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Abstract

We propose a framework to generate alternative mixed-integer nonlinear program-

ming formulations for disjunctive convex programs that lead to stronger relaxations.

We extend the concept of “basic steps” defined for disjunctive linear programs to the

nonlinear case. A basic step is an operation that takes a disjunctive set to another with

fewer number of conjuncts. We show that the strength of the relaxations increases as

the number of conjuncts decreases, leading to a hierarchy of relaxations. We prove

that the tightest of these relaxations, allows in theory the solution of the disjunctive

convex program as a nonlinear programming problem. We present a methodology to

guide the generation of strong relaxations without incurring an exponential increase

of the size of the reformulated mixed-integer program. Finally, we apply the theory

developed to improve the computational efficiency of solution methods for nonlin-

ear convex generalized disjunctive programs (GDP). This methodology is validated

through a set of numerical examples.
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1. Introduction

Disjunctive convex programming deals with the optimization over the intersec-

tion of the union of closed convex sets (Ceria and Soares, 1999; Stubbs and Mehrotra,

1999). These problems arise frequently in many different areas, such as in process

systems design (Duran and Grossmann, 1986; Turkay and Grossmann, 1996), schedul-

ing of operations and layout problems (Sawaya, 2006). Even though formulations
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that deal with the optimization over the intersection of the union of polyhedra were

orginally proposed as an extension of the early work by Balas on disjunctive linear

programming (see Balas (1979)), the solution methods have only borrowed a small

portion of its wealth. As in mixed-integer programming, the efficiency of solution

methods in disjunctive programming heavily depends on the way one formulates the

problem, which in turn depends on the relaxations these formulations produce. For

instance, Sherali and Adams proposed a method to generate formulations that lead

to a hierarchy of convex relaxations for general convex mixed-integer programs (see

Sherali and Adams (2009). Similarly, Balas showed that alternative formulations of

disjunctive linear programs can be produced systematically leading to tighter relax-

ations (see Balas (1985)).

Generalized disjunctive programming (GDP) (Raman and Grossmann, 1994), is

a generalization of disjunctive convex programming in the sense that it also allows

the use of logic popositions that are expressed in terms of Boolean variables. In or-

der to take advantage of current mixed-integer nonlinear programming solvers (e.g.

DICOPT (Viswanathan and Grossmann, 1990), SBB (Brooke et al., 1998), α-ECP

(Westerlund and Pettersson, 1995), Bonmin (Bonami et al., 2008), FilMINT (Ab-

hishek et al., 2006), BARON (Sahinidis, 1996), etc.), GDPs are often reformulated

as MINLPs. The intuitive way to reformulate a GDP is by using the Big-M (BM)

reformulation (Nemhauser and Wolsey, 1988). However, Lee and Grossmann showed

that a less intuitive approach, given by the Hull Reformulation (HR), leads to tighter

relaxations, and generally, significant improvements in the solution times (see Lee

and Grossmann (2000)).

In this work we will extend the theory of disjunctive linear programming to gen-

erate better alternative formulations for disjunctive convex programs. Following the

results in Sawaya and Grossmann (2006) for the case of Linear GDP, we will show

that any convex GDP can be equivalently represented as a disjunctive convex pro-

gram. As a result, we are able to exploit the new developments on disjunctive convex

programming to improve the solution methods of generalized disjunctive programs.

This paper is organized as follows. In section 2 we present the general structure

of a disjunctive convex program and we define an operation equivalent to a basic

step for disjunctive linear programs that takes a disjunctive set to another with fewer

number of conjuncts. The strength of relaxations increases as the number of con-

juncts decreases. We prove that the tightest of these relaxations, allows in theory the

solution of the disjunctive convex program as a nonlinear programming problem. At

the end of this section we present a methodology to guide the generation of strong
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relaxations without incurring an exponential increase of the size of the reformulated

mixed-integer program. In section 3 we introduce the general structure of a general-

ized disjunctive program and a transformation that takes it to a disjunctive convex

program. We review traditional solutions methods and show how the theory devel-

oped for disjunctive convex programs can be used to improve their computational

efficiency. In sections 4 and 5 we illustrate the application of the methodolgy through

a set of numerical examples.

2. Disjunctive Convex Programming

We define disjunctive convex programming as the optimization over a disjunctive

set. Each disjunctive set is defined by convex inequalities connected to each other

by the operation of conjunction (∧, juxtaposition “and”) or disjunction (∨, “or”).
Since each convex inequality defines a convex set, a disjunctive set can be viewed as a

collection of convex inequalities joined together by the intersection (∩) or union (∪). A
general representation of a disjunctive convex program is given by: min{f(x)|x ∈ F},
where F is a disjunctive set, f(x) : Rn → R1.

2.1. Disjunctive sets and their equivalent forms

We denote the convex set defined by a convex inequality as C = {x ∈ Rn|ϕ(x) ≤
0}, where ϕ(x) : Rn → R1 is a convex function. Given a collection of sets such that

Cj = {x ∈ Rn|ϕj(x) ≤ 0}, j ∈ M , we call their union, an elementary disjunctive set,

which is defined as:

H =
∪

j∈M
Cj = {x ∈ Rn|

∨
j∈M

ϕj(x) ≤ 0}

and their intersection, a new convex set, which is defined as:

P =
∩

j∈M
Cj = {x ∈ Rn|

∧
j∈M

ϕj(x) ≤ 0}

A disjunctive set can be expressed in many different forms that are logically equiv-

alent and that can be obtained from each other by considering F as a logical expression

whose statements forms are inequalities, and applying rules of propositional calculus.

Among these forms, the two extreme ones are the conjunctive normal form (CNF),

FCNF =
∩
i∈T

Hi

where each Hi is an elementary disjunctive set, and the disjunctive normal form

(DNF)

FDNF =
∪
i∈D

Pi

where each Pi is a convex set.
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In this paper we define Regular Form (RF) as the form between the (CNF) and

(DNF) represented by the intersection of the union of convex sets. Hence, the regular

form is:

F =
∩

k∈K
Sk

where for k ∈ K, Sk =
∪

i∈Dk

Pi and Pi a convex set for i ∈ Dk.

In the remainder of the paper we assume Pi = {x ∈ Rn|gi(x) ≤ 0} where gi(x) :

Rn → Rm and gi(x) is convex. We are now ready to define an operation, which when

applied to a disjunctive set in regular form, results in another regular form with one

less conjunct, i.e., an operation which brings the disjunctive set closer to the DNF. As

in Balas (1985), we call this operation a basic step that is defined in the following

theorem, which is an extension of Balas’ work.

Theorem 2.1. Let F be a disjunctive set in regular form. Then F can be brought
to DNF by |K| − 1 recursive applications of the following basic step which preserves
regularity:
For some r, s ∈ K, bring Sr ∩ Ss to DNF by replacing it with:

Srs =
∪

i∈Dr,j∈Ds

(Pi ∩ Pj)

Theorem 2.1 provides a tool that allows the systematic generation of equivalent dis-

junctive sets. The following is an illustrative example of the theorem applied on a

disjunctive set with two disjunctions.

Given the disjunctive set F1 = S1 ∩ S2 where,

S1 = [g11(x) ≤ 0] ∨ [g12(x) ≤ 0]

and,

S2 = [g21(x) ≤ 0] ∨ [g22(x) ≤ 0] ∨ [g23(x) ≤ 0]

where gij(x) : R
n → Rm for i = 1, 2 and j = 1, 2, 3 are convex functions. The appli-

cation of a basic step between S1 and S2 leads to F2 = S12 defined as:

S12 = [g11(x) ≤ 0 ∧ g21(x) ≤ 0] ∨ [g11(x) ≤ 0 ∧ g22(x) ≤ 0]

∨ [g11(x) ≤ 0 ∧ g23(x) ≤ 0] ∨ [g12(x) ≤ 0 ∧ g21(x) ≤ 0]

∨ [g12(x) ≤ 0 ∧ g22(x) ≤ 0] ∨ [g12(x) ≤ 0 ∧ g23(x) ≤ 0]
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2.2. The convex hull of a disjunctive set

The following characterization expresses the convex hull of a disjunctive set in

DNF as the projection of a higher dimensional convex set onto Rn as given in Ceria

and Soares (1999).

Theorem 2.2. Let W be given by W = cl conv(S), S =
∪
i∈D

Pi, and D = {i : Pi ̸= ∅}.

If each set Pi is bounded, x ∈ W if and only if there exist vectors (λi, ν
i), for every

i ∈ D, such that the following nonlinear system is feasible

x =
∑
i∈D

νi

(cl g′i)(ν
i, λi) ≤ 0, i ∈ D (1)∑

i∈D
λi = 1, λi ≥ 0, i ∈ D

where generically, (cl g′)(x, λ) denotes the closure of the perspective mapping of g(x) at
(x, λ) and where g′(x, λ) = λg(x/λ) and its domain Dg′ = {(x, λ)|x/λ ∈ Dom(g), λ >
0}.

For the particular case in which |x| ≤ L , i.e. each continuous variable is bounded

below as well as bounded above, where L is a sufficiently large number we can express

the aforementioned system as (Stubbs and Mehrotra, 1999):

x =
∑
i∈D

νi

(cl g′i)(ν
i, λi) ≤ 0, i ∈ D∑

i∈D
λi = 1, λi ≥ 0, i ∈ D (2)

|νi| ≤ Lλi i ∈ D

where (cl g′i)(ν
i, λi) = λigi(ν

i/λi) if λi > 0 and (cl g′i)(ν
i, λi) = 0 if λi = 0.

It is important to note that each variable λi is associated to the disjunct i in

the disjunction through the corresponding perspective function. In particular, when

λi = 1 all the constraints in the associated disjunct are enforced. As it is described in

the next section, this observation is of main importance in order to find an equivalent

mixed-integer nonlinear representation of the disjunctive convex program.

2.3. MINLP formulation for disjunctive convex programs

The following theorem describes how to formulate a disjunctive program defined

on a disjunctive set in DNF as a convex MINLP.

Theorem 2.3. Let Z = min{f(x)|x ∈ S} be a disjunctive convex program where S
is a disjunctive set in DNF such that S =

∪
i∈D

Pi and Pi = {x ∈ Rn, gi(x) ≤ 0}, i ∈ D
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and x is bounded below as well as bounded above by a large number L. Then, an
equivalent mixed-integer nonlinear program can be described as:

min f(x)
s.t.

x =
∑
i∈D

νi

(cl g′i)(ν
i, λi) ≤ 0, i ∈ D∑

i∈D
λi = 1, λi ≥ 0, i ∈ D (3)

|νi| ≤ Lλi, i ∈ D
λi ∈ {0, 1}, i ∈ D

where (cl g′i)(ν
i, λi) = λigi(ν

i/λi) if λi > 0 and (cl g′i)(ν
i, λi) = 0 if λi = 0.

Proof. The proof trivially follows from Theorem 2.2. �

However, more often than not the disjunctive set is not in DNF but rather some-

where between CNF and DNF. A valid relaxation for this set is given by the hull

relaxation, which is defined as the intersection of the convex hull of each disjunction.

More precisely, given a disjunctive set F =
∩

k∈K
Sk the relaxation of (F ), denoted as

h-rel(F ) is defined as h-rel(F ) =
∩

k∈K
cl conv(Sk) where cl conv(Sk) represents the

closure of the convex hull of Sk.

Hence, Theorem 2.3 can be extended to represent a disjunctive program given in

regular form as follows:

min f(x)

s.t.

x =
∑
i∈Dk

νik, k ∈ K

(cl g′ik)(ν
ik, λik) ≤ 0, i ∈ Dk, k ∈ K∑

i∈Dk

λik = 1, λik ≥ 0, i ∈ Dk, k ∈ K (4)

|νik| ≤ Lλik, i ∈ Dk k ∈ K

λik ∈ {0, 1}, i ∈ Dk k ∈ K

Applying the mixed-integer formulation presented above would lead to numerical

difficulties to the NLP subproblems since the function (cl g′ik)(ν
ik, λik) is not differ-

entiable at λik = 0. In order to overcome the latter issue, we propose to use the

approximation given by Sawaya (2006):
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(cl g′ik)(νik, λik) = ((1− ϵ)λik + ϵ)gik(ν
ik/(1− ϵ)λik + ϵ)− ϵgik(0)(1− λik) ≤ 0 (5)

The above approximation function, which can be shown to be convex provided gik(x)

is convex, is exact for λik = 1 and λik = 0, independently of ϵ. This parameter, which

represents a small non-negative tolerance, only has an impact on the accuracy of the

relaxation. Clearly this approximation fails if gik(x) is not defined at the zero point.

However, we can overcome this issue by making a suitable variable transformation

such that:

λigik(ν
ik/λik) = ((1− ϵ)λik + ϵ)g′ik(τ

ik/(1− ϵ)λik + ϵ)− ϵg′ik(0)(1− λik) ≤ 0 (6)

where g′ik(y) = gik(y + β) and y + β = x. Note that τ ik represents the disaggregated

variable associated to y. Also note that convexity is preserved in this transformation

provided the original function gik is convex.

In the following section we show that a generally tighter relaxation can be obtained

if the hull relaxation is calculated not on the orginal disjunctive set but rather on

an equivalent set obtained after the application of basic steps. This in turn means

that the continuous relaxation of the resulting MINLP will be tightened. Moreover,

if the final form obtained after the application of basic steps is in DNF then its hull

relaxation is the convex hull of the disjunctive set.

2.4. Hierarchy of relaxations

The following theorem, which is an extension of Balas’ work (see Balas (1985)) and

we state without proof, shows that even though the disjunctive sets obtained from the

application of basic steps are equivalent, their relaxations are not. Moreover, when a

basic step is applied to a disjunctive set its hull relaxation is in general tightened.

Theorem 2.4. For i = 1, 2....k let Fi =
∩

k∈K
Sk be a sequence of regular forms of a

disjunctive set such that Fi is obtained from Fi−1 by the application of a basic step,
then:

h-rel(Fi) ⊆ h-rel(Fi−1)

2.4.1. Illustrative example:

Given the disjunctive set F1 = S1 ∩ S2 where S1 = P11 ∪ P12 and S2 = P21 ∪ P22,

the hull relaxation is given in Figure 1 (a). After the application of a basic step, an

equivalent disjunctive set is obtained F2 = (P11 ∩ P21) ∪ (P11 ∩ P22) ∪ (P12 ∩ P21) ∪
(P12 ∩ P22) whose hull relaxation can be seen in Figure 1 (b). Clearly h-rel(F2) ⊆
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h-rel(F1)

Figure 1: (a): h-rel(F1) (b): h-rel(F2)

It is important to note that every time a basic step is applied, the number of

disjuncts generally increases, leading in principle to the need of a larger number of

binary variables to represent them in the mixed-integer formulation. As in the case

of disjunctive linear programming, we present the following theorem that establishes

that no increase of the number of 0-1 variables is required.

Theorem 2.5. Let Z = min{f(x)|x ∈ Fd} be a disjunctive convex program with the
variables x bounded below as well as bounded above by a large number L and such
that Fd is a disjunctive set in regular form consisting of those x ∈ Rn satisfying∨
s∈Qr

(gs(x) ≤ 0), r ∈ Td and let Fn be the disjunctive set obtained after the application

of a number of basic steps on Fd , such that x ∈ Rn satisfies
∨

t∈Qj

(Gt(x) ≤ 0), j ∈ Tn.

Then every j ∈ Tn corresponds to a subset Tdj with Td =
∪

j∈Tn

Tdj such that the dis-

junction in
∨

t∈Qj

(Gt(x) ≤ 0) for a given j is the disjunctive normal form of the set

of disjunctions
∨

s∈Qr

(gs(x) ≤ 0), r ∈ Tdj. Furthermore, let M t
j be the index set of the

inequalities gs(x) ≤ 0 making up the system Gt(x) ≤ 0 for a given j ∈ Tn and t ∈ Qj.
Then, an equivalent mixed-integer nonlinear program can be described as:
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min f(x)
s.t.

x =
∑
t∈Qj

νt, j ∈ Tn

(cl G′t)(νt, λt) ≤ 0, t ∈ Qj, j ∈ Tn∑
t∈Qj

λt = 1, j ∈ Tn (7)

λt ≥ 0, t ∈ Qj∑
t∈Qj |s∈M t

j

λt = δrs , s ∈ Qr, r ∈ Td, j ∈ Tn∑
s∈Qr

δrs = 1, r ∈ Td

|νt| ≤ Lλt, t ∈ Qj, j ∈ Tn

δrs ∈ {0, 1}, s ∈ Qr, r ∈ Td

where (cl G′t)(νt, λt) = λtG
t(νt/λt) if λt > 0 and (cl G′t)(νt, λt) = 0 if λt = 0

Proof. The proof follows from Theorem 4.4 of Balas work (see Balas (1985)).

To illustrate the above theorem, let us consider the disjunctive set Fd with in-

dex sets Td = {r1, r2} such that Qr1 = {sr11 , sr12 , sr13 } and Qr2 = {sr21 , sr22 , sr23 }.
After the application of a basic step between the disjunctions r1 and r2 a new

disjunctive set Fn is obtained with the following index sets, Tn = {j1} such that

Qj1 = {tj11 , t
j1
2 , t

j1
3 , t

j1
4 , t

j1
5 , t

j1
6 , t

j1
7 , t

j1
8 , t

j1
9 }. The direct application of Theorem 2.3 on Fn

would require the use of 9 binary variables as opposed to 6 binary variables needed to

represent Fd. However, by following Theorem 2.5 Fn can still be described through 6

binary variables. Note that for this example,M t1
j1

= {sr11 , sr21 },M t2
j1

= {sr11 , sr22 },M t3
j1

=

{sr11 , sr23 }, M t4
j1

= {sr12 , sr21 }, M t5
j1

= {sr12 , sr22 }, M t6
j1

= {sr12 , sr23 }, M t7
j1

= {sr13 , sr21 },
M t8

j1
= {sr13 , sr22 }, M t9

j1
= {sr13 , sr23 }, hence, the equations that enforce the integrality

of the continuous variables λ that represent each term in the disjunctive set Fn based

on the integrality of the variables δ that represent each term in the disjunctive set Fd

are:

δr1s1 = λj1
t1 + λj1

t2 + λj1
t3

δr1s2 = λj1
t4 + λj1

t5 + λj1
t6

δr1s3 = λj1
t7 + λj1

t8 + λj1
t9

δr2s1 = λj1
t1 + λj1

t4 + λj1
t7

δr2s2 = λj1
t2 + λj1

t5 + λj1
t8

δr2s3 = λj1
t3 + λj1

t6 + λj1
t9
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λj1
t1 + λj1

t2 + λj1
t3 + λj1

t4 + λj1
t5 + λj1

t6 + λj1
t7 + λj1

t8 + λj1
t9 = 1

δr1s1 + δr1s2 + δr1s3 = 1

δr2s1 + δr2s2 + δr2s3 = 1

0 ≤ λj1
t1 , λ

j1
t2 , λ

j1
t3 , λ

j1
t4 , λ

j1
t5 , λ

j1
t6 , λ

j1
t7 , λ

j1
t8 , λ

j1
t9 ≤ 1

δr1s1 , δ
r1
s2
, δr1s3 , δ

r2
s1
, δr2s2 , δ

r2
s3

∈ {0, 1}

Let us consider for example the case for which δr1s1 = 1 and δr2s1 = 1 then from the

equations above it is clear that λj1
t1 = 1, as expected.

2.5. Convex nonlinear program equivalent to a disjunctive convex program

In this section we show that any disjunctive convex program can be equivalently

represented as a convex nonlinear program in the sense that at least one solution of

both programs is the same.

Theorem 2.6. Let Z = min{f(x)|x ∈ S} be a disjunctive convex program where S
is a disjunctive set in DNF such that S =

∪
i∈D

Pi and Pi = {x ∈ Rn, gi(x) ≤ 0} where

Pi ̸= ∅ and that x and f(x) are bounded below as well as bounded above by a large
number L. Then, the following convex nonlinear program has at least one solution
that is also solution of the disjunctive program:

min α
s.t.

α =
∑
i∈D

νi
α

x =
∑
i∈D

νi

(cl g′i)(ν
i, λi) ≤ 0, i ∈ D

(cl f ′)((νi, νi
α), λi) ≤ 0, i ∈ D (8)∑

i∈D
λi = 1, λi ≥ 0, i ∈ D

|νi| ≤ Lλi, i ∈ D
|νi

α| ≤ Lλi, i ∈ D

where (cl g′i)(ν
i, λi) = λigi(ν

i/λi) if λi > 0 and (cl g′i)(ν
i, λi) = 0 if λi = 0. Also,

(cl f ′)((νi, νi
α), λi) = λif(ν

i/λi)− νi
α if λi > 0 and (cl f ′)((νi, νi

α), λi) = 0 if λi = 0.

Proof.

Clearly, the disjunctive problem Z = min{f(x)|x ∈ S} is equivalent to Z ′ = min{α|α ≥
f(x), x ∈ S}. Then, from Theorem 2.1 this program is, in turn, equivalent to

Z ′′ = min{α|(x, α) ∈ S ′′} where S ′′ is the DNF form of the disjunctive set S ∩Sf and
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Sf = {(α, x) ∈ Rn+1, α ≥ f(x)}. As a result, from Theorem 2.3, the optimization

problem in (8) is nothing but the minimization of α over the convex hull of S ′′ and

can be represented as Z ′′′ = min{α|(x, α) ∈ h-rel(S ′′)}. From Ceria and Soares’ work

on the optmization of a linear function over a disjunctive set in DNF (see (Ceria

and Soares, 1999)), this nonlinear program has at least one solution that is also a

solution of Z ′′ = min{α|(x, α) ∈ S ′′} and hence a solution of Z = min{f(x)|x ∈ S}.
�
Even though the value of the optimal objective in (8) is the same as the optimal

objective value of Z = min{f(x)|x ∈ S}, Theorem 2.6 does not guarantee the inte-

grality of λ. In order to overcome this issue and generate an integral solution from

the solution of (8) we state the following corollary.

Corollary 2.7. Given an optimal solution of problem (8) (α∗, x∗, (νi∗
α , ν

i∗, λ∗
i )i∈D),

an optimal solution of the convex disjunctive problem Z = min{f(x)|x ∈ S} is given
by νi∗/λ∗

i for any i ∈ D such that λ∗
i > 0.

Proof.

From (Lee and Grossmann, 2000) the point (αi, xi) = (νi∗
α /λ

∗
i , ν

i∗/λ∗
i ) belongs to

the i-th term in the disjunction defined by S ′′. Clearly, (α∗, x∗) =
∑

i∈D,λ∗
i>0 λ

∗
i (α

i, xi).

Since any (αi) cannot be less than α∗ (i.e. α∗ is a lower bound) then (αi) must be equal

to (α∗). Hence, any point (αi, xi) is a solution of Z ′′ = min{α|(x, α) ∈ S ′′} or similarly,

any point νi∗/λ∗
i , i ∈ D such that λ∗

i > 0 is solution of Z = min{f(x)|x ∈ S}.
�

2.5.1. Illustrative example:

This example is adapted from Lee and Grossmann (2000), and consists of the

optimization of a convex function on a disjunctive set in DNF described as follows:

min Z = (x1 − 3)2 + (x2 − 2)2 + 1

s.t.

[x2
1 + x2

2 ≤ 1] ∨ [(x1 − 4)2 + (x2 − 1)2 ≤ 1] (CIRC1)

∨ [(x1 − 2)2 + (x2 − 4)2 ≤ 1]

|xi| ≤ 5 i ∈ {1, 2}

In Figure 2, the optimal solution Z∗ of the disjunctive convex program is shown.

Also Zrel denotes the solution of the problem on the hull relaxation of the disjunctive

set (i.e. Zrel = 1 at x1 = 3 and x2 = 2) which can be obtained by solving the following
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NLP problem,

min Z = (x1 − 3)2 + (x2 − 2)2 + 1

s.t.

x1 =
∑

i∈{1,2,3}
νi
1

x2 =
∑

i∈{1,2,3}
νi
2 (RCIRC1)

(cl g′1)(ν1, λ1) ≤ 0

(cl g′2)(ν2, λ2) ≤ 0

(cl g′3)(ν3, λ3) ≤ 0∑
i∈{1,2,3}

λi = 1, λi ≥ 0, i ∈ {1, 2, 3}

|νi
1| ≤ 5λi, i ∈ {1, 2, 3}

|νi
2| ≤ 5λi, i ∈ {1, 2, 3}

where,

(cl g′1)(ν1, λ1) = λ1[(ν
1
1/λ1)

2+(ν1
2/λ1)

2−1] if λ1 > 0 and (cl g′1)(ν1, λ1) = 0 if λ1 = 0;

(cl g′2)(ν2, λ2) = λ2[(ν
2
1/λ2 − 4)2 + (ν2

2/λ2 − 1)2 − 1] if λ2 > 0 and (cl g′2)(ν2, λ2) = 0

if λ2 = 0; (cl g′3)(ν3, λ3) = λ3[(ν
3
1/λ2 − 2)2 + (ν3

2/λ3 − 4)2 − 1]if λ3 > 0 and

(cl g′3)(ν3, λ3) = 0 if λ3 = 0.

Figure 2: Optimal solution of illustrative example
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An alternative NLP formulation for the above problem can be obtained by follow-

ing Theorem 2.6, which is nothing but the relaxed mixed-integer formulation of the

following disjunctive convex program:

min Z = α (CIRC2)

s.t. [
x2
1 + x2

2 ≤ 1

(x1 − 3)2 + (x2 − 2)2 + 1 ≤ α

]
∨

[
(x1 − 4)2 + (x2 − 1)2 ≤ 1

(x1 − 3)2 + (x2 − 2)2 + 1 ≤ α

]

∨

[
(x1 − 2)2 + (x2 − 4)2 ≤ 1

(x1 − 3)2 + (x2 − 2)2 + 1 ≤ α

]
|xi| ≤ 5 i ∈ {1, 2}

Namely,

min Z = α

s.t.

x1 =
∑

i∈{1,2,3}
νi
1

x2 =
∑

i∈{1,2,3}
νi
2 (RCIRC2)

α =
∑

i∈{1,2,3}
νi
α

(cl g′1)(ν1, λ1) ≤ 0

(cl g′2)(ν2, λ2) ≤ 0

(cl g′3)(ν3, λ3) ≤ 0

(cl f ′)((νi, νi
α), λi) ≤ 0 i ∈ {1, 2, 3}∑

i∈{1,2,3}
λi = 1, λi ≥ 0, i ∈ {1, 2, 3}

|νi
1| ≤ 5λi, i ∈ {1, 2, 3}

|νi
2| ≤ 5λi, i ∈ {1, 2, 3}

|νi
α| ≤ Lλi, i ∈ {1, 2, 3}

where, (cl g′1)(ν1, λ1) = λ1[(ν
1
1/λ1)

2 + (ν1
2/λ1)

2 − 1] if λ1 > 0 and (cl g′1)(ν1, λ1) = 0

if λ1 = 0; (cl g′2)(ν2, λ2) = λ2[(ν
2
1/λ2 − 4)2 + (ν2

2/λ2 − 1)2 − 1] if λ2 > 0 and

(cl g′2)(ν2, λ2) = 0 if λ2 = 0; (cl g′3)(ν3, λ3) = λ3[(ν
3
1/λ2 − 2)2 + (ν3

2/λ3 − 4)2 − 1]if

λ3 > 0 and (cl g′3)(ν3, λ3) = 0 if λ3 = 0; (cl f ′)((νi, νi
α), λi) = λi[(ν

i
1/λi−3)2+(νi

2/λi−

13



2)2 − νi
α/λi + 1] if λi > 0 and (cl f ′)((νi, νi

α), λi) = 0 if λi = 0.

Note that (CIRC2) can be obtained from (CIRC1) by writing the objective func-

tion as a constraint and applying a basic step with the proper disjunction. Figure 3

shows the representation of the above disjunctive convex program and its relaxation.

Note that the optimal solution Z∗ = 1.17 projected on the x space (i.e. x1 = 3.29

and x2 = 1.71) is the same as the original disjunctive program, which is the same as

the solution when the disjunctive set is relaxed. Thus, the solution of the disjunctive

program (CIRC1) is the same as the solution of the nonlinear program (RCIRC2)!

Figure 3: Optimal solution of illustrative example

In summary, using Theorem 2.3 in combination with Theorem 2.6 and Theorem

2.4, and bringing the disjunctive set to DNF, we can find the value of the objective

function of any disjunctive convex program by solving a single nonlinear program.

Moreover, by following Corollary 2.7, a simple arithmetic operation on the solution

of the relaxed NLP leads to a solution of the disjunctive convex program.

2.6. Rules for applying basic steps

Although ideally one would like to convert a convex disjuntive program into DNF

form to solve it as continuous nonlinear program as stated in Theorem 2.6, this is

clearly not practical given the exponential number of terms that might arise in the

14



DNF form. Therfore, in order to apply only a subset of basic steps, and in order

to make good use of the hierarchy described in section 2.4., one important aspect

is to understand which basic steps will lead to an improvement in the tightness of

the relaxation, and hence in a potential increase in the lower bound of the global

optimum. In other words, we need to be able to differentiate among the basic steps

that will lead to a strict inclusion with those that will keep the relaxation unchanged.

As described in the work of Ruiz and Grossmann (2010) the following propositions

provide sufficient conditions for a particular disjunctive set for which a basic step will

not lead to a tighter relaxation.

Proposition 2.8. Let S1 and S2 be two disjunctive sets defined in Rn. If the set
of variables constrained in S1 are not constrained in S2 , and the set of variables
constrained in S2 are not constrained in S1, then h-rel(S1 ∩ S2) = h-rel(S1) ∩ h-
rel(S2) .

Proposition 2.9. Let S =
∪
i

Pi , where Pi, i = {1, 2} are convex sets defined in the

x space, H is a half space defined by ax + b ≤ 0 and H∗ is a facet of H. If P1 is a
point such that P1 ⊆ H∗ then h-rel(S ∩H) = h-rel(S) ∩ h-rel(H).

An illustration of Proposition 2.9 is shown in Figure 4.

Figure 4: h-rel(S ∩H) = h-rel(S) ∩ h-rel(H)

Another important aspect to consider is the effect that a particular basic step has

in the increase of the size of the formulation. In this respect we can differentiate

two types of basic steps. Firstly, the ones that are implemented between two proper

disjunctions, and second, the ones that are implemented between a proper and an

improper disjunction. In this work we propose to use the latter approach. Note

that in this case, parallel basic steps (i.e. simultaneous intersection of each improper
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disjunction with all proper disjunctions) will not lead to an increase in the number

of convex sets in the disjunctive set, keeping the size of the formulation smaller.

To illustrate this, let us consider the disjunctive set given by F1 = S1 ∩ S2 where

S1 = P1∪P2 and S2 = P3 are a proper and improper disjunction respectively. Clearly,

the application of a basic step between S1 and S2 leads to the following disjunctive

set F2 = S12 = (P1 ∩ P3) ∪ (P2 ∩ P3) with no more convex sets than in F1.

We are now ready to present an improved strategy based on the theory developed

for disjunctive convex programing to solve generalized disjunctive programs more

efficiently. In the following section we introduce the general structure of GDP and

review the traditional approaches to solve them.

3. Convex Generalized Disjunctive Programs

The general structure of a GDP, which facilitates the formulation of discrete/continuous

optimization problems, can be represented as follows (Raman & Grossmann, 1994):

min Z = f(x) +
∑

k∈K ck

s.t. r(x) ≤ 0

∨
i∈Dk

 Yik

gik(x) ≤ 0

ck = γik

 k ∈ K (GDP )

∨
i∈Dk

Yik k ∈ K

Ω(Y ) = True

xlo ≤ x ≤ xup

x ∈ Rn , ck ∈ R1, Yik ∈ {True, False}

where f : Rn → R1 is a function of the continuous variables x in the objective

function, r : Rn → Rl belongs to the set of global constraints, the disjunctions

k ∈ K, are composed of a number of terms i ∈ Dk, that are connected by the

OR operator . In each term there is a Boolean variable Yik, a set of inequalities

gik(x) ≤ 0, gik : Rn → Rj, and a cost variable ck. If Yik is true, then gik(x) ≤ 0

and ck = γik are enforced; otherwise they are ignored. Also, Ω(Y ) = True are

logic propositions for the Boolean variables expressed in the conjunctive normal form

Ω(Y ) = ∧
t=1,2,..T

[
∨

(i,k)∈Rt

(Yik) ∨
(i,k)∈Qt

(¬Yik)

]
where for each clause t=1,2 . . . T, Rt is

the subset of indices of Boolean variables that are non-negated, and Qt is the subset
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of indices of Boolean variables that are negated. The logic expression ∨
i∈Dk

Yik ensures

that only one term in each disjunction is True.

3.1. Equivalency between disjunctive convex programs and convex GDP

In order to make use of the theory developed for disjunctive convex programs

defined in the continuous space in order to solve convex GDP defined in the Boolean

and continuous space, we will propose a transformation that takes a convex GDP and

represents it as a disjunctive convex program.

This transformation, which is equivalent to the one proposed by Sawaya and Gross-

mann for linear GDP (see Sawaya (2006)), consists in first replacing the Boolean vari-

ables Yik, i ∈ Dk, k ∈ K inside the disjunctions by equalities λik = 1, i ∈ Dk, k ∈ K,

where λ is a vector of continuous variables whose domain is [0,1], and convert the log-

ical relations ∨
i∈Dk

Yik and Ω(Y ) = True into the algebraic equations
∑

i∈Dk
λik = 1,

k ∈ K and Aλ ≥ a, respectively. This yields the following disjunctive model:

min Z = f(x) +
∑

k∈K ck

s.t. r(x) ≤ 0

∨
i∈Dk

 λik = 1

gik(x) ≤ 0

ck = γik

 k ∈ K (CGDP )

∑
i∈Dk

λik = 1 k ∈ K

Aλ ≥ a

xlo ≤ x ≤ xup

x ∈ Rn , ck ∈ R1, λik ∈ {0, 1}

In the following proposition we state the equivalence between (GDP) and (CGDP),

which can be easily proved by considering the above-mentioned mapping between the

Boolean variables Y and continuous variables λ.

Proposition 3.1. The model (GDP) is equivalent to (CGDP) in the sense that every
point (x,c,Y) in the feasible region of (GDP) has a one to one correspondence with
every point (x,c,λ) in (CGDP) and that the optimal value of the objective function in
(GDP) is the same as the optimal value of the objective function in (CGDP).

3.2. MINLP Reformulations

In order to take advantage of the existing MINLP solvers, GDPs are often reformu-

lated as an MINLP by using either the big-M (BM) (Nemhauser and Wolsey, 1988),
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or the Hull Relaxation (HR) (Lee and Grossmann, 2000). The former yields:

min Z = f(x) +
∑

i∈Dk

∑
k∈K γikλik

s.t. r(x) ≤ 0

gik(x) ≤ M(1− λik) i ∈ Dk, k ∈ K (BM)∑
i∈Dk

λik = 1 k ∈ K

Aλ ≥ a

xlo ≤ x ≤ xup

x ∈ Rn, λik ∈ {0, 1} , i ∈ Dk , k ∈ K

where the variable λik has a one-to-one correspondence with the Boolean variable

Yik. Note that when λik = 0 and the parameter M is sufficently large, the associated

constraint becomes redundant; otherwise, it is enforced. Also, Aλ ≥ a is the reformu-

lation of the logic constraints in the discrete space, which can be easily accomplished

as described in the work by Williams (1985) and discussed in the work by Raman

and Grossmann (1994). The convex hull reformulation yields,

min Z = f(x) +
∑

i∈Dk

∑
k∈K γikλik

s.t. x =
∑

i∈DK
νik k ∈ K

r(x) ≤ 0

(cl g′ik)(ν
ik, λik) ≤ 0 i ∈ Dk, k ∈ K (HR)

λikx
lo ≤ νik ≤ λikx

up i ∈ Dk, k ∈ K∑
i∈Dk

λik = 1 k ∈ K

Aλ ≥ a

x ∈ Rn, νik ∈ Rn, ck ∈ R1, λik ∈ {0, 1} , i ∈ Dk , k ∈ K

where (cl g′ik) = λikgik(ν
ik/λik) if λik > 0 and (cl g′ik) = 0 if λik = 0.

As it can be seen, the HR reformulation is less intuitive than the BM. However,

there is also a one-to-one correspondence between (GDP) and (HR). Note that the

size of the problem is increased by introducing a new set of disaggregated variables

νik and new constraints. On the other hand, as proved in Grossmann and Lee (2003)

and discussed in Vecchietti, Lee and Grossmann (2003), the HR formulation is at

least as tight and generally tighter than the BM when the discrete domain is relaxed

(i.e. 0 ≤ λik ≤ 1, k ∈ K, i ∈ Dk). This is of great importance considering that the
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efficiency of the MINLP solvers heavily relies on the strength of these relaxations.

Methods that have addressed the solution of problem (MINLP) include the branch

and bound method (BB) (Gupta and Ravindran, 1985; Borchers and Mitchell, 1994),

Generalized Benders Decomposition (GBD) (Geoffrion, 1972), Outer-Approximation

(OA) (Duran and Grossmann, 1986; Fletcher and Leyffer, 1994), LP/NLP based

branch and bound (Quesada and Grossmann, 1992; Bonami et al., 2008), and Ex-

tended Cutting Plane Method (ECP) (Westerlund and Pettersson, 1995; Westerlund

and Poern, 2002).

REMARK 1.

In order to fully exploit the logic structure of GDP problems, two other solution methods

have been proposed for the case of convex nonlinear GDP, namely, the Disjunctive Branch

and Bound method (Lee and Grossmann, 2000), which builds on the Branch and Bound

procedure by Beaumont (1991) and the Logic-Based Outer-Approximation method (Turkay

and Grossmann, 1996). For an extensive comparison we refer the reader to Ruiz and Gross-

mann (2011).

REMARK 2.

In the MINLP reformulation method, it is clear that the (HR) reformulation proposed by

Lee and Grossmann (2000) is equivalent to the result in the Theorem 2.3 extended for

disjunctive sets not in DNF. As we pointed out, the relaxation of this formulation can

be strengthened by applying a set of basic steps on the disjunctive set. In particular,

if the objective function is nonlinear, we propose to add this as a constraint becoming

part of the disjunctive set before the application of basic steps. In order to prevent the

exponential increase of the size of the formulation, we propose to use the rules in section

(2.6). Regarding the Logic Based Methods, these can be improved by considering the use of

alternative generalized disjunctive programs that arise from the application of basic steps

on the disjunctive set. Clearly, the master problem will be strengthened by the generation

of stronger cuts.

4. Examples

4.1. Example 1: Simple Case (Circles2D3, Circles2D36, Circles3D36)

This set of problems deals with the optimization of a convex quadratic function over a set

of disjoint hyperspheres. The particular case Circles2D3 is taken from Lee and Grossmann

(2000), which consists of the optimization of a two dimensional quadratic function over

three disjoint circles. Similarly, the problem Circles2D36 is defined with 36 circles in 2-D

and Circles3D36 with 36 circles in 3-D. In general these problems can be described through
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the following GDP formulation, where the disjunction corresponds to the selection of circles:

minZ =
∑

i(xi − ai)
2 + c

s.t.

∨
j∈J

 Yj∑
i(xi − bi)

2 ≤ di

c = γj

 (CIRC)

∨
j∈J

Yj = True

xi ∈ R

4.2. Example 2 : Process Network (Proc8, Proc10, Proc12)

In general, the underlying goal of a classical process synthesis problem consists in se-

lecting the process (i.e. process units and mass flow network), that maximizes the profit

when selling a product or set of products considering the cost of raw materials and the cost

of the process units.

The model in the form of the GDP problem involves disjunctions for the selection of

units, and propositional logic for the relationship of these units. Each disjunction contains

the equation for each unit (these relax as convex inequalities). Proc8, Proc10, Proc12 are

three instances with eight, ten and twelve unit operations, respectively. A general GDP

model can be described as follows:

MinZ =
∑

i∈I ci +
∑

j∈J pjxj + γ

s.t.∑
j∈J rjnxj ≤ 0 ∀n ∈ N Yi∑

j dij(e
xj/tij − 1)−

∑
j sijxj ≤ 0

ci = γi

 ∨

 ¬Yi
xj = 0, j ∈ J i

ci = 0

 (PROC)

Ω(Y ) = True

xj , ci ≥ 0, Yi = {True, False}

4.3. Example 3: Farm land layout (Flay02, Flay03, Flay04)

These problems concern farm land layout, where one would like to determine the optimal

length and width of a number of rectangular patches of land with fixed area, such that the

perimeter of the set of patches is minimized. The nonlinearities in this set of problems arise

from a set of hyperbolic constraints. A GDP formulation is given as follows (Sawaya, 2006),

where the disjunctions are used to represent the non-overlapping of the rectangles:
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minZ = 2(Length+Width)

s.t.

Length ≥ xi + Li i ∈ N

Width ≥ yi +Wi i ∈ N

Ai/Wi − Li ≤ 0 i ∈ N (FLAY )[
Z1
ij

xi + Li/2 ≤ xj − Lj/2

]
∨

[
Z2
ij

xj + Lj/2 ≤ xi − Li/2

]

∨

[
Z3
ij

yi +Hi/2 ≤ yj −Hj/2

]
∨

[
Z4
ij

yj +Hj/2 ≤ yi −Hi/2

]
∀i, j ∈ N, i < j

0 ≤ Length ≤ LengthU , 0 ≤ Width ≤ WidthU

LL
i ≤ Li ≤ Ai/L

U
i ,W

L
i ≤ wi ≤ Ai/W

U
i

0 ≤ xi ≤ LengthU − LL
i , 0 ≤ yi ≤ WidthU −WL

i

Z1
ij , Z

2
ij , Z

3
ij , Z

4
ij ∈ {True, False} ∀i, j ∈ N, i < j

4.4. Example 4: Constrained Layout Problem (Clay0203, Clay0303, Clay0204)

This problem was reported in Sawaya and Grossmann (2006). Non-overlapping units

represented by rectangles must be placed within the confines of certain designated circular

areas represented by non-linear constraints, such that the cost of connecting these units is

minimized. The GDP model is as follows:

minZ =
∑
i

∑
j
cij(delxij + delyij)

s.t.

delxij ≥ xi − xj ∀i, j ∈ N, i < j (CLAY )

delxij ≥ xj − xi ∀i, j ∈ N, i < j

delyij ≥ yi − yj ∀i, j ∈ N, i < j

delyij ≥ yj − yi ∀i, j ∈ N, i < j[
Y 1
ij

xi + Li/2 ≤ xj − Lj/2

]
∨

[
Y 2
ij

xj + Lj/2 ≤ xi − Li/2

]

∨

[
Y 3
ij

yi +Hi/2 ≤ yj −Hj/2

]
∨

[
Y 4
ij

yj +Hj/2 ≤ yi −Hi/2

]
∀i, j ∈ N, i < j
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∨
k∈K



Wik

(xi − Li/2− xk)
2 + (yi +Hi/2− yk)

2 ≤ r2k
(xi − Li/2− xk)

2 + (yi −Hi/2− yk)
2 ≤ r2k

(xi + Li/2− xk)
2 + (yi +Hi/2− yk)

2 ≤ r2k
(xi + Li/2− xk)

2 + (yi −Hi/2− yk)
2 ≤ r2k


xi ≤ UB1

i ∀i ∈ N

xi ≥ LB1
i ∀i ∈ N

yi ≤ UB2
i ∀i ∈ N

yi ≥ LB2
i ∀i ∈ N

delxij , delyij ∈ R1
+, Y

1
ij , Y

2
ij , Y

3
ij , Y

4
ij ,Wik ∈ {True, False} ∀i, j ∈ N, i < j

5. Numerical Results

In this section we present a comparison of the solution methods applied to traditional

formulations of GDP problems (i.e. BM and HR formulations) and the ones applied with

the proposed formulations that involve the application of basic steps. Since the proposed

framework allows the generation of many different relaxations, even when only using the

rules presented in section 2.5 to guide the application of basic steps, for reproducibility

purposes, in all the examples we intersect only the improper disjunctions given by the

global constraints with the proper disjunctions. Note that every global constraint is an

improper disjunction. For the case of a program with a nonlinear objective function we first

rewrite it as an equivalent disjunctive program with a linear objective before applying the

basic steps. We finally analyze the effect of the solution methods by using a branch and

bound solver (SBB) using CONOPT (v 3.14) as the NLP subsolver. In all cases we used

a value of ϵ = 1 × 10−8 and a constant large Big-M parameter, 1 × 105. The models were

implemented in GAMS (Brooke et al., 1998) and solved on a Pentium(R) CPU 3.40GHz

and 1GB of RAM. In Table 1 we describe the characteristics of the GDP formulations and

in Table 2 we show the size of the MINLP reformulations using the big-M, hull relaxation

and proposed approach.

Table 3 presents a comparison of the performance of SBB using different formulations.

As it can be seen from Table 3 the HR approach predicts tighter lower bounds than the BM

approach for problems Proc8, Proc10, Proc12, Circles2D3, Circles2D36 and Circles3D36.

This is in agreement with the results in the work of Lee and Grossmann (2000) where they

showed that HR formulations are at least as tight as, if not tighter, than BM formula-

tions. However, only Proc8, Proc10 and Proc12 benefit from faster computational times.

On the other hand the proposed approach finds tighter lower bounds than the HR and

BM approaches in all instances leading in most cases to significant improvements in the

computational time required. The proposed approach finds the solution faster in 10 out of

12 problems when compared with the BM and in 8 out of 12 problems when compared with
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Table 1: Size and characteristics of the examples formulated as GDP

Example Cont. Vars. Boolean Vars. Logic Const. Disj. Const. Global. Const.
Circles2D3 8 3 1 1 0
Circles2D36 39 36 1 1 0
Circles3D36 40 36 1 1 0

Proc8 42 8 22 8 11
Proc10 51 10 10 10 12
Proc12 57 12 12 12 12
Flay02 15 4 1 1 6
Flay03 27 12 3 3 9
Flay04 43 24 6 6 12

Clay0203 31 18 6 6 12
Clay0303 34 21 6 6 12
Clay0204 53 32 10 10 24

Table 2: Size of different reformulations
BM Approach HR Approach Proposed Approach

Example Bin Con Const Bin Con Const Bin Con Const
Circles2D3 3 8 12 3 16 20 3 20 27
Circles2D36 36 39 38 36 111 112 36 147 184
Circles3D36 36 40 38 36 148 149 36 184 221

Proc8 8 42 97 8 98 152 8 444 843
Proc10 10 51 98 10 124 158 10 638 1181
Proc12 12 57 114 12 137 184 12 805 1462
Flay02 4 15 12 4 47 52 4 55 80
Flay03 12 27 25 12 123 145 12 195 334
Flay04 24 43 43 24 235 283 24 511 865

Clay0203 18 31 55 15 88 130 15 160 316
Clay0303 21 34 67 21 100 424 21 268 571
Clay0204 32 53 91 32 165 235 32 641 1503

Table 3: Performance of SBB using different formulation strategies
BM Approach HR Approach Proposed Approach

Example Opt. LB Nds T(s) LB Nds T(s) LB Nds T(s)
Circles2D3 1.17 0.00 4 1.0 1.15 4 1.04 1.17 0 0.7
Circles2D36 2.25 0.00 70 7.8 0.00 70 15.40 2.24 29 4.9
Circles3D36 15.77 0.44 70 7.3 12.04 70 18.50 15.72 34 10.8

Proc8 68.01 -829.0 34 4.6 67.12 2 1.0 68.01 0 1.7
Proc10 -73.51 -1,108.88 197 21.7 -78.81 4 1.0 -73.56 2 1.9
Proc12 -69.51 -1,108.88 234 27.7 -74.81 8 1.0 -69.51 2 2.9
Flay02 37.95 28.28 6 1.0 28.28 6 1.7 37.95 3 1.0
Flay03 48.99 30.98 104 10.7 30.98 108 12.1 41.94 30 9.0
Flay04 54.40 30.98 2,415 234.0 30.98 2,887 288.0 41.69 52 48.0

Clay0203 41,573.30 0.00 323 32.7 0.00 216 22.0 3,010.00 206 28.7
Clay0303 26,670.00 0.00 380 42.0 0.00 879 99.0 3,103.00 331 69.0
Clay0204 6,545.00 0.00 2,265 229.0 0.00 2,835 507.0 4,760.00 546 157.0

the HR. A reduction in the number of nodes and an increase in the lower bounds in all the

problems are a direct indication that the proposed approach leads to tighter formulations.

Also, it is important to note that the lower bounds obtained by following the proposed rules

are close to the ones that we could obtain from the tightest relaxation (i.e. relaxation of

disjunctive set in DNF), but avoiding the exponential increase in the size of the formulation.

Evidence of this can be found in the cases of Proc8, Proc10, Proc12 and Flay02 where the

lower bounds predicted are exactly the lower bounds that we would obtain in the relaxation
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of the DNF form. Finally, it is important to note that for the case of Circle2D3 the solution

is found at the root node as predicted by Theorem 2.6. Also note that for the similar cases,

Circle2D36 and Circle3D36, the solver has to branch a few nodes to compensate the error

that arises from the approximation parameter ϵ. However, for ϵ → 0, the number of nodes

tends to zero.

6. Conclusions

We have proposed a framework for generating alternative mixed-integer nonlinear formu-

lations for convex disjunctive programs that lead to stronger relaxations. We have defined

an operation equivalent to a basic step for linear disjunctive programs that takes a disjunc-

tive set to another with fewer number of conjuncts. We have shown that the strength of the

relaxations increases as the number of conjuncts decreases, leading to a hierarchy of relax-

ations. We proved that the tightest of these relaxations, when coupled with reformulating

the objective function as a constraint, allows in theory the solution of the convex disjunctive

program by solving a single continuous nonlinear programming problem. We have presented

a methodology to guide the generation of strong relaxations without incurring in an expo-

nential increase of the size of the reformulated mixed-integer program. Finally, we have

applied the proposed theory to improve the computational efficiency of solution methods

for convex generalized disjunctive programs. This methodology was validated through a

set of numerical examples showing an average of 75% improvements in the prediction of

the lower bound. It is important to note that the set of proposed rules does not lead to a

unique implementation in finding relaxations. Even though the implementation proposed

in this paper has shown promising results, further improvements in the relaxations may be

expected in future works (e.g. by considering basic steps between proper disjunctions).
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