problem (see Zhang et al., 1985), any standard NLP solvers can also be used although they may not guarantee global

optimality of the solution.

A major issue with refinery planning is that most models are single-period models where the refinery is assumed to operate

in the same state over the whole planning period (typically 1 month). Therefore, the planning solution is used as a tactical

goal for refinery operators rather than as an operational tool. In particular, CDU (Crude Distillation Unit) feedstock decisions

returned by the refinery planning problem are usually not applicable in the field due to crude logistics constraints. These

are described in the crude-oil operations scheduling problem, which includes unloading from crude-oil tankers, preparation of
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crude-blends, and CDU feed charging. This problem has been addressed since the late 90s by many different research groups

(see Lee et al., 1996; Jia et al., 2003; Moro and Pinto, 2004; Mouret et al., 2009).

Although, integration of planning and scheduling has recently been addressed in the context of multiproduct continuous

and batch production plants (see Erdirik-Dogan and Grossmann, 2008; Maravelias and Sung, 2009), very little work has been

done towards the integration of planning and crude-oil scheduling problems in the context of refineries. This is due to the fact

that in this case, the planning model is not an aggregate scheduling model. Therefore, the decomposition methods developed

for batch and continuous plants are not directly applicable to refineries. In particular, planning and scheduling correspond

to two different problems solely linked through CDU feedstocks. Therefore, instead of using a hierarchical decomposition,

a spatial Lagrangian decomposition is preferred. The reader may refer to Fisher (1985) and Guignard (2003) for extensive

reviews on Lagrangian relaxation and decomposition techniques. These approches have been applied to many industrial

problems such as production planning and scheduling integration (see Li and Ierapetritou, 2009) or multiperiod refinery

planning (see Neiro and Pinto, 2006). Thus, it seems natural to apply Lagrangian decomposition to solve the integrated

refinery planning and crude-oil scheduling problem.

The content of this paper is organized as follows. The planning and scheduling problems are stated in Section 2 as well

as the full-space integrated problem. In Section 3, a Lagrangian decomposition scheme based on the dualization of CDU

feedstock linking constraints is presented. A new hybrid method is introduced to solve the Lagrangian relaxation in Section 4.

A heuristic algorithm is developed to obtain good feasible solutions for the integrated full-space problem in Section 5. A

numerical application of the proposed approach is presented in Section 7 and Section 9 concludes the paper.

2. Problem Statement

2.1. Refinery Planning Problem

The refinery planning problem can be regarded as a flowsheet optimization problem with multiple periods during which

the refinery system is assumed to operate in steady-state. Due to extensive stream mixing, the model for each period is based

on a pooling problem that is extended in order to include process models for each refining unit. The different periods in the

model are connected through many material inventories. In this work, we consider a single-period planning model based on

a pooling problem inspired from the literature (see for instance Adhya et al. (1999)). A basic refinery planning system is

represented in Figure 1. A set of crudes i ∈ I are to be mixed in different types of crude-oil blends j ∈ J (e.g. low-sulfur and

high-sulfur blends), each associated to a specific CDU operating mode. For each mode and each crude, several distillation

cuts are obtained with different yields. These crude cuts are then blended into intermediate pools which are used to prepare

several final products. Therefore, the refinery planning system is composed of the following elements:

• One input stream for each selected crude i ∈ I and each type of crude blend j ∈ J

• One CDU with fixed yields for each distillation cut

• Set of distillation cuts k ∈ K

• One pool for each type of crude blend j ∈ J and each cut k ∈ K

• One intermediate stream between each pool (j, k) ∈ J ×K and each final product l ∈ L

• Set of final products l ∈ L

• One sales stream for each final product l ∈ L
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Figure 1: Basic refinery planning system.

• Set of qualities p ∈ P

The yield of crude i ∈ I in distillation cut k ∈ K when processed in crude blend j ∈ J is assumed to be fixed and is denoted

by αijk. In terms of stream qualities, it is assumed that distillation cuts have fixed qualities while pool qualities are calculated

by bilinear quality balance constraints. A pure flow-based model is used to formulate the pooling problem as shown below.

CDU flowrate limitations are considered independent of the operating mode and are enforced globally for all crudes processed

during the period.

max
∑
l∈L

plxlS (sales revenue maximization)

s.t. 0 ≤
∑
j∈J

xijF ≤ C
i i ∈ I (crude availability)

FR ·H ≤
∑
i∈I

∑
j∈J

xijF ≤ FR ·H (CDU flowrate limitations)

xijk1 = αijk · xijF (i, j, k) ∈ I × J ×K (CDU yield calculation)∑
i∈I

xijk1 =
∑
l∈L

xjkl2 (j, k) ∈ J ×K (pool mass balance)

∑
i∈I

qijkp1 xijk1 = qjkp2

∑
l∈L

xjkl2 (j, k, p) ∈ J ×K × P (pool quality balance, nonlinear)

∑
j∈J

∑
k∈K

xjkl2 = xlS l ∈ L (product mass balance)

xlS ≤ Dl l ∈ L (maximum product demand)∑
j∈J

∑
k∈K

qjkp2 xjkl2 ≤ ZlpxlS (l, p) ∈ L× P (product quality requirement, nonlinear)

xijF , x
ijk
1 , xjkl2 , xlS ≥ 0, qjkp2 ∈ R

The nomenclature used is as follows:

• Variables:

– xijF a variable representing the amount of crude i selected for CDU distillation in blend j

– xijk1 a variable representing the amount of cut k extracted from crude i in blend j

– xjkl2 a variable representing the flow of material between pool (j, k) and product l

– qjkp2 a variable representing the quality p of pool (j, k)

– xlS is a variable representing the amount of final product l sold

• Parameters:

3



CDU

∈ [5, 50] · 8

(X,A)

≤ 250

(X,B)

≤ 150

(Y,A)

≤ 250

(Y,B)

≤ 150

0.6

0.4

0.5

0.5

0.4

0.6

0.3

0.7

(X,M)

(X,N)

(Y,M)

(Y,N)

(0.07, 1.10)

(0.11, 0.40)

(0.08, 1.05)

(0.11, 0.90)

(0.07, 1.10)

(0.12, 0.80)

(0.08, 1.40)

(0.13, 0.90)

P

≤ (0.08, 0.90)

Q

≤ (0.09, 1.00)

R

≤ (0.10, 1.10)

S

≤ (0.13, 1.30)

12

≤ 120

10

≤ 80

9

≤ 90

7

≤ 110

Figure 2: Refinery planning case-study.

– qijkp1 is the (fixed) quality p of cut k extracted from crude i in blend j

– p is the market value of final products

– Ci is the amount of available crude i

– αijk is the yield of cut k extracted from crude i in blend j

– H is the planning horizon

– [FR,FR] is the bounds on CDU flowrate

– Dl is the maximum demand in product l

– Zlp is the maximum specification for quality p of product l

Figure 2 displays the pooling structure of a case-study with corresponding data for crudes (A,B), blends (X,Y ), distillation

cuts (M,N), and final products (P,Q,R, S). Two different qualities are considered in this case.

In the remainder of the paper, we consider the following NLP, which is a simplified version of the planning model
(
PP
)
.

(
PP
)



max V TP xS

s.t. fP (xF , xI , xS) ≤ 0

gP (xI) ≤ 0

xF ∈ R|F |, xI ∈ R|I|, xS ∈ R|S|

The nomenclature used is as follows:

• VP is the market value of final products

• xF is a set of continuous variables representing CDU feedstock quantities over the single planning period

• xS is a set of continuous variables representing final products sales

• xI is a set of intermediate continuous variables (e.g. pool quantity and quality variables)
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Figure 3: Crude-oil scheduling system 1 (Lee et al., 1996).

• fP (xF , xI , xS) ≤ 0 is the set of linear constraints (e.g. material balance constraints)

• gP (xI) ≤ 0 is the set of nonlinear constraints (e.g. quality balance constraints)

2.2. Crude-Oil Scheduling Problem

The crude-oil scheduling problem deals with the unloading, transfer and blending operations executed on crude-oil tankers

and crude-oil inventories. The goal is to sequentially prepare multiple crude blends, which are defined by specific property

requirements. Each type of crude blend corresponds to a specific CDU operating mode. Different objectives have been

studied, namely minimization of logistics costs (see Lee et al., 1996) or maximization of profit (see Mouret et al., 2009, 2010).

In this work, the objective is to minimize the total replacement cost of the crudes that are selected for distillation. The

replacement cost is the cost of replacing the crude once it has been processed. The crude-oil schedule must satisfy inventory

capacity limitations, crude tankers arrival dates as well as the following logistics constraints:

(i) Only one berth is available at the docking station for crude tanker unloadings,

(ii) inlet and outlet transfers on tanks must not overlap,

(iii) a tank may charge only one CDU at a time,

(iv) a CDU can be charged by only one tank at a time,

(v) CDUs must be operated continuously throughout the scheduling horizon.

Figure 3 shows the refinery system corresponding to problem 1 introduced in Lee et al. (1996). Table 1 displays the

dimensionless data for this example. Besides a different objective function, the example is modified by introducing a minimum

duration of one day for distillation operations. Therefore, due to crude blend alternative sequencing, at most 4 batches of

each crude mix can be processed in 8 days. The scheduling problem is formulated using the Multi-Operation Sequencing

(MOS) time representation as introduced in Mouret et al. (2010) (see Appendix B).

In the remainder of the paper, we consider the following MINLP, which is a simplified version of the scheduling model

PS .

(PS)



max −V TC yF
s.t. fS(yB , yC , yF ) ≤ 0

gS(yC) ≤ 0

yB ∈ {0, 1}|B|, yC ∈ R|C|, yF ∈ R|F |

The nomenclature used is as follows:

• VC is the replacement cost of crude-oils (usually based on market value)

• yF is a set of continuous variables representing total CDU feedstock quantities over the scheduling horizon

• yC is a set of continuous variables representing other continuous decisions (e.g. timing decisions)
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Table 1: Crude-oil scheduling data for case-Study

Scheduling horizon 8 days
Vessels Arrival time Composition Amount of crude
Vessel 1 0 100% A 100
Vessel 2 4 100% B 100

Storage tanks Capacity Initial composition Initial amount of crude
Tank 1 [0, 100] 100% A 25
Tank 2 [0, 100] 100% B 75

Charging tanks Capacity Initial composition Initial amount of crude
Tank 1 (mix X) [0, 100] 80% A, 20% B 50
Tank 2 (mix Y) [0, 100] 20% A, 80% B 50

Crudes Property 1 (sulfur concentration) Crude unit cost
Crude A 0.01 7
Crude B 0.06 6

Crude mixtures Property 1 (sulfur concentration) Maximum number of batches
Crude blend X [0.015, 0.025] 4
Crude blend Y [0.045, 0.055] 4

Unloading flowrate [0, 50] Transfer flowrate [0, 50]
Distillation flowrate [5, 50] Minimum duration of distillations 1 day

• yB is a set of binary variables representing sequencing decisions (see Mouret et al., 2010)

• fS(yB , yC , yF ) ≤ 0 is the set of linear constraints (e.g. scheduling constraints)

• gS(yC) ≤ 0 is the set of nonlinear stream composition constraints (see Mouret et al., 2009)

2.3. Full-Space Problem

Given the importance of crude selection for refinery optimization, the refinery planning problem and the crude-oil schedul-

ing problem should ideally be optimized simultaneously. This can only be done by solving an integrated full-space MINLP

problem, denoted (P ), which aims at optimizing all refinery decisions subject to planning, scheduling, and linking constraints.

(P )



max V TP xS − V TC yF
s.t. fP (xF , xI , xS) ≤ 0

gP (xI) ≤ 0

fS(yB , yC , yF ) ≤ 0

gS(yC) ≤ 0

yF − xF = 0

xF ∈ R|F |, xI ∈ R|I|, xS ∈ R|S|

yB ∈ {0, 1}|B|, yC ∈ R|C|, yF ∈ R|F |

The integrated objective is to maximize profit defined by final product sales revenues minus crude-oil replacement costs. The

linking constraint yF −xF = 0 ensures consistency of planning and scheduling decisions in terms of CDU feedstock quantities.

More precisely, it ensures that the amounts of crudes selected for distillation are identical in the planning and scheduling

solutions. Also, to be consistent in time, it is considered that the planning and scheduling horizons have identical lengths.

3. Lagrangian Decomposition Scheme

The full-space problem (P ) is a large-scale MINLP, which contains many binary variables from the crude-oil scheduling

problem and many non-convex constraints from the refinery planning model. Due to convergence issues and the presence

of many potential local optima, standard MINLP solvers for convex optimization, such as AlphaECP, Bonmin, DICOPT,
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KNITRO, or SBB, may fail solving the model or return poor solutions. Global MINLP solvers, such as BARON, Couenne, or

LINDOGLOBAL, are in principle able to solve the problem but they may require prohibitive computational times. Therefore,

a specific solution strategy needs to be developed to address this problem.

Robertson et al. (2010) proposed a multi-level approach consisting of approximating the refinery planning model by

multiple linear regressions that are then used in the crude-oil scheduling problem for the minimization of the total logistics

and production costs. The method is applied to a case-study comprising two different crudes. Although computationally

effective, the use of linear regressions may not be sufficient for the the global optimization of highly nonlinear refinery planning

models.

In this work, we present an integration approach based on Lagrangian decomposition, which is a special case of Lagrangian

relaxation (Guignard, 2003). The idea is to build a relaxed version of the full-space problem, which is decomposable, and

therefore much easier to solve. In particular, the decomposition procedure is based on the dualization of the linking constraint

yF − xF = 0. The relaxed problem
(
PR(λ)

)
, composed of NLP and MINLP models, is defined by removing this constraint

and penalizing its violations by adding the term λT (yF − xF ) to the objective function. The parameter λ is a Lagrange

multiplier whose value is fixed prior to solving the model and adjusted iteratively.

(
PR(λ)

)



max V TP xS − λTxF + (λ− VC)T yF

s.t. fP (xF , xI , xS) ≤ 0

gP (xI) ≤ 0

fS(yB , yC , yF ) ≤ 0

gS(yC) ≤ 0

xF ∈ R|F |, xI ∈ R|I|, xS ∈ R|S|

yB ∈ {0, 1}|B|, yC ∈ R|C|, yF ∈ R|F |

As already mentioned, problem
(
PR(λ)

)
is easier to solve as it can be decomposed into two subproblems

(
PP (λ)

)
and

(
PS(λ)

)
.

v (PR(λ)) = v (PP (λ)) + v (PS(λ))

The subproblem
(
PP (λ)

)
, an NLP, is a modification of the original refinery planning problem

(
PP
)

as it consists of

assigning crude costs λ to the CDU feedstock variables xF . For a given crude i, increasing λi will decrease the incentive to

select this crude for distillation processing. On the other hand, decreasing λi will increase the incentive to select it.

(
PP (λ)

)


max V TP xS − λTxF
s.t. fP (xF , xI , xS) ≤ 0

gP (xI) ≤ 0

xF ∈ R|F |, xI ∈ R|I|, xS ∈ R|S|

The subproblem
(
PS(λ)

)
, an MINLP, is a modification of the original crude-oil scheduling problem (PS) as it consists of

assigning crude values λ to the CDU feedstock variables yF . For a given crude i, increasing λi will increase the incentive

to select this crude for blending and distillation processing. On the other hand, decreasing λi will decrease the incentive to

select it.

(
PS(λ)

)


max (λ− VC)T yF

s.t. fS(yB , yC , yF ) ≤ 0

gS(yC) ≤ 0

yB ∈ {0, 1}|B|, yC ∈ R|C|, yF ∈ R|F |
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Figure 4: Economic interpretation of the Lagrangian decomposition.

On the whole, the Lagrange multiplier λ can be seen as a crude purchase cost for the planning system, and as a crude

sales value for the scheduling system. Therefore, the spatial Lagrange decomposition procedure applied to this problem can

be seen as introducing a crude market between the planning and scheduling systems (see Fig. 4). The planning system acts

as a consumer who buys crude from the market, while the scheduling system acts as a producer who sells it to the market.

It is clear that for fixed prices both actors are independent, which explains why the two corresponding subproblems can be

solved in parallel.

Although computationally convenient, this decomposition procedure does not solve the original full-space problem. In

particular, it is well-known that
(
PR(λ)

)
is a relaxation of the full-space problem, thus v (PR(λ)) > v (P ). However, one can

search for a Lagrange multiplier λ that minimizes v (PR(λ)) in order to get as close as possible to v (P ). This problem is

called the dual problem and the function λ 7→ v (PR(λ)) is often called the Lagrangian function.

(
PD
)

min
λ
v (PR(λ))

Duality theory establishes that v (PD)− v (P ) ≥ 0 (see Guignard, 2003). In some cases (e.g. nonconvex models), we may

have v (PD)− v (P ) > 0 and this difference is called dual gap. Our hope is that this dual gap is small enough so that valuable

information can be inferred to generate near-optimal heuristic solutions (see Section 5).

4. Solution of the Dual Problem

Several approaches have been proposed in the literature in order to solve the dual problem associated with the Lagrangian

relaxation. A classical approach is the subgradient method proposed by Held and Karp (1971) and Held and Karp (1974).

Many researchers have used and improved this technique over the years (see Camerini et al., 1975; Bazaraa and Sherali, 1981;

Fisher, 1981). This approach is preferred as it usually predicts very good Lagrange multiplier updates. However, special

care must be taken in order to insure convergence and it requires a good strategy for defining and updating the subgradient

step size. Another approach that theoretically displays better convergence properties has been introduced by Cheney and

Goldstein (1959) and Kelley (1960). It is often denoted as the cutting plane method. In practice, this approach usually takes a

long time to converge as many iterations are necessary in order to obtain good Lagrange multiplier updates. A refinement of

this approach is the boxstep method (also called trust-region method) presented in Marsten et al. (1975). It allows obtaining

better updates for the Lagrange multiplier during early iterations while keeping the same convergence properties. Other

refinements of previous approaches include the bundle method (Lemaréchal, 1974), the volume algorithm (Barahona and

Anbil, 2000), and the analytic center cutting plane method (Goffin et al., 1992).

All the above approaches are based on an iterative solution procedure between the primal and the dual world. Figure 5

gives a schematic description of this algorithm. The first step consists of initializing the Lagrange multipliers. Problem-

specific strategies, often based on the economic interpretation of λ, exist in order to provide good initial values. Then, at

8



Update λK Dual World

Solve
(
PR(λK)

)
Get xKF and yKF

Primal World
K = 1

Initialize λ1

Converged ?Return λ∗ and v (PR(λ∗)) K = K + 1
yes no

Figure 5: General iterative primal-dual algorithm.

each iteration the relaxed problem is solved and a primal solution is obtained. If a stopping criterion is satisfied, the algorithm

converges. Otherwise, the Lagrange multipliers are updated for the next iteration. The definition of the stopping criterion

depends on the approach used and can, in certain cases, ensure convergence to an optimal dual solution λ∗.

In this work, we introduce a new hybrid method to update the Lagrange multipliers. It is based on the three concepts of

cutting planes, subgradient and trust-region. Cutting planes are valid constraints for the dual problem that are generated at

each iteration. They are used to record valuable dual information to be used during later iterations. A subgradient defines a

descent direction for the dual problem, while a trust-region allows to deviate from this direction within a specified domain. The

combination of these techniques ensures good convergence properties while providing efficient Lagrange multiplier updates.

At iteration K + 1, the Lagrange multiplier is updated to the solution of the following restricted LP dual problem with

subgradient-based trust-region.

(
P̂K+1
D

)


min η

s.t. η ≥ V TP xkS − V TC ykF + λT (ykF − xkF ) ∀k = 1 . . .K (CPk)

λ = λK + α
v(PD)−v(PR(λK))
||yKF −xK

F ||2
(yKF − xKF ) + δ (SG+TR)

η ∈ R, λ ∈ R|F |

α ∈]−∞, α], δ ∈ [−δ, δ]|F |

The variables λ and η are classically used in the pure cutting plane approach. The pure cutting plane restricted LP dual

problem
(
PK+1
D

)
consists of minimizing η subject to constraints (CPk), k = 1 . . .K only:

(
PK+1
D

)


min η

s.t. η ≥ V TP xkS − V TC ykF + λT (ykF − xkF ) ∀k = 1 . . .K (CPk)

η ∈ R, λ ∈ R|F |

This problem is always unbounded during early iterations (i.e. v
(
PKD
)

= −∞) so it cannot be used directly to update

the Lagrange multipliers. This issue can be solved by defining a bounded feasible set for the multipliers based on their

interpretation (e.g. lower and upper bounds). However, in this work, an iteratively updated trust-region based on the

subgradient step is used so that the restricted dual problem
(
P̂K+1
D

)
is bounded.

The subgradient step is classically defined as λ = λK + α
(
v (PD)− v

(
PR(λK)

))
/
∣∣∣∣yKF − xKF ∣∣∣∣2 (yKF − xKF ) where v (PD)

can be estimated using a heuristic solution for (P ). However, instead of heuristically updating the step size, it is optimized

using variable α, which is bounded by the parameter α > 0. Note that α is allowed to take negative values. Variable δ

defines a deviation from the subgradient step. The parameter δ > 0 is the maximum deviation in each multiplier direction

and defines a full-dimensional trust-region. Both subgradient and trust-region concepts are simultaneously embedded in
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Figure 6: Plots of the feasible space of (P̂K+1
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constraint (SG+TR). Note that the parameters α and δ can be heuristically updated at each iteration. In practice, our

computational experiments have shown that using fixed values for α and δ is a reasonable choice.

Figure 6 displays the feasible space (grey area) of (P̂K+1
D ). The projection on the space of Lagrange multipliers (λ1, λ2)

depicts the shape of the subgradient-based trust-region. In the space of (λ1, η), CPk represents the projection of the cutting

plane generated at iteration k. Note that the feasible space of
(
P̂K+1
D

)
contains

(
λ1 = λK1 , λ2 = λK2 , η = v

(
PR(λK1 , λ

K
2 )
))

.

In both plots (a) and (b), λ1 corresponds to a lower bound on multiplier λ1 induced by the trust-region constraints.

The stopping criterion for this hybrid strategy is identical to the pure cutting plane method and is based on the Lagrangian

gap between the relaxed primal problem and the restricted dual problem:

v
(
PR(λK)

)
− v

(
PKD
)
≤ ε (1)

In the pure cutting plane approach (without constraint (SG+TR)), the optimal value of the restricted dual problem v
(
PKD
)

iteratively approximates v (PD) from below since it involves the minimization of a relaxation of v (PD).

v
(
PKD
)
≤ v (PD) ∀K (2)

Therefore, the stopping criterion (1) ensures convergence to an ε-optimal solution of the dual problem
(
PD
)

as:

v
(
PR(λK)

)
− v

(
PKD
)
≤ ε⇒ v

(
PR(λK)

)
− v (PD) ≤ ε (3)

In the proposed approach, when the pure restricted dual problem
(
PKD
)

becomes bounded, the stopping criterion (1) is

used to check convergence while the hybrid restricted dual problem
(
P̂KD
)

is used to update the Lagrange multipliers. Finite

convergence properties for the pure cutting plane and trust-region methods in the context of mixed-integer linear programming

can be obtained in Frangioni (2005) and Amor and Desrosiers (2006), respectively. For the rest of the paper, it is assumed

that practical convergence of the proposed hybrid method can be achieved in the context of integrated refinery planning and

scheduling.

5. Heuristic Solutions

In this section, a classical adaptation of the primal-dual algorithm is presented in order to obtain solutions that satisfy

all constraints of the full-space problem, including linking constraints. As explained by Frangioni (2005), the solution of the

Lagrangian dual problem yields primal information that can be used to generate good heuristic solutions for
(
P
)
. In this

10



Update λK Dual World

Solve
(
PR(λK)

)
Get xKF , yKF , and yKB

Primal World
Upper Bound

K = 1
Initialize λ1, PLB = −∞

Solve Heuristic
Update PLB

Primal World
Lower Bound

Converged ?Return PLB K = K + 1
yes no

Figure 7: Iterative primal-dual algorithm with heuristic step.

paper, a heuristic step is introduced in the iterative algorithm to produce valid lower bounds PLB (see Fig. 7). This induces

a second stopping criterion based on the dual gap: v
(
PR(λK)

)
− PLB ≤ ε′. If either of the two stopping criteria is satisfied,

the algorithm converges and returns PLB .

The heuristic algorithm consists of fixing binary variables yB from the crude-oil scheduling formulation to their values

yKB in the solution of the relaxed problem
(
PR(λK)

)
. As a consequence, the full-space problem

(
P
)

reduces to a continuous

NLP, denoted
(
PH(yKB )

)
, and can then be efficiently solved. If it is feasible and its (local) optimal solution is better than the

previous incumbent, PLB is updated. Otherwise, PLB is left unchanged.

(
PH(yKB )

)



max V TP xS − V TC yF
s.t. fP (xF , xI , xS) ≤ 0

gP (xI) ≤ 0

fS(yKB , yC , yF ) ≤ 0

gS(yC) ≤ 0

yF − xF = 0

xF ∈ R|F |, xI ∈ R|I|, xS ∈ R|S|

yC ∈ R|C|, yF ∈ R|F |

In this heuristic solution, fixing binary variables yB to yKB corresponds to fixing the selection and sequencing of operations

for the crude-oil scheduling system. Therefore, when solving problem
(
PH(yKB )

)
, the nonlinear solver has the opportunity to

re-optimize all other continuous decisions such as quantities, blend recipes, and timing of operations (start time, duration,

and end time). It is crucial to note that the timing of operations can only be re-optimized if these decisions are handled

by continuous variables. For instance, in Mouret et al. (2010), the discrete-time representation, denoted by MOS-FST,

uses binary variables to determine the timing decisions whereas all other representations, denoted by MOS, MOS-SST, and

SOS, use continuous variables instead. This shows a clear advantage, although not intuitive, of continuous-time scheduling

formulations over discrete-time representations. In particular, the latter might be inefficient in the context of this work as it

would decrease the flexibility of the heuristic algorithm to find good, or at least feasible solutions.

Overall, it is interesting to note that using this approach, the iterative primal-dual algorithm that solves the Lagrangian

dual problem acts as a discrete solution generator that suggests potentially good discrete solutions for the full-space problem.

In other words, it searches the optimal selection and sequencing of operations for the crude-oil scheduling system.
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Figure 8: Crude-oil scheduling and multi-period refinery planning integration.

6. Remarks

6.1. CDU Feedstocks and Lagrange Multipliers

The number of Lagrange multipliers highly depends on the CDU feedstock possibilities. Exactly one multiplier is needed

for feasible combination of crude and type of blends (or corresponding CDU operating mode). In the case-study, there are 2

different crudes which can both be blended in any of the 2 different types of blends, so 4 Lagrange multipliers are needed to

solve the dual problem. Typical large-scale refineries may need 50 and up to 100 Lagrange multipliers.

The optimal value of the Lagrange multipliers correspond to the optimal marginal costs of the linking constraints for the

convexified problem (for more details in the case of MILP models, see Frangioni, 2005). Therefore, the Lagrange multipliers

can be seen as the optimal pricing strategy between the crude-oil scheduling system and the refinery planning system. It

other words, the optimal Lagrange multipliers are crude prices for which it is economically equivalent to either exchange

crudes between the two systems or sell and buy to the crude market (see Fig. 4). From this observation, it is natural to use

the crude costs defined in the crude-oil scheduling problem as initialization for the Lagrange multipliers. For the case-study,

we use the following initial values:

λ1(X,A) = λ1(Y,A) = 7

λ1(X,B) = λ1(Y,B) = 6

6.2. Multi-Period Refinery Planning

In this work, the refinery planning problem is expressed over a single period for which CDU feedstocks are synchronized

with the crude-oil scheduling problem. Even though it is often computationally critical to increase the time horizon for

scheduling problem, this can easily be done in refinery planning models by introducing additional time periods. Therefore,

one can define 2 or more time periods for the refinery planning model and synchronize CDU feedstocks for the first period

only, as shown in Figure 8. In this particular case, the refinery planning decisions for the second period, including CDU

feedstock decisions xF , are made without taking into account crude-oil scheduling constraints. This methodology allows

making short-term scheduling decision while considering the long-term economic impacts of these decisions, which cannot be

done with detailed long-term scheduling models due to their computational complexity.

12
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Figure 9: Disaggregated CDU feedstocks synchronization.

6.3. CDU Feedstocks Aggregation

An important issue with the proposed approach comes from the fact that the CDU feedstocks for the linking period

are aggregated. In the optimal solution, the crude-oil operations schedule prepares several batches for each type of crude

blends. Then, for each of these blend types, all the corresponding batches are accumulated and the refinery planning

solution determines the processing decisions for the aggregated batch. This approximation may lead to sub-optimality or

even technical infeasibility of the solutions obtained. This problem can be solved by postulating exactly one period for each

batch and synchronizing all the corresponding CDU feedstocks. Figure 9 depicts the synchronization of disaggregated CDU

feedstocks.

6.4. Handling Nonlinearities in Crude-Oil Scheduling Model

Although, the relaxed problem
(
PR(λ)

)
is decomposable, it is not easy to solve it to global optimality. In particular,

two major issues arise. First, the crude-oil scheduling problem
(
PS(λ)

)
corresponds to an MINLP due to the presence of

nonlinear composition constraints. In Mouret et al. (2009) an MILP relaxation is derived by simply dropping these nonlinear

constraints. The solution can then be refined by fixing the binary variables and solving the reduced NLP, similarly to the

heuristic approach presented in Section 5. Results show that the solution obtained is close to the global optimum as it tends

to satisfy the relaxed nonlinear constraints. Therefore a similar methodology is used in this work. Instead of simply dualizing

the linking constraints, the nonlinear scheduling constraints gS(yC) ≤ 0 are also relaxed (i.e. dropped). The modified relaxed

MINLP problem (NLP + MILP) is denoted by
(
P̃R(λ)

)
:

(
P̃R(λ)

)



max V TP xS − λTxF + (λ− VC)T yF

s.t. fP (xF , xI , xS) ≤ 0

gP (xI) ≤ 0

fS(yB , yC , yF ) ≤ 0

xF ∈ R|F |, xI ∈ R|I|, xS ∈ R|S|

yB ∈ {0, 1}|B|, yC ∈ R|C|, yF ∈ R|F |

The corresponding modified crude-oil scheduling MILP subproblem is denoted by
(
P̃S(λ)

)
:

(
P̃S(λ)

)


max (λ− VC)T yF

s.t. fS(yB , yC , yF ) ≤ 0

yB ∈ {0, 1}|B|, yC ∈ R|C|, yF ∈ R|F |
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The decomposability property is preserved:

v
(
P̃R(λ)

)
= v (PP (λ)) + v

(
P̃S(λ)

)
Finally, the modified dual problem

(
P̃D
)

can be defined as:

(
P̃D
)

min
λ
v
(
P̃R(λ)

)
This modified dual problem still provides a valid upper bound for the original full-space problem

(
P
)
. The following modified

heuristic problem
(
P̃H(yKB )

)
is also defined. It is obtained from the original heuristic problem

(
PH(yKB )

)
by dropping the

nonlinear scheduling constraints. It is used as a first heuristic step to get a good initial point before solving the original

heuristic NLP problem
(
PH(yKB )

)
.

(
P̃H(yKB )

)



max V TP xS − V TC yF
s.t. fP (xF , xI , xS) ≤ 0

gP (xI) ≤ 0

fS(yKB , yC , yF ) ≤ 0

yF − xF = 0

xF ∈ R|F |, xI ∈ R|I|, xS ∈ R|S|

yC ∈ R|C|, yF ∈ R|F |

6.5. Handling Nonlinearities in the Refinery Planning Model

In order to obtain valid upper bounds when solving
(
PR(λ)

)
or
(
P̃R(λ)

)
, the refinery planning problem

(
PP (λ)

)
has

to be solved to global optimality. Although global optimization of industrial large-scale refinery planning models is still

unachievable, the case-study on the refinery planning model presented in Section 2 is solvable by the global NLP solver

BARON in reasonable time. However, it should be noted that it is critical to provide tight bounds for the quality variables

qjkp2 . In particular, based on the structure of the pooling system, we use the following bounds:

min
i∈I

qijk1 ≤ qjkp2 ≤ max
i∈I

qijk1

6.6. Detailed Implementation

Based on previous remarks to handle nonlinearities, the complete heuristic algorithm is developed as depicted in Figure 10.

Although global optimality cannot be ensured, the dual gap can be estimated using the upper bound provided by v
(
P̃R(λ∗)

)
.

Local NLP solvers, such as CONOPT, are used for the heuristic steps as the solution time is more critical than global

optimality for these problems. The hybrid restricted dual problem
(
P̂KD
)

is solved using the best solution of the modified

heuristic problems
(
P̃H(yKB )

)
to estimate the optimal dual solution v (PD). The stopping criterion is based on relative gaps

but can also be expressed in terms of absolute gaps. Converging on the Lagrangian gap means that no further improvement

of the upper bound can be achieved and the current Lagrange multipliers are optimal.

7. Numerical Illustration

In this section, several computational results are presented for two approaches: the direct MINLP approach and the

proposed Lagrangian decomposition method. Experiments have been performed on an Intel Xeon 1.86GHz processor using

GAMS as the modeling and algorithmic language. A 1000 seconds time limit has been used for each run. The following
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Figure 10: Complete algorithm implementation.

local NLP solvers have been used: CONOPT, SNOPT and IPOPT. In our experiments, the convergence tolerance ε is set to

0.0001, the maximum step size parameter α is set to 1 and the step bound parameter δ to 0.05.

The number of priority-slots for the crude-oil scheduling model is set to 6 and 7 (see Mouret et al., 2010). Tables 2 and 3

show iteration statistics for the Lagrangian decomposition method using SNOPT as the heuristic NLP solver. In particular,

the optimal value of each problem solved is given as well as the optimal step size calculated by the hybrid restrict dual problem

and the cumulative CPU time at the end of each iteration (e.g., for 6 priority-slots, the first iteration took 3 seconds). Dashes

are used when the information is not available (Hybrid Dual and Step Size for the first iteration), when the problem is

unbounded (Pure Dual during the first few iterations), or when it is locally infeasible (Original Heuristic at some iterations).

In each case, the global optimal solution is found (see underlined entries in the Original Heuristic column) and proved

optimal. It can be noted that in some iterations the step size variable α is strictly lower than 1, which corresponds to

cases where the pure subgradient multiplier update would violate some cutting planes generated at previous iterations. The

proposed approach automatically overcomes this issue. The increase of CPU time between 6 and 7 priority-slots is mostly

explained by the increase in size of the MILP scheduling model. Figures 11 and 13 plot the evolution of the objective value

of various problems solved during the Lagrangian iterations.

The optimal value of the Lagrange multipliers is λ∗(X,A) = λ∗(X,B) = λ∗(Y,A) = λ∗(Y,B) = 7. Figures 12 and 14 plot the

evolution of the Lagrange multipliers during the Lagrangian iterations. The proposed approach demonstrates its efficiency

through stable updates and fast convergence of the Lagrange multipliers.

A basic sequential procedure is introduced to compare with the Lagrangian decomposition approach. First, the modified

crude-oil scheduling problem
(
P̃S
)

is solved and the binary variables are fixed to their solution value. Then, the modified and

original heuristic problems
(
P̃H(y0B)

)
and

(
PH(y0B)

)
are successively solved. This procedure is not computationally expensive
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Table 2: Lagrangian iterations statistics (6 priority-slots, NLP=SNOPT)

Pure Hybrid Step Modified Modified Original CPU
Dual Dual Size Relaxation Heuristic Heuristic Time

Iteration v
(
PKD
)

v
(
P̂KD

)
αK v

(
P̃R(λK)

)
v
(
P̃H(yKB )

)
v
(
PH(yKB )

)
1 —a —b —b 645.000 400.942 —c 3s
2 —a 389.942 1 689.049 564.000 560.500 9s
3 —a 547.929 1 637.063 592.368 592.368 13s
4 —a 582.790 1 603.377 592.368 592.368 18s
5 —a 591.172 1 609.526 586.191 —c 24s
6 —a 590.629 0.851 598.380 562.881 —c 29s
7 580.717 591.324 -0.617 600.171 586.191 —c 33s
8 592.368 592.785 0.390 594.774 586.191 —c 46s
9 592.369 592.369 1 592.372 592.368 592.368 50s

a unbounded LP
b not available
c locally infeasible NLP

2 4 6 8

400

500

600

700

Iteration K

O
b

je
ct

iv
e

V
al

u
e

v
(
PKD
)

v
(
P̂KD

)
v
(
P̃R(λK)

)
v
(
PH(yKB )

)

Figure 11: Lagrangian iteration objective values (6 priority-slots, NLP=SNOPT).

2 4 6 8

6

6.5

7

7.5

Iteration K

λ
K

(X,A)

(X,B)

(Y,A)

(Y,B)

Figure 12: Lagrange multiplier updates (6 priority-slots, NLP=SNOPT).
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Table 3: Lagrangian iterations statistics (7 priority-slots, NLP=SNOPT)

Pure Hybrid Step Modified Modified Original CPU
Dual Dual Size Relaxation Heuristic Heuristic Time

Iteration v
(
PKD
)

v
(
P̂KD

)
αK v

(
P̃R(λK)

)
v
(
P̃H(yKB )

)
v
(
PH(yKB )

)
1 — – - — 645.000 393.470 — 3s
2 — 381.562 1 751.494 568.077 568.077 10s
3 — 552.076 1 622.785 592.368 — 16s
4 — 574.735 1 614.178 592.368 592.368 22s
5 — 583.166 1 602.218 592.368 592.079 50s
6 — 588.279 1 617.268 592.368 592.079 56s
7 — 592.856 0.911 600.752 592.368 592.368 66s
8 — 592.835 0.517 595.264 592.368 — 81s
9 — 592.288 0.357 595.292 592.368 592.368 95s
10 592.368 592.369 1 592.369 592.368 592.079 101s
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Figure 13: Lagrangian iteration objective values (7 priority-slots, NLP=SNOPT).
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Figure 14: Lagrange multiplier updates (7 priority-slots, NLP=SNOPT).
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Table 4: Comparative performance of several MINLP algorithms

6 priority-slots 7 priority-slots
MINLP Objective CPU Optimality Objective CPU Optimality
Solver Value Time Gap Value Time Gap

Proposed (CONOPT) 592.368 37s 0% 592.368 94s 0%
Proposed (SNOPT) 592.368 50s 0% 592.368 101s 0%
Proposed (IPOPT) 592.368 244s 0% 592.368 833s 0%

Sequential (BARON) 545.000 9s — 545.000 10s —

DICOPT (CONOPT) 545.000 5s — 592.368 7s —
DICOPT (SNOPT) 592.368 429s — 592.368 6s —
DICOPT (IPOPT) 568.077 54s — 592.368 44s —

AlphaECP (CONOPT) 512.324 67s — 545.000 120s —
AlphaECP (SNOPT) 512.324 67s — 545.000 395s —
AlphaECP (IPOPT) 512.324 69s — 545.000 175s —

SBB (CONOPT) 592.368 267s — 592.368 +1,000s —
SBB (SNOPT) — +1,000s — — +1,000s —
SBB (IPOPT) — +1,000s — 493.536 +1,000s —

LINDOGLOBAL 568.077 +1,000s 11.9% 532.857 +1,000s 17.1%
BARON 592.170 +1,000s 7.3% 400.000 +1,000s 37.5%

as it requires solving only one MILP, solved with CPLEX, and two NLPs, both solved with BARON. However, the solution

obtained, if any, might not be optimal.

Additionally, the Lagrangian decomposition approach is compared to the direct approach which consists of solving the full-

space problem
(
P
)

with various MINLP solvers. Table 4 shows the computational performance of these MINLP algorithms.

The sequential approach quickly provides a feasible solution which is 8.0% lower than the global optimum (545.000 against

592,368). The solvers DICOPT, AlphaECP and SBB cannot guarantee global optimality of the solution returned while

LINDOGLOBAL and BARON are actual global MINLP solvers. DICOPT is able to find the global optimal solution in many

cases in reasonable CPU times. AlphaECP never finds the global optimum. SBB seems to return the best solutions when

CONOPT is used as NLP solver but it is requires large CPU times. Neither LINDOGLOBAL or BARON have found the

global optimum in the specified time limit.

In comparison to these solvers, the proposed Lagrangian decomposition approach proves to be very effective for the

following reasons:

• it is computationally effective (although DICOPT is faster);

• it always returns the global optimum;

• it is very robust with the choice of NLP solver (although IPOPT is significantly slower).

Figure 15 depicts the composition of each crude blend in four different solutions. Crude blend X is mostly composed of

crude A while crude blend Y is mostly composed of crude B. If all solutions except the second one (with objective value

568.077) are considered, one may conclude that blend Y is ”more profitable” than blend X because the objective value

increases when processing larger amounts of blend Y and smaller amounts of blend X. Additionally, one could say that

increasing the amount of distilled crude increases the overall profit (solution 1 processes 253.034 units of crude, solution

3, 224.49 units of crude, and solution 4, 212.867 units of crude). Interestingly, the second solution does not follow these

observations. In this solution, the amount of blend X is larger the amount of blend Y . Besides, the total amount of crude

processed is the largest (276.923 units of crude). This shows how difficult it is to approximate the economic behavior of

refinery operations, even for such a small case-study. Therefore, it is possible that linear approximations of refinery operations
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Figure 15: Blend compositions in solutions obtained with 6 priority-slots.

as proposed by Robertson et al. (2010) might not be able to correctly evaluate the economic value of some feasible solutions.

8. Larger Refinery Problem

In this section, the proposed Lagrangian decomposition approach is applied on a larger refinery example and compared

to standard MINLP solvers. The refinery planning problem is based on a crude distillation simulation model developed by

Gueddar and Dua (2010). This crude distillation model is based on a layered artificial neural network (ANN). This ANN

is generated by solving an MINLP which aims at fitting empirical data for atmospheric distillation of several crudes (crude

assays) for simplifying the calculations. The model obtained is able to predict cut yields and cut properties from the chosen

cut points and properties of the inlet crude. Figure 16 depicts the full nonlinear planning model. Three different types of crude

blends are processed in three different CDU operating modes and five crude cuts are produced: LPG (Liquefied Petroleum

Gas), naphta, kerosene, diesel, and residue. Each discrete CDU mode is defined by the distillation cut point between diesel

and residue fractions: 340, 360, or 380◦C. The decision variables for each CDU mode are composed of individual crude flows

and distillation cut points between naphta, kerosene and diesel fractions. The three streams produced for each fraction are

then blended into cut pools. The bilinear pooling constraints discussed in Section 2 are classically used to calculate the

properties of each cut pool. Table 5 shows market prices for each cut and corresponding property specifications. Crude

availability constraints are also included in the model in accordance with the description of the crude-oil scheduling problem.

This refinery planning model is composed of 1,831 variables and 1,817 constraints. The full mathematical model is detailled

in Appendix A.

The crude-oil scheduling problem is based on example 3 from Lee et al. (1996) (see Figure 17) with the parameters

described in Table 6. It consists of three crude arrivals, three storage tanks, three charging tanks (one for each type of crude

mixture), and two identical CDUs whose respective scheduled feedstocks are merged when linked to the refinery planning

problem. Seven different crudes are available, and fourteen transfer operations can be executed to prepare the different crude

blends. When 6 priority-slots are used, the crude-oil scheduling problem is composed of 1,814 variables (84 binary) and 2,338

constraints.

Table 7 and Figure 18 show the iteration statistics for the Lagrangian decomposition method using 6 priority-slots for the

crude-oil scheduling model. The maximum step size parameter α is set to 1 and the step bound parameter δ to 0.05. Because
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Figure 16: Planning model for larger refinery problem.

Table 5: Crude cut prices and specification for larger refinery problem

Crude Cut Price Specifications

LPG 8.5 None

Naphta 8.0

specific gravity ∈ [0.72, 0.775]
motor octane number ≥ 45

research octane number ≥ 45
sulfur weight content ≤ 120ppm

Kerosene 7.0
specific gravity ∈ [0.775, 0.84]

freeze point ≤ −40◦C

Diesel 8.0

specific gravity ∈ [0.82, 0.86]
cetane number ≥ 48
cloud point ≤ 4◦C

sulfur weight content ≤ 2800ppm
Residue 6.5 None

Crude Vessels Storage Tanks Charging Tanks CDUs

1

2

4
5
6
7

11

12

3

8

10
9

13

14

Figure 17: Crude-oil scheduling system 3 (Lee et al., 1996).
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Table 6: Crude-oil scheduling data for larger refinery problem

Scheduling horizon 12 days
Vessels Arrival time Composition Amount of crude
Vessel 1 0 100% A 500
Vessel 2 4 100% B 500
Vessel 3 8 100% C 500

Storage tanks Capacity Initial composition Initial amount of crude
Tank 1 [0, 1,000] 100% D 200
Tank 2 [0, 1,000] 100% E 200
Tank 3 [0, 1,000] 100% F 200

Charging tanks Capacity Initial composition Initial amount of crude
Tank 1 (mix 1) [0, 1,000] 100% G 300
Tank 2 (mix 2) [0, 1,000] 100% E 500
Tank 3 (mix 3) [0, 1,000] 100% F 300

Crudes Property 1 (sulfur concentration) Crude unit cost
Crude A 0.01 6
Crude B 0.085 6.5
Crude C 0.06 5.5
Crude D 0.02 7.2
Crude E 0.05 6.7
Crude F 0.08 6.2
Crude G 0.03 7.5

Crude mixtures Property 1 (sulfur concentration) Maximum number of batches
Crude mix 1 [0.025, 0.035] 6
Crude mix 2 [0.045, 0.065] 6
Crude mix 3 [0.075, 0.085] 6

Unloading flowrate [0, 50] Transfer flowrate [0, 50]
Distillation flowrate [5, 50] Minimum duration of distillations 1 day

we were not able to solve the refinery planning problem to global optimality, we used CONOPT as the NLP solver. Other

local NLP solvers as SNOPT and IPOPT did not perform as well (slow convergence, poor solutions or local infeasibilities).

As the refinery planning problem is not solved to global optimality, it is not possible to rigorously estimate global optimality

for the solution obtained for the full-space problem. Therefore, the convergence tolerance ε is set to 0.01 instead of 0.0001 as

in the case-study. Furthermore, many iterations are needed to generate enough cutting planes and make the pure restricted

dual problem bounded. In order to achieve convergence after a few iterations, the Lagrangian gap is calculated using the

objective value of the hybrid dual problem, which is always bounded, as follows:

v
(
P̃R(λK)

)
− v

(
P̂KD

)
v
(
P̃R(λK)

) ?
≤ ε

The proposed approach converges on the Lagrangian gap in 15 iterations. The final dual gap, although it does not

represent a valid optimality gap, is 3.8%. 83% of the time is spent on solving the crude-oil scheduling MILPs. The optimal

value of the Lagrange multiplier is given in Table 8. With 7 priority-slots, the decomposition procedure converges in 18

iterations and 4,451 seconds, the increase of CPU time being explained mostly by the increased number of priority-slots. The

solution obtained is slightly lower than the previous one because the algorithm did not fully converge within tight tolerances.

Table 9 presents computational performances of the different approaches. Clearly, the Lagrangian decomposition proce-

dure is much more robust than the other algorithms. Only the sequential approach was able to deliver a solution with 6

priority-slots, but its objective value is much lower (50% reduction) than the best know solution. Indeed, the scheduling

solution obtain during the first stage of the sequential procedure does not take into account the economic impact on the
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Table 7: Lagrangian iterations statistics for larger refinery problem (6 priority-slots, NLP=CONOPT)

Pure Hybrid Step Modified Modified Original CPU
Dual Dual Size Relaxation Heuristic Heuristic Time

Iteration v
(
PKD
)

v
(
P̂KD

)
αK v

(
P̃R(λK)

)
v
(
P̃H(yKB )

)
v
(
PH(yKB )

)
1 — — — 266.226 — — 43s
2 — -2.166 1 417.311 257.943 222.339 102s
3 — 253.546 1 411.657 258.488 245.306 173s
4 — 281.076 0.857 325.906 258.106 — 235s
5 — 260.746 1 288.587 258.104 — 298s
6 — 256.301 1 273.197 258.516 245.467 372s
7 — 256.385 1 271.415 258.027 250.989 459s
8 — 258.091 1 264.974 257.961 233.713 539s
9 — 258.847 0.861 265.149 257.961 233.713 610s
10 — 257.623 1 267.541 257.740 228.230 682s
11 — 259.500 0.868 261.237 257.750 247.971 769s
12 — 259.170 1 261.512 257.750 247.971 850s
13 — 259.126 0.759 264.109 258.027 250.989 913s
14 — 259.121 1 263.708 258.306 — 979s
15 — 259.592 0.774 260.857 258.516 238.763 1,045s
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Figure 18: Lagrangian iteration objective values for larger refinery problem (6 priority-slots, NLP=CONOPT).
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Table 8: Optimal Lagrange multipliers for each crude and each CDU mode

Crude CDU Mode Initial value (=Price) Optimal value

A
1 6.0 6.169
2 6.0 6.207
3 6.0 7.695

B
1 6.5 6.971
2 6.5 6.987
3 6.5 7.026

C
1 5.5 6.062
2 5.5 6.009
3 5.5 6.054

D
1 7.2 7.186
2 7.2 7.262
3 7.2 7.962

E
1 6.7 6.859
2 6.7 6.878
3 6.7 6.898

F
1 6.2 6.340
2 6.2 6.226
3 6.2 6.293

G
1 7.5 6.930
2 7.5 7.360
3 7.5 7.360

Table 9: Comparative performance of several MINLP algorithms for larger refinery problem (NLP solver: CONOPT)

6 priority-slots 7 priority-slots
MINLP Objective CPU Objective CPU
Solver Value Time Value Time

Proposed 250.989 1,045s 250.128 4,451s

Sequential 116.814 46s — 79s

DICOPT — +3,600s — +3,600s
AlphaECP — +3,600s — +3,600s

SBB — +3,600s — +3,600s

refinery planning problem, which leads to poor decisions. The standard local MINLP solvers were not able to find a solution

within one hour because the MINLP model is too large: 3,645 variables (84 binary) and 4,177 constraints.

Table 10 shows the crude compositions of the optimal solution with objective value 250.989. The two CDUs are mostly

operated in mode 2 which corresponds to the average cut point for diesel and residue cuts.

9. Conclusion

In this work, a novel approach towards the integration of planning and scheduling has been developed in the context of oil

refining. In particular, a precise crude-oil operations scheduling model and a coarse refinery planning model were optimized

simultaneously using Lagrangian decomposition. It makes use of Lagrange multipliers as a way to communicate economic

information between the two subsystems. The methodology leads to a classical primal-dual iterative algorithm to solve the

Lagrangian dual problem. The critical multiplier update step is performed by solving a new hybrid restricted dual problem.

This approach combines the strengths of cutting planes and subgradient steps and does not require to define heuristic updates

of parameters during iterations.

Although it is not guaranteed, our results achieved a 0% dual gap for the smaller case-study. It is well-known that

augmented Lagrangian techniques (see Li and Ierapetritou, 2009) can ensure to close the dual gap for any instance. However,

this would require to solve the refinery planning subproblem to global optimality, which is not yet achievable in an industrial
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Table 10: Blend compositions in the optimal solution of larger refinery problem

Crude Blend 1 Blend 2 Blend 3
A 0.164 49.480
B 33.293 16.707
C 50.000
D 0.066 19.792
E 3.500 55.943 2.982
F 50.000
G 9.480

context. It is therefore more practical to use standard duality in order to obtain feasible heuristic solutions for the integrated

problem.

The proposed Lagrangian decomposition procedure has been applied to a larger and more complex refinery problem. The

refinery planning problem is based on a crude distillation simulation model that has been developed by Gueddar and Dua

(2010) using an artificial neural network to fit empirical data. The crude-oil scheduling problem is the third example of

Lee et al. (1996). The results have shown that the proposed approach remains very competitive compared to other MINLP

algorithms, namely the two-step MILP-NLP sequential procedure and standard MINLP solvers.
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Appendix A. Mathematical Model for the Refinery Planning Problem

In this section, the ANN model developed in Gueddar and Dua (2010) for CDU simulations is presented. It is based

on a layered directed graph which represents the model calculations (see Fig. A.19). Each node in the input/output layers

correspond to one input/output variable. Each node j = 1, . . . , Nn in the intermediate layer l = 1, . . . , Nl corresponds to an

activation variable alj and a transformed variable hlj . The activation variables are calculated from the transformed variables

of the previous layer using an affine expression while the transformed variables are calculated by applying the hyperbolic

tangent to their associated activation variable. The ANN equations are expressed as follows.

a1j =

Nx∑
i=1

w1
jixi + b1j j = 1, . . . , Nn (A.1)

hlj = tanh alj l = 1, . . . , Nh, j = 1, . . . , Nn (A.2)

alj =

Nn∑
i=1

wljih
l−1
i + blj l = 2, . . . , Nh, j = 1, . . . , Nn (A.3)

uk =

Nn∑
i=1

Wkih
Nh
i +Bk k = 1, . . . , No (A.4)

The model uses the following parameters:

• Nx is the number of inputs

• No is the number of outputs

• Nh is the number of intermediate layers
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Figure A.19: Layered Artificial Neural Network.

• Nn is the number of nodes in each intermediate layer

• wjil , blj ,Wki, Bk are parameters specific to the ANN

Dua (2010) demonstrates how to tune the ANN parameters by minimizing the total prediction error as well as the ANN

complexity. This tuning step is performed by solving a training MINLP. We denote CDUANN(x, u) the set of constraints

defining the relation between the ANN inputs x and outputs u. In particular, the model inputs include crude properties

qipC and CDU cut points τk (k ∈ {naphta, kerosene,diesel}), and the model outputs include cut yields αijk and crude cut

properties qijkp1 . All crude property inputs are fixed while CDU cut points are variable. The cut point between diesel and

residue cuts can take three discrete values defining the three CDU operating modes. All the outputs are variable. The full

refinery planning model is expressed as follows.

max
∑
l∈L

plxlS (sales revenue maximization)

s.t. 0 ≤
∑
j∈J

xijF ≤ C
i i ∈ I (crude availability)

τk ≤ τk ≤ τk k ∈ K (CDU cut point limits)

CDUANN
({
qipC , τ

k
}
,
{
αijk, qijkp1

})
(CDU model)

FR ·H ≤
∑
i∈I

∑
j∈J

xijF ≤ FR ·H (CDU flowrate limitations)

xijk1 = αijk · xijF (i, j, k) ∈ I × J ×K (CDU yield calculation)∑
i∈I

xijk1 =
∑
l∈L

xjkl2 (j, k) ∈ J ×K (pool mass balance)

∑
i∈I

qijkp1 xijk1 = qjkp2

∑
l∈L

xjkl2 (j, k, p) ∈ J ×K × P (pool quality balance, nonlinear)

∑
j∈J

∑
k∈K

xjkl2 = xlS l ∈ L (product mass balance)

xlS ≤ Dl l ∈ L (maximum product demand)∑
j∈J

∑
k∈K

qjkp2 xjkl2 ≤ ZlpxlS (l, p) ∈ L× P (product quality requirement, nonlinear)

xijF , x
ijk
1 , xjkl2 , xlS , α

ijk ≥ 0, qijkp1 , qjkp2 , τk ∈ R
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Appendix B. Mathematical Model for the Crude-Oil Operations Scheduling Problem

In this section, the mathematical model for crude-oil operations scheduling problems corresponding to the MOS time

representation (see Mouret et al., 2010) is presented. It makes use of the following sets and parameters.

• T = {1, . . . , n} is a totally ordered set of priority-slots (indices i, j, i1, i2)

• W is the set of all operations (indices v, v′, v1, v2)

• Pv1v2 = 1 denotes a precedence constraint between operations v1 and v2

• PW1W2
= 1 denotes a precedence constraint between set of operations W1 and W2

• WU ⊂W is the set of unloading operations (WU = {1, 2, 3} for COSP2)

• WT ⊂W is the set of tank-to-tank transfer operations (WT = {4, . . . , 10} for COSP2)

• WD ⊂W is the set of distillation operations (WD = {11, . . . , 14} for COSP2)

• R is the set of resources (i.e. tanks, units): R = RV ∪RS ∪RC ∪RD

• RV ⊂ R is the set of vessels

• RS ⊂ R is the set of storage tanks

• RC ⊂ R is the set of charging tanks

• RD ⊂ R is the set of distillation units

• Ir ⊂W is the set of inlet transfer operations on resource r

• Or ⊂W is the set of outlet transfer operations on resource r

• C is the set of products (i.e. crudes)

• K is the set of product properties (e.g. crude sulfur concentration)

• H is the scheduling horizon

• Sv ∈ [0, H] is a lower bound on the start time of unloading operations v ∈WU

• NOv1v2 is 1 if operations v1 and v2 must not overlap, 0 if they are allowed to overlap

• GNO is the non-overlapping graph (see Mouret et al., 2010) whose adjacency matrix is NO

• [V tv , V
t
v ] are bounds on the total volume transferred during transfer operation v ; in all instances, V tv = 0 for all

operations except unloadings for which V tv = V tv is the volume of crude in the marine vessel

• [ND, ND] are the bounds on the number of distillations

• [FRv, FRv] are flowrate limitations for transfer operation v

• [xvk, xvk] are the limits of property k of the blended products transferred during operation v

• xck is the value of the property k of crude c
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• [Ltr, L
t
r] are the capacity limits of tank r

• [Dr, Dr] are the bounds of the demand on products to be transferred out of the charging tank r during the scheduling

horizon

The following variables are introduced in the model.

• Assignment variables Ziv ∈ {0, 1} i ∈ T, v ∈W

Ziv = 1 if operation v is assigned to priority-slot i, Ziv = 0 otherwise

• Time variables Siv ≥ 0, Div ≥ 0, Eiv ≥ 0 i ∈ T, v ∈W

Siv is the start time of operation v if it is assigned to priority-slot i, Siv = 0 otherwise

Div is the duration of operation v if it is assigned to priority-slot i, Div = 0 otherwise

Eiv is the end time of operation v if it is assigned to priority-slot i, Eiv = 0 otherwise

• Operation variables V tiv ≥ 0 and Vivc ≥ 0 i ∈ T, v ∈W, c ∈ C

V tiv is the total volume of crude transferred during operation v if it is assigned to priority-slot i, V tiv = 0 otherwise

Vivc is the volume of crude c transferred during operation v if it is assigned to priority-slot i, Vivc = 0 otherwise

• Resource variables Ltir and Lirc i ∈ T, r ∈ R, c ∈ C

Ltir is the total accumulated level of crude in tank r ∈ RS ∪RC before the operation assigned to priority-slot i

Lirc is the accumulated level of crude c in tank r ∈ RS ∪RC before the operation assigned to priority-slot i

The crude-oil scheduling MOS model is expressed as follows:
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Maximize −
∑
c∈C

V c
C · y

c
F

Subject to

ycF =
∑
i∈T

∑
r∈RD

∑
v∈Ir

Vivc c ∈ C

Siv ≥ Sv · Ziv i ∈ T, v ∈WU

Eiv ≤ H · Ziv i ∈ T, v ∈W

Eiv = Siv + Div i ∈ T, v ∈W∑
i∈T

∑
v∈Or

Ziv = 1 r ∈ RV

ND ≤
∑
i∈T

∑
v∈WD

Ziv ≤ ND

∑
i∈T

∑
v∈Or1

Eiv ≤
∑
i∈T

∑
v∈Or2

Siv r1, r2 ∈ RV , r1 < r2

∑
j∈T
j<i

∑
v∈Or1

Zjv ≥
∑
j∈T
j≤i

∑
v∈Or2

Zjv i ∈ T, r1, r2 ∈ RV , r1 < r2

∑
i∈T

∑
v∈Ir

Div = H r ∈ RD

∑
v∈W ′

Ziv ≤ 1 i ∈ T,W ′ ∈ clique(GNO)

∑
v∈W ′

Ei1v +
∑
i∈T

i1<i<i2

∑
v∈W ′

Div ≤
∑

v∈W ′
Si2v + H · (1−

∑
v∈W ′

Zi2v) i1, i2 ∈ T, i1 < i2,W
′ ∈ clique(GNO)

Ziv ≤
∑

v′∈W
NOvv′=1

Z(i−1)v′ i ∈ T, i 6= 1, v ∈W

∑
v∈W

Ziv ≥ 1 i ∈ T

V t
iv ≤ V t

v · Ziv i ∈ T, v ∈W

V t
iv ≥ V t

v · Ziv i ∈ T, v ∈W

V t
iv =

∑
c∈C

Vivc i ∈ T, v ∈W

Lirc = L0rc +
∑

j∈T,j<i

∑
v∈Ir

Vivc −
∑

j∈T,j<i

∑
v∈Or

Vivc i ∈ T, r ∈ R, c ∈ C

Lt
ir =

∑
c∈C

Lirc i ∈ T, r ∈ R

FRv ·Div ≤ V t
iv ≤ FRv ·Div i ∈ T, v ∈W

xvk · V t
iv ≤

∑
c∈C

xckVivc ≤ xvk · V t
iv i ∈ T, v ∈W,k ∈ K

Lt
r ≤ Lt

ir ≤ Lt
r i ∈ T, r ∈ RS ∪RC

0 ≤ Lirc ≤ Lt
r i ∈ T, r ∈ RS ∪RC , c ∈ C

Lt
r ≤ Lt

0r +
∑
i∈T

∑
v∈Ir

V t
iv −

∑
i∈T

∑
v∈Or

V t
iv ≤ Lt

r r ∈ RS ∪RC

0 ≤ L0rc +
∑
i∈T

∑
v∈Ir

Vivc −
∑
i∈T

∑
v∈Or

Vivc ≤ Lt
r r ∈ RS ∪RC , c ∈ C

Dr ≤
∑
i∈T

∑
v∈Or

V t
iv ≤ Dr r ∈ RC

Siv , Div , Eiv , V
t
iv ≥ 0 i ∈ T, v ∈W

Vivc ≥ 0 i ∈ T, v ∈W, c ∈ C

Lt
ir ≥ 0 i ∈ T, r ∈ RS ∪RC

Lirc ≥ 0 i ∈ T, r ∈ RS ∪RC , c ∈ C

Ziv ∈ {0, 1} i ∈ T, v ∈W
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solution methods. Management Science 50 (6), 761–776.

Barahona, F., Anbil, R., 2000. The volume algorithm: producing primal solutions with a subgradient method. Mathematical

Programming 87 (3), 385–399.

Bazaraa, M. S., Sherali, H. D., 1981. On the choice of step size in subgradient optimization. European Journal of Operational

Research 7 (4), 380–388.

Bodington, C. E., Baker, T. E., 1990. A history of mathematical programming in the petroleum industry. Interfaces 20 (4),

117–127.

Camerini, P. M., Fratta, L., Maffioli, F., 1975. On improving relaxation methods by modified gradient techniques. Mathe-

matical Programming Studies 3, 26–34.

Cheney, E. W., Goldstein, A. A., 1959. Newton’s method for convex programming and Tchebycheff approximation. Nu-

merische Mathematik 1 (1), 253–268.

Dua, V., 2010. A mixed-integer programming approach for optimal configuration of artificial neural networks. Chemical

Engineering Research and Design 88 (1), 55–60.

Erdirik-Dogan, M. E., Grossmann, I. E., 2008. Simultaneous planning and scheduling of single-stage multi-product continuous

plants with parallel lines. Computers and Chemical Engineering 32 (11), 2664–2683.

Fisher, M. L., 1981. The Lagrangian relaxation method for solving integer programming problems. Management Science

27 (1), 1–18.

Fisher, M. L., 1985. An application oriented guide to Lagrangian relaxation. Interfaces 15, 10–21.

Floudas, C. A., Visweswaran, V., 1993. A primal-relaxed dual global optimization approach. Journal of Optimization Theory

and Applications 78 (2), 187–225.

Foulds, L. R., Haugland, D., Jörnsten, K., 1992. A bilinear approach to the pooling problem. Optimization 24 (1 & 2),

165–180.

Frangioni, A., 2005. About Lagrangian methods in integer optimization. Annals of Operations Research 139 (1), 163–193.

Goffin, J. L., Haurie, A., Vial, J. P., 1992. Decomposition and nondifferentiable optimization with the projective algorithm.

Management Science 38 (2), 284–302.

Gueddar, T., Dua, V., 2010. Novel model reduction techniques for refinery-wide energy optimization. Applied Energy Journal.

Guignard, M., 2003. Lagrangean relaxation. Top 11 (2), 151–228.

29



Held, M., Karp, R. M., 1971. The traveling-salesman problem and minimum spanning trees: Part ii. Mathematical Program-

ming 1 (1), 6–25.

Held, M., Karp, R. M., 1974. Validation of subgradient optimization. Mathematical Programming 6 (1), 62–88.

Jia, Z., Ierapetritou, M. G., Kelly, J. D., 2003. Refinery short-term scheduling using continuous time formulation: Crude-oil

operations. Industrial and Engineering Chemistry Research 42 (13), 3085–3097.

Kelley, J. E., 1960. The cutting-plane method for solving convex programs. Journal of the Society for Industrial and Applied

Mathematics 8 (4), 703–712.

Kelly, J. D., Mann, J. L., 2003. Crude oil blend scheduling optimization: an application with multimillion dollar benefits.

Hydrocarbon Processing 82 (6), 47–53.

Lee, H., Pinto, J. M., Grossmann, I. E., Park, S., 1996. Mixed-integer linear programming model for refinery short-term

scheduling of crude oil unloading with inventory management. Industrial and Engineering Chemistry Research 35 (5),

1630–1641.
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