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Abstract 
In this paper we consider the risk management for mid-term planning of a global 
multi-product chemical supply chain under demand and freight rate uncertainty. A 
two-stage linear stochastic programming approach is proposed within a multi-period 
planning model that takes into account the production and inventory levels, 
transportation modes, times of shipments and customer service levels. To investigate 
the potential improvement by using stochastic programming, we describe a simulation 
framework that relies on a rolling horizon approach. The studies suggest that at least 
5% savings in the total real cost can be achieved compared to the deterministic case. In 
addition, an algorithm based on the multi-cut L-shaped method is proposed to 
effectively solve the resulting large scale industrial size problems. We also introduce 
risk management models into the stochastic programming model, and multi-objective 
optimization schemes are implemented to establish the tradeoffs between cost and risk. 
To demonstrate the effectiveness of the proposed stochastic models and decomposition 
algorithms, a case study of a realistic global chemical supply chain problem is 
presented. 
Keywords: Supply Chain Management, Risk Management, Stochastic Programming, 
Multicut L-shaped Method, Simulation 
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1. Introduction 
Global supply chains in the process industries are usually very large scale systems 

that can be comprised of up to hundreds of or even thousands of production facilities, 

distribution centers and customers. Due to competition in the global marketplace, 

process industries are facing increasing pressure to manage their supply chains so as to 

reduce costs and risks.1, 2 To achieve this goal, effective mathematical tools for 

large-scale supply chain optimization, particularly for cost reduction and risk 

management, have drawn significant attention.3 

This paper is motivated by a real world application originating at The Dow 

Chemical Company, which has several global business units that supply multiple 

products to world wide customers. A large business unit can spend well into the 

hundreds of millions of dollars every year on its supply chain to handle and distribute 

the products. A deterministic planning model can be a useful tool to help the business 

units reduce costs by taking into account the flexibility in the system to shift production, 

inventory, and shipping volumes in such a way that customer demand is met while costs 

are minimized. However, due to inaccurate forecasts of customer demands and energy 

prices, supply chain planning gives rise to various types of financial risks. Since 

addressing these problems is a non-trivial task, it is the objective of this work to 

develop optimization models and solution algorithms for the risk management of large 

scale supply chain tactical planning under demand and freight rate uncertainties. 

We consider in this paper the problem of midterm planning for a large scale 

multiproduct supply chain under demand and freight rate uncertainty for which a 

two-stage stochastic linear programming approach is proposed, incorporating a 

multi-period planning model that takes into account the production and inventory levels, 

transportation modes, times of shipments and customer service levels. In the two-stage 

framework, the production, distribution and inventory decisions for the current time 

period are made “here-and-now” prior to the resolution of uncertainty, while the 

decisions for the rest time periods are postponed in a “wait-and-see” mode. A resulting 

challenge is that a large number of scenarios are required because the problem includes 

a very large number of uncertain parameters due to the multi-period nature and the large 

size of the supply chain network. To reduce the model size and the number of scenarios, 

we use a Monte Carlo sampling approach to discretize the continuous probability 

distribution functions and to generate the scenarios. To quantify the cost saving 
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achieved by modeling uncertainty in supply chain planning, we describe a simulation 

framework that relies on a “rolling horizon” approach. Simulation studies on the case 

problem suggest that at least 5% saving in the total cost can be achieved by using the 

stochastic approach compared to the deterministic one. To solve the resulting large 

scale industrial size problems effectively, an algorithm based on the multi-cut L-shaped 

method is proposed. As an additional enhancement, we introduce four risk management 

models by incorporating different risk measures into the proposed stochastic 

programming model. Different risk metrics, including variance, variability index, 

probabilistic financial risk and downside risk are used to explicitly measure the risks 

arising from uncertain customer demands and freight rates which allow managing these 

risks according to the decision maker’s preference. Multi-objective optimization 

schemes are also developed to tradeoff the cost minimization and risk minimization 

objectives for the global supply chain planning. To demonstrate the effectiveness of the 

proposed stochastic models and decomposition algorithms, a realistic case study of a 

global chemical supply chain problem is presented. 

The problem addressed in this paper has a number of novel features. First, we 

incorporate Monte Carlo sampling in a stochastic programming framework to reduce 

the number of scenarios for a real world application. Secondly, we propose a simulation 

framework based on iteratively solving deterministic and stochastic programming 

problems so as to quantitatively assess the cost savings achieved by the use of 

stochastic programming. The third feature is that we take into account the selection of 

different transportation modes with different transportation times in the stochastic 

programming model and the simulation framework. To our knowledge, planning 

problems that consider transportation time and transportation modes under uncertainty 

have not been addressed in this manner. An additional feature is that we implemented a 

multi-cut L-shaped method to solve the large scale problem from a real world case 

study. The proposed algorithm proved to be very effective for solving large-scale 

stochastic linear programming problems. Moreover, we present a comprehensively 

comparison of several risk management models for planning under uncertainty.  

The rest of this paper is organized as follows. Section 2 reviews some relevant 

literature on supply chain tactical planning under uncertainty and risk management. 

The general problem statement is given in Section 3. Section 4 presents the two-stage 

stochastic programming model. A simulation framework to quantify the different costs 

by using the stochastic and deterministic approaches is proposed in Section 5. An 
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efficient algorithm to solve the industrial size problems is presented in Section 6. 

Section 7 presents the risk management models, along with a comparison between 

different risk measures and the solution quality. Numerical results from a real world 

case study of a large-scale global chemical supply chain problem are presented in 

Section 8. Finally, Section 9 concludes on the performance of the proposed stochastic 

models and decomposition algorithms. 

 

2. Literature Review 
Tactical supply chain planning typically covers a midterm time horizon of between 

few months to one year, and decisions cover issues such as production, inventory and 

distribution.4 Related work includes, for instance, the one by Wilkinson et al.,5 who 

propose an approach to integrate production and distribution in multisite facilities using 

the resource task network framework. Bok et al.6 propose a multiperiod supply chain 

optimization model for operational planning of continuous flexible process networks 

where sales, intermittent deliveries, production shortfalls, delivery delays, inventory 

profiles and changeovers costs are taken into account. A bilevel decomposition 

algorithm was proposed, which reduced the computational time significantly. Jackson 

and Grossmann7 present a temporal decomposition scheme based on Lagrangean 

decomposition for a nonlinear programming problem model for multi-site production 

and distribution planning, where nonlinear terms arise from the relationship between 

production and physical properties or blending ratios. Chen et al.8 present a 

multi-product, multistage and multiperiod production and distribution planning model. 

They also proposed a two-phase fuzzy decision making method to obtain a compromise 

solution among all participants of the multi-enterprise supply chain. A multiproduct 

supply chain planning model with consideration of duty drawback is proposed by Oh 

and Karimi.9 Recently, Guillen et al.10 present a mixed-integer linear programming 

model for tactical planning and operational scheduling of chemical supply chains with 

multi-product, multi-echelon distribution networks with consideration of financial 

management issues. All of these models are deterministic supply chain planning 

models that do not take into account the uncertainties or risks in the supply chain 

planning process. 

A number of approaches have been proposed in the chemical engineering literature 

for the quantitative treatment of uncertainty in the design, planning and scheduling 
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problems. A classification of different areas of uncertainty for batch chemical plant 

design is suggested by Subrahmanyam et al.,11 where uncertainty in prices and demand, 

equipment reliability and manufacturing are taken into account. The authors used a 

scenario-based approach, which attempts to capture uncertainty by representing it in 

terms of a number of discrete realizations of the stochastic quantities, constituting 

distinct scenarios. The objective is to find a solution that performs well on average 

under all scenarios. The scenario-based approach provides a straightforward way to 

implicitly account for uncertainty. Its major drawback is that the problem size increases 

exponentially as the number of scenarios increases. This is particularly true when using 

continuous multivariate probability distribution with Gaussian quadrature integration 

schemes. These difficulties can sometimes be circumvented by analytically integrating 

continuous probability distribution functions for the random parameters.12, 13 While this 

approach can lead to a reasonable size deterministic equivalent representation of the 

probabilistic model, this is often at the expense of introducing nonlinearities into the 

model. Furthermore, the nonlinear terms in the resulting deterministic equivalent 

problems are often nonconvex requiring global optimization techniques.14-17 A recent 

popular method to address the uncertainty is to use Monte Carlo sampling in the 

scenario planning framework18, 19 and then combine it with statistical methods to 

determinate the number of required scenarios so as to achieve a desired level of 

accuracy.20 By using this method, the required number of scenarios in the stochastic 

program can be significantly reduced, while the solution quality can be guaranteed at 

the desired level.21 In this work, we use the Monte Carlo sampling method to deal with 

large scale supply chain planning problem under uncertainty. 

In the stochastic programming models, the total expected performance measure is 

optimized so as to obtain optimal solutions that perform well on average for all the 

scenarios. However, standard stochastic programming methods usually do not provide 

any control on the solution’s variability over the different scenarios. In other words, the 

decision makers are assumed to be risk-neutral. One may have different attitudes 

towards the risk, thus the supply chain risks should be controlled and managed based on 

the decision makers’ preference. Related works about risk management includes, for 

instance, Eppen and Martin22 who propose the downside risk as a risk measure and 

incorporated it into a two-stage stochastic programming model for the production 

capacity planning under demand uncertainty in auto industry. Later Mulvey et al.23 

describe a robust optimization model to control the mean value and variance of the 
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objective functions in stochastic programs. Ahmed and Sahinidis24 propose the upper 

partial mean as a measure of risk and apply it in the long-term chemical process 

planning. Applequist et al.25 discuss risk premium as a measure that provides the basis 

for a rational balance between expected value of investment performance and variance. 

Recently, Barbaro and Bagajewicz26 introduced the probabilistic financial risk as a 

metric of risk for planning under uncertainty problems. Similar techniques are 

presented by Bonfill et al.27 for managing financial risk in scheduling problems. The 

probabilistic financial risk measure is also used for refinery planning28 and short term 

scheduling with pricing policies29.  

 

3. Problem Statement 
The problem addressed in this paper can be stated as follows. We are given a 

midterm planning horizon (for instance, one year), which can be subdivided into a 

number of time periods (for instance, one month as a time period). A set of products are 

manufactured and distributed through a given global supply chain that includes a large 

number of world wide customers and a number of geographically distributed plants and 

distribution centers. All the facilities (plants and distribution centers) can hold 

inventory and are connected to each other by an associated transportation link. Each 

customer is served by one or more facilities with specified transportation links. A 

simplified version of the network is shown in Figure 1. The network has multiple 

echelons whereby material may flow from the manufacturing plant through several 

distribution centers on its way to the final customer. Freight rates are specific to the 

transportation link involved and depend on distance and mode of transport. Generally, 

the transportation links are classified into two types, one is from a facility to another 

facility (plant or distribution center), and the other one is from a facility to a customer. 

Besides the supply chain network topology, we are also given the minimum and 

initial inventory of each facility. The inventory holding costs and the facility throughput 

costs are already known, together with future monthly demand of each product by each 

customer. The transportation time of each shipping lane is known and should be taken 

into account.  
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Plants           Distribution Centers              CustomersPlants           Distribution Centers              Customers
 

Figure 1   Global chemical supply chain 

 

The uncertainties arise from the customer demands and freight rates. The values of 

these uncertain parameters follow some probability distribution (such as, but not 

restricted to, normal distribution) with given mean and variance. Usually, the 

probability distribution of the uncertain parameters can be obtained by fitting the 

historical data for different probability distributions, or based on expert opinions. The 

mean values of these uncertain parameters typically come from forecasting, and the 

variances come from historical data.12 It is important to note that we allow the demands 

and freight rates to have different levels of uncertainties changing with time. For 

example, in January the uncertain demand of May has a standard deviation as much as 

20% of the mean value, but in April the standard deviation of that demand of May 

reduces to 5% of the mean value due to more accurate forecasting and information. 

Different levels of uncertainties are very important for the operations of industrial 

supply chains, and should be taken into account in the models. 

The problem is to determine the monthly productionI and inventory levels of each 

facility, and the monthly shipping quantities between network nodes such that the total 

expected cost and the total risks of the global supply chain are minimized while 

satisfying customer demands over the specified planning horizon. 

 

                                                 
I The model could be also easily extended to deal with weekly production planning (or even shorter time 
interval) by changing the length of time periods.  
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4. Stochastic Programming Model 

4.1. Two-stage Approach 

We consider a two-stage stochastic programming30 approach to deal with different 

levels of uncertainties and incorporate it into a multi-period planning model that takes 

into account the production and inventory levels, transportation modes and times of 

shipments and the customer service levels. II  In the two-stage framework, the 

production, distribution and inventory decisions for the current time period are made 

“here-and-now” prior to the resolution of uncertainty, while the decisions for the rest of 

the time periods are postponed in a “wait-and-see” mode after the uncertainties are 

revealed. The scenario planning approach is used to represent the uncertainties. A 

resulting challenge is that a large number of scenarios are required because the problem 

includes a very large number of uncertain parameters due to the multi-period nature of 

the model and the large size of global supply chain network. To reduce the model size 

and the number of scenarios, we use a Monte Carlo sampling approach to generate the 

scenarios. Each scenario is then assigned the same probability with the summation of 

the probabilities for all the scenarios equal to 1.18, 19 For example, if we use Monte 

Carlo sampling to generate 100 scenarios, the probability of each scenario is given as 

0.01. The number of scenarios is determined by using a statistical method20, 21 to obtain 

solutions within specific confidence intervals for a desired level of accuracy. This 

method is very effective for scenario reduction, particularly for large-scale problems. 

As an example, for a problem with 51000 scenarios, a sample size of around 400 can find 

the true optimal solution with probability 95%.20 

 

4.2. Mathematical Formulation 

In this work, we use a multi-period formulation to allow the costs and sourcing 

decisions to change with time while taking into account the transportation time for each 

shipment. The model includes five types of constraints. They are mass balance 

constraints for the production plants, distribution centers and customers, together with 

the constraints for production capacity and minimum inventory levels. The definition 

of sets, variables and parameters of the model are given at the end of this paper. Note 

that exchange rates, taxes, tariffs and duty drawbacks use linear approximations9, 31 and 
                                                 

II In principle, the problem can be formulated as a multi-stage stochastic programming model, to reduce 
the computational efforts we only consider a two-stage approach. 
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are taken into account in the parameters of freight rates and facility throughput costs. 

The mathematical formulation of the multi-period linear programming planning model 

is given in the following sections. 

4.2.1. Mass balance for plants 

Let us consider the mass balance for plant k product j at the first time period ( 1t = ). 

At the first time period ( 1t = ), all the decisions are assumed to be independent of the 

future scenarios. The mass balance for the plant Pk K∈  product j at the first time 

period ( 1t = ) is then given as follows. 

', , ,

0
, ', , , , , , , , , , , , ', , , ,

' '
k k j mk k j m t k r j m t k j k j t k j t k k j m t

k K m M r R m M k K m M
F S I I W F λ−

∈ ∈ ∈ ∈ ∈ ∈

+ = − + +∑ ∑ ∑∑ ∑ ∑ , 

             j∀ , Pk K∈ , 1t =   (1) 

Equation (1) states that the total freight shipped from plant Pk K∈  to other 

facilities and customers with all the transportation modes m M∈  should be equal to 

the changes in inventory plus the production amount and the volume shipped to plant 

Pk K∈  from other facilities. Because we need to consider the transportation time 

during the shipping process, the input freight coming from other facilities should start 

at the time period of ', , ,k k j mt λ−  so that the freight can arrive at the destination at time 

period t, where ', , ,k k j mλ  is the shipping time from facility 'k  to plant Pk K∈  of 

product j with transportation mode m. 

For the remaining time periods ( 2t ≥ ) contained in the second stage time periods, 

most of the decisions will be the second stage decisions. So for plant Pk K∈  product j 

at time period 2t ≥  for scenario s, the mass balance can be expressed as follows. 

', , ,, ', , , , , , , , , , , 1, , , , , , , ', , , , ,
' '

k k j mk k j m t s k r j m t s k j t s k j t s k j t s k k j m t s
k K m M r R m M k K m M

F S I I W F λ− −
∈ ∈ ∈ ∈ ∈ ∈

+ = − + +∑ ∑ ∑∑ ∑ ∑ , 

,j s∀ , Pk K∈ , 2t ≥   (2) 

 Equation (2) is similar to Eq. (1), but all the variables are replaced by the second 

stage variables, i.e. related to scenario s. It is important to note that for the second time 

period ( 2t = ), the term , , 1,k j t sI −  in Eq. (2) refers to the ending inventory level of the 

first time period, which is a first stage decision independent of scenarios. Similarly, if 

the freight 
', , ,', , , , ,k k j mk k j m t sF λ−  starts from the first time period, i.e. ', , , 1k k j mt λ= + , then the 

freight is also a first stage decision independent of the scenario. 
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4.2.2. Mass balance for distribution centers 

For the distribution centers, the mass balance equation is very similar to that for a 

plant; only the production term tjiW ,,  is missing. So for distribution center DCk K∈  

and product j in the first time period ( 1t = ), the mass balance equation is given by: 

', , ,

0
, ', , , , , , , , , , ', , , ,

' '
k k j mk k j m t k r j m t k j k j t k k j m t

k K m M r R m M k K m M

F S I I F λ−
∈ ∈ ∈ ∈ ∈ ∈

+ = − +∑ ∑ ∑∑ ∑ ∑ , 

    j∀ , DCk K∈ , 1t =   (3) 

For the remaining time periods ( 2t ≥ ) and scenario s, the mass balance is given by: 

', , ,, ', , , , , , , , , , , 1, , , , ', , , , ,
' '

k k j mk k j m t s k r j m t s k j t s k j t s k k j m t s
k K m M r R m M k K m M

F S I I F λ− −
∈ ∈ ∈ ∈ ∈ ∈

+ = − +∑ ∑ ∑∑ ∑ ∑ , 

,j s∀ , DCk K∈ , 2t ≥   (4) 

Similarly, for the second time period ( 2t = ), the term , , 1,k j t sI −  in Equation (4) 

refers to the ending inventory level of the first time period, which is a first stage 

decision. Thus , , 1,k j t sI −  should be replaced by , , 1k j tI −  when t = 2. Similarly, shipments 

', , ,', , , , ,k k j mk k j m t sF λ−  that originate in the first time period, i.e. ', , , 1k k j mt λ= + , are first stage 

decisions independent of the scenarios and should be replaced by 
', , ,', , , , k k j mk k j m tF λ− . 

4.2.3. Mass balance for customers 

To satisfy the demand of product j at customer r in time period t, the sum of all 

shipments from other facilities (plants and distribution centers) via all the shipping 

modes m starting at time period , , ,k r j mt λ−  (and arriving at customer r at time period t) 

should be no less than the demand ( stjrd ,,, ). To satisfy certain service levels and to 

ensure the constraint is feasible, we introduce a positive slack variable stjrSF ,,,  to 

quantify the unmet demand. Hence, the mass balance for product j at customer r in the 

first time period ( 1t = ) and scenario s can be formulated as follows: 

, , ,, , , , , , , , , ,k r j mk r j m t r j t s r j t s
k K m M

S SF dλ−
∈ ∈

+ ≥∑ ∑ , , ,r j s∀ , 1t =        (5) 

For the remaining time periods ( 2t ≥ ) and scenario s, the mass balance for product 

j at customer r is given as: 

, , ,, , , , , , , , , , ,k r j mk r j m t s r j t s r j t s
k K m M

S SF dλ−
∈ ∈

+ ≥∑ ∑ , , ,r j s∀ , 2t ≥        (6) 

Note that in constraint (6), we consider customer demand as the lower bound of the 

sales. One could also enforce the sale to be equal to the demand by changing constraint 
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(6) as an equality. 

4.2.4. Capacity constraints 

The production amount ( , ,k j tW , , , ,k j t sW ) of each plant ( Pk K∈ ) should not exceed the 

capacity ( ,k jQ , Pk K∈ ). 

, , ,k j t k jW Q≤ , j∀ , 1t = , Pk K∈             (7) 

, , , ,k j t s k jW Q≤ , ,j s∀ , 2t ≥ , Pk K∈            (8) 

4.2.5. Minimum inventory constraints 

The minimum inventory of product j in facility k at each time period t should be 

satisfied. Equation (9) and (10) model this constraint. 
m

tjktjk II ,,,, ≥ , ,k j∀ , 1t =               (9) 

m
tjkstjk II ,,,,, ≥ , , ,k j s∀ , 2t ≥                (10) 

4.2.6. Objective function: expected total cost 

The objective function of this stochastic linear programming model is to minimize 

the total expected cost that includes the first stage cost, 1Cost , plus the expected 

second stage cost. Since the scenarios follow discrete distribution, the expected second 

stage cost is equal to the product of the scenario probability, sp , and the associated 

second stage scenario cost, sCost2 , summed over all the scenarios s. 

[ ] 1 2s s
s S

E Cost Cost p Cost
∈

= + ⋅∑            (11) 

Both the first stage cost and the second stage scenario costs are equal to the sum of 

the following items: 

• Inventory holding cost for all products at all facilities for all time periods 

• Freight cost for inter-facility freight shipments in all the shipping lanes of all the 

products in all time periods 

• Freight cost for facility-customer shipments in all the shipping lanes of all the 

products in all the time periods 

• Facility throughput cost for inter-facility shipments for all the shipping lanes of 

all the products in all the time periods 

• Facility throughput cost for facility-customer shipments for all the shipping 

lanes of all the products in all the first stage time periods 



-12- 

• Penalty costs of all the products for lost unmet demand of all the customers in 

all the time periods 

Thus, the first stage cost is given as, 

, , , , , ', , , , ', , , , , , , , , , ,
1 ' 1 1

, , , ', , , , , , , , ,
' 1 1

1 k j t k j t k k j m t k k j m t k r j m t k r j m t
k K j J t k K k K j J m M t k K r R j J m M t

k j t k k j m t k j t k r j m t
k K k K j J m M t k K r R j J m M t

Cost h I F S

F S

γ γ

δ δ
∈ ∈ = ∈ ∈ ∈ ∈ = ∈ ∈ ∈ ∈ =

∈ ∈ ∈ ∈ = ∈ ∈ ∈ ∈ =

= + +

+ +

∑∑∑ ∑∑∑∑∑ ∑∑∑∑∑

∑∑∑∑∑ ∑∑∑∑∑
                  (12) 
The cost of each scenario s is equal to, 

, , , , , , ', , , , , ', , , , , , , , , , , , , ,
2 ' 2 2

, , , ', , , , , , , , , , ,
' 2 2

2s k j t k j t s k k j m t s k k j m t s k r j m t s k r j m t s
k K j J t k K k K j J m M t k K r R j J m M t

k j t k k j m t s k j t k r j m t s
k K k K j J m M t r j J m M t

Cost h I F S

F S

γ γ

δ δ
∈ ∈ ≥ ∈ ∈ ∈ ∈ ≥ ∈ ∈ ∈ ∈ ≥

∈ ∈ ∈ ∈ ≥ ∈ ∈ ∈ ≥

= + +

+ +

∑∑∑ ∑∑∑∑∑ ∑∑∑∑∑

∑∑∑∑∑ ∑∑∑ , , , , ,r j t r j t s
k K R r R j J t T

SFη
∈ ∈ ∈ ∈

+∑∑ ∑∑∑
                 , s∀  (13) 

Minimizing the objective function in (11) – (13), subject to the constraints in (1) – 

(10), we can obtain the solution for the two-stage stochastic programming model. 

However, since the number of scenarios may be too large we use a sampling scheme as 

discussed in the next section. 

 

4.3. Calculation of Confidence Interval 

The number of scenarios is determined by the desired level of accuracy of the 

solution, which can be measured by the confidence interval of the expected total cost. 

The confidence interval can be calculated as follows. The Monte Carlo sampling 

variance estimator of the result for a stochastic programming problem, which is 

independent of the probability distribution of the uncertain parameters, is given by,18, 19 

2
1
( [ ] )

( )
1

n
ss

E Cost Cost
S n

n
=

−
=

−
∑            (14) 

where n is the number of scenarios and Costs is the total cost of scenarios.  

Then the confidence interval of 1 α−  is given as: 

/2 /2( ) ( )[ ] ,  [ ]z S n z S nE Cost E Cost
n n

α α⎡ ⎤− +⎢ ⎥⎣ ⎦
         (15) 

where /2zα  is the standard normal deviate such that 1 / 2α−  satisfies for a standard 

normal distributed variable z ~ N(0, 1), /2Pr( ) 1 / 2z zα α≤ = − . For example, for 95% 

confidence interval (i.e. 1 95%α− = ), we have /2 1.96zα = .  
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On the other hand, if we are given the sampling estimator ( )S n  and the desired 

confidence interval H, the minimum number of scenarios required can be determined 

by, 
2

/2 ( )z S nN
H

α⎡ ⎤= ⎢ ⎥⎣ ⎦
               (16) 

Therefore, to determine the number of scenarios N, we first solve the stochastic 

programming model with a small number of scenarios n (such as 10-100), to estimate 

the value of sampling estimator ( )S n  by using Eq. (14). Then using Eq. (15) and (16), 

we can determine the required number of scenarios for a desired confidence interval.20, 

21  

 

5. Simulation Framework 
To assess the impact of using the stochastic programming approach, we developed a 

simulation framework. The basic idea is to compare the simulated operations of two 

planners, one using a deterministic model for planning and the other one using a 

stochastic model for planning (Figure 2). At the beginning of each time period, the 

stochastic planner will run the two-stage stochastic programming model with the 

current time period (for instance, month) as the first stage time period in the model and 

the remaining time periods as the second stage time period. After a solution is returned, 

the stochastic planner will execute the decisions for the current time period. Similar 

actions will be taken by the deterministic planner using the deterministic model. After 

both planners execute their decisions, the system randomly generates the information 

for demands and freight rates. These include the realization of the uncertain demand for 

the current time period, and the forecasting values of demands and freight rates for the 

future time periods. Both planners then update their information. The stochastic planner 

uses the information for both mean values and variances of the uncertain parameters 

(including the demands and freight rates), while the deterministic planner only uses the 

mean values of the uncertain parameters. Once the information is updated both planners 

move on to the next time period. 

The entire system operates under a rolling horizon approach as shown in Figure 3. 

For example, if the planning horizon is 12 months and January is the current time 

period, the stochastic planner will run the stochastic model with the decisions for 

January as the first stage decisions and the decisions for this February to December as 
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the second stage decisions. After the problem is solved, the planner will execute the 

decisions for January only. Then, in the next iteration the decisions for February are 

considered as the first stage decisions, and the decisions for this March to the following 

January are treated as the second stage decisions. The process continues until decisions 

are executed for December. The deterministic planner follows a similar process using 

the deterministic model and mean values of the uncertain parameters. 

 

period 
t-1

period 
t-1

Solve Deterministic
model and execute 

decisions for period t

Solve Stochastic model 
and execute decisions for 

period t

Solve Deterministic
model and execute 

decisions for period t

Solve Stochastic model 
and execute decisions for 

period t

Update information on the 
uncertain parameters
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Figure 2   Simulation framework 

 

This process gives rise to a rolling horizon where the first time period of the model 

is moving forward but the length of the planning horizon is unchanged. The process 

once initiated continues until an entire year’s decisions have been made. In this way we 

simulate the typical planning cycle carried on in an industrial setting. 
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Figure 3   Rolling horizon strategy 

 

There are several issues that require special attention in this simulation framework. 

The first is initial conditions. The previous time period’s ending inventory represents 

the initial inventory of the new time period. For example, in the second iteration (for the 

decisions of February), the ending inventory of January should be treated as the initial 

inventory of February.  

Another issue we need to take into account is the transportation time. All 

inter-facility shipments initiated in previous time periods should be treated as pipeline 

inventories and considered as part of the initial inventories at the destinations in the 

arrival time periods. For example, if in the first iteration, the planner decides to ship 

some product from one facility to another and the shipment takes two time periods to 

arrive, then the amount of this shipment should be considered as part of the initial 

inventory of the destination for March in the next two iterations, i.e. the second time 

period in the second iteration and the first time period in the third iteration (Figure 3). 

Similarly, for a shipment from a facility to a customer, the amount of the shipment 

should be considered as part of the demand realization in future time periods if the 

transportation time exceeds one time period.  

The third issue is the difference in demand and freight rate uncertainty depending 

on the length of the forecast. As the rolling horizon moves forward, the variance of the 

uncertain demand for a particular time period will change because we consider different 

levels of uncertainty for different forecasting horizons. This must be taken into account 

in the simulation. For example in Figure 3, the demand for March has a standard 

deviation of 10% of the mean value in the first and second iterations, but in the third 

iteration, March becomes the first time period and the standard deviation of demand is 

reduced to 5% of the mean value. 

A final issue that must be dealt with is the variation in the results that are obtained 

for a simulated year due to the random customer demand driving the optimization. In 

other words, the difference between the stochastic case and the deterministic will vary 

in different simulation cycles because the demands encountered may be different. To 

address this variation the simulation system iterates through a selected number of 

simulation cycles to produce data that can be used to report statistics of the difference 

between the annual performance of the stochastic case and the deterministic case. This 

process gives rise to an inner loop stepping though the time periods (for instance, 
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months) and an outer loop iterating through simulation cycles (for instance, years). A 

flow chart of the whole simulation framework is shown in Figure 4.   
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Figure 4   Simulation flowchart 

 

6. Solution Algorithm 
Stochastic programming models that rely on scenarios are often computationally 

very demanding because their model size increases exponentially as the number of 

scenarios increases. In particular, the deterministic equivalent of the problem addressed 

in this paper cannot be solved directly due to its very large size (see Section 8 for 

details). Therefore, we need an effective algorithm to overcome the computational 

challenges. A popular method for solving stochastic programming models is the 

L-shaped method,30, 32 which takes advantage of the special decomposable structure of 

the two-stage stochastic programming model. Consider the following general form of 

the two-stage stochastic programming model (P0). 

(P0)  T T

,
min       

s
s s sx y s S

c x p q y
∈

+∑           (17) 

s.t.        ,             0Ax b x= >          (18) 

            ,    ) 0,  s s s sWy h T x y(w s S= − ≥ ∈       (19) 

where x  is the vector that stands for the first stage decision variables, and sy  are the 

second stage decisions for each scenario s . Equation (17) stands for the objective 

function given in (11)-(13). Equation (18) stands for the constraints without second 

stage decisions, i.e. constraint (1), (3), (7) and (9) in the stochastic programming model. 
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Equation (19) is for the second stage constraints, i.e. constraint (2), (4), (5), (6), (8), (10) 

in the stochastic programming model. c  and sq  are the vector of coefficients for the 

first and second stage decisions in the objective function, i.e. the unit inventory, 

shipping, throughput, and penalty costs. A  and b  are parameter matrix independent 

of the scenarios, while W , sh  and sT  are parameter matrix for each scenario s S∈ . 

The expanded version of the general model (P0) is given in equation (20). We can 

see that the model has a special “angular” form, which can be decomposed into a master 

problem and a number of scenario subproblems.  

 

Master problem

Scenario subproblems

Master problemMaster problem

Scenario subproblems

(20) 

 

The basic idea of the standard L-shaped method is to first solve the model with 

those constraints that do not include the second stage variables to obtain the values of 

first stage decisions. Then we fix the first stage decisions and solve all the scenario 

sub-problems that include second stage decisions to obtain the optimal values of the 

second stage decisions. 

If we define ( )sQ x  as the objective function value of each scenario subproblem 

s , 
T( ) min    

s
s s sy

Q x q y=  

              s.t.   ,    ) 0s s s sWy h T x y(w= − ≥          (21) 

then the reformulation of (P0) is as follows, 

(P0)  Tmin       ( )s sx s S

c x p Q x
∈

+∑           (22) 

s.t.        ,             0Ax b x= >          (18) 

To solve (P0), we can take advantage of the dual properties of (21) by introducing 

a new variable θ  for ( )s s
s S

p Q x
∈
∑ , and iterate between the master problem (P1) and the 
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scenario subproblems (P2). 

The master problem (P1) is given by, 

(P1)  T

,
min       

x
c x

θ
θ+  

s.t.        ,   1l le x d l ..Nθ ≥ + =          (23) 

            ,    0Ax b x= >  

while the subproblem (P2) for scenario s  is given by, 

(P2) T            min    
s

s sy
q y  

              s.t.   ,    ) 0s s s sWy h T x y(w= − ≥         (21) 

where the inequalities in (P1) are the “cuts” that link the master problem and the 

scenario subproblems. le  and ld  are coefficients for the Benders cut, and they are 

given by, 
T

l s s s
s S

e p Tπ
∈

=∑                (24) 

T
l s s s

s S

d p hπ
∈

=∑                (25) 

where sπ  are the optimal dual vectors of constraint (21) in the subproblem (P2) for 

scenario s . 

The major steps for the L-shaped method are given in Figure 5. In this algorithm, 

we first solve the master problem to obtain a lower bound of the objective value. We 

then fix all the first stage decisions and solve each scenario subproblem to get an upper 

bound. If the lower bound and the upper bound are within a tolerance, then the 

algorithm stops. Otherwise, we use the duals of the scenario sub-problems to add a cut 

and return to the master problem. 
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Figure 5   Algorithm for standard L-shaped method 

 

The standard L-shaped method only returns one cut to the master problem during 

each iteration. In order to speed up the algorithm we can decompose the variable θ by 

scenario to return as many cuts as the number of scenarios in each iteration. The master 

problem is then given by (P3). 

(P3)  T

,
min       

s
s sx s S

c x p
θ

θ
∈

+∑  

s.t.        ,   1s sl sle x d l ..Nθ ≥ + =         (26) 

            ,    0Ax b x= >  

where the coefficients sle  and sld  for the cut (26) are updated as follows 

T
sl s s se p Tπ=                 (27) 

T
sl s s sd p hπ=                 (28) 

The algorithm framework for multi-cut L-shaped method is similar to the standard 

L-shaped method, and is given in Figure 6. 
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Figure 6   Algorithm for multi-cut L-shaped method 

 

Although the multi-cut L-shaped method can provide stronger cuts to the master 

problem and reduce the number of iterations, it introduces more variables in the 

objective function of the master problem, which may potentially slow down the 

computation. Computational results for comparing these two algorithms are presented 

in Section 8. We should also note that convergence is guaranteed in both cases.30, 32 

 

7. Risk Management Models 
In the stochastic programming model we optimize the total expected cost to 

obtain the optimal solutions that are optimal on average for all the scenarios. However, 

the expected total cost is a risk-neutral objective that cannot manage the risks 

explicitly. On the other hand, some decision makers are risk-averse and would like to 

manage the risks and improve the economic objective simultaneously. This requires 

extending the aforementioned stochastic programming for risk management. To 

manage the risk, we need first to define a metric for risks. For comparison purpose, 

we consider in this work four popular risk measures including variance,23 variability 

index,24 probabilistic financial risk26 and downside risk.22 

 

7.1. Managing the Variance 

Due to the uncertain environment the total realized cost is also uncertain (see 

Figure 7). This cost has a mean value and a variance. Our objective in the stochastic 

programming model is to minimize the expected value of the total cost, while the 
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variance of the total cost is not addressed. Thus, it is possible that an optimum 

solution may have low expected cost but a large variance. Application of such a 

solution would therefore involve a high amount of risk in that the possibility exists for 

the realized cost to be far higher than the expected value. If a decision maker is risk 

adverse such a solution would not be satisfactory. Therefore, we may want to find a 

“robust” solution that would yield similar results but also considers the variance of the 

solution. The risk management by variance is also called “robust optimization” in 

most of the Operations Research literature.23 In robust optimization, we not only 

minimize the expected total cost, but also minimize the variance of the total cost. 

Since the original stochastic programming solution is the minimum expected cost 

solution the solution from robust optimization usually results in higher expected cost 

but with less variance. 
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Figure 7   Robust optimization 

 

Since risk is measured by variance, a straightforward extension to reduce its value is to 

add a variance term to the objective function of the stochastic program. This yields a 

goal programming formulation to reduce both the expected cost and the variance. The 

new objective function is: 

2
' '

'

min       [ ] [ ]
            1 2 [( 2 ) 2 ]s s s s s s

s S s S s S

E Cost V Cost
Cost p Cost p p Cost Cost

ρ

ρ
∈ ∈ ∈

+ ⋅

= + ⋅ + ⋅ ⋅ ⋅ −∑ ∑ ∑    (29) 

where the expected cost term is equal to the first stage cost ( 1Cost ) plus the expected 

second stage cost ( 2s ss
p Cost⋅∑ ).  The variance term ( [ ]V Cost ) is equal to the mean 
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square error between the expected second stage cost ( ' '
'

2s s
s S

p Cost
∈

⋅∑ ) and the second 

stage scenario cost ( sCost2 ). The coefficient ρ  in the objective function is the weight 

coefficient for the variance. For different values of ρ  we can tradeoff lower expected 

cost with lower cost variance. 

In summary, the variance management model includes the objective function 

given in (29), (12), (13), subject to constraints (1)-(10).  

 

7.2. Managing the Variability Index 

The variance management model is a straightforward approach to reduce both 

expected value and variance of cost, but it includes a quadratic terms in the objective 

function (29) that makes the optimization problem difficult to solve for large scale 

problems. To circumvent this problem an alternative is to use the positive deviation 

between the scenario cost ( 1 2sCost Cost+ ) and the expected cost 

( ' ''
1 2s ss

Cost P Cost+ ⋅∑ ). Ahmed and Sahinidis24 defined the variability index (or 

called “upper partial mean”) as a non-negative continuous variable sΔ  for each 

scenario that is defined by the following constraints: 

' ''
2 ( 2 )s s s ss

Cost P CostΔ ≥ − ⋅∑ , 0sΔ ≥ , s S∈        (30) 

Equation (30) states that if the scenario cost ( sCost ) is less than the expected cost 

( ][CostE ), sΔ would be 0; If the sCost  is greater than the ][CostE , sΔ would be 

equal to their positive difference. This reformulation, which can be interpreted as a 

1-norm measure of the variance, yields a linear programming problem which can be 

solved more efficiently.  

The objective function of the variability index management model is to minimize 

the weighted sum between total expected cost and the expected variability index. 

Thus, the variability index management model is as follows: 

   min       [ ] s s
s S

E Cost pρ
∈

+ ⋅ ⋅Δ∑         (31) 

' ''
s.t.        2 ( 2 ),  0,  s s s s ss

Cost P Cost s SΔ ≥ − ⋅ Δ ≥ ∈∑    (30) 

  Constraints (1)-(10)       

Similarly, for different values of the weighted parameter ρ , we can tradeoff the 

expected cost and the cost variability index. 
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7.3. Managing the Probabilistic Financial Risk 

Sometimes decision makers are not satisfied with a robust solution in which the 

variance of the cost is limited. Instead they are more concerned with the extremes of the 

cost spread. For example they may want a lower probability of high cost or a higher 

probability of low cost. In this case, we can use another risk measure, the so called 

probabilistic financial risk.26 This measure is defined as the probability that the real 

cost is higher than a certain threshold or target Ω  (Figure 8). By reducing the 

probabilistic financial risk for threshold or target Ω , we can reduce the risk of having 

high costs. 

 

 
Figure 8   Probabilistic financial risk 

 

Using the target Ω, risk can be defined as the probability of the cost being greater 

than Ω. For a scenario planning model we can introduce a binary variable 
sZ , such that 

sZ  equal to 1 if Ω≥sCost , otherwise equal to 0. 

 To define the value of the binary variables 
sZ , Barbaro and Bagajewicz26 

proposed the following Big-M constraints: 

ss ZMCost ⋅+Ω≤ , s S∈             (32) 

(1 )s sCost M Z≥ Ω− ⋅ − , s S∈            (33) 

where M  is a sufficient large positive parameter. Constraints (32) and (33) state that if 
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the scenario cost sCost  is greater than the target Ω, Zs must be 1 or else constraint (32) 

will be violated; if the scenario cost sCost  is less than the target Ω, Zs must be 0 or else 

constraint (33) will be violated. By doing this, we define Zs as an indicator for each 

scenario. 

Thus, the probabilistic financial risk is equal to the summation over all the 

scenarios for the product of the scenario probability and the binary variable Zs. 

( , ) Pr[ ( ) ] s s
s S

Risk x Cost x p Z
∈

Ω = ≥ Ω = ⋅∑          (34) 

The probabilistic financial risk management model is then follows: 

   min       [ ] 1 2s s
s S

E Cost Cost p Cost
∈

= + ⋅∑       (11) 

min       ( , ) s s
s S

Risk x p Z
∈

Ω = ⋅∑         (34) 

s.t.        ,  s sCost M Z s S≤ Ω+ ⋅ ∈         (32) 

            (1 )s sCost M Z≥ Ω− ⋅ − , s S∈        (33) 

  Constraints (1)-(10)       

This model has two objective functions: to minimize the probabilistic financial risk 

in (34) and minimize the expected total cost in (11), (12), (13), subject to the constraints 

(1)-(10), (32)-(33). As there are two conflicting objective functions, the corresponding 

problem yields an infinite set of Pareto-optimal solutions for which it is not possible to 

improve both objective functions simultaneously.34 

In order to obtain the Pareto-optimal curve for the bi-criterion optimization 

problem, one of the objectives is specified as an inequality with a fixed value for the 

bound which is treated as a parameter. There are two major approaches to solve the 

problem in terms of this parameter. One is to simply solve it for a specified number of 

points to obtain an approximation of the Pareto optimal curve, which is the ε-constraint 

method.34 The other is to solve it as a parametric programming problem,35 which yields 

the exact solution for the Pareto optimal curve. While the latter provides a rigorous 

solution approach, the former is simpler to implement. For this reason we have selected 

the first approach. The procedure includes the following three steps. The first one is to 

minimize the expected cost [ ]E Cost  to obtain the minimum expected cost, which in 

turn yields the largest Pareto optimal risk ( , )Risk x Ω . The second step is to minimize 

( , )Risk x Ω  that yields the smallest Pareto optimal expected risk ( , )Risk x Ω . The last 
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step is to fix the risk ( , )Risk x Ω  to discrete values between the smallest and greatest 

value, and optimize the model by minimizing [ ]E Cost  at each selected point. In this 

way we can obtain an approximation to the Pareto-optimal curve, together with the 

optimal planning decisions for different values of probabilistic financial risk. 

 

7.4. Managing the Downside Risk 

In the aforementioned probabilistic risk management method, a binary variable is 

required for each scenario to calculate the probabilistic financial risk. Thus, the risk 

management model size will be very large as the number of scenarios increases. To 

avoid the integer variable, we can use downside risk22 instead of probabilistic risk for 

financial risk management. The basic idea is to introduce a positive deviation 

variable sψ  defined as the variability index of scenario s. The variable sψ  is defined as 

the positive deviation between the target Ω and the scenarios cost sCost . If the scenario 

cost sCost  is less than the target Ω, sψ  is equal to 0. If the scenario cost sCost  is 

greater than the target Ω, sψ  is equal to their difference.  These conditions can be 

enforced with the following inequalities: 

s sCostψ ≥ −Ω , 0sψ ≥ , s S∈            (35) 

 Then the downside risk associated with target Ω, is defined as follows, 

∑ ⋅=Ω
s ssPxDRisk ψ),(              (36) 

Thus, we have the downside risk management model as follows: 

   min       [ ] 1 2s s
s S

E Cost Cost p Cost
∈

= + ⋅∑       (11) 

min       ( , ) s ss
DRisk x P ψΩ = ⋅∑         (36) 

s.t.        ,  0,  s s sCost s Sψ ψ≥ −Ω ≥ ∈        (35) 

  Constraints (1)-(10)       

Similar to the probabilistic financial risk management model, a downside risk 

management model also has two objective functions: to minimize the total expected 

cost in (11), (12), (13) and to minimize the downside risk in (36), subject to the 

constraints (1)-(10) and (35). The optimal solutions of this multi-objective optimization 

model also yield a Pareto curve, which can also be obtained by using the ε-constraint 

method. 



-26- 

 

8. Case Study 
In this section, we present a case study to demonstrate the effectiveness of the 

proposed models and algorithms. The problem is based on the global supply chain of a 

major commodity chemical producer. Some basic information about the global supply 

chain is discussed. The results for the stochastic programming model, simulation 

framework, decomposition algorithms, together with the results for different risk 

management models are presented and discussed. All the instances are modeled with 

GAMS36 and solved with CPLEX solver on an IBM T60 laptop with an Intel Core Duo 

1.83 GHz CPU and 1GB RAM. 

 

8.1. Basic Information of the Case Study 

In the case study we consider a planning horizon of one year, which is subdivided 

into 12 time periods, i.e. one month as a time period. Two products are produced and 

distributed in a global supply chain, consisting of a global supply chain with 5 plants, 

13 distribution centers, 121 transportation links and 46 customers. The customer 

demands and freight rates, which are uncertain, follow normal distributions with the 

forecast as the mean value and the variance coming from the historical record. The 

demand uncertainty has three levels of standard deviations (see Figure 3). For the 

current month the standard deviation of demand is 5% of the mean value, in the coming 

three months (i.e. 2-4 month), the standard deviation is 10% of the mean value; for the 

remaining 8 months, the demand has a standard deviation of 20% of the mean value. 

Similarly, the freight rate has two levels of uncertainty. For the current month, the 

variance is 0 (i.e. deterministic case); in the remaining 11 months, the freight rate has a 

standard deviation of 10% of the mean value. All the other data about the supply chain, 

such as the unit cost coefficients, capacities, minimum inventory levels, are omitted due 

to confidentiality reasons. 

 

8.2. Results for Stochastic Programming Models and Simulation 

We solve the case study with a sampling size of 600 scenarios. The results are 

given in Figure 9 and Figure 10. The minimum total expected cost is $183.32 MM. The 

95% confidence interval of the expected cost is given $0.37MM above and below this 
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value, which is relatively small compared to the expected cost. 
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Figure 9   Cumulative probability distribution for the two-stage stochastic 

programming model with 600 scenarios 
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Figure 10   Histogram of the results for the two-stage stochastic programming 

model with 600 scenarios 
 

To quantify the cost saving by using stochastic programming, we implement the 

simulation framework for the case problem. We used a sampling size of 1000 scenarios 

and simulated 100 iterations. Year-by-year results are given in Figure 11. The 

operational cost from stochastic planning is always less than the operational cost from 
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deterministic planning. On average, 5.70% cost saving was achieved by using the 

stochastic programming approach. Figure 12 shows the components of the average 

operational cost for both approaches. Figure 13 and 14 are the comparisons on the 

inventory levels and sourcing for one of the production facilities. As can be seen, by 

using the stochastic programming approach, the production facility holds less 

inventories compared to the one with deterministic approach (Figure 13), and thus the 

sourcing amounts for this facility by stochastic approach are fewer (Figure 14). 
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Figure 11   Simulation results for the real costs of one year planning 
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Figure 12   Average component real costs for two planners 
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Figure 13   Comparison on inventory levels for one production facility 
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Figure 14   Comparison on sourcing amount for one production facility 

 

As a sensitivity analysis, we doubled the uncertainty levels (increased the standard 

deviations of the uncertain parameters to 200% of the original setting), the results are 

shown in Figure 15. As can be seen, larger cost savings can be achieved by using the 

stochastic programming approach (on average 13.95%).  
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Figure 15   Simulation results for doubling uncertainty levels 

 

8.3. Results for Multi-cut L-shaped Method 

The size of the resulting stochastic programming is very large. As can be seen in 

Table 1, the size of stochastic programming model exponentially increases as the 

number of scenarios increases. We found that to achieve reasonable confidence 

intervals, we needed to use 1,000 scenarios. For the stochastic programming model 

with 100 scenario case, our workstation could not even generate the problem due to its 

huge size, i.e. the problem cannot be solved directly, although the deterministic model 

can be solved to optimality within one minute. By using the standard L-shaped method, 

we can obtain the optimal solution for the 1,000 scenario case in around 120 hours with 

0.001% optimality tolerance, while the proposed multi-cut L-shaped method, requires 

only around 23 hours to obtain the solution with the same optimality tolerance. As can 

be seen in Figure 16, the standard L-shaped method requires 187 iterations to converge, 

while the multi-cut L-shaped method only needs 32 iterations. The advantage of 

multi-cut L-shaped method for this problem is assumed to be due to the master problem 

not requiring too much solution time compared to the one in standard L-shaped method, 

while the number of iterations is significantly reduced due to the “multiple” cuts. 

Note that this algorithm would benefit from solving it with parallel computing, 

which could significantly reduce the computational times. For example, if we were to 

use 100 parallel CPUs, the computational time of each scenario subproblem would be 

at most 3 seconds in each CPU. If each CPU solves 10 subproblems in one iteration, 
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after taking into account the solution time of master problem, one iteration of multi-cut 

L-shaped method needs at most 40 seconds. Thus, the total computational time may be 

reduced from around 23 hours to around 20 minutes for the 1,000 scenario instance. If 

we had 1,000 CPUs and allow one CPU for each scenario subproblem, the total 

computational time could be further reduced to around 3 minutes. 

 

Table 1   Model size for the case problem 

Stochastic Programming Model 
Model Size Deterministic 

Model 100 scenarios 1,000 scenarios 
# of Constraints 6,373 610,374 6,101,280 
# of Variables 19,225 1,815,816 18,149,077 
# of Non-zeros 41,899 4,004,697 40,028,872 
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Figure 16   Comparison of two L-shaped methods 

 

8.4. Results for Risk Management Models 

We apply the models and algorithms for risk management discussed in Section 7. 

8.5.1. Results for managing the variance 

Figure 17 shows the statistics (mean and variance) of the total cost we obtained by 

managing the variance with the new objective function in (29). Here the expected 

(mean) cost increases as the weighted coefficient ρ  increases, but the variance 

decreases. 
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Figure 17   Efficient frontier for the variance reduction model 
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Figure 18   Histogram of the cost distribution before and after managing the 

variance 
 

The histogram of cost distribution before and after managing the variance is shown 

in Figure 18. We can see that the spread of the expected cost is much smaller after 

managing the variance, but the expected cost shifts to higher costs as compared to 

stochastic programming. 
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8.5.2. Results for managing the variability index 

Figure 19 shows the statistics (mean and variance) of the total cost we obtained by 

applying the variability index model in (30) and (31). Here the expected (mean) cost 

increases as the weighted coefficient ρ increases, but the variance decreases. 
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Figure 19   Efficient frontier for the variability index management model 
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Figure 20   Histogram of the cost distribution before and after managing the 

variability index 
 

The histogram of cost distribution before and after managing the variability index 
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is shown in Figure 20. Again, there is a reduction in variability index of the total cost 

with a corresponding increase in the expected cost. 

 

8.5.3. Results for managing the probabilistic financial risk 

Because the probabilistic financial risk management model is a bi-criterion 

optimization problem, the optimal solutions yields an efficient frontier denoted as the 

Pareto curve, which is shown in Figure 21. Here we choose the target as $188 MM and 

use 1,000 scenarios for the calculation. The comparison of cost probability distribution 

for the results before and after risk management is given in Figure 22. As we can see, 

the optimal solution of stochastic programming model has 8% probability that total cost 

is higher than $188M, while after probabilistic financial risk management, the new 

solution has only 2% probability to have high cost (greater than $188M), which means 

that the risk of high cost has been significantly reduced after risk management, 

although the expected total cost has increased. 
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Figure 21   Pareto curve for probabilistic financial risk management model 
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Figure 22   Comparison of the cost distribution before and after managing the 

probabilistic financial risk (target at $188M, 2% vs. 8%) 
 

8.5.4. Results for managing the downside risk 

A result after downside risk management with target at $188MM is given in Figure 

23. Similarly we can see the risk in the high cost area has been significantly reduced, 

while the total expected costs have a small increase. We can also see that after 

downside risk management the cost has a much larger chance to be between $186MM 

and $188MM, which is the target for downside risk management. 
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Figure 23   Comparison of the cost distribution before and after managing the 

downside risk (target at $188 MM) 
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8.5.5. Discussion 

By comparing the results for different risk management methods based on our case 

study, we can see that total expected cost will increase after risk management. 

However, probabilistic financial risk management and downside risk management are 

more effective in reducing the risk of high cost. Managing the variance and variability, 

can lead to less variance, but will usually reduce the probability of lower costs and 

increase the risk of higher cost due to the shift towards higher expected cost. Based on 

our case study, the downside risk management model appears to be the best choice 

because it can effectively reduce the high cost risk and is not computationally 

demanding compared to the probabilistic financial risk management. 

 

9. Conclusion 
In this work, we developed a two-stage stochastic linear programming approach for 

the tactical planning of a global multi-product chemical supply chain that is subjected 

to uncertainties in demands and freight rates. Monte Carlo sampling and the associated 

statistical methods are applied and incorporated into the stochastic programming model 

to avoid the large number of scenarios required. We also developed a simulation 

framework to assess the potential improvement of using stochastic programming in the 

supply chain planning process compared with traditional deterministic approaches. The 

results of our case study show that on average cost savings of 5.70% could be achieved 

by using the stochastic programming model on a monthly basis. To solve the large scale 

case study effectively, we developed a multi-cut L-shaped solution method. 

Computational studies show that significant savings in CPU times can be achieved by 

using this algorithm.  

To explicitly consider the risks included in the global supply chain planning process, 

we studied four risk management models by using different risk measures. A real world 

case study was presented to demonstrate the effectiveness of the proposed models and 

algorithms. Computational studies suggest that probabilistic financial risk management 

model and downside risk management model are more effective in reducing high cost 

risk compared with the popular variance management and variability index 

management models.  
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Nomenclature 

Sets/Indices 

K  Set of facilities (including plants and distribution centers) indexed by k  

PK  Set of manufacturing plants indexed by k  

DCK  Set of distribution centers indexed by k  

R  Set of customers indexed by r  

J  Set of products indexed by j  

M  Set of transportation modes indexed by m  

T  Set of time periods indexed by t  

S  Set of scenarios indexed by s  

Decision Variables (values: 0 to +∞ ) 

, ', , ,k k j m tF  Inter-facility freight of product j from facility k to k’ with mode m at time period t 

tjkI ,,  Inventory level of product j at facility k at time period t 

, , , ,k r j m tS  
Facility-customer freight of product j from facility k to customer r with mode m at 

time period t 

, ,k j tW  Production amount of product j at plant k at time period t, Pk K∈  

, ', , , ,k k j m t sF  
Inter-facility freight of product j from facility k to k’ with mode m at time period t of 

scenario s 

stjkI ,,,  Inventory level of product j at facility k at the end of time period t of scenario s 

, , , , ,k r j m t sS  
Facility-customer freight of product j from facility k to customer r with mode m at 

time period t of scenario s 

, , ,k j t sW  Production amount of product j at plant k at time period t of scenario s, Pk K∈  

stjrSF ,,,  Unmeet demand of product j in customer r at time period t of scenario s 

1Cost  First stage cost 
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sCost2  Second stage cost of scenario s 

sCost  Cost of scenario s 

[ ]E Cost  Total expected cost 

sΔ  Upper partial mean of scenario s 

sψ  Positive deviation between target Ω  and the cost of scenario s 

Decision Variable (values: 0 or 1) 

sZ  Binary variable. Equal to 1 if the cost of scenario s is larger than target Ω  

Parameters 

sp  Probability of scenario s 

stjrd ,,,  Demand of product j in customer r at time period t of scenario s 

0
,k jI  Initial inventory level of product j at facility k 

, ', , ,k k m j tγ  Freight rate of product j from facility k to k’ with mode m at time period t 

, , , ,k r j m tγ  Freight rate of product j from facility k to customer r with mode m at time period t 

, ', , , ,k k j m t sγ  Freight rate of product j from facility k to k’ with mode m at time t of scenario s 

, , , , ,k r j m t sγ  
Freight rate of product j from facility k to customer r with mode m at time period t of 

scenario s 

, ,k j th  Unit inventory cost of product j in facility k at time period t 

, ,k j tδ  Unit throughput cost of product j in facility k at time period t 

, ,r j tη  Unit penalty cost of product j for lost unmeet demand in customer r at time period t

,k jQ  Capacity of plant k for product j, Pk K∈  

m
tjkI ,,  Minimum inventory of product j at facility k at time period t 

, ', ,k k j mλ  Shipping time of product j from facility k to facility k’ with mode m 

, , ,k r j mλ  Shipping time of product j from facility k to customer r with mode m 

Ω  Target for risk management 
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