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Abstract

In this work we present an extension of the Logic Outer-Approximation algorithm for deal-
ing with disjunctive discrete-continuous optimal control problems whose dynamic behavior is
modeled in terms of differential-algebraic equations. Although the proposed algorithm can be
applied to a wide variety of discrete-continouos optimal control problems we are mainly inter-
ested in problems where disjunctions are also present. Disjunctions are included to take into
account only certain parts of the underlying model which become relevant under some process-
ing conditions. By doing so the numerical robustness of the optimization algorithm improves
since those parts of the model that are not active are discarded leading to a reduced size problem
and avoiding potential model singularities. We test the proposed algorithm using 3 examples
of different complex dynamic behavior. In all the case studies the number of iterations and
the computational load required to get the optimal solutions is modest and the solutions are
relatively easy to find

∗Author to whom correspondence should be addressed. On leave from Universidad Iberoamericana, México. E-mail:
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1 Introduction

Traditionally the modeling, simulation, optimization and control of processing systems involves only

continuous variables [1], [2]. However, new applications, especially for industrially relevant systems,

require the use of discrete variables. It must also be pointed out that the implementation of control

systems in real environments is always performed through digital or discrete control systems [3].

However, the discrete or hybrid modeling of chemical processing systems has only been considered

recently [4].

The optimization of discrete and continuous systems, herein referred as hybrid systems, has been

mainly directed towards optimizing the dynamics of start-up and shut-down operations [5], grade

transitions [6], [7], batch systems [8], scheduling and control systems [9], [10], simultaneous design

and control [11], [12], [13], [14]. The formal optimization formulation of these problems gives rise

to Mixed-Integer Dynamic Optimization (MIDO) problems whose solution can be tackled by well

known numerical approaches [15]. Sometimes the dynamic value of some decision variables (i.e. the

control actions) may involve logic decisions that can be modeled as disjunctions [16], [17] giving

rise to Logic MIDO (LMIDO) problems. In this case LMIDO problems are normally transformed

into MIDO problems using either a big-M or convex-hull relaxations to approximate the behavior

of the original logic disjunctions [18]. Once the problem is in a MIDO framework full discretization

techniques [19], [15] (also called the direct transcription approach [20]) can be deployed to transform

it into a normally large scale and sparse Mixed-Integer Nonlinear Programming (MINLP) problem

whose solution can be sought by known techniques such as outer-approximations [21], Benders de-

composition [22] or branch and bound techniques [23]. There are some other approaches suggested

for solving MIDO problems based on partial discretization of the underling system coupled with

the use of robust and efficient numerical integration solvers [24]. Another interesting approach to

solve LMIDO problems is applying full discretization techniques based on the use of complementarity

constraints [5], [25], [26] . In this approach LMIDO problems are discretized into Nonlinear Program-

ing (NLP) problems avoiding the use of discrete decision variables and the need of solving complex

MINLP problems. However, the use of complementarity constraints introduces non-convexities to

the underlying problem increasing the complexity of the NLP problem. However, this is a promising
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optimization approach that deserves more research efforts.

As it is clear from the above discussion, most of the hybrid MINLP problems that have been

addressed deal with the switching behavior of processing systems. Under this situation, the discrete

variable is normally related to some control action such as opening/closing control valves, changing

the scheduling production of a given system composed of several products, switching on/off heat-

ing/cooling systems, etc. Within this framework hybrid MINLP problems are commonly related to

hybrid control problems [27], [28]. In most of the cited examples the structure of the underlying

dynamic mathematical model remains the same during the operating horizon. However, there are

instances where, depending upon the operating region, some parts of the dynamic model become

irrelevant or redundant because they are not required. The idea is that at any time only those parts

of the dynamic model that need to be applied are taken into account removing those parts of the

model that do not apply. By doing so, we end up with a more robust dynamic model since parts of

the model that are not required are not converged. Moreover, the optimization task of the reduced

dynamic model can be improved by applying generalized disjunctive programming solution methods

that exploit the logic in these models [16], [29]. It has been a well-known fact that the MINLP

optimization of processing systems have had difficulties when those parts of a model that dot not

apply also have to be converged [16]. This situation has been partially solved with the development

of disjunctive optimization formulations aimed at providing robust optimization formulations [30],

[31].

The aim of the present work is to provide an explicit optimization formulation for dealing with

processing systems embedded with the dynamic behavior of hybrid systems using a disjunctive opti-

mization formulation to include only those parts of a given dynamic model that are relevant. For this

reason we will call to the resulting MIDO problem a Differential-Algebraic Generalized Disjunctive

Programming (DAGDP). In particular, our objective is to demonstrate that better and more robust

optimization formulations can be obtained when considering only those parts of the model that ac-

tually apply. Instead of transforming the DAGDP into a MINLP problem by applying the direct

transcription approach, we use a logic outer-approximation algorithm [16] to show the computational

advantages of using logic-based methods when addressing the solution of DAGDP problems. Three

case studies of different complexity are solved to demonstrate the proposed extension of the algebraic
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logic outer-approximation algorithm to deal with disjunctive hybrid dynamic systems.

2 Problem statement

Commonly hybrid control problems involve both integer and continuous variables embedded in a

dynamic system. We are interested in computing the optimal values of the control actions where

binary variables are used to switch among control actions or to model an event where certain actions

ought to be taken. In these kind of hybrid control problems the structure of the underlying mathe-

matical model often remains the same (i.e. the mathematical model does not change during all the

control problem). However, in the modeling and optimization of dynamic systems there are cases in

which only a subset of the equations comprising the full model actually apply. Therefore, it would

be desirable to take into account only that part of the model that does not vanish leading to a more

robust solution method because potential non-singularities in the optimization model are removed.

In this work we are interested in addressing this kind of optimization problems.

The optimization problem to be addressed in the present work can be stated as follows:

“Given a dynamic system the goal is to compute the control actions that drive the system from

an initial to a final state by optimizing a given objective function and switching among parts of the

model that apply during such a transition”.

For addressing the dynamic optimization of hybrid systems we extend the algebraic generalized

disjunctive programming formulation [16] to include differential and algebraic systems. The resulting

differential-algebraic generalized disjunctive programming (DAGDP) reads as follows,
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Min Z = ψ(z(t), x(t), y(t), u(t), p, t) (DAGDP)

s.t.

dz(t)
dt

= ζ(z(t), x(t), y(t), u(t), p, t)

ξ(z(t), x(t), y(t), u(t), p, t) = 0

γ(z(t), x(t), y(t), u(t), p, t) ≤ 0

∨
r∈Dk


Ykr(t)

dx(t)
dt

= φkr(z(t), x(t), y(t), u(t), p, t)

ϕkr(z(t), x(t), y(t), u(t), p, t) = 0

 k ∈ K

Ω(Y (t)) = True

zo = z(0)

xo = x(0)

zL ≤ z(t) ≤ zU

xL ≤ x(t) ≤ xU

yL ≤ y(t) ≤ yU

uL ≤ u(t) ≤ uU

pL ≤ p ≤ pU

z ∈ Rm, x ∈ Rn, Ykr ∈ {True,False} k ∈ K, r ∈ Dk

In order to represent a general hybrid logic optimization formulation we have divided the general dy-

namic algebraic model in two sets of dynamic algebraic submodels. The dynamic algebraic sub model

represented by the maps ζ(x(t), z(t), y(t), u(t), p, t) and ξ(x(t), z(t), y(t), u(t), p, t) stands for the set

of differential-algebraic equations that are always enforced. On the other hand, the dynamic alge-

braic sub model represented by the maps φki(x(t), z(t), y(t), u(t), p, t) and ϕki(x(t), z(t), y(t), u(t), p, t)

stands for the set of differential-algebraic equations whose inclusion or removal depends on the value

of certain logic decisions. Moreover, the algebraic constraints that must be met, irrespective of the
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logic decisions, are denoted by γ(x(t), y(t), u(t), p, t). In addition, z(t) and x(t) are time depend

vector of states, y(t) is the set of algebraic variables, u(t) is the control action, p is a vector system

of decision variables and t is the time. In general, the DAGDP problem may involve nonlinearities in

the objective function ψ(·) and related constraints ζ(·), ξ(·), γ(·), φ(·) and ϕ(·). The logic decisions

in the space of continuous variables is given by a set of disjunctions k ∈ K which are linked by an

XOR operator (∨). Each one of the disjunctions features r ∈ Dk terms. Moreover, each one of the

disjunctions features a boolean variable Ykr(t) and a set of constraints representing the differential-

algebraic model whose inclusion depends upon meeting some logic decisions. The set of constraints

are enforced when the disjunctions become active (Ykr(t) = True) and removed for non-active dis-

junctions (Ykr(t) = False). Ω(Y (t)) = True stands for the logic relationships among the boolean

variables (i.e. discrete or logic conditions) stated in the form of propositional logic.

One approach to deal with the solution of the DAGDP formulation is to use the transcription ap-

proach [15] to fully transform the set of differential equations into a set of algebraic equations. In this

way the DAGDP optimization problem is transformed into a generalized disjunctive programming

GDP optimization formulation using the transcription approach [15]. This approach for handling

optimal control problems is well established and features some useful properties such as handling

unstable open-loop operating points. After carrying out such a transformation the following purely

algebraic generalized disjunctive programming formulation is obtained:
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Min Z = ψ(zij, xij, yij, uij, p) (GDP)

s.t.

F(zij, xij, yij, uij, p) ≤ 0

H(zij, xij, yij, uij, p) ≤ 0

g(zij, xij, yij, uij, p) ≤ 0

∨
r∈Dk


Y ij
kr

fkr(zij, xij, yij, uij, p) = 0

φkr(zij, xij, yij, uij, p) = 0

 k ∈ K

Ω(Y ) = True

zij ∈ Rm, xij ∈ Rn, Ykr ∈ {True,False}, i ∈ Ne, j ∈ Nc, k ∈ K, r ∈ Dk

where Ne is the number of finite elements and Nc the number of internal collocation points used

for the proper discretization of the differential-algebraic model. In the GDP formulation the set of

constraints given by g(·) ≤ 0 are equivalent, after the application of the transcription method, to

the γ(·) ≤ 0 constraints of the DAGDP formulation (i.e γ(·) is mapped into g(·)). Similarly, ζ(·) is

mapped into F(·), ξ(·) is mapped into H(·), φ(·) is mapped into f(·). Those mapping functions just

represent the equivalence between the DAGDP and GDP formulations.

Figure 1 displays the discretization approach using orthogonal collocation on finite elements.

Inside each one the S processing stages, the process dynamics behavior is represented by a series of

finite elements whose right number depends upon the smoothness of such dynamic response. The

size of a given finite element i represents certain length of the independent variable which in our case

corresponds to the processing time. Of course, depending upon the application some other options of

independent variables can be chosen. Having selected the number of finite elements (Ne), the number

of internal collocation points (Nc) must also be specified. In our experience 3 or 4 internal collocation

points suffices to approximate even complex dynamic behavior. Although larger values of Nc can in
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principle be chosen, this may lead to stability worries related to the orthogonal polynomials used for

computing the location (roots) of the collocation points.
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Figure 1: Discretization approach using the transcription approach. Inside each stage s, the time
domain is divided into a series of finite elements i = 1, ..., Ne. Similarly, inside each finite element,
the process behavior is approximated at certain collocation points j = 1, ..., Nc.

One of the approaches to handle the solution of the GDP formulation consists in transforming

such a formulation into a mixed-integer nonlinear programming problem (MINLP) using either the

big-M or the convex-hull formulations [32]. In contrast we will deal directly with problem GDP which

has the important feature that only those parts of a given mathematical model that apply need to be

enforced when using logic basic outer approximation [16]. The parts of the model that are not active

are removed leading to a robust, smaller and better numerically conditioned optimization problem.

In contrast, most of the hybrid control problems featuring logic decisions are dealt with by applying

either a Big-M or convex-hull formulation to transform the underlying problem into what has been

called a logic mixed-integer dynamic optimization (LMIDO) problem whose solution can be sought

by either sequential or simultaneous solution methods [15]. However, even when some parts of the

LMIDO problem could vanish, the full model is solved. There are at least two difficulties related to
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the solution of the full model when some parts of such a model are not applicable: a) it increases the

solution time, and b) there is the potential presence of non-singularities because the solution method

tries to converge redundant equations. Therefore, it would be desirable to remove those parts of a

given mathematical model that do not apply. Moreover, the computation of the optimal solution can

be greatly improved by applying an optimization algorithm that explicitly exploits the underlying

logic structure of the optimization formulation. In conclusion, we claim that the solution of hybrid

optimal control problems of a kind of systems can be improved by taking into account only those

parts of the model that are relevant and by using a logic-based algorithm that is able to exploit the

logic structure of the problem.

3 Logic Outer-Approximation algorithm for dynamic sys-

tems

The algebraic logic based outer approximation algorithm (LOA) [16] is an extension of the outer

approximation algorithm (OA) [21] to solve problems that are posed as GDP models. It consists

in splitting the solution of the original optimization problem into two problems: a master problem

represented by a linear approximation of the GDP problem which provides a lower bound of the

objective function, and a NLP subproblem whose solution provides an upper bound of the objective

function. In this part we extend the algebraic LOA formulation to include hybrid dynamic models

in terms of differential-algebraic systems.
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• NLP subproblem

Splitting the boolean variables into two sets: Y ij
kr̂ = True and Y ij

kr = False, where r̂ 6= r, the

NLP subproblem reads as follows,

Min Z = f(zij, xij, yij, uij, p) (SNLP)

s.t.

F(zij, xij, yij, uij, p) ≤ 0

H(zij, xij, yij, uij, p) ≤ 0

g(zij, xij, yij, uij, p) ≤ 0

fkr(zij, xij, yij, uij, p) = 0 for Y ij
kr = True

φkr(zij, xij, yij, uij, p) = 0 for Y ij
kr = True

zL ≤ zij ≤ zU

xL ≤ xij ≤ xU

zij ∈ Rm, xij ∈ Rn, i ∈ Ne, j ∈ Nc, k ∈ K, r ∈ Dk

It is important to stress that in the above formulation only those constraints whose terms are

true within the disjunctions (Y ij
kr = True) are enforced. Hence, the set of constraints associated

to non-active disjunctions are removed. This is the reason why the LOA method leads to a

substantial reduced size problem in comparison to using the traditional OA method in MINLP

problems. Hence, we take advantage of this feature to improve the optimal solution of hybrid

optimal control problems.
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• Master subproblem To formulate the linear master problem of the GDP formulation we

consider a set of linearizations l = 1, ..., L for subsets of the disjunctions Lkr = {l|Y l
kr = True}

giving rise to the following disjunctive OA master problem:

Min Z = α (MLGDP)

s.t.

α ≥ f(ωl
ij) +∇f(ωl

ij)
T (ωij − ωl

ij) ≤ 0, l = 1, ..., L

F(ωl
ij) +∇F(ωl

ij)
T (ωij − ωl

ij) ≤ 0

H(ωl
ij) +∇H(ωl

ij)
T (ωij − ωl

ij) ≤ 0

g(ωl
ij) +∇g(ωl

ij)
T (ωij − ωl

ij) ≤ 0, l = 1, ..., L

∨
r∈Dk

[
Y ij
kr

fkr(ω
l
ij) +∇fkr(ωl

ij)(ωij − ωl
ij) ≤ 0, l ∈ Lkr

]
k ∈ K

Ω(Y ) = True

ωL ≤ ω ≤ ωU

α ∈ R1, ω ∈ Rn+m, Y ij
kr ∈ {True,False} i ∈ Ne, j ∈ Nc, k ∈ K, r ∈ Dk

For simplicity in the notation of the above formulation the vector ω stands for the two sets

of dynamic states: z(t) and x(t) (i.e. ω = [z x]). When dealing with algebraic systems

Turkay and Grossmann [16] have proposed a way to get the set of values around which the

linearizations are carried out. However, for addressing the dynamic optimization of hybrid

systems the linearization process is done in a different way. If the dynamic system is initially

at steady-state conditions then the linearization can be done around the given steady-state. On

the other hand, if the system is not at steady-state conditions or does not have a steady-state

solution, the linearization can be done at a given reference dynamic trajectory. In this way

the value of the control action u(t) is slightly perturbed from an initial value, then the system

response ωij(t) is recorded at some proper discrete points and the linearizations are carried out

around the ωij(t) trajectory.
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Overall, the solution process consists of the following steps:

1) Formulate the discrete-continuous dynamic optimization problem as a differential-algebraic gen-

eralized disjunctive program (DAGDP).

2) Use the transcription approach to approximate the dynamic behavior in DAGDP. In this step we

use orthogonal collocation on finite elements for dealing with the approximation of differential

algebraic equations which then give rise to the formulation in GDP.

3) Solve the underlying GDP by using a logic-based outer-approximation solution algorithm which

consists of the following steps:

a) For the first iteration perform an initial linearization of the differential-algebraic system

as previously discussed. For subsequent iterations perform the linearization around the

predicted values of the manipulated variables u(t) obtained at the previous iteration.

b) Solve the master problem (MLGDP) to obtain a new set of discrete variables values. The

common approach here is to formulate the (MLGDP) as a MILP using either the big-M

or convex hull reformulation for the disjunctions [32].

c) Solve the NLP subproblem (SNLP) for fixed values of the binary variables by eliminating

redundant terms and using a discretized differential-algebraic model.

d) Repeat from step a) until there is no improvement in the solution of the NLP subproblems.
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4 Examples

Three stages dynamic model switching

In this section we consider the dynamic optimization of a system featuring two model structures

denoted by M1 and M2. We will also assume that a production facility is available which consists

of 3 manufacturing stages [33]. As seen in Figure 2 either M1 or M2 modes can be enforced in each

time period. The time horizon of each stage is 1 time unit. The structure of the two dynamic models

reads as follows,

Model 1
dx

dt
= −xex−1 + u (1)

Model 2
dx

dt
=

0.5x3 + u

20
(2)

in the above model x stands for the state, u is the control action and t is the time. The aim of this

problem is to compute which model structure (M1 or M2) to apply and also to compute the optimal

control actions in each stage to solve the following hybrid optimal control problem:

minimize
u

V (x, u) = −
∫ 3

t0

x2(t) (3)

s.t.


Y1(t)

dx
dt

= −xex−1 + u

dx
dt

= 0.5x3+u
20

0 ≤ t ≤ 1

 Y


Y2(t)

dx
dt

= −xex−1 + u

dx
dt

= 0.5x3+u
20

1 ≤ t ≤ 2

 Y


Y3(t)

dx
dt

= −xex−1 + u

dx
dt

= 0.5x3+u
20

2 ≤ t ≤ 3

 (4)

subject to the control constraint u ∈ [−4, 4].

As previously stated the Logic-OA approximation algorithm involves the solution of a sequence

of optimization problems where each sequence is composed of a MILP Master and NLP problems.

The solution sequence stops when the objective functions of both problems are smaller or equal to a

target value. We will now describe the structure of both optimization problems.
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1 2 3
Stages

Figure 2: Production system comprised of 3 manufacturing stages. In each stage either the M1 or
M2 model is enforced. The time horizon of each production stage is 1 time unit.

• NLP problem

min
x,u

V (x,u) =
Ns∑
k

αk + αs

∑
i

∑
j

S1
ij + αs

∑
i

∑
j

S2
ij + αs

∑
i

∑
j

S3
ij (5a)

s.t.

αk = −
∑
i

∑
j

hiΩj3(x
k
ij)

2 (5b)

xkij = xkoi + θkhi
∑
k′

Ωk′jẋik′ (5c)

xkoi −

{
xko,i−1 + θkhi−1

∑
j

Ωj,3ẋi−1,j

}
≤ Sk

i1 (5d)

ẋ1ij + x1ije
x1
ij−1 − u1ij ≤ S1

ij (5e)

ẋ2ij − 0.025(x2ij)
3 − 0.05u2ij ≤ S2

ij (5f)

ẋ3ij + x3ije
x3
ij−1 − u3ij ≤ S3

ij (5g)

x1o,1 = x1init (5h)

x2
o,t′+1

= x1
o,t′ ,Nc

(5i)

x3
o,t′′+1

= x2
o,t′′ ,Nc

(5j)
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In this formulation equation 5a stands for the definition of the nonlinear objective function.

The first term represents the quadrature procedure for evaluating the integral term in equation

3 (which is actually calculated in equation 5b), whereas the remaining three terms penalize

the value of the slack variables Sk
ij by using a scalar weighting function αs. Equations 5c-5g

represent the discretization of the underlying dynamic system using the transcription approach.

The subscripts i and j stand for the number of finite elements and number of internal collocation

points, respectively, whereas k is the number of manufacturing stage. Also in this formulation,

h is the size of the finite elements, θk is the transition time at stage k and Ω is the collocation

matrix, x̂kij stands for the value of the states trajectory, uij are the control actions and ẋkij

is the first derivative of the state variable. Finally, equations 5h-5j represent the state value

when switching between the different production periods, where Nc stands for the number of

internal collocation points. In this set of equations t
′

and t
′′

stand for the finite element at

which transitions between the manufacturing stages take place and the superscript init denotes

an initial value.
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• MILP Master problem (Big-M)

min
x,u

V (x,u) =
Ns∑
k

αk + αs

Ne∑
i

Nc∑
j

S1
ij + αs

Ne∑
i

Nc∑
j

S2
ij + αs

Ne∑
i

Nc∑
j

S3
ij (6a)

s.t.

αk ≥
Ne∑
i

Nc∑
j

yki,jhiΩj3(x̂
k
ij)

2 − 2
Ne∑
i

Nc∑
j

hiΩj3x̂
k
ijx

k
ij (6b)

xkij = xkoi + θkhi

Nc∑
k′

Ωk′jẋ
k
ik′

(6c)

xkoi −

{
xko,i−1 + θkhi−1

Nc∑
j

Ωj3ẋ
k
i−1,j

}
≤ Sk

i1 (6d)

ẋ1ij +
{
x̂1ije

x̂1
ij−1 + ex̂

1
ij−1
}
x1ij − u1ij +

{
x̂1ije

x̂1
ij−1 − (x̂1ije

x̂1
ij−1 + ex̂

1
ij−1)x̂1ij

}
y1ij ≤ S1

ij (6e)

ẋ2ij − 0.075(x̂2ij)
2x2ij − 0.05u2ij + 0.05(x̂2ij)

3y2ij ≤ S2
ij (6f)

ẋ3ij +
{
x̂3ije

x̂3
ij−1 + ex̂

3
ij−1
}
x3ij − u3ij +

{
x̂3ije

x̂3
ij−1 − (x̂3ije

x̂3
ij−1 + ex̂

3
ij−1)x̂3ij

}
y3ij ≤ S3

ij (6g)

− ubykij ≤ xkij ≤ uby
k
ij (6h)

− ubykij ≤ ukij ≤ uby
k
ij (6i)

− ubykij ≤ ẋkij ≤ uby
k
ij (6j)

− ubyki1 ≤ xkoi ≤ uby
k
i1 (6k)

− ubykij ≤ Sk
ij ≤ uby

k
ij (6l)

θij − θ1s ≤M(1− y1ij) (6m)

θ1s − θij ≤My1ij (6n)

θij − θ2s ≤My3ij (6o)

θ2s − θij ≤M(1− y3ij) (6p)

Ns∑
k

ykij = 1 (6q)

x1o,1 = x1init (6r)

x2
o,t′+1

= x1
o,t′ ,Nc

(6s)

x3
o,t′′+1

= x2
o,t′′ ,Nc

(6t)
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Equation 6a is the definition of the objective function. It comprises two terms: the first term

is given by the transition objective as defined in Equation 3 for each one of the manufacturing

stages. The remaining terms contain the slack variables for each state along the transition

trajectory (Sk
ij) times a weighting factor αs that was taken equal to 1000. Ns, and Ne are

the number of manufacturing stages and the number of finite elements, respectively. Slack

variables are used to meet linearizations of the nonlinear terms embedded in the mathematical

model of the underlying system. Equation 6b is the approximated numerical quadrature of

the V linearized objective function given in Equation 3 for each one of the manufacturing

stages. Equations 6c-6g are the discretization of the underlying system using the transcription

approach. In particular Equations 6e-6g are the linear equivalents of the nonlinear dynamic

mathematical models for each one of the stages as represented by Equations 1-2. As previously

mentioned, in this set of equations x̂kij stands for the value of the states trajectory along which

the linearization was done, whereas ykij is a binary variable to enforce or to remove a given

stage and its associated mathematical model. Notice that ukij stands for the control action

at each stage and along the transition trajectory and ẋkij is the first derivative of the state

variable. Constraints 6h- 6l are used to set to zero a given variable when this is not used or

to locate its value between given bounds (denoted by ub). Equations 6m-6q are used to switch

between the different processing stages and to assign proper values of the binary variables. In

this set of equations θij is the discretized time, θ1s and θ2s are the desired switching times among

production periods and M is an enough large constant. Finally, Equations 6r-6t represent the

initial values of the states at the beginning of each manufacturing period.

As can be seen from Table 1, using 30 finite elements and three internal collocation points inside

each manufacturing stage, the proposed algorithm is able to find the optimal solution in just a single

iteration. Of course, the quality of the initial points around which the linearization of the model

is done plays an important role in the convergence of the method. To get the initial points for the

linearization of the underlying system open-loop dynamic tests were carried out using different values

of the control variable until enough good initial values were found that enabled to get the optimal

solution. After some trials we found that the smallest CPU time was obtained when the value of
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Iteration ZMILP ZNLP

1 -10.1061 -10.1061

Table 1: Summary of major iterations for the proposed logic OA in Example 1.

the control action u(t) was slightly perturbed from an initial value u(0) = 4. Commonly, for systems

featuring steady-state conditions the linearization process is performed around the nominal steady-

state. For systems with no steady-state conditions, linearization around a given system trajectory

is performed. As previously stated, system trajectories can be easily obtained running open-loop

tests deploying different values of the control action. In Figure 3 the optimal control action and the

system response results are displayed for each one of the processing stages. Problems statistics are

as follows: (a) for the MILP master problem the number of equations is 3392, the number of integer

variables is 270, and the CPU time is 0.1 s, (b) for the NLP problem the number of equations is

2402 and the CPU time is 0.01 s. In both cases the number of continuous variables is 1444. It must

be stressed that the large number of binary variables is due to the fact that one binary variable was

defined for each collocation point inside each one of the finite elements.

Hybrid Operation of an Isothermal Semibatch Reactor

The following set of consecutive chemical reactions take place in an isothermal well mixed semi-batch

reactor for manufacturing a set of products denoted by B and C:

A+R1
k1−→ B (7)

B +R2
k2−→ C (8)

Starting from an initial charge of reactant A the aim of the reaction system consists in maximizing

the production of products B and C while minimizing the amount of reactants R1, R2 at the end of

their respective manufacturing stages (see Figure 4). For achieving this goal the following objective

function is used,

max Ω =
{
N1

B(ts)−NA(ts)−NR1(ts)
}

+
{
NC(tf )−N2

B(tf )−NR2(tf )
}

(9)

18



0 0.5 1 1.5 2 2.5 3
1

1.2

1.4

1.6

1.8

2

2.2

2.4

Time

X

 

 

Stage 1

Stage 2

Stage 3

(a)

0 0.5 1 1.5 2 2.5 3
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

Time

U

 

 

Stage 1

Stage 2

Stage 3

(b)

Figure 3: (a) Optimal system response and (b) control actions for example 1.
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where ts stands for the switching time between the two manufacturing stages, tf is the final processing

time at the second stage and the super index 1 and 2 stands for the number of the production stage.

The feed stream flow rates of reactants R1 and R2 are the manipulated variables. The reaction

system goes trough two reaction stages. In the first reaction stage only reactant R1 is continuously

fed, whereas in the second reaction stage, only reactant R2 is continuously fed. The switching time

ts is fixed.

R

R

A

Q

1

2

Figure 4: Isothermal semibatch reactor featuring two reaction states. In the first reaction stage only
the reaction A+R1 → B takes places, whereas in the second reaction stage the reaction B+R2 → C
takes place.

The dynamic model of the system reads as follows,

dNA

dt
= −k1CACR1V (10)

dNR1

dt
= FR1 − k1CACR1V (11)

dNB

dt
= k1CACR1V − k2CBCR2V (12)

dNR2

dt
= FR2 − k2CBCR2V (13)

dNC

dt
= k2CBCR2V (14)

dV

dt
=

FR1

Co
R1

+
FR2

Co
R2

(15)
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where N stands for the number of moles, C is the concentration, F is the molar flow rate, V is the

reactor volume, k1 and k2 are the rate constants of the first and second reactions, respectively. The

subindex A,B,C,R1 and R2 stands for the set of reactant and products. Finally, the superscript “

o ” stands for processing conditions related to the two feed streams of reactants R1 and R2. The

numerical value of the reactor parameters are shown in Table 2, whereas the initial conditions are:

NA(0) = 8000, Ni(0) = 0 (i = B,C,R1, R2) and V (0) = 1000 L.

The DAGDP formulation reads as follows,

maximize
FR1(t),FR2(t)

Ω =
{
N1

B(ts)−NA(ts)−NR1(ts)
}

+
{
NC(tf )−N2

B(tf )−NR2(tf )
}

(16)

s.t.



Y1(t)

dNA

dt
= −k1CACR1V

dNR1

dt
= FR1 − k1CACR1V

dNB

dt
= k1CACR1V − k2CBCR2V

dNR2

dt
= FR2 − k2CBCR2V

dNC

dt
= k2CBCR2V

dV
dt

=
FR1

Co
R1

+
FR2

Co
R2

0 ≤ t ≤ ts



Y



Y2(t)

dNA

dt
= −k1CACR1V

dNR1

dt
= FR1 − k1CACR1V

dNB

dt
= k1CACR1V − k2CBCR2V

dNR2

dt
= FR2 − k2CBCR2V

dNC

dt
= k2CBCR2V

dV
dt

=
FR1

Co
R1

+
FR2

Co
R2

ts ≤ t ≤ tf



(17)

Notice that, as was previously discussed, the proposed DAGDP formulation allow us to embed

differential-algebraic equations within the disjunctions but also to include other differential-equations

that are always enforced. This fact clearly demonstrates the flexibility of the proposed framework

for addressing the optimal control of hybrid systems.

Using 20 finite elements and 3 internal collocation points inside each reaction stage to approximate

the dynamic behavior of each system state, the hybrid dynamic optimal results are shown in Figure

5. Upper and lower bounds on the flow rate of the R1 and R2 reactants were set at 10 and 0 mol/min,

respectively. The initial linearization of each one of the reaction stages was carried out around the
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Figure 5: (a) Optimal system response and (b) control actions for example 2.
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Variable Value Units
Co

R1
7 mol/L

Co
R2

6 mol/L
k1 1.5 L/mol-min
k2 0.02 L/mol-min
ts 800 min

Table 2: Operating parameters, kinetic and thermodynamic information, ts stands for the switching
time between the first and second reaction stages. The lower and upper bounds of the reactants flow
rates were set at 10 and 0 mol/min, respectively.

Iteration ZMILP ZNLP

1 1600 1599.2945

Table 3: Summary of major iterations for the proposed logic OA in Example 2.

dynamic trajectory obtained by slightly perturbing the reactant flow rates around their maximum

values. Even when the shape of the manipulated variables is not easy to guess the proposed logic

outer-approximation algorithm is able to find the optimal solution in just a single step as seen from

the results shown in Table 3. The quality of the optimal solution displayed in Figure 5 is good

since as seen there the amount of the B and C target products is maximized while the amount of

the deployed reactants (A,R1, R2) is minimized. Problem statistics are as follows: the number of

constraints is 6323, the number of continuous variables is 2334 and the number of discrete variables

is 720. The CPU times were less than 1 s for MILP master problem using CPLEX and 3 s for the

NLP problem using CONOPT. Once again, since a binary variable was used for each one of the

discretization points, this leads to a large number of binary variables.

Six stages dynamic model switching

For dealing with complex decision switching among different models along multistage dynamic en-

vironments without feedback among them, the sequential multistage formulation shown in Figure 6

has been proposed [34]. As seen from Figure 6 the idea lies in splitting the processing time into a

series of production stages. Within a given stage we need to select only a single dynamic mathemat-

ical model (among several candidates) representing the optimal production schedule in that stage.
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This decision process is repeated along all the production schedules comprising the overall optimal

production sequence.

M M M
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v
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v
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M M M
1 2 3

v
-

v
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M M M
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v
-

v
-

M M M
1 2 3

v
-

v
-

1 2 5 6

Figure 6: Production system comprised of 6 manufacturing stages. In each stage only one out of
three different models is enforced. The time horizon of each production stage is 1 time unit.

This problem is a more complex version of the first case study. It deals with the switching of

three different models in a six stages dynamic environment [34]. The dynamic mathematical models

read as follows,

Model 1 (M1)
dx

dt
= −2tx+ u (18)

Model 2 (M2)
dx

dt
=
x+ u

t+ 10
(19)

Model 3 (M3)
dx

dt
= −4xe−t + u (20)

in the above set of equations x is the single system state, t is the time and u is the control action.

The control actions are bounded in the interval [-4,4]. The goal of this problem is to find the optimal

parameter u ∈ [−4, 4] and the optimal sequence of modes that drive the scalar system state from

a given initial to its final state over a fixed time period t ∈ [t0, t6] so as to minimize the following

objective function:

V (x, u) = 10

∫ t6

t0

x2(t)dt (21)

the processing time of each one of the stages is 1 time unit. As done previously in the first example,

we provide full details of both the Master MILP and NLP problem formulations.
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The problem is formulated as a DAGDP problem as follows:

minimize
u

10

∫ t6

t0

x2(t)dt (22)

s.t.

 Ys1

dx(t)
dt

= −2tx(t) + u

 Y

 Ys2

dx(t)
dt

= x(t)+u
t+10

 Y

 Ys3

dx(t)
dt

= −4x(t)e−t + u

 , s = 1, . . . , 6

t ∈ [ts−1, ts] (23)

t0 = 0, ts = s, s = 1, . . . , 6

x(t0) = 1

p ∈ [−4, 4] , x ∈ R, Ys1, Ys2, Ys3 ∈ {True, False} , s = 1, . . . , 6

where s dentotes the index set of stages. We use a disjunctive multistage model that contains Boolean

variables Ysm which are associated to the differential-algebraic constraints of each mode m in process

stage s. The above optimization problem can be transformed into a discretized GDP problem by

orthogonal discretization. We use a simultaneous method that fully discretizes the DAE system by

approximating the control and state variables as piecewise polynomials functions over finite elements

[15]. Accordingly, at each collocation point the state variable is represented by:

xsik = x0si + hsi

K∑
j=1

Ωj(τk)ẋsij, s = 1, . . . , S, i = 1, . . . , I, k = 1, . . . , K (24)

where x0si is the value of the state variable at the beginning of element i in stage s, ẋsij is the value

of its first derivative in element i at the collocation point k in stage s, hsi is the length of element i

in stage s, and Ωj(τk) is the interpolation polynomial of order K for collocation point j, satisfying:

Ωj(0) = 0 for j = 1, . . . , K

Ωj(τk) = δjk for j, k = 1, . . . , K

where τk is non-dimensional time coordinate with the location of the kth collocation point within

each element.
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We enforce continuity of the state variable across finite element boundaries in each stage by:

x0si = xs,i−1,K , s = 1, . . . , S, i = 2, . . . , I (25)

The multistage model contains additional stage transition conditions, which map the differential

state variable values across the stage boundaries. This feature adds flexibility to the model to allow

for changing the number of the state variables from one stage to the next. If all model stages

contain the same number of differential state variables, as in our example (there is only one state

variable), it is normal practice to assume that the values of these variables are continuous across

the stage boundary. The physical reasoning for this assumption is that the differential variables

represent conserved quantities (such as mass, energy, or momentum) or are directly related to them.

In particular, the mapping conditions for our example read as follows:

x0s1 − xs−1,I,K = 0, s = 2, . . . , S

x011 − xinitial = 0 (26)

These state mapping conditions also include an equality constraint with the initial value for the

differential state variable in the first stage x011, which is equal to given initial value (xinitial).

For each stage, the collocation method requires the time to be discretized over each finite element

at the selected collocation points tsik:

tsik = t0si + hsiτk, s = 1, . . . , S, i = 1, . . . , I, k = 1, . . . , K (27)

where t0si is the value of the time at the beginning of element i in stage s. Time continuity between

stages (Eq. 28) and between elements within a stage (Eq. 29) is also enforced by the following

constraints:

t0s,1 = ts−1,I,K , s = 2, . . . , S (28)

t0si = ts,i−1,K , s = 1, . . . , S, i = 2, . . . , I (29)

In our example the initial time tinitial and final time tfinal are given leading to the following

constraints:
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t011 − tinitial = 0

tfinal − tS,I,K = 0 (30)

Our example has explicit discontinuities, which means that the system switches from one con-

tinuous stage to the next at given times (denoted by tfixeds ). Therefore, the switching function for

each stage (denote with ϕs) takes a very simple form, which is independent of the state variable and

parameter values:

ϕs := t0s1 − tfixeds = 0, s = 2, . . . , S (31)

Hence, by a full orthogonal collocation discretization in time domain and using the Eqs.(24)-(31),

we convert the time-continuous DAGDP problem into a finite dimensional discretized GDP problem:

minimize
xsik,ẋsik,x

0
si,hsi,tsik,p,Y1s,Y2s,Y3s

10
S∑

s=1

I∑
i=1

K∑
k=1

hsiωkx
2
sik (DGDP)

s.t.

State discretization, Eq.(24)

State continuity element, Eq.(25)

State mapping, Eq.(26)

Time discretization, Eq.(27)

Time continuity, Eqs.(28,29)

Time boundary conditions, Eq.(30)

Switching functions, Eq.(31) Ys1

ẋsik = −2tsikxsik + u, i = 1, . . . , I, k = 1, . . . , K


Y

 Ys2

ẋsik = xsik+u
tsik+10

, i = 1, . . . , I, k = 1, . . . , K


Y

 Ys3

ẋsik = −4xsike
−tsik + u, i = 1, . . . , I, k = 1, . . . , K


27



s = 1, . . . , 6

tinitial = 0, tfinal = S, tfixeds = s− 1, s = 2, . . . , S

xinitial = 1

u ∈ [−4, 4] , xsik ∈ R, ẋsik ∈ R, tsik ∈ R+, Ys1, Ys2, Ys3 ∈ {True, False}

where ωk are Radau quadrature weights, ωk = Ωj(τK )̇.

4.1 Logic-based discretized NLP subproblem

We use the Logic-based Outer Approximation algorithm to fully exploit the structure of the GDP

representation of our problem. The Logic-Based OA shares the main idea of the traditional OA for

MINLP, which is to solve iteratively a master problem given by a linear GDP, leading to a lower

bound of the solution, and an NLP subproblem, which provides an upper bound. In our example,

for fixed values of the Boolean variables Ysm the corresponding discretized NLP subproblem is as

follows:

minimize
xsik,ẋsik,x

0
si,hsi,tsik,u

Z l
(
Y l
sm

)
= 10

S∑
s=1

I∑
i=1

K∑
k=1

hωkx
2
sik (SNLP)

s.t.

State discretization, Eq.(24)

State continuity element, Eq.(25)

State mapping, Eq.(26)

Time discretization, Eq.(27)

Time continuity, Eqs.(28,29)

Time boundary conditions, Eq.(30)

Switching functions, Eq.(31)

ẋsik = −2tsikxsik + u, i = 1, . . . , I, k = 1, . . . , K} for Y l
s1 = True

ẋsik = xsik+u
tsik+10

, i = 1, . . . , I, k = 1, . . . , K
}

for Y l
s1 = True

ẋsik = −4xsike
−tsik + u, i = 1, . . . , I, k = 1, . . . , K} for Y l

s3 = True

s = 1, . . . , S
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tinitial = 0, tfinal = S, tfixeds = s− 1, s = 2, . . . , S

xinitial = 1

u ∈ [−4, 4] , xsik ∈ R, ẋsik ∈ R, tsik ∈ R+

It is important to note that only the constraints that belong to the active terms (i.e. associate

Boolean variable Y l
sm = True) are imposed. This leads to a substantial reduction in the size of the

NLP subproblem compared to the direct application of the traditional OA method on the MINLP

reformulation. Indeed, the reduction ratio of the NLP subproblem size is equal to the number of

alternative modes per stage in the problem (for our example, M = 3).

4.2 Logic-based discretized Master problem

We formulate the discretized Master problem with the accumulated linearizations of the nonlinear

constraints from previous solutions of each discretized NLP subproblem l = 1, . . . , L. This linear

approximation yields an underestimation of the objective function and an overestimation of the

feasible region, and thus a lower bound ZLB to the solution of the optimization problem.

minimize
xsik,ẋsik,x

0
si,hsi,tsik,u,Ysm

ZL
LB = α (MLGDP)

s.t.

α ≥ f(xl,hl) +
S∑

s=1

I∑
i=1

K∑
k=1

∇xsik
f(xl,hl)

(
xsik − xlsik

)
+

S∑
s=1

I∑
i=1

∇hsi
f(xl,hl)

(
hsi − hlsi

)
, l = 1, . . . , L (32)

tg,lsik

[
∇xsik

gk(θlsik)
(
xsik − xlsik

)
+∇ẋsi1

gk(θlsik)
(
ẋsi1 − ẋlsi1

)
+ . . .+∇ẋsij

gk(θlsik)
(
ẋsij − ẋlsij

)
+ . . .+∇ẋijK

gk(θlsik)
(
ẋsiK − ẋlsiK

)
+∇x0

si
gk(θlsik)

(
x0si − x

0,l
si

)
+∇hsi

gk(θlsik)(hsi − hlsi)
]
≤ 0

s = 1, . . . , S, i = 1, . . . , I, k = 1, . . . , K, l = 1, . . . , L (33)
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State continuity element, Eq.(25)

State mapping, Eq.(26)

Time discretization, Eq.(27)

Time continuity, Eqs.(28,29)

Time boundary conditions, Eq.(30)

Switching functions, Eq.(31)

Y
m∈Ds


Ysm

tr,lsikm
[
∇xsik

rm(ξlsik, t
l
sik)
(
xsik − xlsik

)
+∇ẋsik

rm(ξlsik, t
l
sik)
(
ẋsik − ẋlsik

)
+∇tsikrm(ξlsik, t

l
sik)(tsik − tlsik) +∇urm(ξlsik, t

l
sik)(u− ul)

]
≤ 0

i = 1, . . . , I k = 1, . . . , K, l ∈ Lsm

 ,
m = 1, . . . ,M, s = 1, . . . , S (34)

xinitial = 1, tinitial = 0, tfinal = S, tfixeds = s− 1, s = 2, . . . , S
x = {x1, . . . ,xs, . . . ,xS} ∈ RS×I×K

xs = {xs1, . . . , xsi, . . . , xsI} ∈ RI×K ,xsi = {xsi1, . . . , xsik, . . . , xsiK} ∈ RS×I

θsik = {xsik, ẋsi, x
0
si, hsi} ∈ R3+K , ẋsi = {ẋsi1, . . . , ẋsij, . . . , ẋsiK} ∈ RK

ξsik = {xsik, ẋsik, u} ∈ R3

h = {h1, . . . ,hs, . . . ,hS} ∈ RS×I , hs = {hs1, . . . , hsi, . . . , hsI} ∈ RI

f : RS×I×(K+1) → R, gk : R3+K → R, rm : R4 → R
u ∈ [−4, 4] , xsik, ẋsik ∈ R1, tsik ∈ R+, Ysm ∈ {True, False}

where tg and tr are assigned with either the value 1, 0 or −1, depending the sign of the Lagrange

multiplier of the corresponding nonlinear constraint.

Linearizations of the objective function (Eq. 32) and the state discretization constraints Eq. (33)

are accumulated in each major iteration L. The constraints of a certain disjunction term (mode m

in stage s) are only included in the master problem if the corresponding Boolean variable Ysm is

True, whereas linearizations of temporally inactive terms are simply discarded. Formally, for each

disjunction term this is expressed by the subset LL
sm :=

{
l : Y l

sm = True, l = 1, . . . , L
}

. Note that

this property constitutes again a major difference to the standard OA method.

4.3 MILP reformulation of the discretized master problem

The master problem of the logic-based OA algorithm can be reformulated as an MILP using either

Big-M(BM) or Hull Reformulation (HR) formulations. If we apply the Hull Reformulation, then the
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disjunctions of the discretized master problem (Eqs. 34) are as follows:

tr,lsikm
[
∇xsik

rm
(
ξlsik, t

l
sik

)
xsikm +∇ẋsik

rm
(
ξlsik, t

l
sik

)
ẋsikm

+∇tsikrm
(
ξlsik, t

l
sik

)
tsikm +∇urm

(
ξlsik, t

l
sik

)
um
]
≤

tr,lsikm
[
∇xsik

rm
(
ξlsik, t

l
sik

)
xlsik +∇ẋsik

rm
(
ξlsik, t

l
sik

)
ẋlsik+

∇tsikrm
(
ξlsik, t

l
sik

)
tlsik +∇urm

(
ξlsik, t

l
sik

)
ul
]
ysm + srsikm

i = 1, . . . , I k = 1, . . . , K, m = 1, . . . ,M, l ∈ Lsm, s = 1, . . . , S (35)

xsik =
M∑

m=1

xsikm

ẋsik =
M∑

m=1

ẋsikm

tsik =
M∑

m=1

tsikm


s = 1, . . . , S, i = 1, . . . , I, k = 1, . . . , K

u =
M∑

m=1

um (36)

xsysm ≤ xmsik ≤ x̄sysm
ẋsysm ≤ ẋmsik ≤ ẋsysm
tsysm ≤ tmsik ≤ tsysm

 s = 1, . . . , S, i = 1, . . . , I, k = 1, . . . , K, m = 1, . . . ,M

uysm ≤ um ≤ ūysm, s = 1, . . . , S, m = 1, . . . ,M (37)

where a variable with an underline and overline denote lower and upper bounds, respectively. Each

variable inside the disjunctive terms are disaggregated into M new variables as described in the Eqs.

36. The upper and lower bounds for all the disaggreagated variables and the binary variables ysm

are used in Eqs. 37 to force the variables to zero when the mode m in not selected in stage s.

Alternatively the big-M formulation can be applied to the same disjunctive constraints (Eq. 34)

as follows:
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tr,lsikm
[
∇xsik

rm(ξlsik, t
l
sik)
(
xsik − xlsik

)
+∇ẋsik

rm(ξlsik, t
l
sik)
(
ẋsik − ẋlsik

)
+

+∇tsikrm(ξlsik, t
l
sik)(tsik − tlsik) +∇urm(ξlsik, t

l
sik)(u− ul)

]
≤MBM

m (1− ysm) + srsik

i = 1, . . . , I, k = 1, . . . , K, m = 1, . . . ,M, l ∈ Lsm, s = 1, . . . , S (38)

where MBM
m is a sufficiently large upper bound for the corresponding constraint. For ysm = 1, the

linear inequality constraint (and thus the disjunctive term) is enforced. Otherwise the associated

constrain becomes redundant.

For both reformulations, the exclusive OR logic operator in the disjunction is transformed into

the following linear constraint:

M∑
m=1

ysm = 1, s = 1, . . . , S (39)

Furthermore, we add a set of integer cuts to exclude the previous solution for the binary variables:

∑
(s,m)∈Bl

ysm −
∑

(s,m)∈N l

ysm ≤
∣∣Bl
∣∣− 1, l = 1, . . . , L (40)

where Bl is the subset defined for each NLP subproblem l that stores the binary variables ysm with a

value of 1, and N l is the subset that collects the remaining binary variables for that NLP subproblem

(i.e., .Bl =
{

(s,m) : Y l
sm = True

}
and N l =

{
(s,m) : Y l

sm = False
}

).

To avoid infeasible master problems caused by the nonconvexity of the discretized GDP prob-

lem, we relax the linear inequality constraints for both reformulations, Eq. (35) and Eq. (38) by

introducing positive slack variables srsikm and srsik, respectively [35]. As the common state constraint

(Eq. 24) is also nonlinear, we also add the slack variable sgsik to the RHS of the linearized state

constraint Eq. (33). These slack variables are included in the objective function through a penalty

term with weights wr
m and wg chosen to be sufficiently large. Accordingly, the objective function of

the discretized Master Problem is rewritten as:

minimize
xsik,ẋsik,x

0
si,hsi,tsik,u,ysm

ZL
LB = α +

∑
s

∑
i

∑
k

∑
m

wr
ms

r
sikm +

∑
s

∑
i

∑
k

wgsgsik
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The optimal results of this case study are shown in Figure 6, where we discretize the time domain

using 3 collocation points per finite element and 3 finite elements per stage. The correctness of

this discretization is ensured by the equality in the state variable profiles foretold by the orthogonal

collocation (square marker in Figure 6) and a commercial solver for ordinary differential equations

(ode15s from MATLAB), which can calculate the state varible profile after fixing the sequence of

modes according to the optimal values of the binary variables.

Table 4 shows the main results obtained by the logic-based OA for both formulations, BM and

HR. The optimum is obtained in eight and twelve major iterations for the BM and HR formulations,

respectively. To avoid that the algorithm stops early due to the non-convex constraints, we use a

stopping criterion based on the heuristic: stop as two consecutive NLP subproblem worsen. It is

worth noting that BM formulation attains the global optimum (we verify that the solution 1.306952

is indeed globally optimal by explicit enumeration of the 36 = 729 structurally different process

sequences). Furthermore, BM formulation has better performance than HR in terms of computation

time.

To compare the performance of the dynamic extension of the logic-based OA algorithm, we also

solved this case study using the MIDO approach for addressing the solution of hybrid optimal control

problems, which consists in using an MINLP solver after system discretization and directly applying

either the BM or HR formulations to handle embedded logic decisions. As the constraints inside

the terms of the disjunctions are nonconvex, we use the BM formulation for the disjunctions of the

discretized GDP problem:

minimize
xsik,ẋsik,x

0
si,hsi,tsik,u,y1s,y2s,y3s

10
S∑

s=1

I∑
i=1

K∑
k=1

hsiωkx
2
sik (MINLP-BM)

s.t.

State discretization, Eq.(24)

State continuity element, Eq.(25)

State mapping, Eq.(26)

Time discretization, Eq.(27)

Time continuity, Eqs.(28,29)
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GDP to MINLP Logic-based
(MIDO approach) Outer Approximation

Hull
Big M Big-M Reformulation

MINLP Solver DICOPT SBB - -
Objective value 4.108938 3.703904 1.306952 1.307100
Sequence of modes 1-1-1-1-1-1 1-2-2-1-1-1 3-2-2-1-1-1 3-2-1-1-1-1
Best Subproblem (major iteration) - - 8 12
Time to solve the model (CPU seconds) 2.25 28.66 11.45 19.33

Table 4: Statistics of the solution obtained by the MIDO approach and the logic-based Outer Ap-
proximation algorithm.

Time boundary conditions, Eq.(30)

Switching functions, Eq.(31)

ẋsij ≤ −2tsik + u+M(1− ys1)
ẋsij ≥ −2tsik + u−M(1− ys1)

ẋsik(tsik + 10) ≤ xsik + u+M(1− ys2)
ẋsik(tsik + 10) ≥ xsik + u−M(1− ys2)
ẋsik ≤ −4xsike

−tsik + u+M(1− ys3)
ẋsik ≥ −4xsike

−tsik + u−M(1− ys3)


, i = 1, . . . , I, k = 1, . . . , K, s = 1, . . . , S

M∑
m=1

ysm = 1, s = 1, . . . , S

tinitial = 0, tfinal = S, tfixeds = s− 1, s = 2, . . . , S

xinitial = 1

p ∈ [−4, 4] , xsik ∈ R, ẋsik ∈ R, tsik ∈ R+, ys1, ys2, ys3 ∈ {0, 1}

Table 4 compares the performance of two conventional MINLP solvers applied to the direct

conversion of the DAGDP into an MINLP (MINLP-BM). Solver DICOPT finds a better solution

than solver SBB, and use less computational time. Nevertheless, both solvers are not able to find

the global optimum, and SBB has a higher computation time than the worst formulation (i.e. HR)

for the Logic-based OA. This is attributed to the fact that the MIDO approach gives rise to a larger

nonconvex problem in which the likelihood of getting trapped in suboptimal solutions is greater.
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Figure 7: Production system comprised of 6 manufacturing stages. In each stage a different model
is enforced. The time horizon of each production stage is 1 time unit.
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5 Results and Discussion

In this work, 3 case studies of wide complexity related to the hybrid dynamic optimization of process-

ing systems have been solved. These problems feature nonlinear dynamic behavior and two of them

have been reported in the open research literature [33], [34] for addressing the numerical solution of

hybrid optimal control problems. In all the cases an initial trajectory of the dynamic decision vari-

ables must be supplied for linearization purposes. In the case of dynamic continuous systems, such

an initial trajectory is easy to obtain since it can be taken as the value of the input variables under

steady-state conditions. For noncontinuous systems, as the ones addressed in the present work, the

system linearization was performed along an initial guessed trajectory: an initial value of the input

variables was fixed and then the dynamic system response was recorded. Such a system response

was deployed as the trajectory for linearization purposes. Of course, during the solution procedure

instead of guessing the value of the input variables we could just use the values of such variables

obtained in a previous iteration.

Regarding the dynamic system behavior during the switching times, special care must be taken

to avoid numerical convergence issues due to model switching. To illustrate this point, consider the

optimal dynamic response of the first case study shown in Figure 3. We have observed that if the

value of the αs weighting factor used in Eqn 6a is not properly chosen, sometimes it becomes difficult

to find an optimal solution because the set of discretized dynamic model equations 6e-6g become

infeasible. Anyway, once those tuning parameters are well chosen, obtaining the hybrid optimal

solution becomes rather easy.

It must be highlighted that during the past years the field of hybrid optimal control has seen

numerous and important contributions [27], [36]. However, some of the solutions approaches require

the use of a linear dynamic system. This is normally done by Taylor expansion of the original

nonlinear model around a given operating condition. Using this approach has important implications

in terms of the ability of solving the underlying optimal control problems since the resulting problems

are cast in terms of a mixed-integer linear programming problem for which efficient numerical solution

codes are available [37]. Whether or not the nonlinear behavior can be neglected is a matter of

discussion, and it depends on the specific analyzed case. It is quite clear that when such a nonlinear
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behavior cannot be neglected the optimal results obtained from using linear dynamic models will lead

to get suboptimal solutions. Therefore, improved optimal solutions can demand the use of nonlinear

models and the consideration of nonlinear behavior as a key component when formulating models

that better reflect the way a given system behave. Numerical optimization techniques, as the one

proposed in the present work, can be helpful to improve the dynamic optimization of hybrid and

highly nonlinear systems when the featured nonlinearities cannot be neglected.

6 Conclusions

In this work we have extended the Logic Outer-Approximation algorithm [16] originally proposed

for dealing with the optimization of algebraic logic systems to include logic hybrid dynamic system

described in terms of differential-algebraic equations featuring switching conditions. Although the

dynamic behavior of most of hybrid systems refers to the switching among control actions, in the

present work we are more interested in switching some parts of a given dynamic mathematical model

that become irrelevant under specific processing conditions. By doing so, the robustness of the logic

outer approximation algorithm for addressing the solution of hybrid control problems improves since

the redundant parts of the dynamic model are removed, and therefore they are not taken into account

during the solution procedure. The quality of the results clearly indicate that converging LMIDO

problems could benefit from using the proposed extension of the logic outer-approximation algorithm

to deal with logic dynamic hybrid control problems in comparison to the approach commonly used

for solving such problems, which consists in the straightforward application of the big-M or convex-

hull relation followed by the use of a MINLP algorithm. By taking advantage of the underlying

mathematical structure of optimization problems improved optimization solution procedures, as the

one described in the present manuscript, can be formulated.
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