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ABSTRACT 
This paper addresses the optimization of supply chain design and planning under the 

criteria of responsiveness and economics with the presence of demand uncertainty. The 

supply chain consists of multi-site processing facilities and corresponds to a multi-echelon 

production network with both dedicated and multiproduct plants. The economic criterion 

is measured in terms of net present value, while the criterion for responsiveness accounts 

for transportation times, residence times, cyclic schedules in multiproduct plants, and 

inventory management. By using a probabilistic model for stockout, the expected lead 

time is proposed as the quantitative measure of supply chain responsiveness. The 

probabilistic model can also predict the safety stock levels by integrating stockout 

probability with demand uncertainty. These are all incorporated into a multi-period mixed-

integer nonlinear programming (MINLP) model, which takes into account the selection of 

manufacturing sites and distribution centers, process technology, production levels, 

scheduling and inventory levels. The problem is formulated as a bi-criterion optimization 

model that maximizes the net present value and minimizes the expected lead time. The 

model is solved with the ε-constraint method and produces a Pareto-optimal curve that 

reveals how the optimal net present value, supply chain network structure and safety stock 

levels, change with different values of the expected lead time. A hierarchical algorithm is 

also proposed based on the decoupling of different decision-making levels (strategic and 

operational) in the problem. The application of this model and the proposed algorithm are 

illustrated with two examples of polystyrene supply chains. 
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1. INTRODUCTION 
There is a growing recognition that individual businesses no longer compete as stand-

alone entities, but rather as supply chains whose success or failure is ultimately 

determined in the marketplaces by the end consumers (Christopher and Towill, 2001). For 

better customer satisfaction and market understanding, companies are striving to achieve 

the best performance from their supply chains by different measures, of which accurate 

demand forecasting, inventory and responsive supply chain are three key components 

(Fisher, 1997).   

Quick response enables supply chains to meet the customer demands for ever-shorter 

lead times, and to synchronize the supply to meet the peaks and troughs of demand 

(Sabath, 1998). Nowadays responsive supply chains have become keys to competitive 

success and survival (Fisher, 1997; Christopher, 2000, 2005) due to the increasing 

pressure to reduce costs and inventories for competitions in the global marketplace 

(Grossmann, 2005). Although sophisticated methods such as time series have been 

developed to improve the forecasting accuracy, uncertainties in demand are unavoidable 

due to ever changing market conditions. In supply chains, inventory improves the service 

by helping deal with demand uncertainty and providing flexibility, although it can be 

costly (Chase and Aquilano, 1995).  

In this work, we consider the design of a responsive supply chain with integration of 

inventory and safety stock under demand uncertainty. The supply chain consists of multi-

site processing facilities and corresponds to a multi-echelon production network with both 

dedicated and multiproduct facilities. The major goal is to determine the processes that are 

to be integrated in the supply chain network with their corresponding suppliers, 

distribution centers and the associated transport links between them. The major 

considerations in the design are the supply chain responsiveness and profitability. 

Profitability is expressed in terms of net present value, while responsiveness accounts for 

transportation times, residence times, cyclic schedules in multiproduct plants, and 

inventory management. By using a probabilistic model for stockout, a quantitative 

characterization of responsiveness for supply chain networks is presented, which measures 

the expected response time or expected lead time to changes under uncertain demands 

with integration of inventory and safety stock level. The probabilistic model can also 

predict the safety stock levels by integrating stockout probability with demand 

uncertainty. These are incorporated into a multi-period mixed-integer non-linear 
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programming (MINLP) model, which takes into account the selections of manufacturing 

sites and distribution centers, process technology, production levels, scheduling and 

inventory levels. The problem is formulated as a bi-criterion optimization model in which 

the objectives are to maximize the net present value and to minimize the expected lead 

time. Aside from relying on the ε-constraint method to generate the Pareto-optimal curve, 

a hierarchical algorithm is also proposed for the solution of the resulting large-scale 

nonconvex MINLP model based on the decoupling of the different decision-making levels 

(strategic and operational) identified in our problem. The application of this model is 

illustrated through two examples of polystyrene supply chains. 

The rest of the paper is organized as follows. We briefly review related literature in the 

next section, and the main quantitative characteristics of responsiveness of process supply 

chain networks are discussed in Section 3. A formal problem statement along with the key 

assumptions is given in Section 4, while the proposed mathematical model is described in 

Section 5. Section 6 presents a hierarchical solution approach, and its applicability is 

demonstrated by two illustrative examples in Section 7. Finally, concluding remarks are 

presented in Section 8. 

2. LITERATURE REVIEW 
Most of the “responsiveness” literature for supply chains tends to be qualitative and 

conceptual, and has not been subjected to the kind of quantitative analysis that this paper 

intends to address. There are, however, several related works that offer relevant insights. 

Forrester (1961) first illustrated in a series of case studies the effect of dynamics in 

industrial systems, which gives rise to the “bullwhip effect”. Lee et al (1997) further 

demonstrated that the “bullwhip” effect is a consequence of the information delay due to 

the structure of supply chains, and the severity of this effect is positively related to lead 

times. Responsiveness in the wider supply chain context has been discussed by Fisher 

(1997), who argues that the product characteristics (innovative or functional) and life 

cycles need to be linked to the layout and functions (conversion and market mediation) of 

the supply chain. He also pointed out the need of reducing the lead time, which enables 

quick response to unpredictable demand to minimize stockouts, markdowns and obsolete 

inventory. Matson et al (1999) discussed concepts and issues associated with 

responsiveness in production and illustrate the audit tools they proposed from a case study 

in the steel industry. Recently, several conceptual models on supply chain responsiveness 

have been proposed. Christopher and Towill (2001) integrate lead time and agility to 
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highlight the differences in their approach, and combined them to propose an integrated 

hybrid strategy for designing cost-effective responsive supply chains with seamless 

connection between manufacturing and logistics. In a later work, Yusuf et al (2004) have 

reviewed emerging patterns for creating responsive supply chains based on survey 

research driven by a conceptual model. Holweg (2005) proposed in his paper that product, 

process and volume are three key factors that determine the responsiveness of a supply 

chain system, and provided guidelines on how to align the supply chain strategy to these 

three factors in order to balance responsiveness to customer demand and supply chain 

efficiency. An examination of supply chain systems in process industries from a 

responsiveness view point was carried out by Shaw et al (2005). These authors also 

proposed a conceptual management strategy to improve responsiveness. 

Another group of relevant papers to be considered are on supply chain design and 

operation. A general review of this area is given in Kok and Graves (2003), and a specific 

review for supply chains in process industries is presented by Shah (2005). Some recent 

works include the following. Tsiakis et al (2001) presented a supply chain design model 

for the steady-state continuous processes. Their supply chain model was developed based 

on determining the connection between multiple markets and multiple plants with fixed 

locations. Jackson and Grossmann (2003) presented a temporal decomposition scheme 

based on Lagrangean decomposition for a nonlinear programming problem model for 

multi-site production planning and distribution, where nonlinear terms arise from the 

relationship between production and physical properties or blending ratios. Schulz et al 

(2005) described two multi-period MINLP models for short term planning of 

petrochemical complexes. Linearization techniques were applied to reformulate the 

nonconvex bilinear constraints as MILP models. Recently, Sousa et al (2006) presented a 

two stage procedure for supply chain design with responsiveness testing. In the first stage, 

they design the supply chain network and optimize the production and distribution 

planning over a long time horizon. In the second stage, responsiveness of the first stage 

decisions are assessed using the service level to the customers (i.e. delay in the order 

fulfillment). However, all these models consider supply chain networks with only 

dedicated processes. Multi-product batch plants or flexible processes were not taken into 

account, and hence no scheduling models were included. 

There are works on supply chain optimization with consideration of flexible processes 

in the production network, but most of them are restricted to planning and scheduling for a 

given facility in a fixed location without extension to the multisite supply chain network 
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design problems. Bok et al (2000) proposed a multiperiod supply chain optimization 

model for operational planning of continuous flexible process networks, where sales, 

intermittent deliveries, production shortfalls, delivery delays, inventory profiles and job 

changeovers are taken into account. A bilevel decomposition algorithm was proposed, 

which reduced the computational time significantly. Kallrath (2002) described a tool for 

simultaneous strategic and operational planning in a multi-site production network, where 

key decisions include operating modes of equipment in each time period, production and 

supply of products, minor changes to the infrastructure and raw material purchases and 

contracts. A multi-period model is formulated where equipment may undergo one change 

of operation mode per period. The standard material balance equations are adjusted to 

account for the fact that transportation times are much shorter than the period durations. 

Chen et al (2003) presented a multi-product, multistage and multiperiod production and 

distribution planning model. They also proposed a two-phase fuzzy decision making 

method to obtain a compromise solution among all participants of the multi-enterprise 

supply chain. 

To account for product demand fluctuation and to obtain a better understanding of how 

uncertainty affects the supply chain performance, a number of approaches have been 

proposed in the chemical engineering literature for the quantitative treatment of 

uncertainty in the design, planning and scheduling problems. A classification of different 

areas of uncertainty for batch chemical plant design is suggested by Subrahmanyam et al 

(1994), where uncertainty in prices and demand, equipment reliability and manufacturing 

are taken into account. The authors used the popular scenario-based approach, which 

attempts to capture uncertainty by representing it in terms of a number of discrete 

realizations of the stochastic quantities, constituting distinct scenarios. Each complete 

realization of all uncertain parameters gives rise to a scenario and all the possible future 

outcomes are forecasted and taken into account through the use of scenarios. The objective 

is to find a robust solution which performs well under all scenarios. The scenario-based 

approach provides a straightforward way to implicitly account for uncertainty (Liu and 

Sahinidis, 1996). Its main drawback is that it typically relies on either a priori forecasting 

of all possible outcomes, or the explicit/implicit discretizations of a continuous 

multivariate probability distribution by methods of Gaussian quadrature integration or 

Monte Carlo sampling, which can result in an exponential number of scenarios.  

Another popular method to address the uncertainty is using probabilistic approaches, 

which consider the uncertainty aspect of the supply chain by treating one or more 
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parameters as random variables with known probability distribution. By introducing a 

certain number of nonlinear terms from continuous distribution, this approach can lead to 

a reasonable size of the deterministic equivalent representation of the probabilistic model, 

circumventing the need for explicit/implicit discretization or sampling. As argued by 

Zimmermann (2000), the choice of the appropriate method is context-dependent, with no 

single theory being sufficient to model all kinds of uncertainty. Recently, Shen et al 

(2003) proposed a novel approach to deal with the demand uncertainty for facility location 

problems. In their work, demand uncertainty is hedged by holding certain amount of 

safety stocks, and the safety stock level is decided by the demand variance and a specific 

service level. By adding the safety stock term in the model, the recourse problem for 

uncertain parameters is avoided.  

Thus, these papers either focus only on the long-term strategic design models, or else 

are restricted to short-term planning and scheduling models. Hence, no quantitative 

analyses are available for responsive supply chains under demand uncertainty. 

3. SUPPLY CHAIN RESPONSIVENESS 
A major goal of this paper is to develop a quantitative definition of supply chain 

responsiveness with integration of inventory under demand uncertainty. Responsiveness is 

defined as the ability of a supply chain to respond rapidly to the changes in demand, both 

in terms of volume and mix of products (Christopher, 2000; Holweg, 2005). Since the 

definition is qualitative, we need to find a quantitative measure for supply chain 

responsiveness.  

Lead time is the time of a supply chain network to respond to customer demands. We 

will consider have the lead time to the one corresponding to the longest time for all paths. 

Furthermore, in the worst case lead time corresponds to the response time when there are 

zero inventories. This was used as a measure of responsiveness in our previous work (You 

and Grossmann, 2007). As shown in Figure 1, a supply chain network with long lead time 

implies that its responsiveness is low, and vice versa. In this work, since we consider 

uncertain demands and safety stocks, expected lead time will be used as the measure of 

supply chain responsiveness. Thus, the challenge is to quantitatively define the expected 

lead time with integration of the supply chain network structure, inventory and operation 

details under demand uncertainty. In the following sections we will first review some key 

definitions, and then present our new proposal for expected lead time. 
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3.1. Time Delays in Simple Linear Supply Chains 
Consider first the case of a simple linear supply chain as given in Figure 2 that consists 

of one supplier, several manufacturing plants, one distribution center and one customer. 

The material flow starts from the supplier by way of manufacturing plants and distribution 

center(s)1 and ends at the customer. The information transfers in the reverse direction. In 

this work, we assume that information transfers instantaneously, thus the time delay for 

the entire supply chain comes from the time delay incurred by the transfer of materials.  

From Figure 2, we can see that the transfer of material flow is delayed by both 

transportation and production. The transportation delays between supplier, plants, 

distribution center and customer are equal to the associated transportation times between 

them (Figure 3). The production delay by each single-product plant is equal to the 

residence time of the products. The production delay in a multiproduct plant is more 

complicated as it needs to account for scheduling details. Therefore, we will leave this to 

the discussion in Section 5.3 cyclic scheduling.  

The time delay of the entire linear supply chain can be partitioned into two parts, 

delivery lead time and production lead time. The delivery lead time is defined as the time 

to transfer the product from distribution center to the customer, and the production lead 

time is the time that the material flow takes to transfer from supplier to the distribution 

center (Figure 4). Thus, the delivery lead time is equal to the transportation time from the 

distribution center to the customer; the production lead time is equal to the summation of 

all the time delays incurred by transportation and production from the supplier to the 

distribution center. Note that this characterization of the time delay of product activities is 

similar to the lean tool “value stream mapping” (Voekel and Chapman, 2003). 

3.2. Expected Lead Time of Simple Linear Supply Chain 
If there is sufficient inventory in the distribution center to handle the demand changes, 

the lead time should be equal to the time to transfer products from distribution center to 

customers, which is the delivery lead time. If there is no sufficient inventory in the 

distribution center to handle the demand changes (i.e. the product is out of stock), the 

worst case is when there is no extra stock for raw materials or intermediate products, and 

the only way is to go back to reorder the raw materials from the supplier. In this way, after 

a series of transportation and production steps, the product will be finally shipped to the 
                                                 
1 A linear supply chain can have more than one distribution centers. For a supply chain network, the 
distribution system can be multi-echelon. For simplicity, we only consider one distribution center for the 
linear supply chain in this work.  
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customer. Therefore, in this case the lead time would be equal to the production lead time 

plus the delivery lead time. Because the demand is uncertain, there is a probability that the 

product will be out of stock. We denote Prob  as the probability of stock out, DL  as the 

delivery lead time, and PL  as the production lead time. Thus, if the product is out of stock, 

the lead time is the production lead time plus delivery lead time ( P DL L+ ) with the stock 

out probability Prob . If the product is not stocked out, the lead time is delivery lead time 

DL  with the probability of (1  ) Prob− . Therefore, we have that the expected lead time 

( )E L  of this simple linear supply chain is given by: 

( ) ( ) (1  )P D DE L Prob L L Prob L= ⋅ + + − ⋅  

which can be arranged as, 

( ) P DE L Prob L L= ⋅ +  

This implies that the expected lead time is equal to the delivery lead time plus the 

expected production lead time (the stock out probability times production lead time). 

3.3. Expected Lead Time of Process Supply Chain Network 
Although a general process supply chain network is more complex than a simple linear 

supply chain, we can still “decompose” the supply chain network into paths of material 

flows that start from a supplier, and end at a customer, by way of several plants and 

distribution centers (as shown in Figure 5). For simple supply chain networks we can 

determine all the paths by inspection. For complex supply chain networks, various 

pathfinding algorithms (such as the one by Lengauer and Tarjan, 1979) that can be used to 

figure out all the possible paths in the supply chain network. It is worth mentioning that 

value stream mapping (Voekel and Chapman, 2003), a lean manufacturing tool widely 

used in industries, can also analyze the process and find all the possible paths in a supply 

chain network automatically.  

Thus, each path is equivalent to a simple linear supply chain for which the expected 

lead time can be easily determined. We define the maximum expected lead time of all 

possible paths as the total expected lead time of the entire supply chain. One could also 

consider a weighted expected lead time according to the importance of customers. But for 

simplicity, we consider the former definition in this work. 
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4. PROBLEM STATEMENT 
An integrated approach is needed in order to consider simultaneously supply chain 

network design, production planning and scheduling, demand uncertainty and inventory 

management to resolve the trade-offs between economics and responsiveness in an 

optimal manner. The problem of responsive supply chain design under demand 

uncertainty can be formally stated as follows. 

Given is a potential process supply chain network (PSCN) that includes possible 

suppliers, manufacturing sites, distribution centers and customers as shown in Figure 6. 

Also, a set of processes and a time horizon consisting of a number of time periods are 

given. The processes may be dedicated or flexible. Flexible processes are multi-product 

processes that operate under different production schemes using different raw materials 

and/or producing different products. Furthermore, changeovers are incurred between 

products (Figure 7). For all the production schemes, mass balances are expressed linearly 

in terms of the main product’s production. The investment costs for installing the plants 

and distribution centers are expressed by a cost function with fixed charges. There could 

be different transportation modes, continuous (e.g. pipelines) or discrete (e.g. barges, rail 

cars, vessel), for each path that connects the suppliers, plant sites, distribution centers and 

customers. For simplicity, we will assume that the transportation of materials in this 

problem is continuous. Thus, fixed charge cost functions provide good estimations of 

transportation costs. The transportation time of each route and the residence time of each 

product are assumed to be known. The PSCN involves a set of chemicals, which includes 

raw materials, intermediate products and final products. Prices for raw materials and final 

products are assumed to be known over the entire time horizon. Raw materials are subject 

to availability constraints (i.e., within lower and upper bounds). Demands in each time 

period are uncertain and are described by a specified continuous probability distribution 

function. Most of the inventories and all the safety stocks are hold in distribution centers, 

while plant sites also maintain a certain amount of inventory. Unit inventory cost for raw 

materials, intermediate products and final products are also given. 

In order to design a responsive supply chain, one objective is to minimize the expected 

lead time of the entire supply chain network. From the economic aspect, the other 

objective function is to maximize the net present value (NPV) over the specified time 

horizon. The income from sales, along with the investment, operating, transportation and 

purchase costs are taken into account in the NPV objective function.  
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Since the two conflicting objectives need to be optimized simultaneously, the 

corresponding problem yields an infinite set of trade-off solutions. These solutions are 

Pareto-optimal in the sense that it is impossible to improve both objective functions 

simultaneously (Halsall and Thibault, 2006). This implies that any designs for which the 

expected net present value and the expected lead time can be improved simultaneously are 

“inferior” solutions that do not belong to the Pareto-optimal curve. The aim of this 

problem is to determine the supply chain network configurations and operational decisions 

that define the Pareto optimal curve by maximizing NPV and minimizing the expected 

lead time. 

5. MODEL 
The model will be formulated as a multi-period MINLP problem, which will predict 

the detailed design decisions, production and inventory profiles and schedules of the 

PSCN with different specifications of the expected lead time. A list of indices, sets, 

parameters and variables are given in the Appendix. Four types of constraints are included 

in this model. They are network structure constraints, operational planning constraints, 

cyclic scheduling constraints and probabilistic constraints.  

Constraints (1) to (12) determine the network structure, constraints (13) to (23) refer to 

the operational planning constraints, constraints (24) to (36) are used for the cyclic 

scheduling of multi-product plants, constraints (37) to (40) are probabilistic constraints. 

Finally, inequalities (41) to (44) define the expected lead time and equation (46) defines 

the net present value, both of which are objective functions to be optimized. 

5.1. Network Structure Constraints 
To determine the topology of the network structure and model the selection of 

suppliers, plant sites, distribution centers, together with the transportation links between 

them, the binary variables ( ,
P

k iY , mY , ,
I

k lsY , ',
N

k kY , ,
O

k mY , ,
S

m ldY ) for plants, distribution centers 

and transportation links are introduced for the design decisions. Four types of network 

structure constraints are applied to represent the relationships between each node in the 

supply chain network. 

5.1.1. Supplier – Plant (Site) 

The first type of relationship is between suppliers and plant sites (Figure 8). A 

transportation link for raw material j  from supplier ls  to plant site k  exists ( ,
I

k lsY ), only if 
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at least one plant that consumes raw material j  exists in site k  ( ,
P

k iY ). The relationships 

discussed above can be expressed by the following logic proposition: 

, ,j

I P
k ls i I k iY Y∈⇒ ∨ ,   , ,jk K ls LS j J∀ ∈ ∈ ∈   (1.a) 

These logic propositions can be further transformed into inequalities as described in 

Raman and Grossmann (1993).  

, ,
j

I P
k ls k i

i I

Y Y
∈

≤∑ ,   , ,jk K ls LS j J∀ ∈ ∈ ∈   (1) 

On the plant side, if a plant that consumes raw material j  is set up ( ,
P

k iY ), at least one 

transportation link from the supplier ls  to site k  must be selected ( ,
I

k lsY ). The logic 

propositions are: 

, ,j

P I
k i ls LS k lsY Y∈⇒ ∨ ,   , ,i jk K i I j J∀ ∈ ∈ ∈   (2.a) 

which can be transformed into inequalities: 

, ,
j

P I
k i k ls

ls LS

Y Y
∈

≤ ∑ ,   , ,i jk K i I j J∀ ∈ ∈ ∈   (2) 

5.1.2. Input and output relationship of a plant 

The second type of network structure relationship is the input and output relationship 

of a plant (Figure 9). This type of relationship is somewhat more complicated than the 

previous one because the inter-site transportation must be taken into account. If an inter-

site transportation link from site 'k  to site k  is installed for chemical j  ( ',
N

k kY ), it implies 

that at least one plant 'i  in site 'k  is installed that produces chemical j  ( ', '
P

k iY ), and also at 

least one plant i  in site k  is installed that consumes chemical j  ( ,
P

k iY ), 

', ', '
' j

N P
k k k i

i O
Y Y

∈

≤ ∑ ,   ', ' ,, ' , ( )k i k ik k K j JP JM∀ ∈ ∈ ∩  (3) 

', ,
j

N P
k k k i

i I
Y Y

∈

≤∑ ,   ', ' ,, ' , ( )k i k ik k K j JP JM∀ ∈ ∈ ∩  (4) 

If a plant i  in site k  is installed ( ,
P

k iY ), that consumes chemical j , then site k  is 

connected to one of the suppliers of chemical j  denoted as ls  ( ,
I

k lsY ), or connected to 

another site 'k  that produces chemical j  ( ',
N

k kY ), or there is another plant 'i  in site k  that 

produces chemical j  ( , '
P

k iY ). The logic propositions can be written as follows: 

', , ' ', ' , 'j i j

P I N P
k i ls LS k ls k K k k i O k iY Y Y Y∈ ∈ ∈⇒ ∨ ∨ ∨ , ,, ,i j k ik K i I j JM∀ ∈ ∈ ∈   (5.a) 
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which can be transformed into linear inequalities as, 

'

, , ', , '
' 'j i j

P I N P
k i k ls k k k i

ls LS k K i O
Y Y Y Y

∈ ∈ ∈

≤ + +∑ ∑ ∑ , ,, ,i j k ik K i I j JM∀ ∈ ∈ ∈   (5) 

Similarly, if the chemical j  is produced by plant i  in site k , then at least one other 

plant 'i  in the same site is installed that consumes chemical j  ( , '
P

k iY ), or there is at least 

one transportation link to a distribution center ( ,
O

k mY ), or to another site ( , '
N

k kY ) that 

consumes chemical j : 

'

, , , ' , '
' 'i j

P O N P
k i k m k k k i

m M k K i I
Y Y Y Y

∈ ∈ ∈

≤ + +∑ ∑ ∑ , ,, ,i j k ik K i O j JP∀ ∈ ∈ ∈   (6) 

Constraints (5) are defined for raw materials and intermediate products, and 

constraints (6) are defined for intermediate products and final products.  

5.1.3. Plant (site) – Distribution Center 

The third type of relationship is between plant sites and distribution centers as shown 

in Figure 10. A transportation link for product j  from plant site k  to distribution center 

m  exist ( ,
O

k mY ), only if at least one plant that consumes raw material j  exists in site k  

( ,
P

k iY ). On the plant side, if a plant that consumes raw material j  is set up, there should be 

at least one link from the distribution center m  to site k  exists. Similarly, transforming 

the corresponding logic propositions, leads to the following inequalities: 

, ,
j

O P
k m k i

i O

Y Y
∈

≤ ∑ ,   ,, , k ik K m M j JP∀ ∈ ∈ ∈   (7) 

, ,
P O

k i k m
m M

Y Y
∈

≤ ∑ ,   ,, ,j k ik K i O j JP∀ ∈ ∈ ∈   (8) 

5.1.4. Input and output relationship of distribution center 

The last type of network structure relationship is the input and output relationship of a 

distribution center as in Figure 11. A transportation link from plant site k  to distribution 

center m  exists, only if the distribution center m  exists ( mY ). A transportation link from 

distribution center m  to customer ld  exists ( ,
S

m ldY ), only if the distribution center m  

exists. The relationships can be expressed as, 

,
O m

k mY Y≤ ,   ,k K m M∀ ∈ ∈    (9) 

,
S m

m ldY Y≤ ,   ,m M ld LD∀ ∈ ∈    (10) 
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On the other hand, if a distribution center m  is set up, at least one transportation link 

from the plant site k  to distribution center m  ( ,
O

k mY ) and at least one transportation link 

from distribution center m  to customer ld  ( ,
S

m ldY ) must exist.  

,
m O

k m
k K

Y Y
∈

≤ ∑ ,   m M∀ ∈     (11) 

,
m S

m ld
ld LD

Y Y
∈

≤ ∑ ,   m M∀ ∈     (12) 

5.2. Operational Planning Constraints 
In the operational planning model investment in plant capacity, and purchases, sales, 

production, transportation and mass balance relationships are considered together with the 

constraints of these activities due to the supply chain structure.  

5.2.1. Production Constraints 

All the chemical flows , , , ,k i j s tW  of chemical j  associated with production scheme s  in 

plant i  of site k , other than the main product 'j , are given by the mass balance 

coefficient , ,i j sμ . The following equation relate input or inlet flow of chemical j  

( , , , ,k i j s tW ) with the output of a main product 'j  ( , , ', ,k i j s tW ) of each process, 

, , , , , , , , ', ,k i j s t i j s k i j s tW Wμ= , ', ,, , , ' , ,i j i s i s ik K i I j J j JP s S t T∀ ∈ ∈ ∈ ∈ ∈ ∈  (13) 

The production amount should not exceed the design capacity ,k iQ  defined by the 

main product j  for each process: 
1

, , , , , ,k i j s t i s k i tW Q Lenpρ≤ , ,, , , ,i j k i ik K i O j JP s S t T∀ ∈ ∈ ∈ ∈ ∈   (14) 

where tLenp  is the length of time period t  and 1
,i sρ  is the relative production amount of 

main product j  of production scheme s  in plant i  in turns of capacity 

The formulation is based on the assumption that there are no capacity expansions over 

the entire time horizon. However, multi-period capacity planning events and decisions can 

readily be considered by suitably modifying the formulation constraints along with the 

detailed capacity investment constraints (Sahinidis et al, 1989) which are not detailed here. 

For flexible processes, the maximum production rate , ,k i sr  of the each product s  in 

plant i  of site k  is proportional to the capacity of the plant (see Norton and Grossmann, 

1994), 
2

, , , ,k i s i s k ir Qρ= ,  ,, , ,i j k i ik K i O j JP s S∀ ∈ ∈ ∈ ∈   (15) 
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where 2
,i sρ  is the relative maximum production rate of main product of production scheme 

s  in turns of the capacity of plant i  

5.2.2. Mass Balance Constraints 

The mass balance for chemical j  in manufacturing site k  at time period t  is given as 

follows: 

, , , , ', , , , , , , , , , ', , , ', , ,
' 'j j

k j ls t k k j t k i j s t k j m t k k j t k i j s t
ls LS k K i O s S m M k K i I s S

P TR W F TR W
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

+ + = + +∑ ∑ ∑∑ ∑ ∑ ∑∑ , 

, ,ik K j J t T∀ ∈ ∈ ∈  (16) 

where , , ,k j ls tP  is purchase amount, , ', ,k k j tTR  is the inter-site shipping amount and , , ,k i j tW  is 

the production amount. 

The mass balance for chemical j  in distribution center m  at time period t  is given as 

follows: 

, , , , , ,k j m t j m ld t
k K ld LD

F S
∈ ∈

=∑ ∑ ,  , ,j J m M t T∀ ∈ ∈ ∈   (17) 

where , , ,k j m tF  is the shipping amount from production site to distribution center and 

, , ,j m ld tS  is the sale amount. 

5.2.3. Inventory Constraints 

The total available amount of chemical j  for customer ld  ( , ,j ld tQS ) should be equal to 

the safety stocks ( , , ,j m ld tI ) committed to this customer in all distribution centers plus the 

sale amount. 

, , , , , , , ,+j ld t j m ld t j m ld t
m M m M

QS I S
∈ ∈

= ∑ ∑ , , ,j J ld LD t T∀ ∈ ∈ ∈   (18) 

The sale amount of chemical j  to each customer ld  at time period t  should be equal 

to the associated target demand 
, ,j ld t

md  (usually the target is equal to the mean value of 

uncertain demand), 

, ,, , , j ld t

m
j m ld t

m M

S d
∈

=∑ ,   , ,j J ld LD t T∀ ∈ ∈ ∈   (19) 

The total available amount of chemical j  will be less than the upper bound of the 

demand, 

, ,, , j ld t

U
j ld tQS d≤ ,   , ,j J ld LD t T∀ ∈ ∈ ∈   (20) 
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The working inventories of the plant sites ( , ,
PS
k j tWI ) and the distribution centers 

( , ,
DC
m j tWI ) are related linearly to the inlet flows of materials that they handle (Tsiakis et al, 

2001). This is expressed via the constraints, 

, , , , , , ,
PS
k j t k j t k j ls t

ls LS
WI Pα

∈

≥ ∑ ,  , ,kk K j JM t T∀ ∈ ∈ ∈   (21) 

, , , , , , ,
DC
m j t m j t k j m t

k K
WI Fβ

∈

≥ ∑ ,  , ,km M j JP t T∀ ∈ ∈ ∈   (22) 

where , ,k j tα  and , ,m j tβ  are given coefficients coming from empirical studies (such as the 

probability of machines broken down or supply limitation). 

5.2.4. Upper Bound Constraints 

Purchases , , ,k j ls tP  from supplier ls  to plant site k  take place only if the transportation 

link between them is set up, 

, , ,, , , ,k j ls t

U I
k j ls t k lsP P Y≤ ,   , , ,k j ls t∀    (23.1) 

Inter-site transportation , ', ,k k j tTR  from site k  to site 'k  take place only if the 

transportation link between them is set up, 

, ', ,, ', , , 'k k j t

U N
k k j t k kTR TR Y≤ ,  , ', ,k k j t∀    (23.2) 

Sales , , ,j m ld tS  from distribution center m  to customer ld  take place only if the 

transportation link between them is selected, 

, , , , , , ,
U S

j m ld t j m ld t m ldS S Y≤ ,  , , ,j m ld t∀    (23.3) 

Nonzero production flows , , , ,k i j s tW  are allowed in plant i  of site k  only if the plant is 

installed, 

, , , ,, , , , ,k i j s t

U P
k i j s t k iW W Y≤ ,   , , , ,k i j s t∀    (23.4) 

,, ,k i

U P
k i k iQ Q Y≤ ,   ,k i∀     (23.5) 

The transportation amount , , ,k j m tF  from plant site k  to distribution center m  takes 

place only if the transportation link between them is set up, 

, , , , , , ,
U O

k j m t k j m t k mF F Y≤ ,   , , ,k j m t∀    (23.6) 

5.3. Cyclic Scheduling Constraints 
To address detailed operations of the multi-product plants, we have considered a cyclic 

scheduling policy (Pinto and Grossmann, 1994). Under this policy, the sequences to 

produce each product are decided together with the cycle time, and then the identical 
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schedule is repeated over each time period (Figure 12). The trade-offs between inventories 

and transitions are established by optimizing the cycle times. 

Important decisions in cyclic scheduling including the sequence of production 

( , , , ,k i s sl tSY ) and precedence relationship for changeovers between pairs of products 

( , , , ', ,k i s s sl tZ ), are determined through the following assignment and sequencing constraints. 

5.3.1. Assignment Constraints 

 The assignment constraints state that exactly one time slot must be assigned to one 

product and vice versa. The total number of time slots will be exactly equal to the total 

number of products, 

, , , , 1
i

k i s sl t
sl SL

SY
∈

=∑ ,  , , ,i j ik K i I s S t T∀ ∈ ∈ ∈ ∈    (24) 

, , , , 1
i

k i s sl t
s S

SY
∈

=∑ ,  , , ,i j ik K i I sl SL t T∀ ∈ ∈ ∈ ∈    (25) 

5.3.2. Sequence Constraints 

The sequence constraints state that exactly one transition from product s  occurs in the 

beginning of any time slot if and only if s  was being processing during the previous time 

slot. On the other hand, exactly one transition to product s  occurs in the time slot if and 

only if product s  is being processed during that time slot. As suggested in Wolsey (1997), 

the transition variables , , , ', ,k i s s sl tZ  can be replaced by continuous variables between 0 and 1, 

instead of binary variables. This significantly reduces the number of discrete variables and 

improves the computational efficiency. 

, , , ', , , , ', 1,
i

k i s s sl t k i s sl t
s S

Z SY −
∈

=∑ , , , ' , ,i j i ik K i I s S sl SL t T∀ ∈ ∈ ∈ ∈ ∈   (26) 

, , , ', , , , , ,
' 'i

k i s s sl t k i s sl t
s S

Z SY
∈

=∑ , , , , ,i j i ik K i I s S sl SL t T∀ ∈ ∈ ∈ ∈ ∈   (27) 

, , , ', ,0 1k i s s sl tZ≤ ≤ ,  , , , ', ,k i s s sl t∀     (28) 

5.3.3. Production Constraints 

The production amount of product s  in a cycle ( , , ,
S

k i s tW ) is equal to the processing rate 

, ,k i sr  times the processing time , , , ,k i s sl tδ : 

, , , , , , , , ,
i

S
k i s t k i s k i s sl t

sl SL

W r δ
∈

= ∑ , , , ,i j ik K i I s S t T∀ ∈ ∈ ∈ ∈    (29) 
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The amount produced for each product in time period t  ( , ,k i tN  cycles in the time 

period) should be no less than the total production predicted from operational planning in 

this time period: 

, , , , , , , , ,
S

k i s t k i t k i j s tW N W= , ,, , , ,i j k i ik K i O j JP s S t T∀ ∈ ∈ ∈ ∈ ∈   (30) 

5.3.4. Timing Constraints 

Constraints (31) to (34) are used to restrict the timing issues in the cyclic scheduling.   

The processing time , , , ,k i s sl tδ  in a certain time slot is equal to the summation of the 

processing times assigned to all the products in this time slot, 

, , , , , , ,
i

k i sl t k i s sl t
s S

δ δ
∈

= ∑ ,  , , ,i j ik K i I sl SL t T∀ ∈ ∈ ∈ ∈    (31) 

The cycle time , ,k i tTC  is equal to the summation of all the processing times in each 

time slot plus the summation of transition times in this cycle, 

, , , , , , , , ', 1, , , '
'i i i i

k i t k i sl t k i s s sl t i s s
sl SL s S s S sl SL

TC Zδ τ+
∈ ∈ ∈ ∈

= +∑ ∑∑ ∑ , , ,i jk K i I t T∀ ∈ ∈ ∈  (32) 

The total production time should not exceed the duration of each time period , ,k i tH , 

, , , , , ,k i t k i t k i tTC N H≤ ,  , ,i jk K i I t T∀ ∈ ∈ ∈    (33) 

The production for scheme s  in time slot sl  can take place only if the time slot is 

assigned to the production scheme: 

, , , , , , , , , , , ,
U

k i s sl t k i s sl t k i s sl tSYδ δ≤ , , , , ,i j i ik K i I s S sl SL t T∀ ∈ ∈ ∈ ∈ ∈   (34) 

5.3.5. Cost Constraints 

To integrate the cyclic scheduling with the strategic planning, the inventory and 

transition costs from cyclic scheduling are considered as part of the operating cost. 

Constraint (35) represents that cost from scheduling in a time period for a certain plant. 

The first term on the right hand side of the equation stands for the total transition cost in a 

time period. The second term is the inventory cost for all the chemicals involved in the 

production. The change of inventory level in a time period is given in Figure 13. In the 

work by Pinto and Grossmann (1994), these authors consider inventory only for final 

products, as their model is for single plant. In our case, each manufacturing site may have 

more than one production plant, and inventory for materials of multi-product plants must 

be also taken into account. Since we assume that material balances are expressed linearly 

in terms of the main product’s production, the cumulative inventory levels for raw 

materials are also related linearly to the cumulative inventory level of main product in 
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each production scheme and the coefficients of the linear relationships are equal to the 

mass balance coefficients. This leads to the second term on the right hand side of the 

following constraint. Thus, the inventory and transition costs of multiproduct processes 

are given by, 

, , , , ' , , , ', , , , , , , , , , , , , , , , , , , ,
'

( )( ) / 2
i i i i i i

S S
k i t i s s k i s s sl t k i t i j s k j t k i s k i t k i s t k i t k i sl t

s S s S sl SL s S j J sl SL

COST CTR Z N r H W Nμ ε δ
∈ ∈ ∈ ∈ ∈ ∈

= + −∑∑ ∑ ∑∑ ∑
     , ,i jk K i I t T∀ ∈ ∈ ∈  (35) 

This constraint is nonlinear and nonconvex, with bilinear and trilinear terms. If all the 

processes in the production network are dedicated, cyclic scheduling need not be taken 

into account, and this constraint can be discarded. 

5.3.6. Upper Bound Constraints 

As a multi-site problem, we need to make sure that if a plant i  in site k  is not 

installed, there are no production cycles. To model this, we introduce the upper bound 

constraint (36) for the number of cycles , ,k i tN  in each time period for each multiproduct 

plant in each manufacturing site: 

, , , , ,
U P

k i t k i t k iN N Y≤ ,  , ,i jk K i I t T∀ ∈ ∈ ∈    (36) 

Also the assignment constraints are reformulated to account for the fact that all the 

scheduling activities can take place only if the plant is installed: 

, , , , ,
i

P
k i s sl t k i

sl SL

SY Y
∈

=∑ ,  , , ,i j ik K i I s S t T∀ ∈ ∈ ∈ ∈    (24) 

, , , , ,
i

P
k i s sl t k i

s S

SY Y
∈

=∑ ,  , , ,i j ik K i I sl SL t T∀ ∈ ∈ ∈ ∈    (25) 

5.4. Probabilistic Constraints for Demand Uncertainty 
A key component of decision making under uncertainty is the representation of the 

stochastic parameters. There are two distinct ways of representing uncertainties. The 

scenario-based approach (Subrahmanyam et al, 1994; Liu and Sahinidis, 1996) attempts to 

capture the uncertainties by representing them in terms of a number of discrete realizations 

of the stochastic parameters where each complete realization of all uncertain parameters 

gives rise to a scenario. In this way all the possible future outcomes are taken into account 

through the use of scenarios. This approach provides a straightforward way to formulate 

the problem, but its major drawback is that the problem size increases exponentially as the 

number of scenarios increases. This is particularly true when using continuous 

multivariate probability distribution with Gaussian quadrature integration schemes. 
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Alternatively, Monte Carlo sampling could be used, although it also requires a rather large 

number of points to achieve a desired level of accuracy. These difficulties can be 

somewhat circumvented by analytically integrating continuous probability distribution 

functions for the random parameters (Wellons et al, 1989; Petkov et al, 1998). This 

approach can lead to a reasonable size deterministic equivalent representation of the 

probabilistic model, at the expense of introducing certain amount of nonlinearities into the 

model through multivariate integration over the continuous probability space. In this work, 

this approach is used for describing the demand uncertainty.  

The probabilistic description of demand uncertainty renders some operational planning 

variables (amount of sale, shortfall and salvage) to be stochastic. A traditional way to deal 

with this is to allow “corrective actions” by adding recourse actions in the model. 

Stochastic programming problems with recourse are usually complicated in its nature and 

difficult to solve. Based on the special characteristics of demand uncertainty, Shen et al 

(2003) recently proposed a novel approach to hedge unexpected demand by holding a 

certain amount of safety stock before demand realization. The amount of safety stock is 

estimated by using a chance constraint linking service level to a demand probability 

distribution. The need for recourse is obviated by taking the proactive action with safety 

stock, and the stochastic attributes of the problem are translated into a deterministic 

optimization problem at the expense of introducing nonlinear terms into the model. In this 

work, we use a similar approach. Instead of specifying the service level (or over-stocked 

probability), we treat the stock-out probability as a variable, and integrate it with supply 

chain responsiveness. The detailed model formulations are given below. 

5.4.1. Stock-out Probability 

If a particular product demand realization , ,j ld td  is higher than its total available 

amount , ,j ld tQS , we are under-stocked, i.e. stock-out will happen. If a particular product 

demand realization , ,j ld td  is less than its total available amount , ,j ld tQS , we are over-

stocked. The probability of over-stock is defined as β -service level in manufacturing 

literatures. The probability of stock-out plus the service level should be always equal to 1 

(as Figure 14). Thus the stock-out probability can be expressed as, 

, , , , , , , , , ,Pr( ) 1 Pr( )j ld t j ld t j ld t j ld t j ld tProb QS d QS d= ≤ = − ≥ , , ,j J ld LD t T∀ ∈ ∈ ∈   (37) 

The form of this constraint is very similar to a chance constraint (Charnes and Cooper, 

1963), which suggests that the above equation can be transformed into a deterministic 
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form. It is worth mentioning that this general definition for estimating safety stock level 

can be applied for all types of demand distributions. In real world cases, demand is often 

assumed to be normally distributed when there are sufficient samples, or triangularly 

distributed when limited sample applied. In the following sections we consider the cases 

when the demand follows a normal distribution and a triangular distribution. 

5.4.2. Normal Distribution 

Due to the central limit theorem, the product demands are often modeled as random 

parameters that are normally distributed (Wellons et al, 1989; Petkov et al, 1998). For a 

normal distributed demand, we are given the mean ( , ,j ld tμ ) and standard deviation ( , ,j ld tσ ) 

of the demand. 

To facilitate the calculation of the stock-out probability , ,j ld tProb , standardization of 

the variables is first performed. Normal random variables can be recast into the 

standardized normal form, with a mean of zero and a variance of 1, by subtracting their 

mean and dividing by their standard deviation. For the deterministic variables , ,j ld tQS , the 

standardized normal variables , ,j ld tK  are given as: 

, , , ,
, ,

, ,

j ld t j ld t
j ld t

j ld t

QS
K

μ
σ

−
=       (38) 

Substituting (38) into the general definition of stock-out probability defined in (37), 

we have the stock-out probability of normally distributed demand for product j  customer 

ld  at time period t  is, 

, , , ,1 ( )j ld t j ld tProb K= −Φ ,  , ,j J ld LD t T∀ ∈ ∈ ∈   (39.a) 

where (x)Φ  denotes the cumulative probability function of standard normal random 

variable in the form of, 
21(x) exp( )d

22
x x x

π −∞
Φ = −∫       (39.b) 

The stock-out probability for the entire planning horizon is considered as the worst 

case for all the individual stock-out probabilities of all the time periods. Hence we have 

that the stock-out probability ( ,j ldProb ) for product j  and customer ld  is: 

, , , , ,1 ( )j ld j ld t j ld tProb Prob K≥ = −Φ , , ,j J ld LD t T∀ ∈ ∈ ∈   (39) 
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5.4.3. Triangular Distribution 

For triangular distribution, we are given the demand’s lower bound Ld , upper bound 

Ud , and the most likely value Md  (as in Figure 15).  Due to the non-differentiable 

characteristics of triangular distribution, the stock-out probability has different 

representations when the total available amount QS  is less or more than the most likely 

demand Md . Their relationship can be represented by the following disjunction (for 

simplicity, the subscripts j , ld , t  are omitted) 

2 2( ) ( )1
( )( ) ( )( )

U ML M

L U

U L M L U L U M

d QS dd QS d
QS d d QSProb Prob

d d d d d d d d

y y
⎡ ⎤≥ ≥⎡ ⎤≤ ≤
⎢ ⎥⎢ ⎥

∨− −⎢ ⎥⎢ ⎥= − =⎢ ⎥⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦

¬

 (40) 

Using the convex hull reformulation, the disjunction can be transformed into MINLP 

constraints as discussed by Lee and Grossmann (2000): 
1 2

, , , , , ,j ld t j ld t j ld tQS QS QS= +       (40.1) 

1
, , , , , , , , , ,

L d M d
j ld t j ld t j ld t j ld t j ld td Y QS d Y≤ ≤      (40.2) 

2
, , , , , , , , , ,(1 ) (1 )M d U d

j ld t j ld t j ld t j ld t j ld td Y QS d Y− ≤ ≤ −     (40.3) 

1 2
, , , , , ,j ld t j ld t j ld tProb Prob Prob= +      (40.4) 

1
, , , ,

d
j ld t j ld tProb Y≤        (40.5) 

2
, , , ,1 d

j ld t j ld tProb Y≤ −        (40.6) 

1 2
, , , ,1

, , , ,
, , , , , , , ,

( )
( )( )

L
j ld t j ld td

j ld t j ld t U L M L
j ld t j ld t j ld t j ld t

QS d
Prob Y

d d d d
−

≥ −
− −

    (40.7) 

2 2
, , , ,2

, ,
, , , , , , , ,

( )
( )( )

j ld t j ld t
j ld t U L U M

j ld t j ld t j ld t j ld t

ydu QS
Prob

d d d d
−

≥
− −

    (40.8) 

where  , ,
d
j ld tY  is a binary variable that equal to 1 if , ,j ld tQS  is less than , ,

M
j ld td . 

5.5 Lead Time Definition 
As discussed in Section 3, for each path the expected lead time is equal to the delivery 

lead time, plus the production lead time, times the stock out probability. The delivery lead 

time and the production lead time are in turn equal to the summation of all the production 

delays and transportation delays incurred in the corresponding path. The expected lead 

time of the whole supply chain network is equal to the maximum expected lead time of 
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each path. As a supply chain design problem, we need to consider the case that if a plant 

or a transportation link is not selected, the associated delay is 0. Binary variables are used 

to model the lead time TP  with the following inequalities: 

1 1

1

, , , , , , , , , , , , , ,
1 1

x x x x x x x x n n

n n
I I P N N O O S S

j ld k ls k ls j ld k i k i j ld k k k k j ld k m k m m ld m ld
x x

TP Prob Y Prob Y Prob Y Prob Y Yλ θ λ λ λ
+ +

−

= =

≥ + + + +∑ ∑
    1 2 , , ,( , , ... , , )n ls k m ldls k k k m ld Path∀ ∈  (41) 

where ,j ldProb  is the stock-out probability, all the Y  are binary variables for design 

decisions, λ  denotes transportation delays and θ  represents production delay. The 

superscript (*)I  denotes the transport link from supplier to plant site, the superscript (*)P  

denotes the plant, (*)N  is for inter-site transport link, (*)O  represents the transport link 

from plant site to distribution center, and (*)S  is for the transport link from distribution 

center to customer. 

The set , , ,ls k m ldPath  includes all the possible paths in a given potential PSCN network. 

All the elements in the set , , ,ls k m ldPath  are in the form of 1 2( , , ... , , )nls k k k m ld , where 

supplier ls  is the start of the path, 1 2, ... nk k k  are the manufacturing sites and m  is the 

distribution center that the associated stream goes through, and customer ld  is at the end 

of the path. 

In equation (41) the transportation delay of each route and the production delay of 

each single product plant are given parameters. The production time delay for a 

multiproduct plant is not so obvious. Before introducing our definitions, consider the 

motivating example shown in Figure 7, 12 and 13.  A multi-product plant produces three 

chemicals A, B and C. Assume there is a demand change of chemical A. The worst case is 

when we just finished producing A, and there is no extra inventory of A besides the one 

committed to the former demand. There are two operating policies that can be 

implemented to deal with this situation. 

If the demand of chemical A has a large change, one would usually stop the current 

production for chemical C as soon as possible and skip all the other products (Chemical B) 

to produce chemical A directly. In this case, the production delay is equal to the residence 

time of chemical A (Figure 16). So we have the production delay ,k iθ  for multiproduct 

plant i  in site k  is equal to the maximum residence time ( ,
R

i sθ ) of all the products 

produced by this plant, 
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, ,
R

k i i sθ θ≥ ,    ,i jk K i I∀ ∈ ∈    (42.a) 

If the demand change of chemical A is not very significant, one will wait until the 

plant produces A again, so that we can adjust the production to meet the demand change. 

This takes some time which is given by the processing time of chemical B and C, plus 

residence time of A. In this way we define for multiproduct plant, the time delay for each 

product as cycle time plus residence time minus its processing time (Figure 17). Similarly, 

the production delay for a multiproduct plant is equal to the maximum time delay for each 

product: 

, , , , , , , ,
i

R
k i k i t i s k i s sl t

sl SL
TCθ θ δ

∈

≥ + − ∑ , ,i jk K i I∀ ∈ ∈    (42.b) 

In this definition cycle times of each plant are taken into account as part of the delay 

due to production, so that we have integrated the production details into the quantitative 

definition of responsiveness. 

The terms ,j ldProb Y  (stock-out probability times binary variable omitting the 

subscripts for simplicity) in the lead time definition can be linearized. We use a 

continuous variable PY  to replace the ,j ldProb Y  term in the lead time constraint: 

,j ldProb Y PY= ,    ,j ld∀    (43.1) 

1 1

1

, , , , , , , , , , , , , , , , ,
1 1

x x x x x x x x n n

n n
I I P N N O O S S

k j ls ld k ls k i j ld k i k k j ld k k k j m ld k m m ld m ld
x x

TP PY PY PY PY Yλ θ λ λ λ
+ +

−

= =

≥ + + + +∑ ∑  

    1 2 , , ,( , , ... , , )n ls k m ldls k k k m ld Path∀ ∈  (43) 

The equation (43.1) is equivalent to the following disjunction, 

, 0j ld

Y Y
PY Prob PY

¬⎡ ⎤ ⎡ ⎤
∨⎢ ⎥ ⎢ ⎥= =⎣ ⎦⎣ ⎦

,  ,j ld∀    (44.1) 

Applying the convex hull reformulation (Balas, 1985) to the above disjunctive 

constraint leads to: 

,2 j ldPY PY Prob+ =   ,j ld∀     (44.2) 

PY Y≤     ,j ld∀     (44.3) 

2 1PY Y≤ −    ,j ld∀     (44.4) 

where 2PY  is a new continuous variable introduced as a slack variable. The constraints 

(33) are applied for all the terms with superscript (*)I , (*)P , (*)N , (*)O , (*)S  in the 

expected lead time definition. 
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5.6. Nonnegative Constraints 
All continuous variables must be nonnegative and the binary variables should be 

integer: 

, , , , , , , , ', , , , , , , , , , , , ,, , , , , , , , , 0k i k i j t k j ls t k k j t k j m t j m ld t j m ld t j ld tQ W P TR F S I QS TP θ ≥   (45.1) 

, , , ', , , , , , , , , , , , , , , , , , , , , , ,, , , , , , , , , 0S S
k i s s sl t k i s t k i s k i sl t k i t k i sl t k i sl t k i t k i k i tZ W r TC Te Ts N COSTδ θ ≥  (45.2) 

, , , , , , , ,, , , , , {0,1}I P O m S
k ls k i k m m ld k i s sl tY Y Y Y Y SY ∈      (45.3) 

5.7. Net Present Value 
The NPV of the supply chain network is given by the following equations, 

purch oper tranp invest inventoryNPV Income C C C C C= − − − − −    (46) 

, , , ,j ld t j ld t
j ld t

Income Saϕ=∑∑∑       

, , , , ,purch j ls t k j ls t
k j ls t

C Pϕ=∑∑∑∑  

,

, , , , , , , ,
i s

S
operate i s t k i j s t k i t

k i s j JP t k i t
C W COSTσ

∈

= +∑∑∑ ∑ ∑ ∑∑∑  

, , , , , , , ', , , ', , , , , , , ,
'

, , , , , ,        

I N O
tranp k j ls t k j ls t k k j t k k j t k j m t k j m t

k j ls t k k j t k j m t

S
j m ld t j m ld t

j m ld t

C P TR F

S

ω ω ω

ω

= + +

+

∑∑∑∑ ∑∑∑∑ ∑∑∑∑

∑∑∑∑
 

, , , , , , , , , ' , '
'

, ,         

P P P I I O O N N
invest k i k i k i k i k ls k ls k m k m k k k k

k i k i k ls k m k k
m m S S

k ld k ld
m m ld

C Q Y Y Y Y

Y Y

ω γ γ γ γ

γ γ

= + + + +

+ +

∑∑ ∑∑ ∑∑ ∑∑ ∑∑

∑ ∑∑
 

, , , , , , , , , , ,( )PS DC
inventory j m t j m ld t k j t k j t m j t

j m ld t k j t

C I WI WIε ε= + +∑∑∑∑ ∑∑∑  

All the parameters in the above formulation are discounted at a specified interest rate and 

include the effect of taxes and interest rate on the net present value. 

6. SOLUTION PROCEDURE 

6.1. Solution Procedure for Multi-objective Optimization 
In order to obtain the Pareto-optimal curve for the bi-criterion optimization problem2, 

one of the objectives is specified as an inequality with a fixed value for the bound which is 

treated as a parameter. There are two major approaches to solve the problem in terms of 

                                                 
2 Two objectives are given by (43) and (46), constraints are given by (1)-(42), (44)-(45) 
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this parameter. One is to simply solve it for a specified number of points to obtain an 

approximation of the Pareto optimal curve. The other is to solve it as a parametric 

programming problem (Dua and Pistikopoulos, 2004), which yields the exact solution for 

the Pareto optimal curve. While the latter provides a rigorous solution approach, the 

former is simpler to implement for nonlinear models. For this reason we have selected this 

approach. The procedure includes the following three steps. The first one is to minimize 

the expected lead time TP  to obtain the shortest expected lead time STP , which in turn 

yields the lowest Pareto optimal NPV . The second step is to maximize NPV  that in turn 

yields the longest Pareto optimal expected lead time TPL. In this case the objective 

function is set as, 

NPV TPε− ⋅        (47) 

where ε  is a very small value (e.g., it is on the order of 0.001). The last step is to fix the 

expected lead time TP  to discrete values between STP  and LTP , and optimize the model 

by maximizing NPV  at each selected point. In this way we can obtain an approximation 

to the Pareto-optimal curve, together with the optimal configurations of PSCN for 

different values of lead time. 

6.2. Shortest Optimal Expected Lead Time  
In the aforementioned solution procedure for this bi-criterion optimization problem, 

one of the important steps is to find the shortest optimal expected lead time. Instead of 

minimizing the expected lead time by solving the entire problem directly, we use the 

following solution strategy to improve the computational efficiency.  

The expected lead time of each path of chemical flow as defined in section 3.2 is given 

by ( ) P DE L Prob L L= ⋅ + , which equals to the delivery lead time ( DL ) plus stock-out 

probability ( Prob ) times production lead time ( PL ). From the above equation, we can see 

that as the stock-out probability decreases, the expected lead time will decrease. In the step 

for determining the shortest optimal expected lead time, we do not account for the 

economic objective. Therefore, if there are sufficiently high safety stock levels in all the 

distribution centers to hedge the uncertain demands, the stock-out probability will be 0. 

Then the expected lead time of the supply chain network will be reduced to the maximum 

delivery lead time of each path of chemical flow. The delivery lead time is equal to the 

transportation delay from a distribution center to a customer. Because we can select what 

distribution centers to install and what transportation links to set up, we are able to choose 
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a subset of all the possible transport links between the customers and distribution centers, 

such that each customer has at least one transport link connected to, and the maximum 

transportation delay of all these transport links is minimized. In summary, the minimum 

expected lead time can be calculated by: 

,max{min{ }}S
S m ldm Mld LD

TP λ
∈∈

=       (48) 

where ,
S
m ldλ  is the shipping time from distribution center m  to customer ld . 

Equation (48) defines the shortest optimal expected lead time. It can be interpreted as 

follows. For each customer ld , we only choose one distribution center that have minimum 

shipping time to this customer, and set up the transport link between them. In this way, we 

set up as many transport links as the number of the customers (number of elements in set 

ld ). Since the expected lead time of the supply chain network is equal to the longest 

expected lead time for each path, the minimum expected lead time of the supply chain 

network will be equal to the maximum shipping time for those transport links that have 

been set up. 

Instead of solving the large scale nonconvex MINLP problem, we can obtain the 

optimal solution with much less computational effort by using the proposed method. 

However, this method works only for the shortest expected lead time case. To obtain other 

points in the Pareto curve, we need to solve a series of large scale nonconvex MINLP 

problems. To reduce the computational time, a heuristic hierarchical solution approached 

is proposed. 

6.3. Heuristic Hierarchical Approach 
The solution of each problem for the points in the Pareto curve can be very 

computationally demanding tasks due to the large number of discrete decisions and the 

highly nonlinear nonconvex terms3. In this section we propose a heuristic hierarchical 

solution approach that is able to handle the combinatorial and nonconvex nature of the 

responsive supply chain design problem and to reduce the computational effort needed. 

The basic idea is to exploit the fact that the operational cost arising form scheduling 

(inventory costs and transition costs) makes up only a small part of the total NPV. 

Therefore, we can use a two-stage decision approach as follows. We first determine the 

supply chain network structure and strategic planning decisions (production and shipping 

amounts), neglecting changeovers and transitions for multiproduct plants. In the second 
                                                 
3 The nonlinear nonconvex terms arise from the cyclic scheduling constraints (29), (30), (35), stock-out 
probability definition (37)-(40) and expected lead time definition (41), (43). 
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stage, we then consider the detailed production scheduling after the strategic design and 

planning decisions are made. The proposed methodology employs a simplified model 

(first stage) to determine the strategic design and planning decisions, which are then fed 

into the detailed model (second stage) in order to derive the operational and scheduling 

decision variables. 

It is important to note that this solution approach can be applied when one defines the 

production delay with constraint (42.a), which assumes that the demand is undergoing 

large changes and the production delay is irrelevant to the cycle time (please refer to 

section 5.5 for details). Clearly this heuristic approach may not yield optimal or near-

optimal solutions if the model includes constraint (42.b) for the production delays. The 

reason is given in section 6.3.1. 

6.3.1. Simplified Model 

The simplified model formulation is an approximation of the detailed model 

formulation. The main advantage of the simplified model is that it does not include the 

large amount of the nonconvex terms and binary variables for cyclic scheduling. In this 

way, the problem can be solved more efficiently and still capture the main trends in the 

supply chain design and planning. Furthermore, the model provides a valid upper bound 

by overestimating the objective function of the original problem.  

As transitions and changeovers for multiproduct plants are not taken into account in 

the simplified model, all the constraints for cyclic scheduling are not included. The 

objective functions are the same for each step as in the aforementioned solution procedure 

for multi-objective optimization problem. In summary, the simplified model includes the 

following constraints: (1)-(23), (37)-(40) (depends on the associated demand probability 

distribution), (42.a), (44)-(45). The objective functions are (43) and (46). 

In the simplified model we define the production delay with constraint (42.a), which 

considers production delay equal to the maximum residence time of all the products. 

Therefore, the expected lead time of a supply chain depends on the design and planning 

decisions only, and unrelated to production scheduling. Thus, the expected lead time 

obtained from the simplified model is exactly the same as what we can get by solving the 

original model. Based on this, in the second step of ε-constraint method, which is to 

calculate the longest optimal expected lead time, we only need to solve the simplified 

model for the solution. 
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On the other hand, the simplified model might not provide a good approximation to 

the original model, if the model includes constraint (42.b) to define the production delays 

instead of (42.a). Because constraint (42.b) considers production delay equal to the cycle 

time minus processing time plus residence time. However, cycle times and processing 

times are decisions for cyclic scheduling, which have been neglected in the simplified 

model. Missing information of scheduling may lead to inaccuracies when optimizing the 

expected lead time. Thus, this heuristic approach may not yield near-optimal solutions if 

the model includes constraint (42.b) for the production delays 

6.3.2. Solving Detailed Model 

In the detailed model, the design variables (binary variables for design decisions) and 

planning variables (production and transportation amounts, inventory levels) are fixed to 

their values as determined from the simplified model. The original detailed model is then 

solved in the reduced variable space in order to determine the optimal levels for the 

scheduling decision variables. However, the detailed model is still a large scale nonconvex 

MINLP model. To obtain a “good” starting point for the near-optimal solutions we 

formulate a heuristic subproblem and a convexified subproblem to select the initial values 

of the scheduling variables. 

The heuristic subproblem is used for the production sequence of multiproduct plants. It 

is based on the fact that transition costs are usually proportional to the transition times. 

Thus, a production sequence that can minimize the total transition time in a production 

cycle is often the optimal production sequence (Sahinidis and Grossmann, 1991). 

Therefore, the heuristic subproblem is to minimize the total transition times in a 

production cycle (constraint (32)), subject to the constraints (24) – (28). 

In the convexified subproblem, all the bilinear terms in the detailed model are replaced 

by convex envelopes (McCormick, 1976; Quesada and Grossmann, 1995). For example, 

the equation , , , , , , , , ,
S

k i s t k i t k i j s tW N W=  (30) was replaced by the following constraints, 

, , , , , , , , , , , , , , , , , , ,
S LO S LO S LO LO

k i s t k i t k i s t k i t k i s t k i t k i j s tW N W N W N W+ − ≤    (49.1) 

, , , , , , , , , , , , , , , , , , ,
S UP S UP S UP UP

k i s t k i t k i s t k i t k i s t k i t k i j s tW N W N W N W+ − ≤    (49.2) 

, , , , , , , , , , , , , , , , , , ,
S LO S UP S LO UP

k i s t k i t k i s t k i t k i s t k i t k i j s tW N W N W N W+ − ≥    (49.3) 

, , , , , , , , , , , , , , , , , , ,
S UP S LO S UP LO

k i s t k i t k i s t k i t k i s t k i t k i j s tW N W N W N W+ − ≥    (49.4) 

where LO  and UP  represent lower and upper bounds on the variables, respectively.  
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The solutions of the two subproblems are then used as the starting point to solve the 

detailed model. By doing this, we increase the chance to obtain a near-optimal solution.  

6.3.3. Algorithm 

In summary, the hierarchical algorithm comprises of the following steps: 

Step 1: Solve the simplified nonconvex MINLP model (objective functions are (43) 

and (46), subject to constraints (1)-(23), (37)-(40), (42), (44)-(45)) by neglecting 

transitions and changeovers of multiproduct plants and then fix the design and planning 

decisions. 

Step 2: For each multiproduct plant, solve the MILP heuristic subproblem (objective 

function is (32), constraints are (24)-(28)) to minimize the total transition time in a 

production cycle to obtain the initial values of the scheduling variables. 

Step 3: Solve the convexified model that uses convex envelopes to replace the bilinear 

constraints (30), (33) and (35) 

Step 4: Use the solutions from the subproblems in Step 2 and 3 as the starting points, 

solve the detailed MINLP model in the reduced variables space to obtain the scheduling 

and operational decisions. 

7. NUMERICAL EXAMPLES 
In order to illustrate the application of the proposed model and its corresponding 

solution strategy, we consider two examples for the design of polystyrene supply chains. 

The first example is a medium size problem that is solved with different production delay 

definitions under different demand uncertainties (triangular distribution and normal 

distribution), and using different solution approaches (direct approach and hierarchical 

approach). The second example is a large scale problem motivated by a real world 

application of which two instances with and without considering safety stocks are solved. 

The summary of all the instances is given in Table 1. 

In both examples the time horizon is 10 years, and three time periods are considered 

with lengths of 2 years, 3 years and 5 years, respectively. An annual interest rate of 10% 

and a tax rate of 45% have been considered for the calculation of the net present value. All 

the other input data are available upon request. 

All the instances are modeled with GAMS (Brooke et al, 1998) and solved on an IBM 

T60 laptop with an Intel Core Duo 1.83 GHz CPU and 1GB RAM. Due to the non-

convexity of the MINLP problems, the global optimization solver BARON (Sahinidis, 

1996) was used for the instances where the demands are triangular distributed, and the 
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SBB solver was used for the instances where the demands are normal distributed (because 

BARON does not support error function). All the instances are first solved with the outer-

approximation algorithm (Duran and Grossmann, 1986) solver in DICOPT for obtaining a 

lower bound before solving with BARON or SBB solvers. 

7.1. Example 1 
This example has a production network with three types of candidate plants (Figure 

18). Plant I is used to produce styrene monomers from ethylene and benzene; Plant II is a 

multiproduct plant for the production of three different types of solid polystyrene (SPS) 

resins; Plant III is also a multiproduct plant for the production of two different types of 

expandable polystyrene (EPS) resins. The entire supply chain network includes three 

potential suppliers, three potential production sites, two potential distribution centers, 

three customers and the associated potential transport links between them. The 

superstructure of the potential process supply chain network for Example 1 is given in 

Figure 19. Two raw materials (benzene and ethylene), one intermediate (styrene 

monomer) and seven products (three types of SPS resins and two types of EPS resins) are 

included in the supply chain network. 

7.1.1. Solutions for Different Production Delay Definitions 

We first consider two instances for Example 1 where the demand follows triangular 

distributions, but different production delay definitions are needed for multi-product 

plants. Instance 1 considers that the demand has large changes, and thus the production 

delay is irrelevant to the cycle time (Constraint 42.a); Instance 2 considers that the demand 

changes are small and that the production delay is closely related to cycle time (Constraint 

42.b). Both instances consist of 126 binary variables, 2,970 continuous variables and 

3,438 constraints and they are solved directly by using GAMS/BARON with 0% 

optimality tolerance. Six points in the Pareto optimal curve require 4,063 CPU seconds for 

Instance 1 and 16,893 seconds for Instance2. 

The Pareto curve is shown in Figure 20. We can see that for Instance 1 the Pareto 

curve ranges from 1.5 to 4.8 days in the expected lead time, and from $532 million to 

$667 million for the NPV. For Instance 2, the Pareto curve ranges from 1.5 to 9.32 days in 

the expected lead time, and from $491 million to $667 million for the NPV.  

For both curves the NPV increases as the expected lead time increases. This means 

that the price to reduce the expected lead time and to improve the supply chain 

responsiveness is to decrease the NPV. From the trends of both curves, we can see that the 



YOU AND GROSSMANN                                                   DESIGN OF RESPONSIVE SUPPLY CHAINS UNDER DEMAND UNCERTAINTY 

- 31 - 

rate of increase of NPV decreases as the expected lead time increases. This means that the 

cost to reduce the expected lead time increases when the expected lead time becomes 

smaller. 

Although these two instances use different production delay definitions, they still have 

the same maximum NPV, because different definitions of production delay have only an 

impact on the expected lead times and the NPV for intermediate points. 

Because the lead time definition (42.b) not only takes into account the residence time, 

but also considers the cycle times and processing times, the production delay we can 

obtain from constraint (42.b) will always be greater than the one we can get from (42.a). 

Thus, the longest optimal expected lead time for Instance 2 is greater than the one for 

Instance 1. 

It is reasonable that the two instances have the same minimum expected lead time, 

because as long as there are sufficient safety stocks in the distribution centers, the 

expected lead time will be equal to the expected delivery lead time regardless of the 

production delay. However, for the minimum expected lead time the optimal NPV from 

Instance 2 is less than the NPV form Instance 1. The reason is that we define the expected 

lead time of the supply chain as the longest expected lead time for all the possible paths. 

Although these two cases have the same expected lead time for the entire supply chain, the 

lead time for each individual path is not the same. As Instance 2 always has a longer 

production lead time than Instance 1 under the same circumstances, more inventories need 

to be held to reduce the stock out probability so that the longer production lead time of the 

paths except the longest one could be traded off. 

Figure 21 shows the change of cumulative inventories for all the EPS resins in 

distribution center “DC1” for different expected lead time specifications for the two 

production delay definitions. The safety stock levels are both zero at the longest expected 

lead time case. As the expected lead time decreases, the inventory level increases. More 

inventories are required for Instance 2 to obtain the same expected lead time as Instance 1. 

This is also because the production delay definition allows Instance 1 to have shorter 

production lead time. 

The optimal network structure (Figure 22) is the same for all the points in the Pareto 

curves in both instances. All the three manufacturing sites are selected, but only site 2 

installs plant I to produce styrene monomers, and then the monomers are shipped to plant 

sites II and III as the raw materials for different polystyrene resins. Plant site 1 connects to 
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both distribution centers, but plant site 2 only connects to the first distribution center. And 

each customer is served by only one distribution center.  

Instance 2 requires much longer computational time than Instance 1 due to the large 

number of bilinear terms in the lead time definition (because the production delays are 

variables for instance 2). For computational simplicity, we will use Constraint 42.a as the 

production delay definition in the following examples, i.e. production delay irrelevant to 

cycle time. 

7.1.2. Normal Distributed Demand 

For Instance 3, we solve Example 1 with demand following a normal distribution. This 

instance consists of 105 binary variables, 2,466 continuous variables and 2,963 

constraints, and is solved with GAMS/SBB and 5% margin of optimality. The reason we 

used the SBB solver instead of BARON is that the later one cannot handle the nonlinear 

term (error function) arising from the cumulative probability distribution of normal 

distribution (Constraint 39). Six points in the Pareto optimal curve require 753.57 CPU 

seconds. 

The Pareto curve is shown in Figure 23. It has the same range as Instance 1 in the 

expected lead time, but a wider range of NPV from $190 million to $591 million. This 

curve shows a similar trend as the Pareto curve for Instance 1, but the first point (the 

optimal NPV for the shortest lead time case) is much lower than expected. A possible 

reason is that the normal distribution has a “bell” shape curve. To ensure that the stock–

out probability is zero for the longest path, a sufficiently large amount of safety stock 

should be held due to the long tail of the normal distribution, which leads to significant 

inventory cost.  

Figure 24 represents the safety stock level for three types of SPS and two types of EPS 

in the two distribution centers. Similar to the case of the triangular distribution, the 

inventory level goes down as the expected lead time increases. 

The optimal network structure (Figure 22) is the same as we obtained from Instance 1.  

7.1.3. Hierarchical Solution Approach 

To test the performance of our proposed solution algorithm, we solve Instance 1 with 

the proposed hierarchical solution approach. The solver we used is GAMS/BARON, and 

the optimality margin is set to be 0% for the simplified model and 5% for the detailed 

model. 
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The computational results are showed in Table 2. We can see that for all the points, the 

computational times are smaller than the times required for the direct approach. Since 

Instance 1 is solved with a 0% optimality tolerance, the results are globally optimized. 

After comparing with the results from hierarchical approach, the differences for the 

solutions of these two instances are small (around 3%).  

As we can see from this instance, the proposed hierarchical algorithm can obtain a 

good near-optimal solution in short computational times. Another important advantage of 

using the hierarchical algorithm is that we can obtain near optimal solutions in reasonable 

time for very large scale problems that are unable to be solved directly with 

GAMS/BARON. In the next example, we are going to solve an industrial size problem 

that GAMS/BARON failed to converge for more than two weeks if solving it directly. 

However, with our hierarchical approach, solutions for six points of the Pareto curves are 

found within 5 hours. The details will be discussed next. 

7.2. Example 2 
Example 2 is a large scale problem which is motivated by a real world application. It 

has the same production network as in Figure 18. The potential supply chain network 

(Figure 25) includes three possible ethylene suppliers located in Illinois, Texas and 

Mississippi, and three potential benzene suppliers located in Texas, Louisiana, Alabama. 

Four potential manufacturing sites can be located in Michigan, Texas, California and 

Louisiana.  The Michigan manufacturing site can set up all the three types of plants, the 

Texas manufacturing site can only install Plant I, the California manufacturing site can 

only set up Plants II and III, and the Louisiana manufacturing site can only set up Plants I 

and II. The supply chain can have five distribution centers, located in Nevada, Texas, 

Georgia, Pennsylvania and Iowa. Customers are pooled into nine sale regions across the 

country based on their geographical proximity. The corresponding superstructure of the 

supply chain network is given in Figure 26.  

We assume that the demands follow triangular distributions, and solve this problem 

with consideration of safety stock (Example2, Instance 1) and without holding any safety 

stock (Example2, Instance 2). Both instances consist of 215 binary variables, 8,216 

continuous variables and 14,617 constraints and they are solved with the proposed 

hierarchical algorithm by using GAMS/BARON with 0% optimality tolerance for the 

simplified model and 5% for the detailed model. Six points in the Pareto optimal curve 

require 15,396 CPU seconds for Instance 1 and 16,927 seconds for Instance 2. The reason 
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it takes longer to solve Instance 2 is because for the step for calculating the shortest 

expected lead time we need to solve the problem by minimizing the expected lead time 

instead of using Equation 48 directly, because safety stocks are not considered in Instance 

2, and thus Equation 48 is not applicable for this case. 

The Pareto optimal curves are given in Figure 27. The Pareto curve for Example2, 

Instance 1 (with safety stock) has a similar trend as the Instance 1 of Example 1, and 

ranges from 1.6 to 5 days in the expected lead time and from $409 million to $683 million 

for NPV. The Pareto curve of Example 2, Instance 2 (without safety stock) ranges from 

4.3 to 5 days and is very similar to the curve obtained for the deterministic supply chain 

design reported in You and Grossmann (2007).  

Although with different ranges of NPV, these two curves has the same optimal longest 

expected lead time and the associated NPV (due to the optimality margin, there is a small 

difference between their optimal NPV). This is because in the longest expected lead time 

case, the supply chain needs to reduce cost by setting the safety stock levels to zero for 

Instance 1, which is equivalent to the case of no safety stock in Instance 2. Since there is 

no inventory held in Instance 2, the only factor that can change the expected lead time is 

the network structure. No matter how the network structure changes, the expected lead 

time in Instance 2 always includes the production lead time. Due to this reason, the range 

of expected lead time for Instance 2 is much smaller than that of Instance 1. On the other 

hand, changing the supply chain network structure is always much more expensive than 

holding a certain amount of safety stock. Thus, the Pareto curve for Instance 2 is below the 

curve for Instance 1. 

The optimal network structures under different expected lead times for Instance 1 are 

shown in Figure 28-30. It is interesting to see that all the four sites are selected, and that 

different types of plants are installed in the network structures. With the shortest expected 

lead time, 1.6 days (NPV = $489.39 MM), (Figure 28) eight plants in the four sites are 

installed, and all the four suppliers are selected and connected to the associated nearest 

plant sites. The CA site is only supplied by the TX site for styrene monomer. As the 

expected lead time increases to 2.96 days (NPV = $644.46 MM), the supplier in LA is 

selected to provide benzene to the TX site, which leads to cheaper raw material, in turn 

increasing the NPV (Figure 29). As shown in Figure 30 and 31, a new inter-site 

transportation link from LA site to CA site for the shipping of styrene monomer is added. 

The change of network structure increases the expected lead time, and leads to the highest 

NPV up to $690 MM. These examples shows the importance of establishing trade-offs 
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between responsiveness and economics in the design and planning of a PSCN for the 

improvement of overall earning and performance of a company. 

8. CONCLUSIONS 
In this paper we have presented a quantitative approach for designing responsive 

supply chains under demand uncertainty. The expected lead time was proposed as a 

measure of process supply chain responsiveness, and defined quantitatively with 

integration of supply chain network structure and inventory level. A multiperiod mixed 

integer nonlinear programming (MINLP) mathematical model was developed for the bi-

criterion optimization of economics and responsiveness, while considering customer 

demand uncertainty. The model integrates the long-term strategic decisions (e.g. 

installation of plants, selection of suppliers, manufacturing sites, distribution centers and 

transport links) with the short-term operational decisions (e.g. product transitions and 

changeovers) for the multi-site multi-echelon process supply chain network. The model 

also includes a novel approach to predict the safety stock levels with consideration of 

responsiveness, demand uncertainty and economic objectives. 

A bi-criterion optimization model was implemented to obtain the trade-offs between 

responsiveness and economics using the ε-constraint method. A hierarchical algorithm 

was further presented for the solution of the resulting large-scale MINLP problem based 

on decoupling of the decision-making levels (strategic and operational). Without 

compromising the solution quality, significant savings in computational effort was 

achieved by employing the proposed algorithm in the illustrative examples. 

Two examples related to styrene production were solved to illustrate the industrial 

application of this model. The results show that small changes in expected lead time can 

lead to significant changes in the net present value and the network structure, which in 

turn suggests the importance of integrating responsiveness into the design and operations 

of process supply chain network. 
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Nomenclature 

Indices/Sets 
k  Manufacturing Sites 
i  Plants 
j  Chemicals 
m  Distribution centers 
ls  Suppliers 
ld  Customers 
t  Time periods 
s , 's  Production schemes 

iK  Set of sites that can set up plant i  

,i sJ  Set of chemicals involved in scheme s  of plant i  

,i sJP  Set of main products for production scheme s  of plant i  

,k iJP  Set of main products for  plant i  in site k  

,k iJM  Set of materials of plant i  in site k  

iS  Set of production schemes for plant i  

iSL  Set of time slots for plant i  in the production scheduling 

jLS  Set of suppliers that supply chemical j  

jLD  Set of customers that need chemical j  

jI  Set of plants that consume chemical j  

jO  Set of plants that produce chemical j  

, , ,ls k m ldPath  
 

Set of possible path of chemical flow from a supplier to some sites and distribution 
center, finally ends at a customer. Elements are in the form of  1 2( , , ... , , )nls k k k m ld  

Parameters 
tLenp  Length of each time period t  

, ,j ld t

Ld  Lower bound of demand of chemical j  in market ld  during time period t  

, ,j ld t

Ud  Upper bound of demand of chemical j  in market ld  during time period t  

, ,j ld t

Md  Most likely demand of chemical j  in market ld  during time period t  

, ,j ld t

md  Target demand of chemical j  in market ld  during time period t  

, ,k j tα  Coefficient for throughput working inventory amount of chemical j for site k  

, ,m j tβ  Coefficient for throughput working inventory of chemical j for distribution center m  

, ,j ld tϕ  Selling price of chemical j  in market ld  during time period t  

, ,j ls tϕ  Purchase price of chemical j  in market ls  during time period t  

, ,j m tε  Inventory cost of chemical j  in distribution center m  in time period t  

, ,k j tε  Inventory cost of chemical j  in plant sites k  in time period t  

,
R

i sθ  Residence time of the main product for production scheme s  of plant i  
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,
I
k lsγ  Fixed cost of transport link from suppliers ls  to plant sites k  

,
O
k mγ  Fixed cost of transport link from plant sites k  to distribution center m  

,
S
m ldγ  Fixed cost of transport link from distribution center m  to customer ld  

, '
N
k kγ  Fixed cost of inter-plant site transportation 

,
P
k iγ  Fixed cost of installation of plant i  in site k  

, , ,
I
k j ls tω  Unit shipping cost for chemical j  from suppliers ls  to plant sites k in time period t  

, , ,
O
k j m tω  Unit shipping cost for chemical j  from plant sites k  to DC m in period t  

, , ,
S
j m ld tω  Unit shipping cost for chemical j  from distribution center m  to customer ld  

, ', ,
N
k k j tω  Unit shipping cost for chemical j  for inter-plant site transportation 

,
P
k iω  Variable cost of installation of plant i  in site k  

,
I
k lsλ  Transportation time from supplier ls  to plant site k  

, '
N
k kλ  Transportation time from plant site k  to 'k  

,
O
k mλ  Transportation time from plant site k  to distribution center m  

,
S
m ldλ  Transportation time from distribution center m  to customer ld  
1
,i sρ  relative production amount of main product j  of production scheme s  in plant i  
2
,i sρ  relative maximum production rate of main product of production scheme s  of plant i  

, ,i j sμ  Mass balance coefficients of chemical j  in scheme s of plant i  

, ,i s tσ  Unit operating cost of scheme s of plant i  during period t  

, , 'i s sτ  Transition time from product 's  to s  in plant i  

, , 'i s sCTR  Transition cost from product s  to 's  in plant i  

, ,k i tH  Total available production time in plant i  of site k  in period t  

, , ,k j ls t

UP  Upper bound of purchase of chemical j  from supplier ls  to site k  during period t  

, ', ,k k j t

UTR  Upper bound of shipment of product j  from site k  to 'k  in period t  

, , ,
U
j m ld tS  Upper bound of sales of product j  to market ld  from distribution center m in time 

period t  

, , ,
U

k j m tF  Upper bound of shipment of product j  from site k  to distribution center m  in time 
period t  

, , , ,k i j s t

UW  Upper bound of production of chemical j  in plant i  of site k  in period t  

,k i

UQ  Upper bound of capacity of each plant 

, , , ,
U
k i s sl tδ  Upper bound of processing time for product s in slot sl  of plant i  in site k  

Continuous Variables: 
,k iQ  Capacity of plant i  in site k  

, ,k i sr  Production rate of product s  in plant i  of site k  

, , , ,k i j s tW  Amount of chemical j  produced in plant i  of site k  in period t  
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, , ,k j ls tP  Purchase of chemical j  from supplier ls  to site k  during period t  

, , ,j m ld tS  Sales of product j  to market ld  from distribution center m  during time period t  

, , ,k j m tF  Shipping amount of chemical j  from site k  to distribution center m  in time period t  

, ', ,k k j tTR  Shipping amount of chemical j  from site k  to 'k  in period t  

, ,j ld tQS  Total available amount of chemical j  for customer ld  in time period t  

, , ,j m ld tI  Safety stock of chemical j  for market ld  in distribution center m  during period t  

, ,
PS
k j tWI  Working inventory of chemical j  in site k  during time period t  

, ,
DC
m j tWI  Working inventory of chemical j  in distribution center m  during time period t  

TP  Expected lead time of the whole supply chain network 
NPV  Net present value of the supply chain network 

,k iθ  Time delay by production of plant i  in site k  

, , ,k i sl tTs  Starting time of slot sl  in plant i  of site k  in period t  

, , ,k i sl tTe  End time of slot sl  in plant i  of site k  in period t  

, , , ,k i s sl tδ  Processing time of scheme s in slot sl  of plant i  in site k  

, , ,k i sl tδ  Processing time of the time slot sl  of plant i  in site k  

, ,k i tTC  Cycle time of plant i  in site k  in period t  

, , ,
S

k i s tW  Amount produced of main product in scheme s  of plant i  of site k  in period t  

, ,k i tN  Number of cycle in plant i  of site k  in period t  

, ,
S

k i tCOST  Total cost for inventories and transitions of plant i  in site k  in period t  

, ,j ld tK  Standardized normal variables of product j  for customer ld  in time period t  

, ,j ld tProb  stock-out probability for product j  customer ld  at time period t  

Binary Variables 

,
I

k lsY  1 if a transportation link from supplier ls  to plant site k  is set up 

,
P

k iY  1 if plant i  in site k  is installed 

',
N

k kY  1 if an inter-site transportation link from site 'k  to site k  is set up 

,
O

k mY  1 if transportation link from site k  to distribution center m  is set up 
mY  1 if distribution center m  is installed 

,
S

m ldY  1 if a transportation link from distribution center m  to customer ld  is set up 

, , , ,k i s sl tSY  1 if the slot sl  is assigned to the product s  in plant i  site k  in period t  

, , , ', ,k i s s sl tZ  1 if product s  is preceded by 's  in time slot sl  of plant i  site k  time period t  
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 Lead Time

Responsiveness

 
Figure 1. Conceptual relationship between lead time and responsiveness 

 
 

 
Figure 2. A simple linear supply chain 

 
 

 
Figure 3. Time delays of a simple linear supply chain 

 
 

 
Figure 4. Production lead time and delivery lead time 
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Figure 5. A path of chemical flow in a PSCN 

 
 

 
Figure 6. Process supply chain network 
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Figure 7. Changeovers of flexible processes 
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Figure 8. Relationship between suppliers and manufacturing sites 
 

 
Figure 9. Input and output relationship of a plant 
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Figure 10. Relationship between manufacturing sites and distribution centers 
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Figure 11. Input and output relationship of a distribution center 
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Figure 12. Cyclic scheduling of each time period 
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Figure 13. Inventory level change in cyclic scheduling 
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Figure 14. Service level and stock-out probability 
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Figure 15. Safety stock for triangular distribution 
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Figure 16. Time delay by production (large change of demand) 
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Figure 17. Time delay by production (small change of demand) 
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Figure 18. Production network for polystyrene supply chains 
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Figure 19. Potential process supply chain network superstructure for Example 1 
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Figure 20. Pareto optimal curve for different production delay definitions in Instance 1 and 2 of Example 1 

(demand uncertainty both follow triangular distribution) 
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Figure 21. Safety stock levels for EPS resins in DC1 for Instance 1 and 2 of Example 1 (triangular distributed 

demand for both instances) 
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Figure 22. Optimal network structure for Instance 1 and 2 of Example 1 
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Figure 23. Pareto optimal curve for Instance 3 of Example 1 (normal distributed demand) 
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Figure 24. Safety stock level for normal distributed demand in Instance 3 of Example 1 
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Figure 25. Location map for Example 2 
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Figure 26. Potential process supply chain network superstructure for Example 2 
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Figure 27. Pareto curve for Example 2 with safety stock and without safety stock (Instance 1 and 2 of 

Example 2) 
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Figure 28. Optimal network structure of Example 2 at expected lead time = 1.5 days, NPV = $489.39 MM 
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Figure 29. Optimal network structure of Example 2 at expected lead time = 2.96 days, NPV = $644.46 MM 
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Figure 30. Optimal network structure of Example 2 at expected lead time = 5.0 days, NPV = $690 MM 
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Figure 31. Material flows in the location map for the longest expected lead time (5.0 days) case of Example 2 
 
 

Instances Demand Uncertainty Production Delay Solution Approach Safety Stock
Example 1, Instance 1 Triangular Constraint 42.a Direct Yes 
Example 1, Instance 2 Triangular Constraint 42.b Direct Yes 
Example 1, Instance 3 Triangular Constraint 42.a Hierarchical Yes 
Example 1, Instance 4 Normal Constraint 42.a Hierarchical Yes 
Example 2, Instance 1 Triangular Constraint 42.a Hierarchical Yes 
Example 2, Instance 2 Triangular Constraint 42.a Hierarchical No 

Table 1. Summary of all the numerical examples and instances for case studies 
 

Table 2. Comparison for six points in the Pareto curve with different solution approaches (Instance 1 and 3 of 
Example 1). In the direct approach (Instance 1), the optimality margin is set to be 0%, which is the global 

optimum; in the hierarchical approach (Instance 3), the optimality margin is set to 0% for simplified model 
and 5% for the detail model. 

 Direct Approach 
( Example 1, Instance 1) 

Hierarchical Approach 
( Example 1, Instance 3) 

 Points on 
Pareto 
Curve 

Expected 
Lead Time 

(days)  NPV (M$) CPU(s) NPV (M$) CPU(s)  

Difference from 
Optimum 

I 1.5  532.82 316.48  514.68 104.25  3.40% 
II 2.16  586.78 484.08  568.65 70.52  3.09% 
III 2.82  622.07 649.85  603.94 106.49  2.91% 
IV 3.48  651.73 1292.35  633.6 168.33  2.78% 
V 4.14  662.69 960.83  644.56 138.99  2.74% 
VI 4.8  667.79 359.65  649.65 101.34  2.72% 


