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Abstract 

Since plants that form the network are subject to fluctuations in product demand or 

random mechanical failures, design decisions such as adding redundant units and 

increasing storage between units can increase the flexibility and reliability of an 

integrated site. In this paper, we develop a bi-criterion optimization model that captures 

the trade-off between capital investment and process robustness in the design of an 

integrated site. Design decisions considered are increases in process capacity, 

introduction of parallel units, and addition of intermediate storage. The Mixed-integer 

Linear Programming (MILP) formulation proposed in this paper includes the 

representation of the material levels in the intermediate storage by means of a 

probabilistic model that captures the effects of the discrete, uncertain events. We also 

integrate a superstructure optimization with stochastic modeling techniques such as 

continuous time Markov chains. The application of the proposed model is illustrated with 

two example problems. 
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Introduction 

An integrated site consists of a network of plants or large scale processes (Feord, 2002; 

Kimm, 2008; Wassick, 2009). The overall objective of the integrated site is to transform 

materials supplied from outside of the network into a set of products for which there is an 

external demand. The network structure is determined so that intermediate products can 

be internally produced by some plants and consumed by others.  

Most large-scale chemical integrated sites, such as Dow Texas Operations, have 

gradually evolved from smaller sites. The opportunity to design and build completely 

new integrated chemical sites has appeared fairly recently. The size and scope of some of 

these projects has seldom, if ever, been done before. The risk of integration failures 

(mismatch on capacity, blocking or starving other units, etc.) has a much larger downside 

than with traditional, independent production plants. Of particular concern is the fact that 

uncertain events affect the performance of an integrated site. Some of these are discrete, 

such as process failures, while others are continuous, such as variations in external 

supply, demand, or fluctuations in plant throughput. Under such uncertain conditions, the 

design of integrated sites presents challenges for smooth integration and balancing of 

process availability and capacity. Some design decisions can increase the robustness of 

the integrated site subject to continuous and discrete uncertainties.  

The objective of this work is to develop a systematic method to determine the optimal 

trade-off between capital investment and process robustness in the design of an integrated 

site subject to discrete and continuous uncertainties. The main design decisions 

considered are changes in process capacity, introduction of parallel units, and addition of 

intermediate storage. We use a metric known as expected stochastic flexibility E(SF) to 

quantify the robustness of the integrated site. E(SF) is a probabilistic measure of the 

system’s ability to tolerate continuous and discrete uncertainties (Straub & Grossmann, 

1990).  

Other authors have studied the problem of addressing reliability or availability of a 

process at the design stage. Pistikopoulos et al. (1996) addressed the simultaneous design 

and maintenance optimization problem. They introduced a flexibility-reliability index 

(FRI) that has the same definition as the expected stochastic flexibility of Straub & 

Grossmann (1990). Pistikopoulos et al. (2001) simultaneously solved the production 
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planning and maintenance planning problem for multipurpose batch process plants. They 

define system effectiveness as the criterion that balances increased revenues from process 

availability improvements and increased maintenance. In a later work, Goel et al. (2003) 

extended the system effectiveness approach to incorporate the initial availability of each 

process in the system as a degree of freedom. Sherali et al. (2008) studied the optimal 

allocation of risk-reduction resources using an event tree representation. Some resources 

are used to prevent events in the tree from happening, while others are used to minimize 

the loss once the events occur.  

Straub & Grossmann (1993) proposed a mathematical formulation for maximizing 

stochastic flexibility (SF) at the design level. In this approach, the feasible region is 

determined by the choice of the design variables. The stochastic flexibility is 

approximated using a set of quadrature points that are placed adaptively inside the 

feasible region. This approach requires the solution of a large nonlinear program (NLP). 

Bansal et al. (2000, 2002) proposed a parametric programming approach to quantify 

stochastic flexibility. The authors derive a set of parametric solutions dependent on 

design and uncertain parameters, and a corresponding set of regions where those 

solutions are optimal.  

Davies and Swartz (2008) studied the effect of intermediate storage on the performance 

of a continuous process under random failures. Their approach relies on generating 

failure scenarios and optimizing buffer levels over these scenarios using an economic 

objective function.  Cheng et al. (2003) addressed the problem of design and planning 

under uncertainty. Their work is similar to the one presented in this paper in that both 

involve multi-objective optimization under uncertainty. They modeled discrete 

uncertainties using a Markov decision model where the states of the system depend on 

external uncertain conditions (available processing technologies) and internal control 

decisions (number of processing units and type of catalyst). A two-stage stochastic 

programming problem is solved at each discrete state, where the first stage decisions are 

given by the process design, and the second stage decisions are related with production 

planning. These authors also included the possibility of modifying the design of the 

process in different time periods as more information becomes available. Our work 

addresses some points not considered by Cheng et al. (2003). We consider inventory as a 
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way of hedging against uncertainty, and we allow the infeasible operation through the use 

of the stochastic flexibility index. Also, the source of uncertainty in our work is both 

external (demand and supply) and internal (random unit failures). 

  The work presented in this paper makes three contributions to the related fields. First, it 

proposes a bi-criterion Mixed-integer Linear Programming (MILP) formulation for the 

maximization of expected stochastic flexibility E(SF)  and minimization of investment 

cost. For the evaluation of the expected stochastic flexibility, the basic idea relies on 

considering fixed quadrature points and using auxiliary 0-1 variables to determine 

feasibility/infeasibility of operation. Second, it integrates the effect of intermediate 

storage to the design framework for evaluating and optimizing expected stochastic 

flexibility E(SF), a nontrivial task given that no explicit timing considerations are 

included in existing formulations for optimizing either the E(SF) or the FRI. The basic 

idea here relies on the use of Markov chains and basic random process theory to capture 

the discrete-event nature of the problem. Third, in contrast to considering a fixed network 

structure as has been done in the past, our work also considers the integration of 

superstructure optimization with the Markov chain model of discrete events in the 

determination of optimal E(SF). We illustrate our approach with a simple example from 

the literature and with an industrial case study.  As a result of applying our methodology 

to these examples, trade-off curves of optimal expected stochastic flexibility vs. capital 

investment are obtained. 

 

Background 

Stochastic flexibility 

The general mathematical model of a process can be defined as follows: 

0),,,( ydxh           (1) 

0),,,( ydxg           (2)  

where 

x : continuous process variables 

d : design variables 

 : uncertain parameters 

y : binary parameter used to include the effect of failures in the processing units. 
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In this work, we only deal with linear equations and inequalities. An example of such a 

case is shown in Figure 1 where F corresponds to the feasible region. The contours of the 

joint probability distribution for uncertain parameters 1  and 2  are the ellipses in the 

figure.  The stochastic flexibility (SF) is the cumulative probability of the joint 

distribution that lies within the feasible region (Straub & Grossmann, 1990).  

 

 

 

 

 

 

 

 

Fig. 1 Stochastic flexibility of a feasible region F defined by a set of linear constraints  

 

The size of F is a function of the design variables. In the case of an integrated site; 

parallel units, extra capacity additions, and intermediate storage, have the potential to 

enlarge the size of F (i.e. operation is feasible for a larger range of uncertain parameter 

values). 

 Stochastic Processes 

A stochastic process is a collection of random variables that are all defined on the same 

probability space and indexed by a real parameter (Heyman and Sobel, 1982). We denote 

a stochastic process by TttX );( , where T  is a set of numbers that indexes the random 

variable )(tX . For this work, t  refers to time and T  to the range of times being 

considered. In this context, )(tX is the value of the process at time t . When T  is finite or 

countable infinite, it is said to be discrete; otherwise it is called continuous. The state 

space of the process S  is the set of possible values for )(tX . We call the values 

Ss states. When S  contains a finite or countable infinite number of states, it is said to 

be discrete, otherwise, it is called continuous. For any state Ss  and any time Tt  , if 

stX )( , we say that the process is in state s  at time t . The terms stage and epoch are 

sometimes substituted for time, especially in discrete time processes.  

FF

1

2
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Continuous time Markov chain 

The stochastic process  0);( ttX  is a continuous-time Markov chain with state space 

IntegersS   if each )(tX assumes values only in S  and  

   nnnnnn itXjtXPitXitXjtXP   )(|)()(,...,)(|)( 1001   (3) 

where  P  represents the probability of the event inside the brackets. The conditional 

probability notation  BAP  means the probability of A  given B . This is the memory 

less property; that is, the future states of a system are independent of all past states except 

for the immediately preceding one (Billinton and Allan, 1992).  

Availability problems in process networks subject to random failures can be modeled as 

continuous time Markov chains. The state space of these systems is made up of all the 

different combinations of failures in the network. Each one of these combinations is 

called a discrete state. For example, a two processing unit network is subject to random 

failures that can completely shut down each of the two units. Failure 1 ( 1F ) affects the 

first unit and failure 2 ( 2F ) the second. The state space of the system is 

        2121   ,,, FandFFFno failureS  ; each of the elements in S  is a state. The system 

transitions between states when a failure occurs or when a failure is repaired. In 

continuous Markov chains, each transition is described by a rate. The probability that the 

system transitions from the )(no failure state to the ( 2F ) state depends on the probability 

of failure of the second unit. When the failure probability is described by an exponential 

distribution, then the failure rate of that distribution corresponds to the transition rate 

from the )(no failure state to the ( 2F ) state. Figure 2 shows a useful way of representing 

the continuous time Markov chain by means of a state space diagram and its 

corresponding transitions. If the states of a system and the rates of transition between 

them are specified (failure and repair rates), we can use straightforward and well known 

“frequency” and “duration” techniques to obtain important information about the system 

(Billinton and Allan, 1992). Namely, for state s , we can calculate the long term 

probability ( sprob ) of finding the state, mean residence time ( smrt ), frequency of 

encounters ( sfr ), and the cycle time for the reappearance of the state ( stc ). We illustrate 

these techniques for the two-unit system in Figure 2. 
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Fig. 2 Space state diagram for a two component system 

 

Suppose the two units in the system are subject to one type of random failure that shuts 

them down completely. The time to failure mTTF  and time to repair mTTR  for each unit 

m  are probabilistic quantities that follow an exponential distribution. As part of the 

reliability data of the system we are given the mean time to failure mMTTF  and mean 

time to repair mMTTR .  The failure rate m and repair rate m that characterize the 

exponential distributions are the reciprocals of the  mMTTF  and mMTTR   respectively. 

The repair rate represents the total number of repairs divided by the total down time. The 

equations that allow us to calculate sprob , smrt , sfr  , and stc from the knowledge of the 

possible system states (Figure 2) and the transition rates between them ( m and m ), as 

presented by Billinton and Allan (1992),  are as follows. 

The probability of finding any unit m  in a failed state is 
mm

m

mm

m

MTTFMTTR

MTTR








, 

and the  probability of finding it active is 
mm

m

mm

m

MTTFMTTR

MTTF








.  The states in 

Figure 2 involve combinations of failed and active units. The probability of finding each 

of the states in the figure can be calculated by independent combinations, as shown 

below: 

1
NO 
failure

3
Failure 

2

4

2

1

1

2 2

1

1

2 2

: failure rate

: repair rate

Failure 
1

Failures 
1 AND 2
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))(( 2211

211





prob            (4-1) 

))(( 2211

212





prob         (4-2) 

))(( 2211

213





prob         (4-3) 

))(( 2211

214





prob         (4-4) 

The frequency of encountering each state s , sfr , is calculated as the probability of 

finding s , sprob , times the rate of departure from s . The rate of departure is the 

summation of all the rates that leave the state. For instance, the rate of departure from 

state 1 in Figure 2 is 1 +  2. Thus, 

)(
))(( 21

2211

211 






fr        (5-1) 

)(
))(( 21

2211

212 






fr        (5-2) 

)(
))(( 21

2211

213 






fr        (5-3) 

)(
))(( 21

2211

214 






fr        (5-4) 

The cycle time between individual states ( stc ) is the reciprocal of the frequency of 

encounters:  

s
s

fr
tc

1
           (6) 

Finally, the mean duration or residence time in state s  ( smrt ) is calculated as the 

probability of finding s divided by the frequency of encounters:  

s

s
s

fr

prob
mrt           (7) 

Problem Definition 
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The problem that we address in this paper can be stated as follows. We are given 

a set of finished products with a demand that is either deterministic, or given by a 

specified probability distribution. The raw materials and the intermediate products 

involved in the integrated production site are known. The supply of raw material can also 

be deterministic, or given by a specified probability distribution. There are a 

predetermined number of steps involved in the transformation of raw materials to 

intermediate and finished products. Each of these steps is carried out by a different plant 

that can have multiple production units. Plants are connected through the flow of 

intermediate products between them. The network formed by the plants and their 

connections represents an integrated site as shown in the example in Figure 3.  

 

 

 

 

 

Fig. 3 Integrated Site for the production of Products C and F. 

 

The plants in the integrated site are subject to random failures that result in corrective 

maintenance. As a result, plants experience some amount of down time during which 

production is decreased or stopped all together. Since plants are interconnected in the 

integrated site, a failure event will propagate downstream or upstream, forcing some 

other plants to decrease or stop their production. In Figure 4 the dotted lines correspond 

to the flows that are affected by the failure of Plant 4. If these events are not considered 

while designing the integrated site, there is a risk that product demand will not be 

consistently met.  

 

 

Fig. 4 Propagation of a plant failure in an integrated site 
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We consider three types of design variables that have an impact on the flexibility and 

reliability of an integrated site. These variables are the sizing of intermediate storage, the 

potential addition of parallel production units to each plant, and the increase of plant 

capacities. Figures 5 and 6 illustrate addition of parallel units and intermediate storage.  

 

 

 

 

 

Fig. 5 Process redundancies 

 

 

 

 

 

 

 

Fig. 6 Intermediate storage between plants in the network 

A well designed integrated site maximizes the probability of consistently meeting the 

production requirements for a fixed available capital investment. 

The problem can be stated more precisely as follows. 

We are given:  

 The superstructure of an integrated site with all allowable parallel production 

units in each plant and intermediate storage tanks. 

 A set of materials that the plants consume and produce. 

 Mass balance coefficients for all units in the superstructure. 

 Base processing capacity and a range for extra capacity increments for each unit. 

 Supply of raw materials and demand for finished products (constant or described 

by a probability distribution). 
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 Number of failures, associated production rate reductions, and the mean time to 

failure MTTF  and mean time to repair MTTR  that completely specify the 

exponential distributions of failure and repair times. 

 A set of frequency and duration equations that allows us to calculate the cycle 

time tc , mean residence time mrt , and frequency of encounters fr , for all the 

possible states in the system, based only on the knowledge of the MTTR  and 

MTTF  of the units in the superstructure (Billinton and Allan, 1992). These 

equations were explained in the background section of this paper.  

 A continuous range of tank sizes for intermediate storage. 

 A cost function that relates design decisions with capital investment. 

The problem is to determine: 

 For each plant, the number of production units. 

 For each plant, the capacity increment for each unit above the base capacity.  

 Sizes of intermediate storage between plants. 

Subject to:  

 Mass balances. 

 Process specifications. 

 Bounds on production capacity and tank sizes. 

The objective is to determine the set of Pareto-optimal solutions that: 

 Maximize the expected stochastic flexibility. 

 Minimize the capital investment. 

The following assumptions and simplifications are made: 

1. Unplanned down time is the result of random and independent failure events. 

2. TTF and TTR  have exponential distributions. In the case that TTR  follows a normal 

distribution the Markov chain approach is no longer rigorously valid. However, we 

claim that the Markov chain model is a useful approximation for analyzing the long 

term behavior of the Integrated Site. We quote Billinton & Allan (1992) on this point: 

“It has been stressed […] that, although the assumption of exponential distributions 

may have been made, the results and equations are equally applicable to all 
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distributions if only the limiting state or long term average values are being 

evaluated for systems containing statistically independent components.” 

3. Preventive maintenance is not included. 

4. The design cost function is linear. 

5. Each plant can be modeled in terms of one output product. The production of all other 

products is proportional to the main output. Mass balance coefficients can be used to 

specify that the main product can only use a fraction of the total plant capacity.   

Maximizing the expected stochastic flexibility and minimizing the capital investment 

yields a bi-criterion optimization problem. The results of this bi-criterion optimization in 

the form of a Pareto-optimal curve can be obtained by maximizing the E(SF) for various 

fixed values of capital investment (i.e. -constrained method (Ehrgott, 2005)). 

Mathematical model 

Maximization of expected stochastic flexibility 

In the background section, we reviewed the concept of stochastic flexibility (SF). 

In this section, we introduce expected stochastic flexibility E(SF) as presented by Straub 

and Grossmann (1990). We then describe our new approach to maximizing E(SF) in 

process systems. For the sake of simplicity in the notation, we use only two uncertain 

parameters ( 1 , 2 ) described by a joint probability distribution j( 1 , 2 ).  The two 

uncertain parameters will be discretized using ),...2,1( 111 Kkk   and 

),...2,1( 222 Kkk  quadrature points. Any point in the ( 1 , 2 ) space is described by a pair 

( 21,kk ), where 1k  and 2k  denote the indices of the quadrature points for 1  and 2  

respectively.   

Discrete uncertainties related to possible failures of the production units are 

captured through the discrete states ),...,2,1( Sss  . Each discrete state is described by a 

set of failures in the processing units in the system. Mathematically this is represented by 

the binary parameter vector sy  that has as many elements as the total number of possible 
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failures in all the units of the system. A zero value in a certain position of the sy  vector 

denotes that a failure is present or occurring when the system is in discrete state s .  

Equations (1) and (2) describe a general process model. These equations can be written 

for each point ( 21,kk ) and each discrete state s :  

0),,,,(
22112121 s

kk

s
kk

s
kk ydxh         (8)  

0),,,,(
22112121 s

kk

s
kk

s
kk ydxg         (9) 

We introduce a non-negative slack variable u , and a binary variable w  associated with 

each discrete point ( 21,kk ) in each state s . If the point ( 21,kk ) lies inside the feasible 

region corresponding to state s , the binary variable s
kkw 2,1  takes a value of one and the 

slack is zero as given by equations (10) - (14). Infeasibility leads to a nonzero slack, 

which in turn removes inequality (12). The parameter M in equation (12) corresponds to 

a valid upper bound for the left hand side of equation (11). 

For each 

11 ,...2,1 Kk  ; 22 ,...2,1 Kk  ; Ss ,...,2,1  

we have: 

 0),,,(
21 212121 ss

kk
s

kk ydxh
kk

         (10)  

s
kk

ss
kk

s
kk uydxg

kk 21212121 ),,,(
21

        (11)  

)1( 2121
s

kk
s

kk wMu           (12)  

021 s
kku           (13) 

}1,0{21 s
kkw           (14)  

Assuming a given quadrature formula for approximating the integral in the stochastic 

flexibility (e.g. Gaussian quadrature), we calculate the probability 21kk  associated with 

each point ( 21,kk ) as follows: 

),(
2

)(

2

)(
2211

2211
2121 kk

LULU

kkkk j  


      (15) 

where i  is the weight of the thi  quadrature point. U
i

L
i  ,  are lower and upper bounds 

of the uncertain parameters. Note that these bounds are independent of the feasible 
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region. For instance, normally distributed parameters can be bounded by the average 

value minus and plus four standard deviations. ),(
21 21 kk

j   is the value of the joint 

probability distribution at the point ( 21,kk ). 

For a given state s , the stochastic flexibility can be computed as:  


 


1

11
21

2

12
21

K

k

s
kk

K

k

s
kk

s wSF          (16) 

Figure 7 illustrates our approach for calculating the stochastic flexibility.  

The objective of maximizing the expected stochastic flexibility E(SF) can now be defined 

as follows, 

            
 


1

11
21

2

12
21

1

)(max
K

k

s
kk

K

k

s
kk

S

s

s wprobSFE       (17) 

Here sprob is the probability of finding the system in discrete state s after a long time of 

operation. sprob  can be calculated from the reliability data of the integrated site; it is a 

parameter in the optimization formulation. Equation (17) is used as one objective 

function for the bi-criterion formulation developed in this work. 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Stochastic flexibility by discretization of uncertain parameters 

 

The formulation described by equations (10) – (14) and (17) results in a problem that 

grows exponentially with the number of uncertain parameters and number of elements in 

the y  vector (i.e., the number of possible failures in the integrated site).  Therefore, 

algorithmic techniques are required for the solution of large-scale problems with this 
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formulation. The need to check feasibility for every state and every collocation point 

might be avoided by using bounding search procedures (Straub and Grossmann, 1990) 

and logic cuts (Hooker et al., 1994). The focus of this paper, however, is the development 

of our formulation and its integration with intermediate storage modeling and 

superstructure optimization. We will address the solution of large-scale problems in a 

future paper.   

Integrated site process model 

So far we have used a general process model. In this section, we describe the particular 

model we use for integrated sites. The continuous process variables x  in equations (1) 

and (2) are material flows. As seen in Figure 8, the variable ps  corresponds to the 

process streams that feed the units; the variables f  and flow are the remaining flow 

variables ( flow  are inputs/outputs for each plant, f are internal flows). The design 

variables d  in (1) and (2) correspond to production unit extra capacity additions pc , the 

binary variable associated with installation of a parallel production unit z , the storage 

tank volume v  and the average inventory level inv . The yield coefficients, the base 

processing capacity of each unit, and upper and lower bounds for all variables are 

deterministic parameters. The uncertain parameters   in (1) and (2) are the raw material 

supply RM  and demand of finished products DF . In the following section, we describe 

the process network model for the integrated site corresponding to equations (8) and (9).  

Let  Jj ,...,2,1  refer to a set of large-scale chemical processes or plants, and  

Nn ,...,2,1  refer to the products consumed and produced by all the plants. The 

superstructure of the integrated site considers jMm ,...,2,1  parallel production units for 

each plant j .  Every plant j  has an intermediate storage tank for product n , described 

by its total volume njv ,  and its average inventory level njinv , . Both of these quantities 

will take the value of zero if no storage is required. Figure 8 shows the basic building 

block for every plant j  in the superstructure. We use the variable jf  to represent 

material flows within the block corresponding to plant j  (e.g. the flow from the 

production units to the storage tank) and jjflow ,' to represent the flow that goes from 
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plant 'j  to plant j . The variable mps stands for processing stream fed to each production 

unit m .  

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Building block for plant j in the integrated site  

 

Finally, we have a set of Ss ,...,2,1  discrete system states, and sets 11 ,...,2,1 Kk   and 

22 ,...,2,1 Kk   of quadrature points for uncertain parameters 1  and 2 . The following 

equations describe the material balance for the building block shown in Figure 8.  

22112,1,,
'

2,1,,,,' ,,,      
'

KkKkSsJjpsflow
jj jj Mm

kksm
FEEDj INPUTOUTPUTn

kksnjj 











 
 

 (18) 

2211,

'
2,1,,,,'

'
2,1,,,,

,,,,,      
 

 '

KkKkSsNrefnNnJj
flow

flow

j
n

nj

FEEDj
kksnjj

FEEDj
kksnjj

j

j 






    (19) 

22112,1,,,2,1,, ,,,,            KkKkSsOUTPUTnJjfps j
P

kksnj
Mm

kksmm

j




  (20)  

KkKkSsOUTPUTnJjfff j
B

kksnj
IN

kksnj
P

kksnj  2112,1,,,2,1,,,2,1,,, ,,,,             (21) 

KkKkSsOUTPUTnJjffflow j
PRODj

B
kksnj

OUT
kknjkksnjj

j




211
'

2,1,,,2,1,,2,1,,,', ,,,,      

(22) 

 

KkKkSsOUTPUTnJjJjflow jkksnjj  21'2,1,,,,' ,,,,,'                   0  (23) 

Unit 1 

Unit 2

Inter. 
Tank j

Unit Mj

Sum over all 
plants j’ that 
feed plant j

2ps
P
jf

1ps


 jFEEDj

jjflow
'

,'

...
...

...

jMps

B
jf

IN
jf OUT

jf


 jPRODj

jjflow
'

',

Sum over all 
plants j’ that 
receive product 
from plant j
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In equation (18) the set jFEED   contains all upstream plants that feed material to plant 

j . jINPUT  and jOUTPUT  are subsets of N  corresponding to the materials consumed 

and produced by plant j . The set jM  contains the parallel units m  postulated for plant 

j . The variable 2,1,,,,' kksnjjflow  represents the flow of product n  from plant jFEEDj '  

to plant Jj , during state s  and in quadrature point ( 21,kk ). The variable 2,1,, kksmps  

represents the flow supplied to the thm  production unit in plant j  ( since jMm ) 

during state s  and in the quadrature point ( 21,kk ). In equation (19), n
nj ,  is the mass 

balance coefficient for product n  in plant j  using product n  as reference. For example, 

if plant 1 consumes two tons of raw material B for each ton of raw material A, then 

1,1 A
A  and 2,1 A

B .  The parameter m  in equation (20) is the yield coefficient for 

production unit m , while the variable P
kksnjf 2,1,,,  represents the total flow of product 

jOUTPUTn  out of the M  parallel units in plant j .  In equation (21), the flow into the 

storage tank is represented by IN
kksnjf 2,1,,, . The flow that bypasses the storage tank is 

represented by B
kksnjf 2,1,,, . 

In equation (22), the set jPROD  contains all the plants that use the product of plant j . 

The variable OUT
kksnjf 2,1,,, represents the flow out of the storage tank. The net flow from plant 

j  to other plants jPRODj '  in the network is 2,1,,,', kksnjjflow .Equation (23) sets equal to 

zero the flows of the products n that are not produced by plant 'j . 

More constraints can be added for process specifications. The most common of them is 

the specification to consume no more than the maximum supply of raw materials and to 

produce at least all the finished product that is demanded. These constraints are written 

below. 

22111,2,1,,,,supplier ,,,RAW            
supplier

KkKkSsNnRMflow kn
PRODj

kksnj 


 (24) 

22112,2,1,,,consumer, ,,,FINISHED   
consumer

KkKkSsNnDFflow kn
FEEDj

kksnj 


 (25) 
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The set RAW  is a subset of products corresponding to externally supplied raw materials. 

The set FINISHED  contains the finished products sent to external consumers. The model 

considers one external supplier and one external consumer per product n . In practical 

problems there might be many suppliers and consumers, but we assume that their 

behavior can be summed into one large supplier and one large consumer.  The sets 

supplierPROD  and consumerFEED include the plants that use the externally supplied raw 

materials and that feed the external consumer, respectively. The supply of raw material 

RAWn to plant j  is labeled njflow ,,supplier  and the flow of finished product 

FINISHEDn from plant j  is labeled nj,flow ,consumer . 

1,knRM  is a parameter that indicates the external supply of n  in collocation point k1; 

2,knDF  is a parameter that indicates the amount of finished product n  demanded in 

collocation point 2k . The non-negative slack variable s
kku 2,1  is added to equations (24) 

and (25), and the feasibility of the point ),( 21 kk in state s  is determined through the use 

of the binary variable s
kkw 2,1 . 

2211211,2,1,,,,supplier ,,,RAW     
upplier

KkKkSsnuRMflow ,ks,kkn
PRODj

kksnj

s




 (26) 

22112,1,2,1,,,consumer,2, ,,,FINISHED 
consumer

KkKkSsnuflowDF kks
FEEDj

kksnjkn  


 (27) 

KkKkSswMu s
kk

s
kk  2112121 ,,            )1(      (28)  

KkKkSsu s
kk  2112,1 ,,            0       (29)  

KkKkSsws
kk  21121 ,,            }1,0{       (30) 

 

Representation of random failures 

Plant Jj in the integrated site can consist of multiple parallel production units 

jMm . Let 
Jj

jMM


 be the set of all units in the integrated site. Every unit Mm is 

subjected to random failures. Some of them are partial failures that decrease the 

production rate, while others are total failures that cause complete unit shutdown. Let 

mL,...,2,1l  be the different types of random failures that arise in unit m . The set 
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
Mm

mLL


  contains the possible failures of all the units in the integrated site. Each failure 

Ll  is characterized by a production rate decrease (or rate cut) lrc , an exponential 

distribution for time to failure lTTF , and a normal or exponential distribution for time to 

repair lTTR . Recall that in the Problem Definition section we presented the Markov 

chain model as a useful approximation of the average behavior of the system for long 

operating horizons, even if the lTTR  does not follow an exponential distribution. The rate 

cut, which ranges between 0 and 1, describes the fraction of the maximum capacity that is 

lost during the failure. A rate cut of 1 indicates total failure. All the rate cut information 

and distribution parameters are given as part of the reliability data of the units. At any 

point in time there can be a combination of failures occurring in the Mm units in the 

network. The combination of failures at any instant is called a discrete state of the 

integrated site. The set Ss ,...,2,1 ,  is used to refer to such states. The binary vector sy  

has an element for each of the possible failures of each of the production units in the 

integrated site. Since a unit can experience more than one type of failure, the vector sy  

can have more than one element per production unit. This vector contains a 1 for each 

failure that does not occur as part of state s , and a 0 in the position associated with a 

failure that occurs as part of state s . Note that sy is a fixed parameter. The next equation 

describes the effect of failures on the capacity of the plants in the network: 

  22112,1,, ,,,,   ))(1(1)( KkKkSsLMmrcypcbcps m
s

mmkksm  lll  (31) 

2,1,, kksmps  represents the flow supplied to the thm  production unit during state s  and 

quadrature point ( 21,kk ). The parameter mbc  is the base processing capacity of unit m . 

The design variable mpc  represents extra capacity additions. The parameter syl  is the 

value assigned to vector sy  in the position corresponding to thl  failure in the thm  

production unit (since mLl ).  Finally, lrc  is the rate cut corresponding to failure l . 

The long term probability of having failure l   in the integrated site at any instant is given 

by (Billinton and Allan, 1992): 
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ll

l
l MTTFMTTR

MTTR
p


         (32)  

The long term probability of finding the integrated site in state s  is given by: 

   
 


0: 1:

)1(
s sy y

s ppprob
l ll l

ll         (33) 

The integrated site is continuously transitioning between discrete states. This behavior is 

modeled as a continuous time Markov chain where each state s  corresponds to a cycle 

time stc , frequency sfr , and mean residence time smrt . As explained in the background 

section, all these quantities can be calculated from the MTTR  and MTTF of the units in 

the integrated site and can be considered given parameters. 

 

Modeling of intermediate storage 

The flows in and out of the intermediate storage tank after process j are represented by 

the variables IN
kksnjf 2,1,,, and OUT

kksnjf 2,1,,, . To represent the difference between these flows, we 

define the decision variable OUT
kksnj

IN
kksnj

S
kknj ff 2,1,,,2,1,,,2,1,,  . For the sake of simplicity, in 

most of this section we use the notation S , and later use it in full indexed form. The 

transitions between discrete states Ss  are described by a continuous time Markov 

process. The bounds on the feasible rate of depletion or replenishment of the inventory 

S  during state s  depend on the duration of the state, the amount of material in the tank, 

and the available storage volume at the beginning of state s . Not all of these quantities 

are deterministic. The duration of s  follows a probabilistic distribution determined by the 

time to repair TTR  and time to failure TTF  of the units in the integrated site. The 

material and available space depend not only on the size of the tank, but also on the 

sequence of states that brought the system to state s . Figure 9 shows one possible 

trajectory for the system. The x-axis corresponds to time. The points in this axis are those 

instants in which the system transitions between states. We will denote these instants 

epochs. The y-axis shows the inventory levels as a function of time or epochs. The slope 

between epochs i  and 1i represents the rate of consumption or replenishment of the 

inventory during the state s  resided in during the interval ii tt 1 . This interval is also the 
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residence time srt  in state s . Note that the states Ss  refer to the discrete states of the 

continuous time Markov process described by failure and repair events in the integrated 

site. The amount of materials iX  consumed or accumulated during the interval ii tt 1  

while the system is in state s  is given by, 

iisirtX isisi epoch at  state  the toingcorrespond )( and ,            )()(      (34) 

iX  is a random variable since the residence time )(isrt  in state )(is , that is ii tt 1 , 

depends on the TTR  of the failed units, and the TTF  of the active units in state )(is . 

Both, TTR  and TTF  are described by probabilistic distributions. The inventory level at 

the time )(qt  corresponding to the start of the thq   epoch, is given by the following 

equation: 











1

1

)()(
0

1

1

))((
q

i

isis
q

i

i
o rtinvXinvqtinv       (35) 

Note that such a definition of ))(( qtinv  involves a summation of random variables, 

making ))(( qtinv  also a random variable. 

 

 

 

 

 

 

 

 

 

 

Fig. 9 One possible sequence of states and the corresponding inventory levels in an intermediate tank 

 

We now relate the mean inv   and standard deviation sd  of the inventory level after a 

long time of operation ( )(qt ) to the properties of the states Ss  known “a priori” - 
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the mean residence time smrt , frequency of encounters sfr , and cycle time stc  - and the 

values of the decision variables s and 0inv .  

Since the expectation of a sum of variables is equal to the sum of its expectations 

(Uspensky, 1937), we calculate the mean inventory level as: 











1

1

)()(
0

1

1

)()( )()())((
q

i

isis
q

i

isis
o mrtinvrtEinvEqinvEinv     (36) 

where smrt  is the mean residence time of state s . 

The crucial step that follows is changing the summation over epochs 1,...,2,1 q into a 

summation over states s . In this work, we are interested in the stationary behavior of the 

system where t . After a long time of operation )(qt , each state will be 

encountered tfr s  times. In practice, t  is a value long enough that allows the Markov 

process (of random failures and repairs) to achieve the stationary state. Equations (37) 

and (38) will show that the expected inventory level ( inv ) is not sensitive to the exact 

value chosen for t . Recall that sfr  can be calculated as the probability of finding the 

state sprob  times the rate of departure from the state. The way in which the frequency 

sfr  is calculated from the reliability information of the units in the integrated site is 

described in detail in the background section. Using this information, equation (36) 

becomes: 





Ss

sss
o tfrmrtinvinv          (37) 

To make sure that inv  remains bounded and kept close to 0inv  as )(qt , we add the 

following constraint: 

0
Ss

sss frmrt          (38) 

Equations (37) and (38) imply that as t , 0invinv  . These equations are important 

because they relate the amount of inventory consumed or accumulated in each state s  as 

the plants undergo failure and repair events, to a long term average inventory level. To 

incorporate the effect of quadrature points, equation (38) is substituted by the following 

two equations: 
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NnJjSss
kknj

Kk Kk
kk

s
nj   

 

,,            2,1,,
11 22

2,1,      (39) 

NnJjfrmrt
Ss

sss
nj 



,                 0,       (40) 

where 21 ,kk  are the indices of the quadrature points of the uncertain parameters (only 

two parameters are used for consistency with equations (10) – (14), (17), but the model is 

not limited to this number of parameters) and 2,1 kk  is the probability of the quadrature 

point ( 21 ,kk ).  
s

nj ,  is the average rate of consumption or accumulation in the storage 

tank  during state s . The inventory level, modeled as a random process in equations (35) 

– (40), is similar to the well-known model of random walks (Heyman and Sobel, 1982). 

In our formulation we have to account for the fact that the “walk”, or in other words the 

inventory level, is not unbounded.  

We derive the standard deviation sd  in an analogous way as the expected inventory 

level. Refer to equation (35) and recall that )(tinv is a random variable, and that it 

includes a summation where the residence time in each state srt  appears. We use the 

following definition for the variance of a sum of random variables (Uspensky, 1937) : 

 



ji

ji
Ii

i
Ii

i YYCOVARYVARYVAR ),(2)()(      (41) 
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


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1
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q

i

isis

o rtinv  . Since the residence times in each 

state ( srt ) are independent, the COVAR  term in equation (41) is equal to zero, yielding, 
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









q

i

isis
q

i

isis
rtVARrtVARinvVAR       (42) 

We can change the summation over epochs 1,...,2,1 q into a summation over states s  as 

in equation (37), so that equation (42) becomes: 

)()(
2

s

Ss

ss rtVARtfrinvVAR 


  ,       (43) 

It then follows that the standard deviation is: 

 )())(( invVARqinvsdsd )(
2

s

Ss

ss rtVARtfr


 .    (44) 

In order to keep the optimization model linear, we use the following overestimation of sd, 
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~2

)()( sdrtVARtfrrtVARtfrsd
Ss

ssss

Ss

ss  


 ,    (45) 

where ss SDrtVAR )( . sSD can be determined from the reliability data of the 

integrated site. In the case where the TTF  and TTR  follow exponential distributions, the 

variance of the residence time srt  is equal to its mean; that is, ss mrtSD  . In the 

second numerical example presented in this paper, we use the simplification 

ss mrtSD   even though the TTR  follows a normal distribution. We are aware that this 

is not the exact variance for a normal distribution, but given that we are only using 

approximate formulas for the variance and standard deviation of the residence time (i.e., 

equation 45) we assume this simplification to be a first approximation to the behavior of 

the system.  

Recovering the full indices of the decision variables, the equation for determining an 

overestimation of the standard deviation of the inventory level ( inv ) as t  is given as 

follows:  

NJ,njtfrSDsd
Ss

ss
nj

s
nj 



             ,

~

,       (46) 

Notice that there is a term t  in equation (46) that stands for a long time of operation 

( t ). In practice we set t  equal to the time we expect the integrated site to operate 

continuously. A good estimate for t  is the time between scheduled maintenance, or any 

other major operation interruptions. In the examples presented in a later section, the time 

t  was set equal to one year of operation. To make sure that the probabilistic distribution 

of the inventory after a long time operation ( ttinv ),( ) falls within the physical 

bounds of the holding tank, we use the following two equations: 

 NnJjvsdinv njnjupnj  ,            ,,

~

,        (47) 

NnJjsdinv njlonj  ,            0,

~

,        (48) 

where njv ,  is the storage capacity of product n in plant j  and up  and lo are parameters 

that truncate the area under the probability distribution of the inventory level ( inv ). If we 
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assume that the inventory level follows a normal distribution we can set  4 loup  , 

which leads to a 99.99% probability of the distribution function. 

In equation (46), we are using 
s

 that corresponds to the average of s
kk 2,1  over all 

collocation points 1k  and 2k , as obtained in equation (39). This average rate of inventory 

consumption/replenishment 
s

  could have a moderate value as a result of averaging 

large negative (consumption) rates s
kk 2,1  in some collocation points and large positive 

(replenishment) rates in others. For example, 
s

 could be 5 units/hour for a 100 unit tank, 

as a result of averaging s
kk 2,1 =-9,990 and  s

kk '2,'1 = 10,000 units/hour in two equally 

probable collocation points. In order to constrain the value of s
kk 2,1  at each collocation 

point, we add constraints (49) and (50).  

2211,2,1,, ,,,,            KkKkSsNnJjvmrtinv nj
ss

kknj    (49) 

22112,1,, ,,,,            0 KkKkSsNnJjmrtinv ss
kknj     (50) 

Finally, the intermediate storage volume is bounded by its maximum capacity: 

NnJjvv nj  ,            0 UB
nj,,        (51) 

Cost function 

In this work, we use the linear cost function (52) for minimizing capital investment 

required by the integrated site design. Installing a processing unit with its base capacity 

has a fixed cost, and a variable cost for the extra capacity addition. The cost associated 

with intermediate storage is assumed to vary linearly with the size of the tank. 

)( min ,
tank
,

var  
  


Jj Mm Nn

njnjmmm
fix

m

j

vpczcap       (52) 

 In the above objective function, fix
m  is the fixed cost for including unit m  in the 

integrated site and  var
m  is the variable cost associated extra capacity addition ( mpc ). 

tank
,nj is the cost related to the size of the intermediate tank for product n  after plant j . 

Since the problem is a bi-criterion optimization, the cost function (52) is minimized while 

the expected stochastic flexibility in (17) is maximized. 
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Superstructure optimization 

In this work, we assume that a superstructure of design alternatives is specified for the 

integrated site. The superstructure consists of the network of processes in the site, where 

each process is represented by the building block in Figure 8. In order to model the 

selection of the optimal design embedded in the superstructure, we define the binary 

variables mz  that take a value of 1 if the thm  production unit is included in the integrated 

site and 0 otherwise. This variable is used in following constraint, 

22112,1,, ,,,,           KkKkSsMmJjMUzps jmkksm     (53) 

where MU  is a valid upper bound for the flow processed by the thm  production unit. We 

also use the variables mz  in the logic cuts (Hooker et al., 1994) given by equations (54) 

and (55). 

NnJjzvv
jMm

m
UP

njnj  


,           ,,        (54) 

           ba 
m

mmz          (55) 

Equation (54) allows storage njv ,  to be built only for those plants j  that are part of the 

integrated site. The units jMm are the parallel units proposed for plant j  in the 

superstructure, and the term 
 jMm

mz  will be zero if none of these units is part of the 

optimal design (i.e. plant j  is not part of the integrated site). Equation (55) is a set of 

linear inequalities that expresses logical relations on the network topology of the 

integrated site in terms of the variables mz .  

The complete optimization model is defined by equations (17)-(23), (26)-(31), (39), (40), 

(46)-(55), plus constraints (56) and (57) which are introduced in a later section of the 

paper. This formulation involves the integration of a state-space model and a 

superstructure optimization approach. Most of the problem variables and constraints are 

defined for each state and collocation point, therefore, the dimensionality of the 

optimization problem grows exponentially with the number of possible failures in the 

superstructure and the number of uncertain parameters. Table 1 includes a summary of all 

the decision variables included in this problem. Examples 1 and 2 in this paper illustrate 
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the problem sizes that results from applying the proposed formulation to specific 

integrated sites. 

 

Table 1 Decision variables in the optimization model 

Continuous design variables  

Process capacity,  
mpc  

Storage tank capacity 
njv ,  

Average storage level njinv ,  

Standard deviation of levels of storage 
njsd ,  

Continuous operation variables  

Flow among plants 
2,1,,,,' kksnjjflow  

Flow from production units P
kksnjf 2,1,,,  

Flow into storage tanks IN
kksnjf 2,1,,,  

Flow out of storage tanks OUT
kksnjf 2,1,,,  

Flow that bypasses the storage tank B
kksnjf 2,1,,,  

Accumulation rate in storage  S
kknj 2,1,,  

Average accumulation rate per state S
nj ,  

Absolute value of accumulation rate S
nj ,  

 Auxiliary continuous variables  

Slack variable s
kku 2,1  

Discrete variables  

Feasibility variable s
kkw 2,1  

Unit selection variable 
mz  

 

The integration of the state-space model and the superstructure optimization approach 

presents challenges that are not found in standard superstructure optimization problems. 

Each possible flowsheet corresponds to a different state space; if unit m is not part of the 
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flowsheet then the failure modes that occur in this unit should not be considered when 

deriving the state-space from all the combinations of possible failures in the flowsheet. 

For instance, a flowsheet with 4 units, where each unit can be either UP or DOWN, will 

have a state-space of cardinality 16.  A flowsheet with 10 units will have a state-space of 

cardinality 1024. Furthermore, the probability of finding any state in the flowsheet with 4 

units will be different (i.e., larger) that finding any state in the flowsheet with 10 units. 

The probability of finding state s is sprob  in the objective function (17). If sprob  

becomes a variable -as it appears to be the case in a superstructure optimization problem- 

equation (17) becomes bilinear and nonconvex, destroying the MILP structure of the 

problem. Our objective in this part of the paper is to propose an approach where the 

probabilities of finding each state sprob  and all the other reliability indicators, 

sss tcfrmrt ,, , are kept as problem parameters, even if we use a superstructure approach. 

In the remainder of this section we present our result, describe it qualitatively, and then 

provide rigorous mathematical propositions that validate it.  

Our result is the following: we solve the problem defined by equations (17)-(23), (26)-

(31), (39), (40), (46)-(55), plus constraints (56) and (57) defined below, for all the states 

Ss  resulting from all the potential production units in the superstructure and obtain an 

optimal selection of processes that we call M , as will be rigorously proved in the next 

section. We claim that this solution (with the complete state space S ) is equivalent to 

that obtained by solving the problem starting with just the optimal selection M . It should 

be clear that this result is not obvious. The reasons are that when we solve the problem 

for the state-space derived from the units in the superstructure we are considering failure 

modes and repair actions for units that do not exist in the optimal flowsheet; also, we are 

using reliability data sss
s tcfrmrtp ,,,  of a system that corresponds to all the units in the 

superstructure. These data are different form the data corresponding only to the optimal 

flowsheet. 
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Before proceeding with the qualitative explanation of the result we describe equations 

(56) and (57). Recall that 
s
j  is the average rate of consumption or depletion of material 

in the intermediate storage tank after plant j  during state s . In (56) and (57) M is a valid 

upper bound (a big-M), and ss,
l  is a problem parameter that can be derived form the 

vector  syl . The vector syl  is a fixed parameter defined in a previous section to be 1 if 

failure l  does not occur as part of state s , and 0 otherwise.  Let the parameter ss,
l be 

defined as follows. 

',',,)}1()1(,min{ '' ssSsSsL      yyyy sssss,s  l     lllll   (58) 

In equation (58)  syl  is set to one if states s  and 's  are distinguishable with respect to 

failure l ; that is, if the failure occurs in one state and not in the other. Equations (56) and 

(57) set the values of 
s
j  and 

's
j  equal for the pairs s  and 's  that are indistinguishable 

with respect to the failures of the m  units installed. 

To illustrate the main idea behind the result mentioned before, assume there is a 

superstructure that consists of 3 units. Each of these units can be in an UP or DOWN 

state. Figure 10 shows the different state-spaces that result from different selections of 

units from the superstructure.  

 

 

 

 

 

 

 

 

Fig. 10 State-space representation as a function of the number of units 

 

Our result says that we can optimize over the state-space in the last level of the tree (8 

states), even if the optimal flowsheet contains only one or two units. Figure 11a shows 

that if only one unit is installed, the four states in the last level of the tree that are derived 

},{ DU

)},(),,(

),,(),,{(

DDUD

DUUU

)},,(),...,,,(

),,,(),,,{(

DDDUDU

DUUUUU

State-space for 
one unit

State-space for 
two units

State-space for 
three units

U = Unit up
D = Unit down



 30

from the same node in the one unit state-space are identical in terms of 

feasibility/infeasibility. This figure also shows that the sum of the probabilities of the four 

states in the last level of the tree is equal to the probability of the state from which they 

are derived in the one unit state-space. Figure 11b shows the equivalent result for the case 

where two units are installed.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 11a Optimization of a flowsheet with one unit using the three unit state-space  

 

 

 

 

 

 

 

 

 

 

Fig. 11b Optimization of a flowsheet with two units using the three unit state-space  

  

Note that the relationships of common feasibility/infeasibility and of the summation of 

probabilities appear in our problem without adding any extra constraints except for 

equations (56) and (57). In the case illustrated in Figure 11a, equations (56) and (57) set 

the rate of consumption/replenishment of inventory 
s

  equal for each of the groups of 
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four states linked by the doted lines. The reason that explains why these constraints are 

needed for the variable 
s

  but not for any of the other variables in the model can be 

expressed in a simplified way as follows. The flow variables, flowfps ,, , are zero for 

those units that are excluded from the optimal flowsheet by equation (53), regardless of 

whether the unit is described as UP or DOWN in the states in the last level of Figure 11a. 

However, the variable 
s

 appears in equations (40) and (46) where the duration and the 

frequency of appearance of each state are involved. If we use the state-space in the last 

level of the tree in Figure 11a, each of the nodes corresponds to a state with a different 

duration and frequency so that different feasible rates of consumption/depletion of 

inventory can be chosen for each of the states in this level. Equations (56) and (57) 

prevent this from occurring. This discussion is formalized in the next subsection.  

 

Properties of the superstructure optimization model 

To prove the above claim on the superstructure optimization, we review some 

nomenclature and introduce some new sets. Let an integrated site have Jj    plants, 

where each of them can have jMm  parallel production units. The set 


j

jMM  contains all the candidate production units in the integrated site. Each 

Mm is subject to mLl  potential failures. The set 
m

mLL   contains all the possible 

failures of all the candidate production units in the superstructure of the integrated site. 

Recall that each discrete state is a particular combination of failures occurring 

simultaneously. The state space S  contains all the states resulting from the combination 

of the Ll  failures that can occur in any of the Mm processing units. 

Remark There is a one to one correspondence between a set M and a set L . Also each 

set L  generates one particular state space S . 

Suppose we solve the optimization problem in equations (17)-(23), (26)-(31), (39), (40), 

(46)-(57) and find that the optimal solution involves only a subset of the units postulated 

in the superstructure; we represent this subset as MM  . This means Mmzm    ,1  

and MMmzm \,0    . The possible failures relevant to the set M  are contained in set 
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
Mm

mLL


 . 

The reduced set S  is the space state corresponding to all the possible combinations of 

failures in L , that is, those failures relevant to the units included in the optimal design. 

So far we have defined SLM ,, , for the units, possible failures, and states of the 

superstructure, and the reduced sets SLM ,, , for the units, possible failures and states of 

the optimal design. 

Each state Ss  corresponds to a vector   Lsy 1,0 . A zero in the thl  position of this 

vector indicates that failure Ll  occurs while the integrated site is in state Ss . In the 

particular case of one total failure per unit, a zero in this vector also indicates that a unit 

is down and a value of 1 indicates that a unit is up. Similarly, each state Ss  

corresponds to a reduced vector  Lsy 1,0 .  Recall that LL  , so sy has larger 

dimensionality than sy . Each vector   Lsy 1,0  can be projected onto the space  L1,0 . 

We denote this projected vector as s

Lproj
y . Each s

Lproj
y  is identical to a reduced 

vector  Lsy 1,0 . Some vectors   Lsy 1,0  will share the same projection s

Lproj
y  (or 

 Lsy 1,0 ).  

To clarify the notation, suppose we have a one-process system with two potential parallel 

units. In this case:  1jJ  ,  211 , mmM j  , and  21, mmM  . Units 1m  and 2m  are 

subject to one random total failure each, so  11 lmL ,  22 lmL , and  21 l,lL  .  The 

state space S  is constructed from all the possible combinations of failures in the system. 

Thus,  4321 ,,, ssssS  ; 1s corresponds to NO failure, 2s  to failure 1l ,  3s  to failure 2l , 

and 4s  to failures 1l  AND 2l  as shown in Table 2. 
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Table 2 Discrete states in a superstructure with two units. 

State ( s ) Unit 1 Unit 2 

1 UP UP 

2 DOWN UP 

3 UP DOWN 

4 DOWN DOWN 

 

Each state Ss corresponds to one vector sy , of length 2. Table 3 shows the vectors sy  

that correspond to the states in Table 1. 

 

Table 3 Vectors sy  corresponding to the states in a superstructure with two units. 

State ( s ) sy  

1 [ 1   1 ] 

2 [ 0    1 ] 

3 [ 1   0 ] 

4 [ 0   0 ] 

 

If we solve the optimal design problem and find that only 1m  is included in the optimal 

solution, we have the following reduced sets:  1mM  ,  1lL   and  21, ssS  . Table 

4 contains the reduced states Ss  corresponding to the units in the optimal design, and 

Table 5 shows the vector 
s

y  corresponding to the states in Table 4. 

 

Table 4 Discrete states in an optimal design with one unit. 

State ( s ) Unit 1 

1 UP 

2  DOWN 
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Table 5 Vectors 
s

y corresponding to the states an optimal design with one unit. 

State ( s ) 
s

y  

1 [ 1 ] 

2  [ 0 ] 

 

The projection of 1sy  and 3sy  in Table 3 onto the space  11,0  is equal to 1sy  in Table 5, 

and the projection of 2sy  and 4sy  in Table 3 onto the space  11,0  is equal to 2sy  in Table 

5. We are interested in grouping those states Ss  in the superstructure consisting of 

Mm units that share the same projection onto the space Ss  that takes into account 

only the optimal selection of units Mm . As mentioned before, states 31 , ss ,  in the 

superstructure (Table 2) share the same projection 1s  in the state space of the optimal 

units (Table 4). We group 31, ss  by creating a new projected set },{ 311
ssS

s
 . The 

rationale behind the notation is that 
1s

S  is the subset of S  whose states share the 

projection Ss 1 . Likewise, states 42 , ss   in the superstructure (Table 2) share the same 

projection 2s  in the state space of the optimal units (Table 4). We group 42 , ss  by 

creating the new projected set },{ 422
ssS

s
 . 

In general we define the projected set 
s

S , as follows: 

SsyysS ss

Lprojs








     ,              (56) 

Proposition 1 

Let sw  with Ss  correspond to the variables in the objective (17), where the indices 

21,kk  have been omitted for simplicity. Let S be the state space generated by all 

combinations of failures Ll that occur in all units Mm in the superstructure. 1sw  

indicates that the operation of units Mm is feasible under the combination of possible 

failures Ll that defines the state Ss ; 0sw  means that the operation is infeasible. 

Let MMmzm \   0  . Then,        
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SsSsww
s

ss  ,                     

This proposition implies that feasible operation of the integrated site depends only on the 

failed/active status of the units selected from the superstructure. Therefore, all discrete 

states that differ only on the failed/active status of the units not selected are identical in 

terms of feasible or infeasible operation.  The proof of this proposition can be found in 

the appendix. 

Proposition 2 

The probability ( sprob ) of finding state Ss  is equivalent to the summation over all the 

probabilities ( sprob ) of finding the states 
s

Ss  that share the same projection onto the 

space S .  

Ssprobprob
s

Ss

ss  


               

The proof of this proposition can be found in the appendix of this paper. 

Proposition 3 

Let *)(SFE be a Pareto-optimal solution found using the set S in equations (17)-(23), 

(26)-(31), (39), (40), (46)-(57), and 
*

)(SFE  be the Pareto-optimal solution found using 

the reduced set S . Then, 
** )()( SFESFE   

This proposition is a consequence of Propositions 1 and 2; its proof can be found in the 

appendix. 

Proposition 3 proves the claim that solving the problem given by equations (17)-(23), 

(26)-(31), (39), (40), (46)-(57) using the space state resulting from all the units postulated 

in the superstructure, is equivalent to optimizing over the state space defined only for the 

optimal selection of units. 

Note that the propositions in this section can be easily extended to include the effect of 

quadrature points ( 21 , kk ). 

Example 1 

The following example is based on a case study shown in previous work 

concerned with evaluating (not optimizing) the E(SF) of a network of production 

processes (Straub & Grossmann, 1990). The example of the chemical complex has been 
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modified to include intermediate storage. The objectives are to maximize the expected 

stochastic flexibility E(SF) and to minimize the cost of installing parallel units, 

intermediate storage, and increasing production capacity. The superstructure for the 

integrated site is shown in Figure 10. This proposed integrated site has three potential 

plants. Plant 1 transforms A to B and plant 2 transforms B to C. Plant 3 transforms A 

directly into C. There are two potential parallel units for plant 1 (units 1I and 1II), one for 

plant 2 (unit 2), and one for plant 3 (unit 3). All three plants have the potential addition of 

storage.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10  Integrated Site for the production of C from A. 

 

Table 6 contains the data required to solve the problem using equations (17)-(23), (26)-

(31), (39), (40), (46)-(57).  The base capacity provided in this table represents the 

minimum capacity that each unit will have if it installed. This is a parameter considered 

fixed in a previous design step. In an industrial setting this might correspond to a design 

stage where continuous and discrete uncertainties are not considered. In Example 1, we 

set the base capacities to the values given by Straub & Grossmann (1990). Note that the 
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fixed cost of installing a unit considers this base capacity, so that only additional capacity 

has an extra variable cost.  

There is only one total failure per unit in the integrated site, so that the number of failures 

and number of units is equal. The uncertain parameters 1 and  2 are the supply of A and 

demand of C. We discretize each of them using 5 collocation points. In order to test the 

effect of the number of collocation points on the solution to the problem, we also solved 

this example with 10 quadrature points and found that there is only a slight difference in 

the optimal solution with a significant increase in solution time. Therefore, we only 

report the results of using 5 collocation points.   The sets 1,,,, KSNMJ  and 2K  used in 

the formulation are described explicitly below:   

}3,2,1{J , 

}3{ },2{ },1,1{ 321  MMM III , 

}3,2,1,1{ IIIM  , 

}3{ },2{ },1{ },1{ 3211  LLLL IIIIII , 

}3,2,1,1{ IIIL  , 

}16,...,2,1{S , 

}5,4,3,2,1{},5,4,3,2,1{ 21  KK , 

Table 6 Data for Example 1 

Supply of A  

 [103 ton / day] Mean = 12 Std = 1   

Demand of C  

[103 ton /  day] Mean = 7 Stand. Dev = 1   

 

Probability of operation  

Unit 1I 

0.95 

Unit  1II 

0.95 

Unit  2 

0.92 

Unit 3 

0.87 

Mass balance coefficient 1I = 0.92  1II = 0.92  2 = 0.85  3=0.75 

Base capacity  

[103 ton / day] 5 5 7 9 

Mean time to repair [day] 0.25 0.25 0.25 0.25 

Mean time to failure 

[day] 4.75 4.75 2.88 1.67 
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Recall that each of the 16 states is described by a vector Lsy }1,0{ , where a 0 in the 

thl  position means that failure l  is present when the integrated site is in state s . Table 

7 describes each state in terms of its sy  vector. For instance, state 1 corresponds to no 

failure in the integrated site since  Ly  ll   11 . 

 

Table 7 Discrete states for integrated site 

 s
Iy1  

s
IIy1  sy2  sy3  sprob  

State 1 1 1 1 1 0.722 

State 2 1 1 1 0 0.108 

State 3 1 1 0 1 0.063 

State 4 1 0 1 1 0.038 

State 5 0 1 1 1 0.038 

State 6 1 1 0 0 0.009 

State 7 1 0 1 0 0.006 

State 8 1 0 0 1 0.003 

State 9 0 1 1 0 0.006 

State 10 0 1 0 1 0.003 

State 11 0 0 1 1 0.002 

State 12 1 0 0 0 5e-4 

State 13 0 1 0 0 5e-4 

State 14 0 0 1 0 3e-4 

State 15 0 0 0 1 1e-4 

State 16 0 0 0 0 3e-5 
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We assume a normal distribution for both uncertain parameters, 1  (supply) and 2  

(demand), and bound them at their mean value +/- four standard deviations. We then use 

a five point Gaussian Quadrature scheme to obtain the quadrature points in Table 8, 

which are derived from the roots of the Legendre polynomial (Carnahan et al., 1969). 

 

Table 8 Five point Gaussian quadrature for demand and supply  

 Lower 

Bound 

1/ 21 kk
 

2/ 21 kk

 
3/ 21 kk  4/ 21 kk

 
5/ 21 kk

 
Upper 

Bound 

1  8.00 8.38 9.85 12.00 14.15 15.62 16.00 

2  3.00 3.38 4.85 7.00 9.15 10.62 11.00 

* - 0.237 0.479 0.569 0.479 0.237 - 

* Quadrature weights 

 

The value of the joint distribution can be evaluated at each point ( 21,kk ) and combined 

with the quadrature weight for each point 2,1 kk , as shown below: 








 
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
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exp

2
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22

2
222

2
1112211

212,1
meankmeank

LULU

kkkk




  (58) 

Using the above formula we construct Table 9 with values of the joint distribution for all 

discrete points. 

 

 

Table 9 Probability of each discrete point (k1k2) according to joint distribution 

1   

11 k  21 k  21 k  41 k  51 k  

12 k  2.5e-7 3.6e-5 4.3e-4 3.6e-5 2.5e-7 

22 k  3.6e-5 5.0e-3 6.1e-2 5.0e-3 3.6e-5 

32 k  4.3e-4 6.1e-2 7.3e-1 6.1e-2 4.3e-4 

42 k  3.6e-5 5.e-3 6.1e-2 5.0e-3 3.6e-5 

2  

52 k  2.5e-7 3.6e-5 4.3e-4 3.6e-5 2.5e-7 
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Table 10 shows the cost function coefficients and the bounds for the decision variables. 

 

Table 10 Cost coefficients and decision variable bounds for example 1 

fix
m  

[MM USD] 

10 UP
1Icapacity  

[103 tons/day] 

7.5 

var
m  

[MM USD] 

1 UP
1IIcapacity  

[103 tons/day] 

7.5 

tank
,nj  

[MM USD] 

1 UP
2capacity  

[103 tons/day] 

10.5 

UPv1  

[103 tons] 

1.23 UP
3capacity  

[103 tons/day] 

13.5 

UPv2  

[103 tons] 

1.75   

UPv3  

[103 tons] 

2.25   

 

Results 

To validate our MILP formulation for maximizing E(SF), we fix the design to match the 

one in the work by Straub and Grossmann (1990). In this design, all units are installed, 

they have no intermediate storage, and they are not subject to extra capacity additions 

(i.e. all units operate at their base capacity, as indicated in Table 1). The E(SF) reported 

in their work is 0.8132, while the one obtained with the approach proposed in this paper 

is 0.8066. Note that we are using five fixed quadrature points that might be inside or 

outside the feasible region, while Straub and Grossmann (1990) collocate all five 

quadrature points inside the feasible region, which involves solving a large NLP for the 

evaluation of the E(SF). The small difference in the result can therefore be attributed to 

the difference in the location of the collocation points.  

The results that follow involve using the formulation described in this work with the data 

presented in Tables 5 - 9 and Figure 10. To maximize the E(SF) and to minimize the cost 

we determine the set of Pareto-optimal solutions by solving the proposed problem 
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repeatedly for different values of available capital investment. This is equivalent to 

applying the -constrained method to the bi-criterion optimization problem. In this way, 

the capital investment, cap, in equation (52) is limited by the available amount cap . The 

results of maximum E(SF) for the different values of  cap  (Pareto-optimal solutions) are 

summarized in Table 11 and Figure 11. Table 11 also indicates the computational time 

required to find the optimal solution for each value of capital investment ( cap ). The 

MILP model involves 404 discrete variables, 33,522 continuous variables, and 128,010 

constraints. All results were obtained using the MILP solver CPLEX version 12.1, 

running on GAMS 23.3. The results were obtained using a 2.8 GHz Intel Pentium 4 

processor and 2.5 GB RAM.  The optimality gap in CPLEX was set to 0.1%. We found 

that this small gap reduced the computing time in about half for the instances that took 

longer to solve.  

 

Table 11 Value of optimal E(SF) and computational times for different levels of available capital 

investment. 

Capital 

Investment 

E(SF) CPU 

seconds  

Capital 

Investment

E(SF) CPU 

seconds 

0 0 2 35 0.964 602 

10 0.062 9 40 0.967 150 

11 0.818 12 45 0.983 144 

15 0.869 9 50 0.987 6 

20 0.870 143 55 0.988 4 

25 0.870 143 60 0.988 2 

30 0.870 257    

 

As can be seen in Figure 11, the set of Pareto-optimal solutions is nonconvex and the 

E(SF) values increase step-wise rather than smoothly as the available capital increases. 

This effect is the result of having discrete probabilities for states s and weights for the 

collocation points ( 21,kk ). The state probability is sprob  and the collocation point weight 

is 2,1 kk  in equation (17).  
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Fig. 11 Pareto curve of maximal E(SF) and minimum cost for Example 1 

 

Table 12 presents the details of the optimal design for some values of available capital 

investment. Namely, the designs for 25, 35 and 45 units of available capital investment 

are described in this table. The capacities indicated there are calculated as base capacity 

(problem parameter) plus capacity addition (decision variable). This table shows the 

values of the linear approximation of the standard deviation of the inventory level 

(equation (46)), as well as the exact standard deviation calculated from equation (44). 

The average overestimation of standard deviation of inventory levels for the complete set 

of Pareto-optimal solutions presented in Table 11 is 75%.  The overestimation effect can 

be somewhat corrected by the truncation parameters up  and lo in equations (47) and 

(48). In this example we set those parameters equal to four.  

In the solutions described in Table 12, storage tanks are placed after plants that directly 

feed the end consumer, so that the effect of any upstream failure is buffered by these 

storage tanks. In the low capital investment solutions, the storage tank is placed after 

plant 3, which is the most unreliable. When more capital becomes available a storage 
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tank is also placed after plant 2. Note also that the capacity of unit I1  decreases when the 

expected stochastic flexibility increases from 0.96 to 0.98. This is due to the addition of 

unit II1 .  

 

Table 12 Optimal design for different capital investment values. Capacity is in 103 ton/day and the 

inventory volume, average level, and standard deviation in 103 ton.  

Capacity Capital 

Invest-

ment E(SF) I1  II1  2  3  
1v  2v  3v  

1inv  2inv  3inv

25 0.87 - - - 13.5 - - 2.25 - - 1.92 

35 0.96 7.50 - 7.00 9.53 - 1.52 0.45 - 0.29 0.40 

45 0.98 6.52 5.00 8.23 9.54 - 1.28 0.43 - 0.69 0.40 

            

Capital 

Invest-

ment E(SF) 

Approximated  

Standard deviation 

Exact 

Standard deviation 

    

 
 1

~

sd  2

~

sd  3

~

sd  1sd  2sd  3sd  
    

25    0.08   0.04     

35   0.07 0.01  0.04 0.01     

45   0.15 0.01  0.10 0.01     

 

 

Example 2 

The second example is an integrated process that consists of five interconnected 

chemical plants, as shown in Figure 12. The uncertainty in this example is a result of 

process failures with probabilistic time to failure and time to repair. There are no 

continuous uncertain parameters, thus, no quadrature points are required.  The plants in 

this integrated site represent a section of a larger industrial process network. Each of 

these plants is modeled as a continuous process that can use one or several inputs and 

produce one output. The superstructure of the integrated process in Figure 12 includes 

two parallel production units and a storage tank for each plant, except for plant 5 where 

no storage tank is allowed. For confidentiality reasons, we do not provide details about 
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the processes or the chemicals involved in the integrated site. Also, the capital investment 

values of the Pareto-optimal solutions in Figure 13 do not represent the real costs. Table 

13 shows the constant rate of supply of raw materials and the constant rate of 

consumption of finished products. The base processing capacity and the mass balance 

(yield) coefficient of the units in each plant is shown in Table 14. In this example, the 

base processing capacities correspond to those required to satisfy the demand of products 

1 and 5 when no failures occur.  The mass coefficient that corresponds to m  in equation 

(20) is calculated as the ratio of output over inputs. Notice that some of these coefficients 

are larger than one, implying that several mass units of output are produced for each mass 

unit of inputs. The increase in mass flow is a result of adding fillers, solvents, etc. to the 

product flows of each plant. We do not model directly these secondary flows but include 

them indirectly through the mass balance coefficients in Table 14. Likewise, waste 

streams not included explicitly in the process network of Figure 12 are indirectly 

modeled by mass balance coefficients smaller than one. The plants in the integrated site 

consume raw materials provided by external suppliers as well as intermediate products 

from other plants. Different inputs must be fed according to the stoichiometric 

coefficients given in Table 15. For instance, Plant 2 (second row in Table 15) requires 1.3 

mass units of product 1 per unit of raw material 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 Industrial integrated process 
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Table 13 Supply and Demand data in industrial case study 

1 2 3 4 5 
Supply of Raw Material   

[ ton / h] 
20 45 21 12 42 

1 5    
Demand of Product   

[ ton / h] 
32.5 50    

 

 

Table 14 Base processing capacity and mass balance coefficients in industrial case study 

 

Production 

Units in 

Plant 1 

Production 

Units in 

Plant 2 

Production 

Units in 

Plant 3 

Production 

Units in 

Plant 4 

Production 

Units in 

Plant 5 

Mass 

balance 

coefficient 

5.29 0.69 0.70 3.87 0.46 

Base 

capacity 

[ ton / h] 

13.9 73.4 53.7 8.3 109.6 

 

 

Table 15 Mass balance coefficients for the feed of external raw materials (RM) and intermediate 

products (P) for each plant.  

 RM1 RM2 RM3 RM4 RM5 P1 P2 P3 P4 P5 

Plant 1 1 0 0 0 0 - 0 0 0 0 

Plant 2 0 1 0 0 0 1.3 - 0 0 0 

Plant 3 0 0 1 0 0 0 17.5 - 0 0 

Plant 4 0 0 0 1 0 0 0 0 - 0 

Plant 5 0 0 0.4 0 1 0 0 1.3 1.1 - 
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The times to failure TTF  of all the units in the system are modeled using an exponential 

distribution, while the times to repair TTR  correspond to a normal distribution. We have 

indicated that the Markov chain modeling technique requires exponential distributions for 

the TTF  and TTR  in order to accurately represent the transient behavior of the system. 

However, it is possible to obtain useful results for the stationary (long term) behavior of 

the system even when the TTR  is represented by a normal distribution. In this case, we 

only need to know the mean time to repair ( MTTR ) and use it as the mean of an 

exponential distribution (Billinton and Allan, 1992). 

The network in Figure 12 is subjected to different types of partial and total random 

failures. For instance, each of the two production units in plant 2 is subject to six different 

types of total failures (e.g. different equipment in the unit force the production to stop), 

three types of partial failures that cause a 25% rate reduction, and two partial failures that 

cause a 10% rate reduction, resulting in 12 discrete states (11 failures plus the “no 

failure” state). Applying the discrete state modeling approach discussed so far in this 

paper results in 144 states just for the units in this plant. The total number of system 

states obtained from the possible combinations of discrete states of each of the units of all 

the plants is of the order of 1010x5 . To reduce this number, the failures with the same 

related rate reduction that occur in the same plant can be aggregated as one equivalent 

failure. For instance, the six different total failures in plant 2 can be modeled as one 

equivalent failure. Using this technique the original state space is rigorously reduced to 

an equivalent one with 410x8  discrete states. The fact that this is still a state space with 

large dimensionality emphasizes the need for future work on complexity reduction 

techniques based on decomposition and bounding search procedures.  

In this work, to further reduce the number of states, we limit the problem to considering 

the 157 most probable states since these cover approximately 99% of the long term 

operating horizon. The MILP problem with the 157 states consists of 162 binary 

variables, 184,372 continuous variables, and 504,511 constraints. All results were 

obtained using the MILP solver CPLEX version 12.1, running on GAMS 23.3, with a 2.8 

GHz Intel Pentium 4 processor and 2.5 GB RAM. A 2 percent gap between lower and 

upper bounds in the branch and bound algorithm was used as termination criteria for 

CPLEX. 
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Figure 13 shows the Pareto curve of maximum E(SF) and minimum capital cost. Table 

16 contains the cost coefficients used to generate this curve and the bounds on the 

decision variables.  Table 17 shows the CPU time required to obtain each point in the 

curve of Figure 13, and Table 18 gives details of the optimal designs corresponding to 

some capital investment levels. 
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Fig. 13 Pareto curve of maximal E(SF) and minimum cost for Example 2 
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Table 16 Cost coefficients and decision variable bounds for Example 2 

fix
m  

[MM USD] 

100 UP
/11 III

capacity  

[ton/h] 

20.9 

var
m  

[MM USD] 

10 UP
/22 III

capacity  

[ton/h] 

110.4 

nj ,  

[MM USD] 

0.005 UP
/33 III

capacity  

[ton/h] 

80.7 

UPv1  

[103 ton] 

15,000 UP
/44 III

capacity  

[ton/h] 

12.3 

UPv2  

[103 ton] 

7,500 UP
/55 III

capacity  

[ton/h] 

164.6 

UPv3  

[103 ton] 

7,500   

UPv4  

[103 ton] 

5,000   

UPv5  

[103 ton] 

0   

 

 

Table 17 CPU time required to obtain a solution for different capital investments. 

Capital 

Investment 

CPU 

seconds  

Capital 

Investment 

CPU 

seconds  

400 <1 750 844 

500 6 800 294 

550 35 850 709 

600 202 900 338 

650 850 950 156 

700 186 1000 111 
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Table 18 Optimal design for different capital investment values for Example 2. 

Capacity Capital 

Investment 

E(SF) 

I1  II1  I2  II2  I3  II3  

500 0.74 13.9 - 73.4 - 53.7 - 

600 0.83 13.9 - 73.4 73.4 53.7 - 

850 0.94 13.9 - 73.4 73.4 53.7 53.7 

1000 0.98 13.9 13.9 73.4 73.4 53.7 53.7 

Capacity   

I4  II4  I5  II5    

500  8.3 - 109.6 -   

600  8.3 - 109.6 -   

850  8.3 - 109.6 114.6   

1000  10.5 - 109.6 109.6   

  v1 v2 v3 v4 v5  

500  - - - - -  

600  - - - - -  

850  - - - - -  

1000  - 423.1 909.0 227.3 -  

  inv1 inv2 inv3 inv4 inv5  

500  - - - - -  

600  - - - - -  

850  - - - - -  

1000  - 211.6 454.5  170.5 -  

 

Notice that all plants are required as part of the integrated process, and therefore a 

minimum investment of 500 MM USD is required. Note that this amount represents the 

fixed cost of installing one unit for each plant, at the given base capacity (Table 14). The 
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500 MM USD design is able to provide the required products to external consumers when 

all plants are running. However, when random failures are introduced the integrated site 

is only able to deliver the required amounts of products 74% of the time. The addition of 

one parallel production unit (600 MM USD design in Table 18) increases the expected 

stochastic flexibility to 0.83. When multiple parallel units are installed together with 

intermediate storage tanks the fraction of time of feasible operation (or E(SF)) can be 

increased to 0.94 (850 MM USD design in Table 18), or even to 0.98 (1000 MM USD 

design in Table 18). 

Conclusions 

In this paper, we have proposed an MILP bi-criterion formulation for optimizing the 

design of an integrated site subject to random failures and random supply and demand. 

The two optimization criteria are the maximization of the expected stochastic flexibility 

E(SF) and the minimization of the capital investment. The proposed formulation has 

several novel features that constitute the main contributions of this work. Namely, it 

captures the effect of random events on the levels of material in intermediate storage, and 

it integrates the idea of superstructure optimization in a production network with the 

concept of discrete states in a continuous time Markov chain. We used this formulation to 

solve the optimal design problem in two small networks; one adapted from the existing 

literature and the other provided by a major chemical company. We identified the need to 

address the exponential growth in problem size with the number of discrete states as a 

result of an increase in number of production units or failure modes per unit. In future 

work we will develop algorithmic techniques to deal with the growth in problem size. 

Also, the systematic reduction of the number of discretization points for continuous 

uncertain parameters, as in Novak and Kravanja (2008), represents a potential line of 

future work. Finally, we will incorporate realistic cost functions in order to provide 

meaningful solutions to industrial problems.       
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Appendix 

 

Proof of Proposition 1 

Remark Recall that },1:{ MmzmM m   refers to the set of units in the optimal 

flowsheet. Also, recall that the set 
Mm

mLL


 refers to the failure modes of the units in 

the optimal flowsheet, and that S is the state space derived from all the combinations of 

simultaneous failures in L . 

 

The optimization problem can be express in a general form as:  

Dd
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where d are all the design variables other than z , and D  is a feasible set defined by the 

bound constraints on the design variables. 

For a given parameter sy , a design zd ,  and a pair ssps ,  we can solve )(h  for 

ss fflow , . Therefore, we can express the optimization problem equivalently as: 

Dd

w

SswMu
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ts

wprob
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ss

sssss

Ss
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..
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                           (A.1)  

Let us solve the problem A.1 using the state-space S derived from all the units in the 

superstructure and rewrite it considering only the units selected in the optimal flowsheet 
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(i.e. those units m such that 1mz ). The corresponding state-space for this flowsheet is  

S  

Dd

w

SswMu

Ssuydpsr

ts

wprob

S

ss

sssss

Ss

ss











||}1,0{

)1(

),,,(

..

max

                                   

                              (A.2)  

We now proceed to show that the feasible regions of the variables ,,ps  and d are the 

same in problems (A.1) and (A.2).  

Equations (56) and (57) enforce the condition that the feasible regions of 
s

s Ss     in 

(A.1) and Sss      in (A.2) are the same. The feasible region of d  is the same in 

(A.1) and (A.2) since the constraints that define D  (in Dd  ) are independent of the 

state-space.   

The feasible region for 
s

s Sspc      in (A.1) is given by non-negativity and equations 

(31) and (53).  For the components 
s

s
m SsMMmpc  ,\     in (A.1) equations (53) is 

dominant since MMmzm \0    . For the components 
s

s
m SsMmpc  ,    in (A.1) 

equation (53) is redundant and the feasible region is given by non-negativity and equation 

(31). 

In problem A.2 the feasible region of MmSsps s
m

 ,    is given by non-negativity 

and equation (31).  

Since by definition the projection of sy  onto the state-space S  is exactly sy , equation 

(31) is identical for all 
s

SsMm  ,  in (A.1) and for all SsMm  ,  in (A.2). We 

already established that 
s

s
m SsMMm pc  ,\0   so that the units MMm \ can be 

treated as non-existent in (A.1).  These last two statements imply that the feasible region 

of 
s

s Sspc    in (A.1) is the same as Sspc s    in (A.2).  
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Given the results obtained for the feasible regions of the variables ,,ps and d  in (A.1) 

and (A.2), the functions 
s

s Ssr    )(  in (A.1) and Ssr s    )(  in (A.2) have the same 

feasible range. It then follows that the optimal solution 
s

s Ssw      ,  of (A.1) and 

Ssws     of (A.2) are identical.  

Thus,  SsSsww
s

ss  , ,    as defined in Proposition 1 is true.                       � 

Proof of Proposition 2 

From equation (33)  
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      (A.3), 

and 
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We can split the set L in the multiplication of equation (A.4) into L  and LL \ so that 

 
S
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Recall that the projection of   Lsy 1,0  onto   sLs yy  1,0 , SsSs
s

 , . We can use 

this expression and substitute the multiplication over Lys ll :  in (A.5) for a 

multiplication over Lys ll : , so: 
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and by equation (A.3): 
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Summing over 
S

S s , 
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On the other hand, using the conditional probability notation and equation (A.7): 
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The conditional probability notation (A|B), which is read “A given B”, in equation (A.9) 

implies that: 
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By its definition the collection of states
s

S   covers all the possible combinations of 

failures LLl \  , and hence 

Ssprobprob s

Ss

s

S
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     1 )(         (A.11) 

Using equation (A.10) in (A.11), 
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Substituting equation (A.12) in equation (A.8) completes the proof.              � 

Proof of proposition 3 

*)*( s
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  and **)( s
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 , where ws* is the value of ws in the 

optimal solution. 

The set S can be constructed as 
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s
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By Proposition 1 SsSsww
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 and the proof is complete.           � 


