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Abstract 
 Generalized disjunctive programming (GDP), originally developed by Raman and 

Grossmann [1994], is an extension of the well-known disjunctive programming paradigm 

developed by Balas in the mid seventies in his seminal technical report [Balas, 1974], 

[see also Balas, 1998]. This mathematical representation of discrete-continuous 

optimization problems, which represents an alternative to the mixed integer program 

(MIP), led to the development of customized algorithms that successfully exploited the 

underlying logical structure of the problem, in both the linear [Raman & Grossmann, 

1994] and nonlinear cases [Turkay & Grossmann, 1996; Lee & Grossmann, 2000]. The 

underlying theory of these methods, however, borrowed only in a limited way from the 

theories of disjunctive programming, and the unique insights from Balas’ work have not 

been fully exploited.  

 In this paper, we establish new connections between the fields of disjunctive 

programming and generalized disjunctive programming for the linear case, which lead to 

new theoretical insights for linear GDP. We propose a novel family of MILP 

reformulations corresponding to the original linear GDP model that result in a hierarchy 

of tighter relaxations compared to those of Lee & Grossmann [2000] (for the linear case) 

and stronger cutting planes than the ones proposed by Sawaya & Grossmann [2005]. 

Furthermore, we integrate the latter works within the more general framework developed 

here for linear GDP. 

                                                 
1 Current address: ExxonMobil Corporate Research Center, 1545 Route 22 East Annandale, NJ 08801 
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Section 1. Introduction 
 

Generalized disjunctive programming, originally developed by Raman and 

Grossmann [1994], is an extension of the well-known disjunctive programming paradigm 

developed by Balas in the mid seventies in his seminal technical report [Balas, 1974], 

published 24 years later as an invited paper [Balas, 1998].  For additional work on 

disjunctive programming in the 1970s and 1980s, see [Balas, 1979, 1985; Balas, Tama & 

Tind, 1989; Blair, 1980; Jeroslow, 1977, 1987, 1989; Jeroslow & Lowe, 1984; Sherali & 

Shetty, 1980]. For extensions of disjunctive programming to the nonlinear case, see 

[Ceria & Soares, 1999; Stubbs & Mehrotra, 1999]. While disjunctive programming, for 

the most part, was originally developed by Balas as a unifying framework for the 

generation of polyhedral facets to be used in the solution of mixed-integer programs, the 

development of GDP in the chemical engineering community was spawned from an 

interest in developing an alternative modeling framework to the mixed integer program 

that was more adept at translating physical intuition into rigorous mathematical 

formalism. Indeed, while the mixed-integer programming (MIP) model is based entirely 

on algebraic equations and inequalities, the GDP model allows for a combination of 

algebraic and logical equations through disjunctions and logic propositions, which 

facilitates the representation of discrete decisions. This alternative mathematical 

representation of discrete-continuous optimization problems led to the development of 

customized algorithms that successfully exploited the underlying logical structure of the 

problem, in both the linear [Raman & Grossmann, 1994] and nonlinear cases [Turkay & 

Grossmann, 1996; Lee & Grossmann, 2000; Grossmann, 2002]. In particular, Raman and 

Grossmann [1994] developed a hybrid Branch and Bound (B&B) algorithm that can 

explicitly handle problems involving linear inequalities, disjunctions and symbolic logic 

relations for 0-1 variables. Turkay and Grossmann [1996] extended the Outer-

Approximation (OA) method for solving mixed-integer nonlinear (MINLP) problems 

into a logical-equivalent algorithm. Lee and Grossmann [2000] (see also Grossmann & 

Lee [2003]) developed a disjunctive B&B method that relies on converting the nonlinear 
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GDP model into an equivalent MINLP model that obtains from the intersection of the 

convex hulls of every disjunction. Finally, Sawaya & Grossmann proposed a cutting 

plane method that relies on converting the GDP problem into an equivalent big-M 

reformulation that is successively strengthened by cuts generated from an LP in the linear 

case [2005].  

Although good results were obtained using all these aforementioned methods for 

the solution of different problems in various areas of chemical engineering, including 

synthesis of process networks [Turkay & Grossmann, 1996; Lee & Grossmann, 2000], 

retrofit planning [Jackson & Grossmann, 2002; Sawaya & Grossmann, 2005], design of 

distillation columns [Yeomans & Grossmann, 2000; Jackson & Grossmann, 2001], and 

design of multi-product batch plants [Lee & Grossmann, 2000; Vecchietti & Grossmann, 

2003], the underlying theory of these methods borrowed only in a limited way from the 

deep theoretical well of disjunctive programming, and the profound insights securely 

ensconced in Balas’ work were never fully exploited.  

The overall goal of this paper, then, is to remedy this situation. In this work, we 

establish new connections between the fields of disjunctive programming and generalized 

disjunctive programming for the linear case, which lead to new theoretical insights that 

allow us to exploit the rich theory developed for the former, in service of the latter.  We 

propose a novel family of MILP reformulations corresponding to the original linear GDP 

model that result in a hierarchy of tighter relaxations compared to those of Lee & 

Grossmann [2000] (for the linear case) and stronger cutting planes than the ones 

proposed by Sawaya & Grossmann [2005]. Furthermore, we integrate the latter works 

within the more general framework developed here for linear GDP.  

In section 1.1, we introduce the field of disjunctive programming as developed by 

Balas. We then present the mathematical formulation for the linear GDP model in section 

1.2.  

 In section 2, we briefly review some of the underlying theory of disjunctive sets 

and their equivalent forms, and through newly established connections between 

disjunctive programming and linear GDP, extend that theory to the latter.  

 In section 3, we examine various MIP representations of the linear GDP model, 

and in particular, derive the traditional big-M reformulation and the formulation 
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developed by Lee and Grossmann [2000] (for the linear case) through a unified 

disjunctive programming framework that leads to the development of a family of MIP 

reformulations for our linear GDP model. 

 In section 4, we develop a hierarchy of relaxations for linear GDP that mirror 

those developed by Balas for disjunctive programs [Balas, 1985]. We show that a subset 

of these relaxations yield tighter relaxations than the traditional big-M and Lee & 

Grossmann reformulations presented in section 3, and briefly review the inherent trade-

offs between them. 

 In section 5, we generate valid cutting planes for linear GDP. We begin by 

describing the family of inequalities implied by the constraint set of GDP, before 

identifying the strongest ones amongst them (i.e. facets of the constraint set).  

Finally, in section 6, we conclude with a critical review of our contributions and 

promising avenues for future research.  

 

1.1. Disjunctive programming 

 

Our presentation here is taken from that of Balas & Perregaard [2002]. 

Disjunctive programming is optimization over unions of polyhedra. The name reflects the 

fact that the objects investigated by this theory can be viewed as the solution sets of 

systems of linear inequalities joined by the logical operations of conjunction, negation 

(taking of complement) and disjunction. 

The constraint set of a disjunctive program, called a disjunctive set, can be 

expressed in many different forms, of which the following two extreme ones have special 

significance. Let  

: { : },  n i i
iP x A x a i Q= ∈ ≥ ∈R  

be convex polyhedra, with Q  a finite index set and ( , )i iA a  an ( 1)im n× +  matrix, i Q∈ , 

and let : { : }nP x Ax a= ∈ ≥
) )R  be the polyhedron defined by those inequalities (if any) 

common to all ,  iP i Q∈ . Then the disjunctive set  ii Q
F P

∈
= ∪  over which we wish to 

optimize some linear function can be expressed as  
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 { }: ( ) ,n i i

i Q
F x A x a

∈
= ∈ ∨ ≥R            (1.1)  

which is its disjunctive normal form (DNF) (i.e. a disjunction whose terms do not contain 

further disjunctions). The same disjunctive set can also be expressed as  

 { }0: ,  ( ),  1,..., ,
j

n h h

h Q
F x Ax a d x d j t

∈
= ∈ ≥ ∨ ≥ =

) )R         (1.2) 

which is its conjunctive normal form (CNF) (i.e. a conjunction whose terms do not 

contain further conjunctions). Here 0( , )h hd d  is a ( 1)n +  vector for jh Q∈ , all j . The 

connection between (1.1) and (1.2) is that each term i iA x a≥  of the disjunctive normal 

form (1.1) contains Ax a≥
) )  and exactly one inequality 0

h hd x d≥  of each disjunction of 

(1.2) indexed by jQ  for 1,..., ,j t=  and that all distinct systems i iA x a≥  with this 

property are present among the terms of (1.1).  

 

1.2. Linear generalized disjunctive programming 

 

Consider the linear generalized disjunctive programming problem in (1.3), which 

is based on the work of Raman & Grossmann [1994] and is an extension of the work of 

Balas on disjunctive programming [Balas, 1974]:   

 

1

 

. .           

              

                              

( )

, ,

                    

jk

k

jk

k

T
k

k K

jk jk

j J
k j k

j J

L U

jk k

k

Min Z c d x

s t Bx b
Y

A x a k K
c

Y k K

Y True
x x x
Y True False j J k K

c

γ

∈

∈

∈

= +

≥

⎡ ⎤
⎢ ⎥

≥ ∈⎢ ⎥
⎢ ⎥=⎣ ⎦

∨ ∈

Ω =

≤ ≤
∈{ }          ∈ ∈

∈

∑

∨

R         k K∈

                                                               (1.3) 
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Here, nx ∈ R  is a vector of continuous variables; { , }jkY True False∈  are Boolean 

variables; 1
kc ∈ R  are continuous variables that represent the cost associated with each 

disjunction; jkγ  are fixed charges; Ux  and Lx  are parameters that corresponds to valid 

upper and lower bounds for x, respectively, where Lx  can be negative; Bx b≤  are 

common constraints that must hold regardless of the discrete decisions that are selected, 

where ( , )B b  is an ( 1)m n× +  matrix. A disjunction k K∈  is composed of several terms j 

∈ Jk, each containing a set of linear equations and/or inequalities jk jkA x a≥ , where 

( , )jk jkA a  is an ( 1)jkm n× +  matrix, ,  kj J k K∈ ∈ . These inequalities represent the 

constraints of the problem, and are connected together in the continuous space by the 

logical OR operator (∨) and in the Boolean space by the logic propositions jk

kj J
Y

∈
∨ , which 

ensure that exactly one term per disjunction is enforced. Thus, only the constraints inside 

disjunct j ∈ Jk where jkY  is true are enforced; otherwise, the corresponding constraints 

are not enforced, although they may still hold because of the non-exclusive nature of the 

logical OR operator (∨) connecting the continuous space. Finally, ( )Y TrueΩ =  

corresponds to logical propositions in terms of the Boolean variables that are expressed in 

Conjunctive Normal Form (CNF) 

1,2...
( ) ( ) ( )

jk l jk l
jk jkl L Y R Y Q

Y Y Y
= ∈ ∈

⎡ ⎤Ω = ∧ ∨ ∨ ¬⎢ ⎥⎣ ⎦
, 

where for each clause , 1, 2,..., ,  ll l L R=  is the subset of Boolean variables jkY  that are 

non-negated, and lQ  is the subset of Boolean variables jkY  that are negated.  

 

Remark 1.1 We note that in previous works on generalized disjunctive programming 

(see [Raman & Grossmann, 1994; Lee & Grossmann, 2000; Sawaya & Grossmann, 

2005]), the collection of logic propositions ( )Y TrueΩ =  implicitly included the 

propositions jk

kj J
Y

∈
∨  that we have explicitly stated here.  
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1.2.1. Illustrative example: synthesis of process network with fixed charges 

 

Consider the optimization of the process network shown in Fig. 1, where variables 

x represent material flow. The problem is to determine the selection of processes that 

maximizes the profit or minimizes the cost given an upper bound on the demand of 

product C. Linear mass balances are used at each node, while fixed cost charges ci are 

assumed for every process {1,2,3}i ∈ . The GDP formulation for this problem is as 

follows: 

 

 

1 2 3

1 2 4

6 3 5

 
. .           

                                                                                                            (1.4)
                                      

TMin Z c c c d x
s t
x x x
x x x

= + + +

= +
= +

11 21

3 1 2 3 2

1 1 1

                                                                     (1.5)         

0                                                                  
0

Y Y
x p x x x
c cγ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ∨ = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎣ ⎦ ⎣ ⎦

12 22

5 2 4 5 4

2 2 2

13 23

7 3 6 7 6

3 3 3

                  (1.6)

0                                                                                    (1.7)
0

0

Y Y
x p x x x
c c

Y Y
x p x x x
c c

γ

γ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ∨ = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎢ ⎥= ∨ = =⎢ ⎥
⎢ ⎥= =⎣ ⎦

11 21

                                                                                   (1.8)
0

                                                                                              Y Y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∨

12 22

13 23

                      (1.9)
                                                                                                                  (1.10)
                                       

Y Y
Y Y

∨
∨

11 12 13

                                                                           (1.11)
                                                                                                        (1.1Y Y Y∨ ⇒

13 11 12

21 22

2)
                                                                                                        (1.13)

                                                                      
Y Y Y
Y Y

⇒ ∨

∨

11 21 12 22 13 23
1

1 2 3

                                           (1.14)

0
, , , , , ,

, ,  

Ux x
Y Y Y Y Y Y True False

c c c

≤ ≤
∈{ }

∈ R
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Equations (1.4) and (1.5) represent linear mass balances around nodes N1 and N2. 

Disjunctions (1.6), (1.7) and (1.8) embody the discrete dichotomy of process selection, 

where a unit, along with its in-and-out flows (represented by linear equalities inside the 

disjunctions’ terms) and fixed charge, is selected for inclusion in the final network only if 

its corresponding Boolean variable 1 ' ,  for some ' {1,2,3}kY True k= ∈ ; otherwise, as 

dictated by logic equations (1.9), (1.10) and (1.11), the unit is not selected 

2 '( ,  for some ' {1,2,3}),kY True k= ∈  and its flows and fixed charge are set to 0. Finally, 

logic equations (1.12), (1.13) and (1.14) connect the three disjunctions together, 

expressing, in respective order, that the selection of process 1 or 2 for inclusion in the 

network must lead to the selection of process 3; that the selection of process 3 must lead 

to the selection of process 1 or 2; and that process 1 and 2 cannot both be selected. 

 

 
Figure 1. Superstructure for selection of processes 

 
Section 2. Connections between disjunctive programming and linear 

GDP 
 

 In order to establish connections between disjunctive programming and linear 

generalized disjunctive programming, it is essential to convert the latter in terms of the 

former. This section is concerned with this objective and reviews some of the basic 

concepts on disjunctive programming proposed by Balas. 

From Section 1, it is clear from the linear GDP model introduced in section 1.2 

that it is intimately related to the disjunctive programming forms (CNF and DNF) 

presented in section 1.1. However, the difference between the two frameworks lies in the 
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existence of a Boolean space in the case of GDP that allows disjunctions to be connected 

to one another through logical equations jk

kj J
Y

∈
∨  and ( )Y TrueΩ = . It becomes necessary, 

then, to convert a linear GDP model into an equivalent disjunctive programming model in 

order to exploit the theory developed by Balas. We show how to accomplish this here 

after briefly reviewing Balas’ theory, and demonstrate how the latter theory thus becomes 

relevant to linear GDP.  

 

2.1. Disjunctive programming and equivalent forms 

 

 Our presentation here is taken from Balas [1985]. The CNF and DNF forms 

presented in section 1.1, though two extremes of the spectrum of equivalent forms of a 

disjunctive set F, share a property not common to all forms: each of them is an 

intersection of unions of polyhedra. We will say that a disjunctive set that has this 

property is in regular form (RF). Thus the RF is 

 tt T
F S

∈
= ∩            (2.1) 

where for t T∈ ,  

  ,      a polyhedron, .
t

t i i ti Q
S P P i Q

∈
= ∪ ∈           (2.2) 

A disjunctive set tS  as in (2.2) will be called improper if t iS P=  for some ti Q∈ ; 

proper otherwise. Any disjunctive set tS  such that | | 1tQ =  is improper. If tS  is improper 

then it is convex (and polyhedral). The DNF form as in (1.1) is the RF in which | | 1T = . 

The CNF form as in (1.2), on the other hand, is the RF in which every tS  is elementary, 

i.e. every polyhedron iP  is a half-space { }0|nH x ax a+ = ∈ ≥R .We note that in (1.2), the 

polyhedron Ax a≥
) )  corresponds to an improper disjunctive set that is composed of an 

intersection of half-spaces.  

 Next, we define an operation which, when applied to a disjunctive set in RF, 

results in another RF with one less conjuncts, i.e., an operation which brings the 

disjunctive set closer to the DNF. There are several advantages to having a disjunctive set 
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in DNF, i.e., expressed as a union of polyhedra. Beyond this, the motivation for the basic 

step introduced here will become clearer when we discuss relaxations of disjunctive sets. 

 

Theorem 2.1 (Theorem 2.1 in [Balas, 1985]). Let F be the disjunctive set in RF given 

by (2.1), (2.2). Then F can be brought to DNF by | | 1T −  recursive applications of the 

following basic steps, which preserve regularity: 

For some , , ,r s T r s∈ ≠  bring r sS S∩  to DNF, by replacing it with: 

( ).
r
s

rs i ti Q
t Q

S P P
∈
∈

= ∪ ∩           (2.3) 

     

For example, let 1 2 3F S S S= ∩ ∩ , where 1 11 21( )S P P= ∪ ,  2 12 22( )S P P= ∪   and 

3 13 23( )S P P= ∪ . Then F can be brought to DNF by two recursive applications of basic 

step (2.3). For instance, we first apply (2.3) to 1 2 11 21 12 22( ) ( )S S P P P P∩ = ∪ ∩ ∪ , thus 

replacing it with 12 11 12 11 22 21 12 21 22( ) ( ) ( ) ( )S P P P P P P P P= ∩ ∪ ∩ ∪ ∩ ∪ ∩ . We can then 

rewrite 1 2 3F S S S= ∩ ∩  as 12 3F S S= ∩ . Next, we apply (2.3) to 

12 3 11 12 11 22 21 12 21 22 13 23(( ) ( ) ( ) ( )) ( )S S P P P P P P P P P P∩ = ∩ ∪ ∩ ∪ ∩ ∪ ∩ ∩ ∪ , thus replacing 

it with 11 12 13 11 22 13 21 12 13 21 22 13
123

11 12 23 11 22 23 21 12 23 21 22 23

   ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
P P P P P P P P P P P P

S
P P P P P P P P P P P P

∩ ∩ ∪ ∩ ∩ ∪ ∩ ∩ ∪ ∩ ∩⎛ ⎞
= ⎜ ⎟∪ ∩ ∩ ∪ ∩ ∩ ∪ ∩ ∩ ∪ ∩ ∩⎝ ⎠

. 

We can then rewrite 12 3F S S= ∩  as 123F S=  , which is its equivalent DNF. We note that 

the sequence of basic steps to bring F to DNF is not unique, and so (2.3) could have been 

first applied to 1S  and 3S  (resulting in 13S ) followed by 2S  (resulting in 123S ), or first to 

2S  and 3S  (resulting in 23S ) followed by 1S  (resulting in 123S ). 

 Every basic step reduces by one the number of conjuncts tS  in the RF to which it 

is applied. On the other hand, more often than not, a basic step applied to a pair of proper 

disjunctive sets results in an increase in the number of polyhedra whose union is taken. 

This was clearly observed in the preceding example. However, when one of the 

disjunctive sets, say rS , is improper, then rsS  is the union of at most as many polyhedra 

as sS . Indeed, if 
0r iS P=  for some 0 ri Q∈  (i.e. rS  improper), then  
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0

0

0                   if ,

( )   otherwise.
s

i s

rs
i tt Q

P i Q
S P P

∈

∈⎧⎪= ⎨ ∪ ∩⎪⎩
          (2.4) 

For example, let 1 2F S S= ∩ , where 1 1S P=  and 2 12 22( )S P P= ∪ . Then 

12 1 12 1 22( ) ( )S P P P P= ∩ ∪ ∩ . 

Because of the above property, it is often useful to carry out a parallel basic step, 

defined as follows: 

For F given by (2.1), (2.2), and 
0r iS P=  for some 0 ri Q∈  (i.e. rS  improper), replace tt T

S
∈
∩  

by 
\{ } rtt T r

S
∈
∩ , where each rtS  is defined in (2.4).  

For example, let 1 2 3F S S S= ∩ ∩ , where 1 1S P= , 2 12 22( )S P P= ∪ and 3 13 23( )S P P= ∪ . 

Then a parallel basic step would result in 12 13F S S= ∩ , where 

12 1 12 1 22( ) ( )S P P P P= ∩ ∪ ∩  and 13 1 13 1 23( ) ( )S P P P P= ∩ ∪ ∩ . We note that if some of the 

basic steps of Theorem 2.1 are replaced by parallel basic steps, the total number of steps 

required to bring F to DNF remains the same. Indeed, in the previous example, the total 

number of steps to bring F to DNF is still two, as 123F S=  can be obtained from 

12 13F S S= ∩  by applying one additional basic step as in (2.3). The motivation for 

performing parallel basic steps will become clearer when we examine relaxations of 

disjunctive sets in section 4.  

   

2.2. Converting a linear GDP model into a disjunctive programming model  

 

 Having examined Balas’ theory of equivalent forms for disjunctive sets, we aim 

to extend it to generalized disjunctive programming. In order to do so, we first need to 

convert the linear GDP model in (1.3) into an equivalent disjunctive programming model. 

This is accomplished by replacing Boolean variables ,  ,jk kY j J k K∈ ∈  inside the 

disjunctions by equalities 1,  ,jk kj J k Kλ = ∈ ∈ , where λ   is a vector of continuous 

variables whose domain is [0, 1], and converting logical relations ,  jk

kj J
Y k K

∈
∨ ∈  and 
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( )Y TrueΩ =  into algebraic equations 1,  
k

jk
j J

k Kλ
∈

= ∈∑  and H hλ ≥ , respectively. This 

yields the following model: 

 

1

 

. .           
1

               

1                         

0 1                         , 

                 

jk

k

k

T
k

k K

jk jk

j J
k jk
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j J

L U

jk k

k

Min Z c d x

s t Bx b

A x a k K
c

k K

H h
x x x

j J k K

c

λ

γ

λ

λ

λ

∈

∈

∈

= +

≥

=⎡ ⎤
⎢ ⎥

≥ ∈⎢ ⎥
⎢ ⎥=⎣ ⎦

= ∈

≥

≤ ≤
≤ ≤ ∈ ∈

∈  

∑

∨

∑

R k K           ∈                          

          (2.5) 

  

In the following proposition, we prove that the linear GDP model in (1.3) is 

equivalent to the disjunctive program in (2.5).  

 

Proposition 2.2. The linear GDP model in (1.3) is equivalent to the disjunctive program 

in (2.5), in the sense that there exists a one-to-one correspondence between a feasible 

solution 
| |

| |( , , ) { , }
k

k K
J

n Kx c Y True False ∈+
∑

∈ ×R  to (1.3) and a feasible solution 

| | | |

( , , )
k

k K
n K J

x c λ ∈

+ +∑
∈ R  to (2.5). 

 

Proof:   Let 
| |

| |( ', ', ') { , }
k

k K

J
n Kx c Y True False ∈+

∑
∈ ×R be a feasible solution to the constraint 

set of (1.3). Then, from the set of constraints 
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k

jk

k

jk jk

j J
k j k

j J

Y

A x a k K
c

Y k K

γ∈

∈

⎡ ⎤
⎢ ⎥

≥ ∈⎢ ⎥
⎢ ⎥=⎣ ⎦

∨ ∈

∨ , 

we can deduce that for any 'k K∈ , exactly one ' '1,jk kj Jλ = ∈ . Without loss of generality, 

let that j  be j’. Thus, ' ' ''  for  ' , 'j k kY True j J k K= ∈ ∈ , which implies that the constraints 

of term '' kj J∈  for disjunction 'k K∈  are enforced while the constraints of terms 

'\ ' kj j J∈  are not. Now let 
| | | |

( *, *, *)
k

k K

n K J

x c λ ∈

+ +∑
∈ R  be a feasible solution to the 

constraint set of (2.5). Then from the constraints 

 

1

               

1                         

jk

k

k

jk jk

j J
k j k

jk
j J

A x a k K
c

k K

λ

γ

λ

∈

∈

=⎡ ⎤
⎢ ⎥

≥ ∈⎢ ⎥
⎢ ⎥=⎣ ⎦

= ∈

∨

∑
 

we can deduce that for any *k K∈ , exactly one * *1,jk kj Jλ = ∈ . Without loss of 

generality, let that j  be j*. If we set * 'k k K= ∈  and * 'j j J= ∈ , then ' '* 1j kλ = , and the 

constraints of term '' kj J∈  for disjunction 'k K∈  are enforced while the constraints of 

terms '\ ' kj j J∈  are not because of the algebraic relation 
'

' 1,  '
k

jk
j J

k Kλ
∈

= ∈∑ , just as the 

previous case. This implies that for every ' ' ''  for  ' , 'j k kY True j J k K= ∈ ∈ , there exists 

some equivalent * *1, , *jk kj J k Kλ = ∈ ∈ , where * 'k k K= ∈  and * 'j j J= ∈ , and such 

that | |( ', ') n Kx c +∈ R  is equal to | |( *, *) n Kx c +∈ R . Finally, because the above two sets of 

constraints force any feasible jkλ  to be equal to 0 or 1 exclusively (despite the fact that 

these variables are continuous), the inequalities H hλ ≥  can be systematically derived 

from their logical CNF form ( )Y TrueΩ = , (as discussed by Williams [1985], Raman and 

Grossmann [1994], and Hooker [2000]), and are thus equivalent.  

                    ■ 
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It is less straightforward to see that the model in (2.5) corresponds to a disjunctive 

program in an intermediary form between its disjunctive and conjunctive normal forms 

described in (1.1) and (1.2), respectively. This, however, becomes more evident if we 

rewrite the feasible region of (2.5) as: 

| | | |

0: ( , , ) :  ( ) ,
k

k K

k

n J K
i i jk jk

i T k K j J
F z x c b z b A z aλ ∈

+ +

∈ ∈ ∈

∑⎧ ⎫
= = ∈ ∩ ≥ ∩ ∪ ≥⎨ ⎬

⎩ ⎭
R                   (2.6) 

where 0( , )i ib b  is a 1 ( | | | | 1)k
k K

n J K
∈

× + + +∑  vector, i T∈ , that corresponds to a single 

row of the following matrix ( , )B b , and where  

( )
( )
( )
( )

  ( )            0               0

  0           ( )           0    

  0         ( )         0

   0            ( )              0
:

 ( )             0              

B

j Jk

S

j Jk

S

H

X

i T

i I

T

k K

T

k K

i T

i I

i T

i I

b

e

e

h
B

e

∀ ∈

∀ ∈

∈

∈

∈

∈

∈

∩

∩

∩ −

∩
=

∩ )( )
( )

( )
( )

0

| |

| |

0

( , )

( , )

     1

 1

,     :
 0

 ( )         0               0

  0         ( )              0

  0      ( )             0

B

S

S

H

X

i

i I

K

K

i

i I

i I

i T

i I

jk T

j k L

jk T

j k L

b

h
b

e

e

e

∈

∈

∈

∈

∈

∈

⎛ ⎞
⎜ ⎟ ∩⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟ −⎜ ⎟
⎜ ⎟ ∩
⎜ ⎟ =⎜ ⎟ ∩⎜ ⎟
⎜ ⎟
⎜ ⎟∩ −
⎜ ⎟
⎜ ⎟∩
⎜ ⎟
⎜ ⎟

∩ −⎜ ⎟
⎝ ⎠

)

| |

| |

,  

     0
  1

X

X

L
i

U
ii I

L

L

x

x
∈

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟∩ −
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

 

such that the vectors ( ) , i T
Bb i I∈  correspond to the rows of the | |BI n×  matrix B, where 

| |BI m= ; the vectors ( ) ,  j Jk T
Se k K∀ ∈ ∈  correspond to the vectors 

| |

: (1...1)
k

k K

J
Te ∈

∑
=  with 1s 

only at every position ,  for some k Sj J k K∈ ∈ , where | | | |SK K= ; the vectors 

( ) , i T
Hh i I∈  correspond to the rows of the | | | |H k

k K

I J
∈

×∑  matrix H; the vectors 

( ) ,  i T
Xe i I∈)  correspond to the rows of the | | | |X XI I×  unit matrix I

)
, where | |XI n= ; the 

vectors ( ) ,  ( , )jk Te j k L∈  correspond to the rows of the | | | |L L×  unit matrix I , where L  

is the set of all pairs ,kj J k K∈ ∈  with  | | ( | |)k
k K

L J
∈

= ∑ ; the scalars 0 , i
Bb i I∈  correspond 
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to the rows of the | | 1BI ×  vector b; the vector | |1
SK  is the vector 

| |1

1

SK
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M ; the scalars 

0 , i
Hh i I∈  correspond to the rows of the | | 1HI ×  vector h; the scalars ,  L

i Xx i I∈  

correspond to the rows of the | | 1XI ×  vector Lx ; the scalars ,  U
i Xx i I∈  correspond to the 

rows of the | | 1XI ×  vector Ux ; the vector | |0 L  is the vector 

| |0

0

L
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M ; the vector | |1L  is the 

vector 

| |1

1

L
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M ; and B S H XT I K I I L= ∪ ∪ ∪ ∪  corresponds to the index set of the rows of 

matrix ( , )B b , where | | (| | 2 | | | | 2 | | 2 | |)B S H XT I K I I L= + + + + . Furthermore, ( , )jk jkA a  

is an ( 4) ( | | | | 1)jk k
k K

m n J K
∈

+ × + + +∑  matrix, ,  kj J k K∈ ∈ , where 

0          ( )      0   1
0        ( )     0 1

:         0           0 ,     :   ,       
  ˆ0            0        ( )

ˆ0            0      ( )

jk T

jk T

jk jk jk jk

k T
jk

k T
jk

e
e

A A a a
e
e

γ

γ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

− −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ −− ⎝ ⎠⎝ ⎠

 , ,kj J k K∈ ∈   

such that the vector ˆ( )k Te  corresponds to the vector ˆTe  with a 1 at position k K∈ . 

We observe, then, that disjunctive set (2.6) is in regular form since it corresponds 

to an intersection of unions of polyhedra, and furthermore, is in an intermediary form 

between the DNF and the CNF since it is corresponds to the intersection of multiple 

elementary disjunctive sets 0 ,  i ib z b i T≥ ∈  with multiple non-elementary disjunctive sets 

,   jk jk
kA z a j J k K≥ ∈ ∈  (in contrast, the DNF corresponds to a single non-elementary 

disjunctive set, while the CNF corresponds to the intersection of multiple elementary 

disjunctive sets).  
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2.3. Generalized disjunctive programming and equivalent forms 

 

 Having examined the procedure to convert the linear GDP model in (1.3) into an 

equivalent disjunctive programming model, we extend Balas’ theory of equivalent forms 

to generalized disjunctive programming. The following corollary follows from Theorem 

2.1: 

 

Corollary 2.3. Let F be the disjunctive set given by (2.6). Then F can be brought to DNF 

by | | | | 1T K+ −  recursive applications of the basic step defined in (2.3).   

        

Proof: We have shown that the disjunctive set given in (2.6) is in regular form. Thus, 

Corollary 1 follows from Proposition 1 if we replace  | |T with | | | |T K+ .   

                             ■  

The above corollary implies that it is possible to develop a family of disjunctive 

equivalent forms for linear GDP by recursively applying, one at a time, and up to 

| | | | 1T K+ −  times, (parallel) basic step (2.3) to the disjunctive form in (2.6). In light of 

this, we present, next, a formulation that captures all possible equivalent forms of that in 

(2.6), such that a specific form obtains from the instantiation of certain index sets as a 

result of performing certain (parallel) basic steps as in (2.3). This most general form for 

linear GDP is then as follows: 
| | | |

0 0 ( , )
: ( , , ) :  (  ( ) ,   (2.7)

k
k K

n mnn

n J K
i i i i jk jk

n N m J j k Mi T i T
F z x c b z b b z b A z aλ ∈

+ +

∈ ∈ ∈∈ ∈

∑⎧ ⎫
= = ∈ ∩ ≥ ∩ ∪ ∩ ≥ ∩ ≥⎨ ⎬

⎩ ⎭
) )R

where T T⊆
)

 represents the index set of those rows 0( , ),  i ib b i T∈  that were not 

intersected with any disjunctive sets ( ),  ,jk jk
kA z a j J k K≥ ∈ ∈ , while ,  nT T n N⊆ ∈

)
 

represent the index sets of those rows 0( , ),  i ib b i T∈  that were intersected with some 

disjunctive set ( ),  ,jk jk
kA z a j J k K≥ ∈ ∈  through the application of some (parallel) basic 

step(s) as in (2.3). Furthermore, N  represents the index set of those disjunctions 

n N∈ that are either:  

(a) identical to some old disjunctions k K∈  (i.e. those disjunctions to which no 

basic step was applied),  



 17

or that obtain from the intersection of disjunctive sets ( ),  ,jk jk
kA z a j J k K≥ ∈ ∈  either:  

(b) with one another, or  

(c) with those rows 0( , ),  i i
nb b i T∈ , or  

(d) with both, through the application of some (parallel) basic step(s) as in (2.3).  

Finally, the index sets , ,mn nM m J n N∈ ∈  contain the collection of pairs ( , )j k  that 

correspond to the indices of those constraints ( ),  ,jk jk
kA z a j J k K≥ ∈ ∈  that are present 

in terms nm J∈  of disjunctions n N∈ . 

 

Remark 2.1. For disjunctions 'n N∈  in category  

(a), 'n
T = ∅
)

 and ' '| | 1,  
mn n

M m J= ∈   

(b), 'n
T = ∅
)

 and ' '| | 1,  
mn n

M m J> ∈  

(c), 'n
T ≠ ∅
)

 and ' '| | 1,  
mn n

M m J= ∈  

(d), 'n
T ≠ ∅
)

 and ' '| | 1,  
mn n

M m J> ∈ .  

 

Remark 2.2. If T T=
)

 (which implies that ,  nT n N= ∅ ∈
)

 since nn N
T T T

∈
∪ =

) )
), and 

| | 1,  ,  mn nM m J n N= ∈ ∈ , then (2.7) is equivalent to (2.6). If T = ∅
)

 and | | 1K =
)

, then 

(2.7) is equivalent to the DNF of (2.6). 

 

 For the sake of presentational clarity in subsequent sections, we concatenate the 

contents of disjunctions n N∈  and rewrite (2.7) as 

| | | |

0
ˆ ˆ: ( , , ) :  ( ) .                     (2.8)

k
k K

n

n J K
i i mn mn

n N m Ji T
F z x c b z b A z aλ ∈

+ +

∈ ∈∈

∑⎧ ⎫
= = ∈ ∩ ≥ ∩ ∪ ≥⎨ ⎬

⎩ ⎭
)R

 

Here, 0( , )i ib b  is a 1 ( | | | | 1)k
k K

n J K
∈

× + + +∑  vector, i T∈
)

, that corresponds to a single 

row of the following matrix ( , )B b
))

, where  
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( )

( )
( )
( )

1

1

1

1

1

  ( )            0               0

  0           ( )           0    

  0         ( )         0

   0           ( )               0
:

 ( )             0        

B

j Jk

S

j Jk

S

H

X

i T

i I

T

k K

T

k K

i T

i I

i T

i I

b

e

e

h
B

e

∀ ∈

∀ ∈

∈

∈

∈

∈

∈

∩

∩

∩ −

∩
=

∩

)

)( )
( )

( )
( )

1

1

1

1

1

0

| |

|

( , )

( , )

     1

 1

,     :
       0

 ( )         0               0

  0         ( )              0

  0      ( )             0

B

S

X

i

i I

K

K

i T

i I

jk T

j k L

jk T

j k L

b

b

e

e

e

∈

∈

∈

∈

⎛ ⎞
⎜ ⎟ ∩⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟ −⎜ ⎟
⎜ ⎟
⎜ ⎟

=⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟∩ −⎜ ⎟
⎜ ⎟
⎜ ⎟∩
⎜ ⎟
⎜ ⎟∩ −⎜ ⎟
⎝ ⎠

)

)

1

1

1

1

1

1

|

0

| |

| |

,  

     0

  1

S

H

X

X

i

i I

L
ii I

U
ii I

L

L

h

x

x

∈

∈

∈

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟∩
⎜ ⎟
⎜ ⎟∩⎜ ⎟
⎜ ⎟

∩ −⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

 

such that 
1B BI I⊆ ; 

1S SK K⊆ ; 
1H HI I⊆ ; 

1X XI I⊆ ; 1L L⊆ ; and 

1 1 1 1 1B S H XT I K I I L= ∪ ∪ ∪ ∪
)

, where 
1 1 1 1 1| | (| | 2 | | | | 2 | | 2 | |)B S H XT I K I I L= + + + +

)
. 

Furthermore, ˆ ˆ( , )mn mnA a  is an 

2 2 2 2 2(| | ( 4) | | 2 | | | | 2 | | 2 | |) ( | | | | 1)
nn n n nmn jk B S H X k

k K

M m I K I I L n J K
∈

+ + + + + + × + + +∑  

matrix, ,  nm J n N∈ ∈ , where 
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( )

( )
( )
( )

2

2

2

2

2

( , )

  ( )            0               0

  0           ( )           0    

  0         ( )         0

ˆ :    0            ( )              0

 ( )  

mn

B n

j Jk

S n

j Jk

S n

H n

X n

jk

j k M

i T

i I

T

k K

T

k K

mn i T

i I

i T

i I

A

b

e

e

A h

e

∀ ∈

∀ ∈

∈

∈

∈

∈

∈

∈

∩

∩

∩

∩ −

= ∩

∩ )( )
( )

( )
( )

2

2

2

( , )

( , )

ˆ,     

           0               0

 ( )         0               0

  0         ( )             0

  0      ( )            0

X n

n

n

i T

i I

jk T

j k L

jk T

j k L

a

e

e

e

∈

∈

∈

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

∩ −⎜ ⎟
⎜ ⎟
⎜ ⎟∩
⎜ ⎟
⎜ ⎟

∩ −⎜ ⎟
⎝ ⎠

)

2

2

2

2

2

2

2

2

( , )

0

| |

| |

0

| |

| |

     1

 1

: ,         , ,

     0

  1

mn

B n

S n

S n

H n

X n

X n

n

n

jk

j k M

i

i I

K

K

mn i
ni I

L
ii I

U
ii I

L

L

a

b

h m J n N

x

x

∈

∈

∈

∈

∈

⎛ ⎞
∩⎜ ⎟

⎜ ⎟
∩⎜ ⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎜ ⎟= ∩ ∈ ∈
⎜ ⎟
⎜ ⎟

∩⎜ ⎟
⎜ ⎟
⎜ ⎟∩ −
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

 

such that 
2nB BI I⊆ ; 

2nS SK K⊆ ; 
2nH HI I⊆ ; 

2nX XI I⊆ ; 2n
L L⊆ ; and 

2 2 2 2 2 ,  
nn n n nn B S H XT I K I I L n N= ∪ ∪ ∪ ∪ ∈

)
,  where 

3 2 2 2 2| | (| | 2 | | | | 2 | | 2 | |),  
nn n n nn B S H XT I K I I L n N= + + + + ∈

)
. 

 

Remark 2.3. The set 
1 2nB B Bn N

I I I
∈

= ∪ , while the set 
1 2nB Bn N

I I
∈

∩ ∪ = ∅ . Furthermore, the 

set 
2nBn N

I
∈
∩  is not necessarily empty, and this occurs when a parallel basic step is applied 

to rows 0( , ),  i ib b i T∈ , intersecting the latter with constraints ,  mn mnA z a n N≥ ∈ . The 

same logic holds for index sets 
1 2nS S Sn N

K K K
∈

= ∪ , 
1 2nH H Hn N

I I I
∈

= ∪ ,  
1 2nX X Xn N

I I I
∈

= ∪  and 

1 2nn N
L L L

∈
= ∪ .  
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Section 3. MIP reformulations for linear GDP 
 

A solution approach to linear GDP problems is to reformulate them as mixed-

integer linear programs, rather than developing specific solution methods. The 

reformulation, however, is not unique. Ideally one would like to obtain that reformulation 

that leads to the tightest LP relaxation, while keeping the problem at reasonable size. This, 

however, is non-trivial to achieve. This section provides a framework based on 

disjunctive programming to formulate mixed-integer linear programs.   

Mixed-integer programming reformulations for the linear GDP problem in (1.3) 

from Section 1 can be obtained in various ways. As such, we use the disjunctive form in 

(2.6) of Section 2 to derive the traditional big-M reformulation as presented in Raman & 

Grossmann [1994]. Furthermore, we exploit the results of section 2.3 to reconstruct the 

reformulation presented in Lee & Grossmann (for the linear case) that obtains from the 

intersection of the convex hulls of every disjunction (see also Grossmann & Lee [2003], 

Sawaya & Grossmann for the linear case [2005]), and show that it belongs to a family of 

MIP reformulations that are equivalent to our original GDP model. 

  

3.1. Big-M reformulation for GDP  

 

Raman & Grossmann [1994] proposed the following mixed integer big-M 

reformulation for the linear generalized disjunctive program in (1.3): 

 

 

. .           
(1 )         ,                                             

1                                                              

k

k

T
j k jk

k K j J

jk jk jk
jk k

jk
j J

Min Z y d x

s t Bx b
A x a M y j J k K

y k K

γ
∈ ∈

∈

= +

≥

≥ − − ∈ ∈

= ∈

∑∑

∑                             

{0,1}                                ,

L U

jk k

Hy h
x x x
y j J k K

≥

≤ ≤
∈ ∈ ∈

                                           

     (3.1) 
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In the following proposition, we show that the above reformulation obtains from 

disjunctive form (2.6).  

 

Proposition 3.1. The Raman & Grossmann mixed-integer big-M reformulation in (3.1) 

for the linear generalized disjunctive program in (1.3) obtains from disjunctive form (2.6).  

  

Proof: Consider the disjunctive form in (2.6). The big-M reformulation for this form can 

be obtained by replacing the constraints of disjunctions ,kj J k K∈ ∈  with constraints 

that make use of “big-M” parameters jkM  and binary variables , ,jk ky j J k K∈ ∈  , such 

that the jth system of inequalities in the kth disjunction is enforced when 1,jky =  or 

rendered redundant when 0.jky =  This results in the following MIP model:  

 

1

2

 

. .           
1 (1 )              ,                                                          (3.2)

1 (1 )              ,                         

jk

jk

T
k

k K

jk
jk k

jk
jk k

Min Z c d x

s t Bx b
M y j J k K

M y j J k K

λ

λ

∈

= +

≥

≤ + − ∈ ∈

≥ − − ∈ ∈

∑

3

4

                                 (3.3)

(1 )        ,                                                          (3.4)

(1 )           ,                          

jk
jk jk jk k

jk
k j k jk k

A x a M y j J k K

c M y j J k Kγ

≥ − − ∈ ∈

≤ + − ∈ ∈

5

                                (3.5)

(1 )           ,                                                          (3.6)

1                                                 
k

jk
k j k jk k

jk
j J

c M y j J k K

k K

γ

λ
∈

≥ − − ∈ ∈

= ∈∑                                                    (3.7)

1                                                                                                    (3.8)

0 1        

k

jk
j J

L U

jk

y k K

H h
x x x

λ

λ

∈

= ∈

≥

≤ ≤
≤ ≤

∑

1

                       ,                                                           (3.9)

                                   
{0,1}                              ,

k

k

jk k

j J k K

c k K
y j J k K

∈ ∈

∈ ∈
∈ ∈ ∈

               

R

                            
The above model can be simplified if we observe that , ,jk jk ky j J k Kλ= ∀ ∈ ∀ ∈ . Indeed,  



 22

' ' '

' '

' '

' '

' '

' '

' '

' '

'

1,  for some ,

0, \ ,  from (3.8)

      1 from (3.2) & (3.3) 

       0, \ ,  from (3.7)

Similarly, the above can be shown for 0,  for some 

j k k

jk k

j k

jk k

j k

y j J k K

y j j J k K

j j J k K

y j J

λ

λ

= ∈ ∈

⎧ = ∈ ∈
⎪⎪⇒ =⎨
⎪

⇒ = ∈ ∈⎪⎩

= ∈ '
', .

k
k K∈

  

Thus, we can replace all instances of λ with y, and remove redundant constraints (3.2), 

(3.3), (3.7) and (3.9). Furthermore, we note that (3.5) and (3.6) can be replaced by the 

equivalent expression  

,  ,
k

k j k jk
j J

c y k Kγ
∈

= ∈∑           (3.10) 

whose values at 1 and 0y y= = coincide exactly with those of constraints (3.5) and (3.6). 

This is shown as follows: 

 

' ' '

' ' ' '

' '

' '

' '

' '

' '

' '

1 ' '

For (3.5) and (3.6)
1,  for some ,

 ,  from (3.5) & (3.6)

      0, \ ,  from (3.8) 

      , \ ,  from (3.5) & (3.6)

           

j k k

k j k k

jk k

k k

k j k

y j J k K

c j J k K

y j j J k K

c j j J k K

c

γ

γ

= ∈ ∈

⎧ = ∈ ∈
⎪⎪⇒ = ∈ ∈⎨
⎪

⇒ ∈ ∈ ∈⎪⎩
⇒ =

R

'

' ' '

' '

' ' '

' ' '

' '

' '

' '

For (3.10)
1,  for that same ,

      0, \ ,  from (3.8)

            from (3.10)          

Similarly, the above can be shown for 0,  for some ,

j k k

jk k

k j k

j k k

y j J k K

y j j J k K

c

y j J k K

γ

= ∈ ∈

⇒ = ∈ ∈

⇒ =

= ∈ ∈

 

The equivalence between (3.10) and (3.5) & (3.6) allows for the elimination of the latter 

constraints and for the substitution of the former into the objective function, thus 
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removing the variable c from the program. These modifications lead exactly to 

reformulation in (3.1).  

                               ■ 

 

3.2. Lee & Grossmann reformulation for GDP  

 

 Lee & Grossmann [2000] proposed a valid mixed-integer representation of a 

generalized disjunctive program. For the linear generalized disjunctive program in (1.3), 

their reformulation translates into the following mixed-integer program (see also Sawaya 

and Grossmann [2005]): 

 

 

 

. .           

                      

            ,  

     ,   

1                                

{0,1

k

k

k

T
j k jk

k K j J

jk

j J

jk jk jk
jk k

L jk U
jk jk k

jk
j J

jk

Min Z y d x

s t Bx b

x v k K

A v a y j J k K

x y v x y j J k K

y k K

Hy h
y

γ
∈ ∈

∈

∈

= +

≥

= ∈

≥ ∈ ∈

≤ ≤ ∈ ∈

= ∈

≥
∈

∑∑

∑

∑

}                   ,       kj J k K∈ ∈

       (3.11) 

 

 In order to reconstruct the above formulation using disjunctive programming 

theory, we make use of the following theorems from Balas [1985]. The first theorem 

expresses the convex hull of a disjunctive set as the projection of a higher dimensional 

polyhedron onto nR . 

 

Theorem 3.2. (Theorem 3.3 and Theorem 3.4 in [Balas, 1985]). Let 

{ }0,    : ,  n i i
i ii Q

F P P z A z a i Q
∈

= ∪ = ∈ ≥ ∈% %R , where Q  is an arbitrary set and each  0( , )i iA a% %  
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is an ( 1)im n× +  matrix. Furthermore, let the set ( )Qζ  be the set of all those nz ∈ R  such 

that there exist vectors 1( , ) ,  i n
iv y i Q+∈ ∈R , satisfying  

 0

0

0         
0                       ,

1                  

i

i Q

i i i
i

i

i
i Q

z v

A v a y i Q
y i Q

y i Q

∈

∈

− =

− ≥ ∈
≥ ∈

= ∈

∑

∑

% %
                                                                    

where the cone { | 0}n i
qC z A z= ∈ ≥%R  satisfies the condition 

*

,  \ ( * { | })q i i
i Q

C C q Q Q i Q P
∈

⊆ ∀ ∈ ≡ ∈ ≠ ∅∑ . Then  ( ).cl conv F Qζ=  

  

 The next theorem expresses the claim that any disjunctive program that satisfies a 

technical condition on the recession directions of its polyhedra can be represented as the 

mixed-integer program { }( ) : ( ) : {0,1},  .I iQ z Q y i Qζ ζ= ∈ ∈ ∈     

              

Theorem 3.3. (Theorem 3.6 in [Balas, 1985]). Let 

,  * { | },  ** { * | , * \{ }}.i i i ji Q
F P Q i Q P Q i Q P P j Q i

∈
= ∪ = ∈ ≠ ∅ = ∈ ⊆ ∀ ∈  If F satisfies  

    , **i jC C i j Q= ∀ ∈  

and  

    \ *, **q iC C q Q Q i Q= ∀ ∈ ∈  

then  

 ( ) .I Q Fζ =                    

 

We are now ready to reconstruct Lee and Grossmann’s formulation. In the 

following proposition, we show that the formulation in (3.11) obtains from the 

application of basic and parallel basic steps to disjunctive form (2.6).  
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Proposition 3.4: The Lee & Grossmann formulation presented in (3.11) for the linear 

generalized disjunctive program in (1.3) obtains from the application of a series of 2 | |XI  

parallel basic steps and 2 | |k
k K

J
∈
∑  basic steps to the disjunctive form in (2.6). 

 

Proof: Consider the disjunctive form in (2.6). Then a series of 2 | |XI  parallel basic steps 

and 2 | |k
k K

J
∈
∑  basic steps to (2.6) results in the intersection of relevant bounds on 

 and x λ  with ,  ,jk jk
kA z a j J k K≥ ∈ ∈ , as follows:  
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:
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| |

  ,      (3.12)

1
kJ

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪

⎜ ⎟⎨ ⎬⎛ ⎞
⎜ ⎟⎪ ⎪⎜ ⎟
⎜ ⎟⎪ ⎪⎜ ⎟
⎜ ⎟⎪ ⎪⎜ ⎟
⎜ ⎟⎪ ⎪⎜ ⎟
⎜ ⎟⎪ ⎪⎜ ⎟
⎜ ⎟⎪ ⎪⎜ ⎟
⎜ ⎟⎪ ⎪⎜ ⎟
⎜ ⎟⎪ ⎪⎜ ⎟
⎜ ⎟⎪ ⎪⎜ ⎟
⎜ ⎟⎪ ⎪⎜ ⎟≥ −⎜ ⎟⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

     

Since every term kj J∈  of disjunction k K∈  in (3.12) corresponds to a non-empty and 

bounded polyhedron, we can apply Theorem 3.3. This results in the following MIP: 
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. .           

                 ,                                                                    (3.13)

                                       
k

k

T
k

k K

j
jk jk k

j J

jk

j J

Min Z c d x

s t Bx b

u j J k K

x v k K

λ

∈

∈

∈

= +

≥

= ∈ ∈

= ∈

∑

∑
∑

)

)

                                                            (3.14)

                                                                                                 (3.15)

       
k

jk
k

j J

j
jk jk

c w k K

u y
∈

= ∈

=

∑
)

)                , ,                                                          (3.16)

             ,                                                                    (3.17
k

jk jk jk
jk k

j j j J k K

A v a y j J k K

= ∈ ∈

≥ ∈ ∈

) )

)

                 ,                                                                      (3.18)

0                , ,                                                    

jk
j k jk k

j
jk kjk

w y j J k K

u y j j J k K

γ= ∈ ∈

≤ ≤ ∈ ∈
)

)
)

              (3.19)

      ,                                                                     (3.20)

1                                                               
k

L jk U
jk jk k

jk
j J

x y v x y j J k K

k Kλ
∈

≤ ≤ ∈ ∈

= ∈∑                                     (3.21)

1                                                                                                    (3.22)

{0,1}                    

k

jk
j J

jk

y k K

H h
y j J

λ
∈

= ∈

≥
∈ ∈

∑ )

)

,       k k K∈
 

Here, kj J∈
)

 is an alias for kj J∈ . Also, as in the case of the big-M reformulation, the 

above model can be significantly simplified if we observe that ,  ,kjk jky j J k Kλ= ∀ ∈ ∀ ∈) )
)

. 

Indeed,  
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' ' '

'

' '

' '

' '

' '

' ' '

' '

' '

1,  for some ,

1,  , ,  from (3.16)                                           (3.23)

0,  \ ,  from (3.22)
      

     0 0,  \ , ,  
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y j J k K

u j j j J k K

y j j J k K

u j j j J k K

= ∈ ∈

= = ∈ ∈

= ∈ ∈
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)

)

)

)

)

) )

) )

) )

' '

'

' ' ' '

'
'

' '

' '

\

from (3.19)

           0,  \ , ,                                                (3.24)  

We can rewrite (3.13) as

,  ,                
k

j
jk k

j j
jk jk jk k

j j J

u j j j J k K

u u j j J k Kλ
∈

⎧
⎪
⎪⎪
⎨
⎪
⎪
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= + = ∈ ∈∑
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) )

) )

) )
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' ' ' '
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' '
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' '

                                          (3.25)      

,  ,                                                                 

For (3.25)
1 0 1,  ,

k

j j
jk jk jk k

j j J

jk k

u u j j J k K

j j J k

λ

λ

∈

= + ≠ ∈ ∈

= + = = ∈ ∈

∑
) )

) )

)

)

' '

' ' '

' '

' '

 from (3.23) and (3.24)

     0, ,  from (3.21)

Similarly, the above can be shown for 0,  for some , .

jk k

j k k

K

j j J k K

y j J k K

λ⇒ = ≠ ∈ ∈

= ∈ ∈)

)

)

 

Thus, we can replace all instances of λ with y, and remove redundant constraints (3.13), 

(3.16), (3.19) and (3.21). Furthermore, we note that (3.15) and (3.18) can be combined 

into the equivalent expression  

 ,  ,
k

k j k jk
j J

c y k Kγ
∈

= ∈∑             

which we can then substitute into the objective function, thus eliminating , kc k K∈  from 

the program. These modifications lead exactly to the reformulation in (3.11).  

                               ■ 

 

3.3. A family of MIP reformulations for GDP 

 

 It is clear from section 3.2 that the Lee and Grossmann reformulation for the 

linear generalized disjunctive program in (1.3) belongs to a larger family of MIP 

reformulations for linear GDP. Indeed, its feasible region was shown to be a valid MIP 
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representation of the disjunctive program in (3.12), the latter having been obtained from 

(2.6) by a series of basic and parallel basic steps that amounted, in essence, to intersecting 

every term kJ  of every disjunction k K∈  with the relevant bounds on , ,jk kj J k Kλ ∈ ∈  

and x. Thus, it is possible to develop a family of MIP reformulations for linear GDP by 

applying, one at a time, (parallel) basic steps as in (2.3) to the disjunctive form in (2.6), 

and subsequently applying Theorem 3.3 to the resulting form. Equivalently, since these 

basic and parallel basic steps result in the instantiation of certain index sets of the 

formulation in (2.8) (which serves as a template for all possible equivalent forms of 

GDP), it is possible to develop a family of MIP reformulations for  linear GDP by 

transforming (2.8) into a MIP, and then instantiating, one at a time, the index sets of (2.8). 

Doing so, however, raises two issues which warrant mentioning.  

Firstly, when transforming a disjunctive program into a MIP, we need to ensure 

that the constraints within every term kj J∈  and nm J∈  of disjunctions n N∈  represent 

polyhedra that satisfy the conditions (on recession cones) presented in Theorem 3.3.  

Secondly, in cases where ' '| | 1,  , '
mn n

M m J n N> ∈ ∈ , applying Theorem 3.3 to disjunction 

'n N∈  in (2.8) often results in more total binary variables being used than in cases where 

'' ''| | 1,  , '' '
mn n

M m J n n N= ∈ ≠ ∈ . Indeed, the former scenario is a result of intersecting 

proper disjunctive sets in (2.6) through the application of some basic step(s) (we call 

such a basic step a proper basic step), which often leads to the creation of new 

disjunction(s) with many more terms than those of the originally intersected disjunctions. 

In addition, the number of terms of these newly created disjunctions increases 

exponentially with every recursive proper basic step applied to them, resulting in the need 

of an ever increasing number of binary variables to germanely represent the original 

disjunctive program as a MIP. As performing proper basic steps can have substantial 

benefits (as examined in the following section on relaxations of disjunctive programs), 

there is a need to address this issue. Fortunately, Theorem 4.4 in [Balas, 1985] deals 

precisely with this problem. We state it as follows: 
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Theorem 3.5. (Theorem 4.4 in [Balas, 1985]): Let the disjunctive set jj T
F S

∈
= ∩ , where 

each  jS  is a union of polyhedra, be in regular form, and assume that F satisfies the 

conditions of Theorem 3.3. Furthermore, let 0F  be the disjunctive set in CNF consisting 

of those nz ∈�  satisfying  

 0 0( ),     
r

s s

s Q
a z a r T

∈
∨ ≥ ∈          (3.26) 

and let F be the same set in regular form obtained from 0F  by some sequence of basic 

steps, given as the set of nz ∈�  satisfying  

 0( ),     
j

i i

i Q
A z a j T

∈
∨ ≥ ∈ ,         (3.27) 

where every j T∈  would then correspond to some subset 0 jT  of 0T , with 0 0 jj T
T T

∈
= ∪ , 

such that the disjunction in (3.27) indexed by j is the disjunctive normal form of the set of 

disjunctions in (3.26) indexed by 0 jT . Finally, let iM  be the index set of the inequalities 

0
s sa z a≥  making up the system 0

i iA z a≥ . Then the constraint set (3.27) is equivalent to 

the following constraint set 

  

 

0

0
|

0

0             ,

0         , ,

0                       , ,

1                  ,

         , ,

1                ,

{0,

j

j

j i

r

i

i Q

i i i
i j

i j

i
i Q

r
i s r

i Q s M

r
s

s Q

r
s

z v j T

A v a y i Q j T

y i Q j T

y j T

y s Q r T

r T

δ

δ

δ

∈

∈

∈ ∈

∈

− = ∈

− ≥ ∈ ∈

≥ ∈ ∈

= ∈

= ∈ ∈

= ∈

∈

∑

∑

∑

∑

% %
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        (3.28) 

 

in that for every solution to (3.27), there exist vectors 1( , ) ,  ,i n
i jv y i Q j T+∈ ∈ ∈R  and 

scalars 0,  ,r
s rs Q r Tδ ∈ ∈  that together with z satisfy (3.28); and conversely, the z-

component of any solution to (3.28) is a solution to (3.27). 
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Thus, in order to obtain a valid MIP representation that requires as many binary 

variables in cases where ' '| | 1,  , '
mn n

M m J n N> ∈ ∈  as in cases where 

'' ''| | 1,  , '' '
mn n

M m J n n N= ∈ ≠ ∈ , we apply Theorem 3.5 to disjunctions n N∈ . Note that 

in cases where  '' ''| | 1,  , '' '
mn n

M m J n n N= ∈ ≠ ∈ , Theorem 3.5 reduces to Theorem 3.3.  

In light of the issues discussed above, we present the following MIP 

reformulation of (2.8):  
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We note that in the constraints ˆ ,  , ,
jk

n jk

mn jk jk k
m Q

y y n N j J k K
∈

= ∈ ∈ ∈∑ , the index jkn N∈  

represents that disjunction n N∈  that contains the intersected constraints of term kj J∈ , 

k K∈  in some of its terms, while the index set 
jknQ  refers to these latter terms. For 

instance, let 1 11 21( )S P P= ∪  and 2 12 22 32( )S P P P= ∪ ∪  correspond to two disjunctions of 

set K , where 11 21 and P P  represent the constraints of disjunction 1S K∈ , and 

12 22 32,  and P P P  represent the constraints of disjunction 2S K∈ . The application of a 

proper basic step to 1S and 2S  results in the new disjunction 

12 11 12 11 22 11 32 21 12 21 22 21 32( ) ( ) ( ) ( ) ( ) ( )S P P P P P P P P P P P P= ∩ ∪ ∩ ∪ ∩ ∪ ∩ ∪ ∩ ∪ ∩ , where 

12S N∈ . In this case, the set of constraints ˆ ,  , ,
jk

n jk

mn jk jk k
m Q

y y n N j J k K
∈

= ∈ ∈ ∈∑ are 

such that  

 

12 12 12 1

12 12 12 1

12 12 2

12 12 2

12 12 2

1 2 3 1

4 5 6 2

1 4 1

2 5 2

3 6 3

ˆ ˆ ˆ
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ˆ ˆ
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S S S S

S S S

S S S

S S S

y y y y

y y y y

y y y

y y y

y y y

+ + =

+ + =

+ =
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+ =

  

where 
1 2 12 12 1  21 1

12ˆ{1,2},  {1,2,3},  ,  Q {1,2,3},  Q {4,5,6},
S SS S S SjkJ J n S= = = = =))    

12 12 12 1  2  32 2 2
{1,4},  Q {2,5},  Q {3,6}. 

S S SS S SQ = = = Finally, we note that the above MIP 

formulation in (3.29) is in simplified form, in the sense that the variables λ  were 

replaced by the variables y, and redundant constraints 
1

1,  
k

jk S
j J

k Kλ
∈

= ∈∑  were 

eliminated from the formulation while all relevant constraints containing c were 

substituted into the objective function. 
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Section 4. LP relaxations for linear GDP 
 

 A key property of MIP reformulations of GPD problems is the quality of their LP 

relaxations. This section examines a hierarchy of relaxations that can be obtained from 

different MIP reformulations. 

 Having derived different MIP reformulations for the original GDP problem in 

(1.3) from Section 1, it is straightforward to obtain their LP relaxations. In this section, 

we first present relaxations for the Big-M and Lee & Grossmann reformulations in (3.1) 

and (3.11), respectively. We then propose a hierarchy of relaxations based on the concept 

of hull-relaxation that mirror those of Balas [1985], and establish theoretical properties 

regarding the relative tightness of these relaxations. Finally, we discuss the inherent 

trade-offs between size and tightness of reformulations.    

 

4.1. Big-M and Lee & Grossmann relaxations for GDP  

 

 The Big-M and Lee and Grossmann relaxations are obtained by relaxing the 

binary variables in models (3.1) and (3.11), respectively. The Big-M relaxation is then as 

follows [Raman & Grossmann, 1994]: 
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      (4.1) 

The Lee & Grossmann relaxation is then as follows [Lee & Grossmann, 2000]: 
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In comparing the relaxations in (4.1) and (4.2), the following trade-offs can be 

observed. On the one hand, the size of the formulation in (4.2) is considerably larger than 

the size of that in (4.1) because of the addition of disaggregated variables 

,  ,jk
kv j J k K∈ ∈  and convex hull constraints. On the other hand, the projected feasible 

region of the formulation in (4.2) onto the (x,y) space is at least as tight, if not tighter, 

than the feasible region of the formulation in (4.1). The latter is proven in Grossmann & 

Lee [2003] for the general (nonlinear) case. We re-state this claim for the linear case in 

the following proposition. 

 

Proposition 4.1. Let the feasible region of the big-M relaxation in (4.1) be defined as 

BMFR  and that of the Lee & Grossmann relaxation in (4.2) as &L GFR . Furthermore, let us 

define the projection of &L GFR  onto the (x,y) space as  

{ }& &: ( , ) : : ( , , )PL G L GFR x y v x v y FR= ∃ ∈ . Then & .PL G BMFR FR⊆  

 

4.2. A hierarchy of relaxations for GDP 

  

We now present a hierarchy of relaxations for the most general disjunctive form 

in (2.8), based on the concept of hull-relaxation. According to Balas [1985], the hull-
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relaxation of a disjunctive set jj T
F S

∈
= ∩  in regular form, where each jS  is a union of 

polyhedra, is denoted as  h rel F−  and defined as 

   :  .jj T
h rel F clconv S

∈
− = ∩  

The hull-relaxation of F is then the formulation that results from intersecting the convex 

hulls of every union of polyhedra ,  jS j T∈ .  

Following the above concept, we obtain the hull-relaxation of the most general 

disjunctive form in (2.8) by applying Theorem 3.2 to every disjunction in (2.8) – under 

the assumption that every disjunction in (2.8) satisfies the conditions of Theorem 3.2. 

After simplification, we obtain the following:  
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We can now exploit the following theorem by Balas in order to generate a hierarchy of 

relaxations for GDP: 

 

Theorem 4.2. (Theorem 4.3 in [Balas, 1985]): For 0,1, , ,i t= K  let 
i

i jj T
F S

∈
= ∩  be a 

sequence of regular forms of a disjunctive set, such that  

 i) 0F  is in CNF, with 
0

0 jj T
P S

∈
= ∩ ; 
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 ii) tF  is in DNF; 

 iii) for 1, , ,i t= K  iF  is obtained from 1iF −  by a basic step.  

Then, 

 0 0 1    .t tP h rel F h rel F h rel F clconv F= − ⊇ − ⊇ ⊇ − =L  

                     

 It was previously shown that the disjunctive form in (2.6) was in regular form and 

in an intermediary form between the CNF and DNF. Since any form in (4.3) is obtained 

through the application of some (parallel) basic steps(s) which instantiates the various 

index sets previously described, it is clear that every form of (4.3) is in regular form. The 

following corollary thus holds:  

 

Corollary 4.3.  For 0,1,...,| | | | 1i T K= + − ,  let 
iGDPF  be a sequence of regular forms of 

the disjunctive set in (2.8), such that  

 i) 
0GDPF  corresponds to the disjunctive form in (2.6); 

 ii)
| | | | 1

:
T KGDP tF F

+ −
=  is in DNF; 

 iii) for 1, , ,i t= K  
iGDPF  is obtained from 

1iGDPF
−

 by a basic step.   

Then, 

0 ( 2| | 2 | | ) | | | | 1 | | | | 1&     .
I J T K T KX k

k K
GDP L G GDP GDP GDP th rel F FR h rel F h rel F clconv F clconv F

+ ∑ + − + −
∈

− ⊇ = − ⊇ ⊇ − = =L

                    ■ 

 

4.3 Trade-offs between size and tightness of relaxations  

 

As we have seen in the previous section, the relaxations of a disjunctive program 

become tighter as the disjunctive form approaches the DNF through the application of 

(parallel) basic steps. This tightening, however, comes at the cost of an increase in the 

number of variables and constraints in the algebraic reformulation. Although this 

observation holds in the most general of cases, there may be particular cases where we 

can exploit the explicit logical structure of the GDP model such that the problem size of 
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the relaxation can be significantly reduced without compromising tightness. We illustrate 

this in the following example. 

 

4.3.1. Illustrative example (cont’d): synthesis of process network with fixed charges 

  

We rewrite the GDP model in section 1.2.1 as the following disjunctive program (DP1): 
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If we intersect disjunctions (4.4), (4.5) and (4.6) through the application of two 

consecutive proper basic steps, we obtain the following disjunctive program (DP2): 
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If the relaxation of (DP2) is taken as in (4.3), then from Corollary 4.3, it is clearly at least 

as tight as that of (DP1), if not much tighter. On the other hand, it requires a significant 

number of additional variables and constraints relative to that of (DP1) (see Table 1). 

However, if we use logic constraints (4.8)-(4.14) to eliminate those terms of 

disjunction (4.7) that are infeasible, the size of (DP2)’s relaxation can be significantly 

reduced. Indeed, the first and second terms violate constraint (4.14) because 21 0λ =  and 

22 0λ =  from (4.8) and (4.9); the fourth term violates constraint (4.11) and the sixth term 

violates constraint (4.12), because 13 0λ =  from (4.10); and the seventh term violates 

constraint (4.13) because 11 0λ =  and 12 0λ =  from (4.8) and (4.9). Thus, only the third, 

fifth and eighth terms of disjunction (4.7) are feasible, which leads to the following 

disjunctive program (DP3):   
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The above disjunctive program’s relaxation has been significantly reduced in size. Indeed, 

the number of variables for (DP3)’s relaxation is only marginally larger than that of 

(DP1), while the number of constraints is marginally smaller (see Table 1). 

 

Table 1.  

Number of variables and constraints for relaxation of (DP1), (DP2) and (DP3) 
 Number of Variables Number of Constraints 

DP1 24 42 

DP2 57 67 

DP3 27 41 

 

 

Section 5. Disjunctive cutting planes for linear GDP: facets of the hull-

relaxation 

 

 Having derived a hierarchy of relaxations for linear GDP in Section 4, we are now 

interested in generating valid cutting planes for linear GDP by exploiting these 

relaxations. As the hull-relaxations were produced in a higher-dimensional space that 

often requires many additional variables and constraints, we seek to circumvent this 

drawback by generating valid cutting planes in the original space of the problem. We 

begin by describing the family of inequalities implied by the constraint set of GDP as 

described in its most general form in (2.8) from Section 2, and then identify the strongest 

ones amongst them (i.e. facets of the hull-relaxations).  

 

5.1 Valid inequalities 

 

 As previously remarked, we are interested in the family of inequalities implied by 

(2.8), which represents the constraint set of GDP in its most general form. An inequality 

0xβ β≥  is said to be implied by, or is a consequence of, an inequality 0xα α≥  if every x 

that satisfies 0xα α≥  also satisfies 0xβ β≥ . Thus, all valid cutting planes for (2.8) 

belong to this family of inequalities implied by (2.8). A characterization of this family is 

given in the following proposition, which mirrors Balas’ Theorem 3.3.1 in [Balas, 1979]:       
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From Theorem 22.3 in Rockafellar [1970], the inequality 0zΔ ≥ Δ  is a consequence of the 

system of constraints 
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The system of inequalities (5.1)-(5.6) can be simplified as follows: 
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5.2. Facets of the hull-relaxation 

 

 Having described the family of valid inequalities for (2.8), we are interested in 

identifying the strongest amongst them: the facets of the hull-relaxation. Our presentation 

here follows that of Balas in [1979]. Let  
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in the sense that 0zα α≥  is a valid inequality if and only if 
0

#
( )F αα ∈ . We can now 

describe the facets of the hull-relaxation of (2.8) as follows: 
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Proof: From Proposition 5.1, the set 
0

| | | |
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+ +∑⎧ ⎫
= ∈ ≥ ∀ ∈⎨ ⎬

⎩ ⎭
R  is of 

the form claimed above. The rest is a direct application of Balas’ Theorems 5.5 and 5.6 in 

[Balas, 1979]. 

                    ■ 

 

5.2.1. An alternative way of describing facets of the hull-relaxation 

 

 It is possible to describe an alternative system of inequalities to (5.7) that 

corresponds to the facets of the hull-relaxation. We show this in the following proposition 

and corollary: 
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Proposition 5.3. Every facet of ,  0,1,...,| | | | 1
iGDPh rel F i T K− = + −  as described in (5.7) 
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Proof: Let us represent nF  as follows:          
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where ˆ ,  n n NΘ ∈  indexes the facets of nF . Therefore, 
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Corollary 5.4. 0zα α≥  with 0 0α ≠  is a facet of the ,  0,1,...,| | | | 1
iGDPh rel F i T K− = + −  

if and only if 0α ≠  is a vertex of the polyhedron 
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Remark 5.1. The above corollary defines the facets of every individual disjunction 

n N∈ . Thus, although 
| | | |

0
ˆ ,  0,1,...,| | | | 1: : ( , , ) : ,  ,

k
k K

i

n J K
i i

GDP nn N
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+ +

∈

∑⎧ ⎫
− = + − = = ∈ ≥ ∈ ∪ Θ⎨ ⎬

⎩ ⎭
R it is 

clear that every facet of every individual disjunction is not necessarily a facet of 

 ,  0,1,...,| | | | 1
iGDPh rel F i T K− = + − . In other words, there may exist (as is often the case) 

redundant constraints in the description of the hull-relaxation given above.  

 

Section 6. Conclusion 
 

 In this paper, we established novel connections between disjunctive programming 

and linear GDP by providing the disjunctive programming equivalent of a linear GDP. 

We extended Balas’ theory of equivalent forms to linear GDP by making use of the 

above transformation, which allows us to obtain equivalent linear GDP formulations to 

the original linear GDP problem. We developed a family of MIP reformulations for linear 

GDP, and showed that the Lee & Grossmann formulation is a particular instance of this 

family. We then developed a hierarchy of relaxations for linear GDP that mirror those 

developed by Balas for disjunctive programs, and showed that a subset of these hull-

relaxations yields tighter relaxations than the traditional big-M and Lee & Grossmann 

relaxations. We subsequently described the family of inequalities implied by the 

constraint set of linear GDP in its most general form (as presented in section 2.3). We 

then identified the strongest amongst these inequalities (i.e. facets of the constraint set of 

the hull-relaxations), and showed that every facet of the constraint set of the hull-

relaxation can be obtained from the convex hull of some individual disjunction.    

 In a subsequent paper, we develop a novel algorithm that efficiently applies the 

theory developed in this paper to challenging problems in Operations Research and 

Chemical Engineering.  
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