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Abstract

In this paper we present a framework to generate tight convex relaxations
for nonconvex generalized disjunctive programs. The proposed methodology
builds on our recent work on bilinear and concave generalized disjunctive
programs for which tight linear relaxations can be generated, and extends its
application to nonlinear relaxations. This is particularly important for those
cases in which the convex envelopes of the nonconvex functions arising in
the formulations are nonlinear (e.g. linear fractional terms). This extension
is now possible by using the latest developments in disjunctive convex pro-
gramming. We test the performance of the method in three typical process
systems engineering problems, namely, the optimization of process networks,
reactor networks and heat exchanger networks.
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1. Introduction

Many problems in engineering can be reduced to finding a set of con-
ditions that will lead to the best design and operation of a system. Often
these problems are represented by a set of algebraic expressions using contin-
uous and discrete variables, leading to a Mixed-integer Nonlinear Program
(MINLP) [20]. In order to represent accurately the behavior of physical,
chemical, biological, financial or social systems, nonlinear expressions are
often used. In general, this leads to an MINLP where the solution space
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is nonconvex, and hence, difficult to solve since this may give rise to local
solutions that are suboptimal. In the last decade many global optimization
algorithms for nonconvex problems have been proposed [15][14]. However,
most of them can be regarded as some particular implementation of the spa-
tial branch and bound framework [2]. The efficiency of these methods heavily
relies on having tight relaxations and that is why many of the contributions
in this area have been related to this subject. However, in general, finding
the global optimum of large-scale nonconvex MINLP models in reasonable
computational time remains a largely unsolved problem.

Raman and Grossmann [6] presented an alternative way to represent dis-
crete/continuous optimization problems by using not only algebraic expres-
sions, but also disjunctions and logic propositions giving birth to Generalized
Disjunctive Programming (GDP), which can be regarded as an extension
of Disjunctive Programming [1]. This higher abstraction level representa-
tion not only facilitates the modeling, but also keeps the underlying logical
structure of the problem, which can be exploited to find tighter relaxations
and, hence, develop more efficient solution methods. With this in mind, we
presented a method to solve nonconvex Generalized Disjunctive Programs
that involve bilinear and concave functions [10]. The main idea behind this
methodology to find tight relaxations relies on a two step procedure. In the
first step the nonconvex functions are replaced with polyhedral relaxations
leading to a Linear GDP. In the second step the results of Sawaya and Gross-
mann [12] are used. We showed that a tighter relaxation of Linear GDPs
can be obtained by the application of basic steps, a process that consists of
intersecting disjunctions to obtain equivalent disjunctive sets whose hull re-
laxation is tighter. Even though the method we presented showed significant
improvements when compared to traditional approaches, the efficiency of the
method depends on the strength of the polyhedral relaxations of the noncon-
vex functions. In this paper we aim at generalizing this approach by allowing
the use of nonlinear convex relaxations, which in some cases have shown to
be order of magnitude tighter than linear relaxations (see Appendix C). This
leads to a nonlinear convex GDP whose relaxation can be strengthened by
using recent results from the work of Ruiz and Grossmann [11]. Typical
examples of nonlinear convex relaxations can be found in Appendix D.

This paper is organized as follows. In section 2 we define the general
nonconvex GDP problem that we aim at solving and we review the traditional
hull relaxation method to find relaxations. In section 3 we show how we
can strengthen the relaxation of the traditional approach by presenting a

2



novel systematic procedure to generate a hierarchy of relaxations based on
the recent developments in disjunctive convex programming. In section 4
we outline a set of rules that lead to a more efficient implementation of the
method. Finally, in sections 5,6 and 7 we test the performance of the method
in process networks, reactor networks and heat exchanger network problems.

2. Nonconvex Generalized Disjunctive Programs

The general structure of a nonconvex GDP, which we denote as (GDPNC),
is as follows,

minx,ck,Yik
Z = f(x) +

∑
k∈K ck

s.t. gl(x) ≤ 0 l ∈ L

∨
i∈Dk

 Yik

rjik(x) ≤ 0 j ∈ Jik
ck = γik

 k ∈ K (GDPNC)

∨
i∈Dk

Yik k ∈ K

Ω(Y ) = True

xlo ≤ x ≤ xup

x ∈ Rn , ck ∈ R1, Yik ∈ {True, False}, i ∈ Dk, k ∈ K

where f : Rn → R1 is a function of the continuous variables x in the objec-
tive function, gl : Rn → R1, l ∈ L belongs to the set of global constraints,
the disjunctions k ∈ K, are composed of a number of terms i ∈ Dk, that are
connected by the OR operator. In each term there is a Boolean variable Yik,
a set of inequalities rjik(x) ≤ 0, rjik : R

n → Rm, and a cost variable ck. If Yik is
True, then rjik(x) ≤ 0 and ck = γik are enforced; otherwise, they are ignored.
Also, Ω(Y ) = True are logic propositions for the Boolean variables expressed

in the conjunctive normal form Ω(Y ) = ∧
t=1,2,..T

[
∨

(i,k)∈Rt

(Yik) ∨
(i,k)∈Qt

(¬Yik)

]
where for each clause t=1,2 . . . T, Rt is the subset of indices of Boolean
variables that are non-negated, and Qt is the subset of indices of Boolean
variables that are negated. The logic constraints ∨

i∈Dk

Yik ensure that only

one Boolean variable is True in each disjunction.
Note that as opposed to the convex case, a nonconvex GDP is defined by
functions in the constraints that may be nonconvex. The approach followed
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to find relaxations for GDPNC consists in replacing the nonconvex functions
rjik,g

l and f with suitable convex underestimators r̂jik, ĝ
l and f̂ leading to a

convex GDP, i.e. GDPCR [4].

minx,ck,Yik
Z = f̂(x) +

∑
k∈K ck

s.t. ĝl(x) ≤ 0 l ∈ L

∨
i∈Dk

 Yik

r̂jik(x) ≤ 0 j ∈ Jik
ck = γik

 k ∈ K (GDPCR)

∨
i∈Dk

Yik

Ω(Y ) = True

xlo ≤ x ≤ xup

x ∈ Rn , ck ∈ R1, Yik ∈ {True, False}
In this work we will show that by the application of a systematic proce-

dure we can improve the strength of the continuous relaxation of (GDPCR),
leading to stronger lower bound predictions for (GDPNC).

3. A hierarchy of convex relaxations for nonconvex GDP

In this section we present a general framework to obtain a hierarchy of
convex nonlinear relaxations for the nonconvex GDP problem (GDPNC) that
can serve as a basis to predict strong lower bounds to the global optimum.
In the first step of this approach, we replace each nonconvex function with a
valid convex under- and overestimator leading to a formulation of the form
GDPCR. Clearly, the feasible region defined by GDPNC is contained in the
feasible region defined by GDPCR. To illustrate this concept, let us con-
sider the case where the feasible region is defined by a two term disjunction,
namely, [g1(x) ≤ 0] ∨ [g2(x) ≤ 0], where g1 and g2 are nonconvex functions
as shown in Figure 1. Note that we assume that g1 and g2 implicitly define
the bounds on x1 and x2. Clearly, by replacing the nonconvex functions with
suitable over- and underestimators, i.e. [ĝ1(x) ≤ 0] ∨ [ĝ2(x) ≤ 0], the result
is a disjunctive convex set whose feasible region contains the feasible region
described by the original nonconvex disjunctive set.

In order to predict strong lower bounds for the global optimum of (GDPNC),
we consider the hierarchy of relaxations for (GDPCR) from the work of our
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Figure 1: (a) GDPNC (b) GDPCR

previous paper [11]. In that paper we proved that any nonlinear Convex Gen-
eralized Disjunctive Program (CGDP) that involves Boolean and continuous
variables can be equivalently formulated as a Disjunctive Convex Program
(DCP) that only involves continuous variables (see Appendix A). This means
that we are able to exploit the wealth of theory behind disjunctive convex
programming in order to solve convex GDP.
One of the properties of disjunctive sets is that they can be expressed in
many different equivalent forms. Among these forms, two extreme ones are
the Conjunctive Normal Form (CNF), which is expressed as the intersec-
tion of elementary sets, and the Disjunctive Normal Form (DNF), which is
expressed as the union of convex sets. One important result in disjunctive
convex programming theory, as presented in a previous paper [11], is that
we can systematically generate a set of equivalent disjunctive convex pro-
grams going from the CNF to the DNF by performing an operation called
basic step that preserves regularity. A basic step is defined in Appendix B.
Although the formulations obtained after the application of basic steps on
the disjunctive sets are equivalent, their continuous relaxations are not. We
denote the continuous relaxation of a disjunctive set F =

∩
j∈T

Sj in regular

form, where each Sj is a union of convex sets, as the hull-relaxation of F (or
h− rel F ). Here h− rel F :=

∩
j∈T

clconv Sj and clconv Sj denotes the closure

of the convex hull of Sj. That is, if Sj =
∪

i∈Qj

Pi, Pi = {x ∈ Rn, gi(x) ≤ 0},
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then the clconvSj is given by:
x =

∑
i∈Qj

νi

λigi(ν
i/λi) ≤ 0, i ∈ Qj∑

i∈Qj

λi = 1, λi ≥ 0, i ∈ Qj (DISJrel)

|νi| ≤ Lλi i ∈ Qj

where νi are disaggregated variables, λi are continuous variables between 0
and 1 and λigi(ν

i/λi) is the perspective function that is convex in ν and λ if
the function g(x) is also convex [19].
As shown in Theorem 3.1 from paper [11], the application of a basic step
leads to a new disjunctive set whose hull relaxation is at least as tight, if not
tighter, than the original one.

Theorem 3.1. For i = 1, 2....k let Fi =
∩

k∈K
Sk be a sequence of regular forms

of a disjunctive set such that Fi is obtained from Fi−1 by the application of a
basic step, then:

h-rel(Fi) ⊆ h-rel(Fi−1)

Figure 2 illustrates Theorem 3.1.
Now we are ready to present one of the main results in this section.

Namely, a hierarchy of relaxations for GDPNC . Let us suppose GDPCR0 is
obtained by replacing the nonconvex functions with suitable relaxations as
presented in section 2. Also, let us assume that GDPCRi is the convex gen-
eralized disjunctive program whose defining disjunctive set is obtained after
applying i basic steps on the disjunctive set of GDPCR0 and t the number of
basic steps required to achieve the DNF. Note that i ≤ t. Then, the following
relationship can be established,

h-rel(FGDPCR
0 ) ⊇ h-rel(FGDPCR

1 )... ⊇ h-rel(FGDPCR
i ) ... ⊇

... ⊇ h-rel(FGDPCR
t ) ⊇ FGDPCR

t ∼ FGDPCR
0 ⊇ FGDPNC ,

where FGDPCR
i denotes the defining disjunctive set of GDPCRi and FGDPNC

the defining disjunctive set of GDPNC . Also, the symbol ∼ denotes equiva-
lence. Figure 3 summarizes the proposed framework,
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Figure 2: Example to illustrate Theorem 3.1

Figure 3: Framework to obtain relaxations for GDPNC

Note that solving the reformulated NLP using (DISJrel) would lead to
numerical difficulties since the perspective function λig

i(νi/λi) is not differ-
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entiable at λi = 0. In order to overcome the latter issue we propose to use
the approximation given by Sawaya [12]. This reformulation yields an exact
approximation at λi = 0 and λi = 1 for any value of ε in the interval (0,1),
and the feasibility and convexity of the approximating problem are main-
tained:

λigi(ν
i/λi) ≈ ((1− ε)λi + ε)gi(ν

i/((1− ε)λi + ε))− εgi(0)(1− λi) (3.1)

Note that this approximation assumes that gi(x) is defined at x = 0 and
that the inequality λix

lo ≤ νi ≤ λix
up is enforced.

4. Rules to implement basic steps on disjunctive convex programs

In order to make good use of the hierarchy of relaxations described in the
previous section, one important aspect is to understand what basic steps will
lead to an improvement in the tightness of the relaxation, and hence, in a
potential increase in the lower bound of the global optimum. In other words,
we need to be able to differentiate among the basic steps that will lead to a
strict inclusion with those that will keep the relaxation unchanged.

As described in the work of Ruiz and Grossmann [10], the following propo-
sitions give sufficient conditions for a particular disjunctive set for which a
basic step will not lead to a tighter relaxation.

Proposition 4.1. Let S1 and S2 be two disjunctive sets defined in Rn. If
the set of variables constrained in S1 are not constrained in S2 , and the set
of variables constrained in S2 are not constrained in S1, then clconv(S1∩S2)
= clconv(S1) ∩ clconv(S2) .

Proposition 4.2. Let S =
∩
i

Pi , where Pi, i = {1, 2} are convex sets defined

in the x space, H is a half space defined by ax+b ≤ 0 and H∗ is a facet of H.
If P1 is a point such that P1 ⊆ H∗ then clconv(S∩H) = clconv(S)∩clconv(H)

A new rule developed in [11] consists in the inclusion of the objective
function in the disjunctive set previous the application of basic steps. This
has shown to be useful to strengthen the final relaxation of the disjunctive set.
Note that this rule, different from the previous ones, has a particular effect
when the disjunctive set is convex but nonlinear. However, one question
that arises is whether this relaxation is still valid for the nonconvex case.
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The following proposition, which we state without proof, aims at tackling
this question.

Proposition 4.3. Given GDPNC defined as Z = {min
x∈F

f(x)} where F is

a disjunctive set and f(x) a nonconvex function, GDPNC′ defined as Z =
{ min
(x,α)∈D

α} such that D := {(x, α) ∈ Rn+1|α ≥ f(x), x ∈ F}. Then GDPNC

is equivalent to GDPNC′ in the sense that the feasible regions of both problems
projected onto the x space and the optimal value for the objective function
are the same.

Since GDPNC′ is equivalent to GDPNC the hierarchy of relaxations of
GDPNC′ is valid for GDPNC . Figure 4 illustrates Proposition 4.3.

Figure 4: Equivalence between (a) GDPNC and (b) GDPNC′

Another important aspect to consider is the effect that a particular basic
step has in the increase of the size of the formulation. In this respect we can
differentiate two types of basic steps. Firstly, the ones that are implemented
between two proper disjunctions, and second, the ones that are implemented
between a proper and an improper disjunction. As discussed in [10], we
propose to use the latter approach. Note that in this case, parallel basic
steps (i.e. simultaneous intersection of each improper disjunction with all
proper disjunctions) will not lead to an increase in the number of convex
sets in the disjunctive set, keeping the size of the formulation smaller. To
illustrate this, let us consider the disjunctive set given by F1 = S1 ∩ S2
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where S1 = P1 ∪ P2 and S2 = P3 are a proper and improper disjunction
respectively. Clearly, the application of a basic step between S1 and S2 leads
to the following disjunctive set F2 = S12 = (P1∩P3)∪ (P2∩P3) with no more
convex sets than in F1.

4.1. Illustrative Example

This example aims at illustrating the impact on the relaxation and, hence,
in the lower bound prediction, when some of the proposed rules are used. Let
us consider the following nonconvex GDP,

min Z = (x− 0.5)2 + (y − 0.5)2 − e0.8(x−0.7) − e0.8(y−0.7)

s.t.  Y
0 ≤ x ≤ 0.4
0 ≤ y ≤ 0.4

 ∨

 ¬Y
2.5 ≤ x ≤ 3
2.5 ≤ y ≤ 3

 (MGDPNC)

x ∈ R1, y ∈ R1, Y ∈ {True, False}
As it is shown in Figure 5, the objective function is clearly nonconvex,

while the feasible region corresponds to a proper disjunction. Figure 6 dis-
plays the feasible region of the problem, which is described as two disjoint
two-dimensional boxes. Note that the solution is obtained at the vertex of
one of these boxes, i.e. (x=0.4, y=0.4), with an objective value of -1.55.

It is easy to show that the function Ẑ = 0.4878(x2 + y2) − 1.3701(x +
y) − 0.66 is convex and always understimates the objective function of the
MGDPNC (see Appendix E). Hence, the hull relaxation of the following
convex GDP, as presented in the work of Lee and Grossmann [4], is a valid
relaxation of MGDPNC .

min Z = 0.4878(x2 + y2)− 1.3701(x+ y)− 0.66

s.t.  Y
0 ≤ x ≤ 0.4
0 ≤ y ≤ 0.4

 ∨

 ¬Y
2.5 ≤ x ≤ 3
2.5 ≤ y ≤ 3

 (MGDPLG)

x ∈ R1, y ∈ R1, Y ∈ {True, False}
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Figure 5: Objective function of problem MGDPNC

Figure 6: Feasible region and optimal solution of problem MGDPNC
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The hull relaxation of MGDPLG reads,

min Z = 0.4878(x2 + y2)− 1.3701(x+ y)− 0.66

s.t.

x1 + x2 = x
y1 + y2 = y
0 ≤ x1 ≤ 0.4λ (MGDPLGRel)
0 ≤ y1 ≤ 0.4λ
2.5(1− λ) ≤ x2 ≤ 3(1− λ)
2.5(1− λ) ≤ y2 ≤ 3(1− λ)

x1, x2, y1, y2, x, y ∈ R1, λ ∈ [0, 1]

The solution of the above problem, i.e. (x=1.4,y=1.4) with an objective
value of -2.58, is presented in Figure 7 and represents a lower bound on the
global optimal solution.

Figure 7: Optimal Solution of (MGDPLGRel)

In the remaining of this section we show how by making use of the pro-
posed framework we can significantly improve the predicted lower bound.
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By Proposition 4.3 the following GDP is equivalent to MGDPNC .

min Z = α
s.t. (x− 0.5)2 + (y − 0.5)2 − e0.8(x−0.7) − e0.8(y−0.7) ≤ α Y

0 ≤ x ≤ 0.4
0 ≤ y ≤ 0.4

 ∨

 ¬Y
2.5 ≤ x ≤ 3
2.5 ≤ y ≤ 3

 (MGDPNC′)

α, x ∈ R1, y ∈ R1, Y ∈ {True, False}
Clearly, by replacing (x−0.5)2+(y−0.5)2−e0.8(x−0.7)−e0.8(y−0.7) with the

convex function 0.4878(x2 + y2)− 1.3701(x+ y)− 0.66 we obtain the convex
GDP,

min Z = α
s.t. (MGDPstep1)

0.4878(x2 + y2)− 1.3701(x+ y)− 0.66 ≤ α Y
0 ≤ x ≤ 0.4
0 ≤ y ≤ 0.4

 ∨

 ¬Y
2.5 ≤ x ≤ 3
2.5 ≤ y ≤ 3


α, x, y ∈ R1, Y ∈ {True, False}

By applying a basic step between the proper disjunction and the improper
disjunction, we obtain the following equivalent GDP whose hull relaxation
can be used to obtain bounds for the global optimum.

min Z = α
s.t. (MGDPstep2)

Y
0.4878(x2 + y2)− 1.3701(x+ y)− 0.66 ≤ α

0 ≤ x ≤ 0.4
0 ≤ y ≤ 0.4

∨

∨


¬Y

0.4878(x2 + y2)− 1.3701(x+ y)− 0.66 ≤ α
2.5 ≤ x ≤ 3
2.5 ≤ y ≤ 3


α, x, y ∈ R1, Y ∈ {True, False}
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The hull relaxation reads,

min Z = α

s.t. (MGDPNLP )

x1 + x2 = x
y1 + y2 = y
α1 + α2 = α
0.4878λ((x1/λ)

2 + (y1/λ)
2)− 1.3701(x1 + y1)− 0.66λ ≤ α1

0.4878(1− λ)((x2/(1− λ))2 + (y2/(1− λ))2)− 1.3701(x2 + y2)− 0.66(1− λ) ≤ α2

0 ≤ x1 ≤ 0.4λ
0 ≤ y1 ≤ 0.4λ
2.5(1− λ) ≤ x2 ≤ 3(1− λ)
2.5(1− λ) ≤ y2 ≤ 3(1− λ)

α1, α2, α, x1, x2, y1, y2, x, y ∈ R1, λ ∈ [0, 1]

By solving (MGDPNLP ), using (3.1) to approximate the corresponding
perspective function, a lower bound on the objective fuction of -1.6 is ob-
tained, which is a significant improvement over the lower bound of -2.58.
Furthermore, this lower bound is very close to the global optimum. Figure 8
shows a qualitative schematic of the feasible region lifted in the α space and
the projection of the solution onto the (x, y) space. Note that the projected
solution lies on the vertex (x=0.4, y=0.4).

5. Examples

In this section we present three main case studies, namely, the global
optimization of a process network, a reactor network and a heat exchanger
network. These problems are suitable for testing the performance of the
method since they can be easily represented by GDPs, and the nonconvex
constraints have nonlinear convex envelopes or strong convex nonlinear re-
laxations. Note that this is different from the case of bilinear or concave
GDP for which tight linear relaxations can be obtained [10].

5.1. Process network models with exponential functions

Consider the optimization of a process network with fixed charges in
Figure 9 [3]. The raw material A can be processed in either processes 2 or 3
to produce B which is required for the production of C. Alternatively, B can
be purchased from the market eliminating processes 2 and 3 if they are not
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Figure 8: Optimal Solution of (MGDPNLP )

profitable. If any unit is selected, a fixed cost has to be paid for the selection.
The objective function includes the operating costs and the revenue from the
sales of product C. The superstructure involves three units and the Boolean
variables, Y2 and Y3 represent the existence of units in the flowsheet. Design
specifications of the problem require that processes 2 and 3 cannot appear
together in a feasible flowsheet.

Figure 9: Example of a Process Network
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Process 2 and 3 can be described by the following function exout/α + 1 =
xin, where xout and xin are the outlet and inlet flows respectively and α
a parameter that defines the process. Note that process 2 and 3 work in
different range of admissible values for xin. Also, there is a minimum value
for the inlet stream that we need to process.

The following is the Generalized Disjunctive Program that describes the
above problem:

Objective Function:
min Z = θ2x2 + θ7x7 − θ8x8 + θ6x6 + c1 + c

Global Constraints:
x4 + x6 = x7

x2 ≥ β

Process Unit 1: (PROCNET )
c1 = δ7x7 + δ8x8

ξx7 = x8

Process Unit 2 and 3:
Y2

ex4/α42 − 1 = x2

xlo2
2 ≤ x2 ≤ xup2

2

c = δ42x4 + δ22x2 + γ2

∨


Y3

ex4/α43 − 1 = x2

xlo3
2 ≤ x2 ≤ xup3

2

c = δ43x4 + δ23x2 + γ3


Logic Constraints:
Y2∨Y3

Bounds:
x2, x4, x6 ≥ 0

Clearly, the problem is nonconvex where the nonconvexities arise from
the nonlinear inequalities defining the process and from the disjunctive na-
ture of the problem. In order to find a relaxation we propose first to find
a relaxation for the nonlinear equalities. As a result, a convex generalized
disjunctive program is obtained. As a second step, we will make use of the
recent developments in disjunctive convex programming theory to find strong
relaxations for the convex disjunctive set. See Appendix G for the details in
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the implementation.

5.2. Reactor networks with non-elementary kinetics described through posyn-
omial functions

Consider the reactor network illustrated in Figure 10. This simple net-
work has two reactors where the reaction between components A and B to
form C takes place. This reaction is non-elementary and the production rate
of component C can be represented through the following posynomial func-
tion, rC = kxa

Ax
b
B. It is important to note that the reaction conditions in the

two reactors are different, which lead to different reaction constants k,a and
b. Also, for safety reasons, the compositions of A and B should lie within
a given safety curve. The problem consists in selecting the reactor that will
maximize the profit in the production of C considering fixed costs for the
reactors.

Figure 10: Example of a Reactor Network

The following is the Generalized Disjunctive Program that describes the
above problem:

Objective Function:
minZ = −CCf

C
out + c

17



Mass Balance:
gen = fC

out

Safety zone constraint: (RXN)
xA + xB ≥ β

Reactors:
Y1

gen = V1k1x
a1
A xb1

B

xlo1
A ≤ xA ≤ xup1

A

xlo1
B ≤ xB ≤ xup1

B

c = γ1

∨


Y2

gen = V2k2x
a2
A xb2

B

xlo2
A ≤ xA ≤ xup2

A

xlo2
B ≤ xB ≤ xup2

B

c = γ2


Logic Constraints:
Y1∨Y2

Bounds on variables:
xLO
A ≤ xA ≤ xUP

A

xLO
B ≤ xB ≤ xUP

B

Clearly, the problem is nonconvex where the nonconvexities arise from the
posynomial terms xa

Ax
b
B and from the disjunctive nature of the problem.

In order to find a relaxation, we propose first to find a relaxation for the
posynomial terms. As a result, a convex generalized disjunctive program is
obtained. As a second step we will make use of the recent developments
in disjunctive convex programming theory to find strong relaxations for the
convex disjunctive set. See Appendix G for the details in the implementation.

5.3. Heat exchanger network models with linear fractional terms

Consider the HEN illustrated in Figure 11 [5]. This network has four heat
exchangers and consists of one cold stream, C1 which is split into exchangers
1 and 2. The two hot streams, H1 and H2, exchange heat in series with
cold streams C2 and C1 and C3 and C1, respectively. The inlet and outlet
temperatures and the heat capacity flow rates are given in Table 1. Note
that the outlet temperatures of C2 and C3 are not specified since these are
assumed to correspond to streams that are in the last stage of the process
and do not require any specific temperature. The objective of this problem
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is the minimization of the cost of the network given by the heat exchanger
areas and some fixed costs for the exchangers.

The generalized disjunctive program that can be used to represent the
problem is given by:

min C = c1A1 + c2A2 + c3A3 + c4A4 + C3 + C4

s.t. A1 =
Q1

U1∆T1

, A2 =
Q2

U2∆T2

(HEN) Y3

A3 =
Q3

U3∆T3

C3 = γ3

∨

 ¬Y3

A3 = 0
C3 = 0


 Y4

A4 =
Q4

U4∆T4

C4 = γ4

∨

 ¬Y4

A4 = 0
C4 = 0


Q1 = FCPH1(T1 − TH1,out) , Q2 = FCPH2(T2 − TH2,out)
Q3 = FCPC2(T3 − TC2,in) , Q3 = FCPH1(TH1,in − T1)
Q4 = FCPC3(T4 − TC3,in) , Q4 = FCPH2(TH2,in − T2)

T1 ≥ TC1,in + EMAT , T2 ≥ TC1,in + EMAT
Q1 +Q2 = Qtotal

∆T1 =
(T1−TC1,out)+(TH1,out−TC1,in)

2
,∆T2 =

(T2−TC1,out)+(TH2,out−TC1,in)

2

∆T3 =
(T1−TC2,in)+(TH1,in−T3)

2
,∆T4 =

(T2−TC3,in)+(TH2,in−T4)

2

TH1,out ≤ T1 ≤ TH1,in , TH2,out ≤ T4 ≤ TH2,in

TC2,in ≤ T3 , TC3,in ≤ T4

Qi ≥ 0, ∆Ti ≥ EMAT , i = 1, ..., 4

Clearly, the problem is nonconvex where the nonconvexities arise from the
linear fractional terms Qi/∆Ti and from the disjunctive nature of the prob-
lem. In order to find a relaxation, we propose first to find a relaxation for
the fractional terms. As a result, a convex generalized disjunctive program
is obtained. As a second step we will make use of the recent developments
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Figure 11: Example of a Heat Exchanger Network

Table 1: Data for HEN problem

stream Fcp(kW/K) Temp. inlet Temp. outlet
C1 10 300 400
C2 4.545 365
C3 3.571 358
H1 3.555 575 395
H2 2.125 718 398

in disjunctive convex programming theory to find strong relaxations for the
convex disjunctive set. See Appendix G for the details in the implementation.

6. Global Optimization algorithm with improved relaxations

In this section we describe the global optimization framework from the
work of Ruiz and Grossmann [10] that we will use to test the new proposed re-
laxations. The global optimization methodology of the GDP follows the well
known spatial branch and bound method [2], and is presented in this section.
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I. GDP REFORMULATION: The first step in the procedure consists of mak-
ing use of the framework proposed in section 3 and 4 to obtain a tight GDP
formulation. In summary: a) If the objective function is nonlinear, introduce
it in the set of constraints following Proposition 4.3. b) Relax the nonconvex
terms using suitable convex under/over-estimators. This will lead to the con-
vex GDP (GDPRLP0). c) Apply basic steps according to the rules described
in section 4.

II. UPPER BOUND AND BOUND TIGHTENING: After a reformulation
is obtained, the procedure continues by finding an optimal or suboptimal
solution of the problem to obtain an upper bound. This is accomplished
by solving the nonconvex GDP reformulated as a MINLP (either as big-M
or convex hull formulation) with a local optimizer such as DICOPT/GAMS
[16]. By using the result obtained in the previous step, a bound contraction of
each continuous variable is performed [17]. This is done by solving min/max
subproblems in which the objective function is the value of the continuous
variable to be contracted subject to the condition that the objective of the
original problem is less than the upper bound.

III. SPATIAL BRANCH AND BOUND: After the relaxed feasible region is
contracted, a spatial branch and bound search procedure is performed. This
technique consists of splitting the feasible region recursively into subprob-
lems that are eliminated when it is established that their descendents cannot
contain a better solution than the one that has been obtained so far. The
splitting is based on a “branching rule”, and the decision about when to
eliminate the subproblems is performed by comparing the lower bound LB
(i.e. the solution of the subproblem) with the upper bound UB (i.e. the
feasible solution with the lowest objective function value obtained so far).
The latter can be obtained by solving an NLP with all the discrete variables
fixed in the corresponding subproblem); if UB − LB < tol, where tol is a
given tolerance, then the node (i.e. subproblem) is eliminated.
From the above outline of the algorithm, there are two features that charac-
terize the particular branch and bound technique: the branching rule and the
way to choose the next subproblem to split. In the implementation of this
work we have chosen to first branch on the discrete variable which most vio-
lates the integrality condition in the relaxed NLP (i.e. choosing the discrete
variable closest to 1/2), and then on the continuous variables by choosing
the one that most violates the feasible region in the original problem (i.e.
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the violation to the feasible region is computed by taking the difference be-
tween the nonconvex term and the associated relaxed variable). To generate
the subproblems when branching on the continuous variables, we split their
domain by using the bisection method. To choose the node to branch next,
we followed the “Best First” heuristic that consists in taking the subproblem
with lowest LB. The search ends when no more nodes remain in the queue.
Note that this technique converges in a finite number of iterations. See [14]
where sufficient conditions for finite convergence of the spatial branch and
bound are presented.

7. Numerical Results

In this section we compare the performance of the proposed method to
find tighter relaxations for nonconvex GDPs with the traditional approach,
i.e. the Lee and Grossmann relaxation [4], in two sets of problem instances.
In the first set we consider a mathematical problem described in Appendix
E with |I| = 1,10 and 100, which is in fact a generalization of the illustrative
example in section 4.1. In the second set we consider instances of the process
design problems described in section 5. In order to assess the perfomance of
the method, we first consider the lower bound obtained at the root node as
one of the main indicators of the strength of the relaxation that is produced.
Also, to test the performance of the set of rules presented in section 4 to
guide the generation of basic steps, we compare the lower bound at the root
node with the lower bound that we would obtain if we solve the DNF form
of the disjunctive convex program, which is the tightest bound attainable by
the application of basic steps. All problems were solved using a Pentium(R)
CPU 3.40GHz and 1GB of RAM.

In Table 2 we show the size and characteristics of the first set of instances.
Clearly, Instance 1,2 and 3 are defined through 1, 10 and 100 disjunctions.
In Table 3 we present the size and characteristics of the relaxations that arise
by using the proposed approach with basic steps and the Lee and Grossmann
approach that only uses the hull relaxation.

As is shown in Table 4, the lower bounds obtained using the proposed
approach are tighter than the ones predicted using the Lee and Grossmann
relaxation. For example, in Instance 1, the optimal value of the objective
function is -1.55. By using the proposed relaxation we are able to obtain a
bound of -1.6, whereas the Lee and Grossmann relaxation predicts a bound
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Table 2: Size and characteristics of the mathematical examples formulated as GDP

Example Cont. Vars. Boolean Vars. Logic Const. Disj. Const. Global. Const.
Instance 1 2 1 0 1 0
Instance 2 20 10 0 10 0
Instance 3 200 100 0 100 0

Table 3: Size of different reformulations for the mathematical example
Lee and Grossmann Proposed Approach

Example Bin Con Const Bin Con Const
Instance 1 1 6 10 1 9 13
Instance 2 10 60 100 10 81 130
Instance 3 100 600 1000 100 801 1300

of -2.58. Moreover, the proposed bounds are identical to the best bounds we
would obtain by solving the relaxation of the DNF form.

Table 4: Performance of the method to find tight relaxations for mathematical example

Example Global Optimum LB (Lee and Grossmann) LB (Proposed Approach) LB of DNF
Instance 1 -1.55 -2.58 -1.6 -1.6
Instance 2 -15.53 -25.84 -16.0 -16.0
Instance 3 -155.30 -258.40 -160.0 -160.0

A further analysis of the performance of the relaxations proposed was
carried out considering their effect when used within a spatial branch and
bound framework as described in section 6. The results for the first set of
instances can be seen in Table 5. The number of nodes required to find the
solution is significantly reduced when using the proposed relaxation, leading
to a significant decrease in the computational times. This is due to the fact
that a very strong lower bound can be predicted at the root node. Note
that the solution of nonconvex problems will not be found in general at the
root node. However, this extreme example is useful to illustrate some of the
potential advantages of this method.

In Table 6 we show the size and characteristics of the second set of in-
stances and in Table 7 we present the size and characteristics of the relax-
ations that arise by using the proposed approach and the Lee and Grossmann
approach.
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Table 5: Performance of the relaxation within a spatial branch and bound framework
Lee and Grossmann Proposed Approach

Example Opt. Nodes CPU-time(s) Nodes CPU-time(s)
Instance 1 -1.55 2 0.5 1 0.2
Instance 2 -15.53 286 20 1 0.3
Instance 3 -155.3 >12000 >1000 1 1.9

Table 6: Size and characteristics of the process design examples formulated as GDP

Example Cont. Vars. Boolean Vars. Logic Const. Disj. Const. Global. Const.
Procnet 1 5 2 1 1 3
Procnet 2 5 2 1 1 3
RXN 1 4 2 1 1 6
RXN 2 4 2 1 1 6
HEN 1 18 2 2 2 21
HEN 2 18 2 2 2 21

Table 7: Size of different reformulations for the process design problems
Lee and Grossmann Proposed Approach

Example Bin Con Const Bin Con Const
Procnet 1 2 12 19 2 12 20
Procnet 2 2 12 19 2 12 20
RXN 1 2 17 31 2 20 37
RXN 2 2 17 31 2 20 37
HEN 1 2 53 90 2 117 273
HEN 2 2 53 90 2 117 273

Clearly, from Table 8 we observe a significant improvement in the pre-
dicted lower bound in all instances. For instance, in Procnet 1 our approach
predicts 16.01 as a lower bound whereas the approach based only on the
hull relaxation is only able to obtain a bound of 11.85. Moreover, the lower
bounds obtained are close if not the same as the one we would obtain if we
solved the relaxation of the DNF form. For example, HEN 1, reaches a lower
bound of 48230, which is close to the maximum attainable 48531.

The results for the second set of instances when using a spatial branch
and bound method as described in section 6 can be seen in Table 9. Note that
the modest reduction in the number of nodes necessary to find to solution
is due to the fact that the problems are small in size. Furthermore, the
computational times are essentially the same due to the small size of the
problems as well as the small size of the NLP subproblems as seen in Table
7. However, a clear indication of a tighter proposed relaxation is observed in
the column “Bounding %” which refers to how much reduction in the upper
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Table 8: Performance of the method to find tight relaxations

Example Global Optimum LB (Lee and Grossmann) LB (Proposed Approach) LB of DNF
Procnet 1 18.61 11.85 16.01 16.01
Procnet 2 19.48 12.38 17.07 17.07
RXN 1 42.89 -337.5 -320.0 -320.0
RXN 2 76.47 22.5 40.0 40.0
HEN 1 48531 38729.27 48230 48531
HEN 2 45460 35460 45281 45281

Table 9: Performance of the relaxation within a spatial branch and bound framework
Lee and Grossmann Proposed Approach

Example Opt. Bounding % Nds T(s) Bounding % Nds T(s)
Procnet 1 18.61 51.3 3 6 67.0 2 4
Procnet 2 19.48 40.5 2 4 47.2 2 4
RXN 1 42.89 51.0 2 7 66.0 2 7
RXN 2 76.46 51.0 2 6 66.0 2 6
HEN 1 48531 13.8 3 15 35.0 1 14
HEN 2 45460 7.5 3 14 97 1 23

and lower bounds of the variables can be predicted. More precisely, the

column ”Bounding %” refers to 100(1−
∑

i

xup∗
i − xlo∗

i

|I|(xup
i − xlo

i )
) where x

up/lo
i and

x
up∗/lo∗
i refer to the upper/lower bound of the variable xi before and after the

bound contraction procedure respectively and |I| the number of variables xi

considered in the contraction. For instance, in HEN 1, we are able to reduce
the bounds of the variables 35% with respect to the original bounds, whereas
by using the Lee and Grossmann approach we can only contract the bounds
13.8%. Note that the strength of the relaxations of the nonconvex functions
heavily depend on the bounds of the variables on which they are defined and
that is why it is very important to count on an efficient procedure to find
these bounds.

8. Conclusions

In this paper we have proposed a framework to generate tight relaxations
for the global optimization of nonconvex generalized disjunctive programs.
We extended the method proposed in [10] for bilinear and concave disjunc-
tive programming by allowing the use of nonlinear relaxations. Even though
linear relaxations are in general desired due to the robustness and efficiency
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of linear programming, in some cases using nonlinear relaxations can lead to
significant improvements in the predicted lower bounds for the global opti-
mum. Furthermore, for certain classes of functions (e.g. linear fractional),
the convex envelopes are nonlinear. The use of nonlinear relaxations is now
possible due to the latest developments in convex disjunctive programming
presented in [11]. In that paper we presented a framework to generate a
hierarchy of relaxations for convex generalized disjunctive programs. In this
work we showed that this framework is also valid for nonconvex GDP if the
nonconvex functions are first replaced by convex relaxations. One of the
questions that arises is whether the nonconvexity of the objective function
will have an effect in the validity of the relaxations. As presented in Propos-
tion 4.3, the validity is guaranteed if the objective function is included in the
set of constraints prior to the application of basic steps.
We have tested the method in several instances that showed significant im-
provements in the predicted lower bounds and bound contraction, which is
a direct indication of tightening. Although we are confident that we have
set the basis for an efficient algorithm, a major question that still remains to
be answered is how to implement the strong proposed relaxations within a
spatial branch and bound framework efficiently when dealing with large-scale
GDP problems. Even though the very large increase in the size of the pro-
posed extended formulation is avoided by using a set of rules when applying
basic steps, a polynomial increase in the size of the reformulation cannot be
prevented in general. This leads to a potentially higher computational effort
that might not be compensated by the strength in the relaxation. Hence,
for large-scale GDP problems other alternative mechanisms might be neces-
sary. Since the strength of the relaxations heavily depends on the bounds of
the variables, one approach we aim at exploring in the future is to consider
the strong relaxations to calculate new bounds for the variables that belong
to nonconvex terms. These stronger bounds should then be introduced in
the Lee and Grossmann [4] relaxation, which is of lower dimension. Another
approach that might find fruitful results is the consideration of the use of cut-
ting planes inferred from the strong proposed relaxations. Even though an
extensive analysis of different cut generation strategies should be performed,
a good starting point would be to follow the idea of Lee and Grossmann [18]
or Sawaya and Grossmann [12], where the cutting planes are generated by
considering how far is the incumbent solution of the weak relaxation from
the feasible region of the tighter relaxation.
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Appendix A. Equivalence between disjunctive convex programs and
convex generalized disjunctive programs [12] [11]

Any convex generalized disjunctive program can be represented as a dis-
junctive convex program. The transformation that allows this, which is
equivalent to the one proposed by Sawaya and Grossmann [12] for linear
GDP, consists in first replacing the boolean variables Yik, i ∈ Dk, k ∈ K
inside the disjunctions by equalities λik = 1, i ∈ Dk, k ∈ K, where λ is
a vector of continuous variables whose domain is [0,1], and finally convert
logical relations ∨

i∈Dk

Yik, k ∈ K and Ω(Y ) = True into algebraic equations∑
i∈Dk

λik = 1, k ∈ K and Hλ ≥ h, respectively. This yields the following

equivalent disjunctive model:

min Z = f(x) +
∑

k∈K ck

s.t. gl(x) ≤ 0 l ∈ L

∨
i∈Dk

 λik = 1

rjik(x) ≤ 0 j ∈ Jik
ck = γik

 k ∈ K (CGDP )

Hλ ≥ h

xlo ≤ x ≤ xup

x ∈ Rn , ck ∈ R1, λik ∈ [0, 1]

Appendix B. Basic Steps

In this paper we define Regular Form (RF) as the form represented by
the intersection of the union of convex sets. Hence, the regular form is:

F =
∩

k∈K
Sk

where for k ∈ K, Sk =
∪

i∈Dk

Pi and Pi a convex set for i ∈ Dk.

The following theorem, as stated in [11], defines an operation that takes a
disjunctive set to an equivalent disjunctive set with less number of conjuncts.
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Theorem 2.1 [11] Let F be a disjunctive set in regular form. Then F can
be brought to DNF by |K| − 1 recursive applications of the following basic
step which preserves regularity:
For some r, s ∈ K, bring Sr ∩ Ss to DNF by replacing it with:

Srs =
∪

i∈Dr,j∈Ds

(Pi ∩ Pj)

Appendix C. Nonlinear relaxations vs polyhedral relaxations

The maturity of linear programming solvers have encouraged the use of
linear relaxations for nonconvex functions. Even though this approach has
shown to be useful in several cases, nonlinear relaxations can have a great
impact in reducing the time required to find the solution. The following is a
simple example where we aim at showing this effect:

min
∑100

i=1 10(xi − 5)2 + y2i

s.t. yi = x2
i ∀i

|yi| ≤ 100, |xi| ≤ 100

Solving this problem with linear relaxations using BARON [13], it takes
more than 1000 seconds. On the other hand, by using the relaxation yi ≥
x2
i ,∀i, which leads to a nonlinear convex inequality, the solution can be found

at the root node in 1 second. This example then shows the importance of
exploiting nonlinear convex relaxations.

Appendix D. Typical nonlinear relaxation of nonconvex constraints

Appendix D.1. Fractional Terms

The convex hull of a set NC = {(x, y, f)|f = x/y, xlo ≤ x ≤ xup ylo ≤ y ≤
yup} is given in Tawarmalani and Sahinidis [14].

fp ≥ xlo(xloyp−x(ylo+yup)+xup(ylo+yup−yp))

(xup−xlo)(yloyup)

(f − fp)(x
up − xlo)(yup − ylo)2 ≥ xup(x− xlo)2
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ylo(xup − x) ≤ yp(x
up − xlo) ≤ yupp (xup − x)

ylo(x− xlo) ≤ (y − yp)(x
up − xlo) ≤ yupp (x− xlo)

f − fp ≥ 0

Appendix D.2. Convex functions in equality constraints

The convex hull of a setNC = {x, g(x)|g(x) = 0, xlo ≤ x ≤ xup , g(x) convex}
can be relaxed as:

g(x) ≤ 0

The proof is trivial considering that g(x) ≤ 0 is nothing but the epigraph
of g(x) and hence convex.

Appendix D.3. Posynomials

Several strategies have been proposed in literature to tackle the relaxation
of posynomials [7] [8]. Here we present the method proposed by Han-Lin et
al. (2008). Given a function of the form f(x) = dxα1

1 xα2
2 xα3

3 ......xαn
n where

0 < xlo
i ≤ xi ≤ xup

i and d > 0 αi < 0, i = 1, 2...m and αi > 0, i = m+ 1, ....n.
A lower bound for f(x) is obtained by:

f(x) ≥ dxα1
1 xα2

2 xαm
m y

−αm+1

m+1 ......y−αn
n

1 ≥ xi

xup
i

+ xlo
i yi −

xlo
i

xup
i

i = m+ 1,m+ 2, ...n

Appendix D.4. Trigonometric Functions

Convex underestimators for the function f(x) = αsin(x + s), xlo ≤ x ≤ xup

have been studied by Caratzoulas and Floudas (2005) [9], leading to nonlin-
ear relaxations. Here we present as an illustration the relaxation for:

f(x) = sin(x) 0 ≤ x ≤ π

Clearly the convex hull of the set NC = {x, f |f = sin(x) 0 ≤ x ≤ π} is
given by:
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f ≤ sin(x)
f ≥ 0
0 ≤ x ≤ π

Appendix E. Numerical Example

Appendix E.1. Convex Relaxation

In this section we show that the function Ẑ = 0.4878(x2+y2)−1.3701(x+
y)−0.66 is a valid convex relaxation of Z = (x−0.5)2+(y−0.5)2−e0.8(x−0.7)−
e0.8(y−0.7) in the interval 0 ≤ x ≤ 3, 0 ≤ y ≤ 3. Namely, Ẑ is convex and it
always understimates Z in the given interval.

Let us define the functions Z1 = (x− 0.5)2 − e0.8(x−0.7), Z2 = (y− 0.5)2 −
e0.8(y−0.7), Ẑ1 = 0.4878x2−1.3701x−0.33 and Ẑ2 = 0.4878y2−1.3701y−0.33.
From Figure E.12,

Ẑ1 ≤ Z1

Ẑ2 ≤ Z2

Then,

Ẑ = Ẑ1 + Ẑ2 ≤ Z1 + Z2 = Z

Since the Hessian of Ẑ(i.e.

[
0.4878 0

0 0.4878

]
) is clearly possitive definite,

we can conclude that Ẑ is convex.

Appendix E.2. Large-scale instances

The illustrative example in section 4 is used to generate instances of non-
convex GDPs with larger number of variables and constraints. The main
structure of these problems is presented below,
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Figure E.12: Convex relaxations of Z1 and Z2

min Z =
∑

i(xi − 0.5)2 + (yi − 0.5)2 − e0.8(xi−0.7) − e0.8(yi−0.7)

s.t.  Yi

0 ≤ xi ≤ 0.4
0 ≤ yi ≤ 0.4

 ∨

 ¬Yi

2.5 ≤ xi ≤ 3
2.5 ≤ yi ≤ 3

 (MGDPNCI)

xi ∈ R1, yi ∈ R1, Yi ∈ {True, False}
where i = 1,2,...I.

Appendix F. Method Implementation

In this section we present a detailed description of the method applied to
the Examples in section 5.

Appendix F.1. Process network models with exponential functions

STEP 1: Finding a convex GDP relaxation
Any nonlinear equation of the form g(x) = 0 where g(x) is convex can be
relaxed as g(x) ≤ 0. The proof is trivial considering that g(x) ≤ 0 is nothing
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but the epigraph of g(x) and hence convex. Since exout/α−1−xin is a convex
function (note that is the sum of convex funtions) then exout/α−1−xin ≤ 0 is
a valid relaxation. In order to bound this relaxation we will add a cut that is
obtained from the secant of exout/α − 1 = xin with extreme points [xlo

out, x
up
out],

namely
ex

up
out/α − ex

lo
out/α

xup
out − xup

in

(xout − xlo
out) + ex

lo
out/α − 1 ≥ xin

Hence, the following disjunctive convex program is obtained:

min Z = Θx4 + Γx6 + c+ θ2x2 (PROCNETstep1)

x2 ≥ β
Y2

Λ2(x4 − xlo
4 ) + ex

lo
4 /α − 1 ≥ x2

ex4/α42 − 1 ≤ x2

xlo2
2 ≤ x2 ≤ xup2

2

c = δ42x4 + δ22x2 + γ2

∨


Y3

Λ3(x4 − xlo
4 ) + ex

lo
4 /α − 1 ≥ x2

ex4/α43 − 1 ≤ x2

xlo3
2 ≤ x2 ≤ xup3

2

c = δ43x4 + δ23x2 + γ3


Y2∨Y3

x2, x4, x6 ≥ 0

Note that for ease of notation we have expressed the formulation in
reduced form by appropriate variable substitutions for x7 and x8, where

Θ = δ7 + θ7 − θ8ξ+ δ8ξ , Γ = δ7 + θ7 − θ8ξ+ δ8ξ− θ6,Λ2 =
ex

up
4 /α42 − ex

lo
4 /α42

xup
4 − xlo

4

and Λ3 =
ex

up
4 /α43 − ex

lo
4 /α43

xup
4 − xlo

4
STEP 2: Application of basic steps

By introducing the global constraints inside the disjunctions, we obtain a
new disjunctive set whose hull relaxation is tighter, leading to a tighter re-
laxation for the nonconvex problem.

min Z = Θx4 + Γx6 + c+ θ2x2 (PROCNETstep2)
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

Y2

x2 ≥ β

Ξ2(x4 − xlo
4 ) + ex

lo
4 /α − 1 ≥ x2

ex4/α42 − 1 ≤ x2

xlo2
2 ≤ x2 ≤ xup2

2

c = δ42x4 + δ22x2 + γ2

∨



Y3

x2 ≥ β

Ξ3(x4 − xlo
4 ) + ex

lo
4 /α − 1 ≥ x2

ex4/α43 − 1 ≤ x2

xlo3
2 ≤ x2 ≤ xup3

2

c = δ43x4 + δ23x2 + γ3


Y2∨Y3

x2, x4, x6 ≥ 0

By applying the convex hull of the disjunction as in (DISJrel), the final
NLP reads as follows,

min Z = Θx4 + Γx6 + c2 + c3 + θ2x2

s.t.
x2 = x2

2 + x3
2

x4 = x2
4 + x3

4

x2
2 − βλ2 ≥ 0

x3
2 − βλ3 ≥ 0 (PROCNETnlp)

Ξ2(x
2
4 − xlo

4 λ2) + (ex
2
4/α42 − 1)λ2 ≥ x2

4

e(x
2
4/(λ2α42) − λ2 ≤ x2

2

xlo2
2 λ2 ≤ x2

2 ≤ xup2
2 λ2

c2 = δ42x
2
4 + δ22x

2
2 + γ22λ2

Ξ3(x
3
4 − xlo

4 λ3) + (ex
3
4/α43 − 1)λ3 ≥ x3

4

e(x
3
4/(λ3α43) − λ3 ≤ x3

2

xlo2
3 λ3 ≤ x3

2 ≤ xup2
2 λ2

c3 = δ43x
3
4 + δ23x

3
2 + γ23λ3

λ2 + λ3 = 1

0 ≤ λ2 ≤ 1, 0 ≤ λ3 ≤ 1

λ2x
lo
2 ≤ x2

2 ≤ λ2x
lo
2 , λ3x

lo
2 ≤ x3

2 ≤ λ3x
lo
2

λ2x
lo
4 ≤ x2

4 ≤ λ2x
lo
4 , λ3x

lo
4 ≤ x3

4 ≤ λ3x
lo
4

Note that to keep the notation clear we did not add the approximation
of λig

i(xi/λi) in (3.1).
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Appendix F.2. Reactor networks with non-elementary kinetics described through
posynomial functions

STEP 1: Finding a convex GDP relaxation
Tight relaxations for posynomial terms have been studied by Bjoerk et. al
[7] and Han-Li et al. [8] (see Appendix D). By following this technique, a
convex relaxation for rC = xa

Ax
b
B can be obtained as follows:

rC ≥ y−a
A y−b

B

1 ≥ xA

xup
A

+ xlo
AyA − xlo

A

xup
A

1 ≥ xB

xup
B

+ xlo
ByB − xlo

B

xup
B

Clearly, for a and b positive xup
A

axup
B

b is an upper bound for rC .

By replacing the nonconvex terms with the proposed relaxation we obtain
the following convex GDP:

minZ = −CCf
C
out + c (RXNstep1)

gen = fC
out

xA + xb ≥ β

Y1

gen ≥ V1k1y
−a1
A y−b1

B

gen ≤ V1k1x
up
A

a1xup
B

b1

xlo1
A ≤ xA ≤ xup1

A

xlo1
B ≤ xB ≤ xup1

B

1 ≥ xA

xup
A

+ xlo
AyA − xlo

A

xup
A

1 ≥ xB

xup
B

+ xlo
ByB − xlo

B

xup
B

c = γ1


∨



Y2

gen ≥ V2k2y
−a2
A y−b2

B

gen ≤ V1k2x
up
A

a2xup
B

b2

xlo2
A ≤ xA ≤ xup2

A

xlo2
B ≤ xB ≤ xup2

B

1 ≥ xA

xup
A

+ xlo
AyA − xlo

A

xup
A

1 ≥ xB

xup
B

+ xlo
ByB − xlo

B

xup
B

c = γ2


Y1∨Y2

xlo
A ≤ xA ≤ xup

A ,(xup
A )−1 ≤ yA ≤ (xlo

A)
−1

xlo
B ≤ xB ≤ xup

B ,(xup
B )−1 ≤ yB ≤ (xlo

B)
−1
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STEP 2: Application of basic steps By introducing the global constraints
inside the disjunctions, we obtain a new disjunctive set whose hull relaxation
is tighter, leading to a tighter relaxation for the nonconvex problem.

minZ = −CCgen+ c (RXNstep2)

Y1

xA + xB ≥ β
gen ≥ V1k1y

−a1
A y−b1

B

gen ≤ V1k1x
up
A

a1xup
B

b1

xlo1
A ≤ xA ≤ xup1

A

xlo1
B ≤ xB ≤ xup1

B

1 ≥ xA

xup
A

+ xlo
AyA − xlo

A

xup
A

1 ≥ xB

xup
B

+ xlo
ByB − xlo

B

xup
B

c = γ1


∨



Y2

xA + xB ≥ β
gen ≥ V2k2y

−a2
A y−b2

B

gen ≤ V1k2x
up
A

a2xup
B

b2

xlo2
A ≤ xA ≤ xup2

A

xlo2
B ≤ xB ≤ xup2

B

1 ≥ xA

xup
A

+ xlo
AyA − xlo

A

xup
A

1 ≥ xB

xup
B

+ xlo
ByB − xlo

B

xup
B

c = γ2


Y1∨Y2

xlo
A ≤ xA ≤ xup

A

xlo
B ≤ xB ≤ xup

B

And the NLP relaxation reads:

min Z = −CCgen+ γ1λ1 + γ2λ2 (RXNNLP )
s.t. xA = x1A + x2A

xB = x1B + x2B

yA = y1A + y2A
yB = y1B + y2B
gen = gen1 + gen2

x1A + x1B ≥ βλ1

λ1(
gen1

λ1

− V1k1(
y1A
λ1

)−a1(
y1B
λ1

)−b1) ≥ 0

λ1(
gen1

λ1

− V1k1x
up
A

a1xup
B

b1) ≤ 0

xlo1
A λ1 ≤ x2A ≤ xup1

1A λ1

xlo1
B λ1 ≤ x2B ≤ xup1

1B λ1
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λ1(1−
x1A

λ1x
up
A

− xlo
A

yA
λ1

+
xlo
A

xup
A

) ≥ 0

λ1(1−
x1B

λ1x
up
B

− xlo
B(

y2B
λ1

) +
xlo
B

xup
B

) ≥ 0

x2A + x2B ≥ βλ2

λ2(
gen2

λ2

− V2k2(
y2A
λ2

)−a2(
y2B
λ2

)−b2) ≥ 0

λ2(
gen2

λ2

− V2k2x
up
A

a2xup
B

b2) ≤ 0

xlo2
A λ2 ≤ x2A ≤ xup2

2A λ2

xlo2
B λ2 ≤ x2B ≤ xup2

2B λ2

λ2(1−
x2A

λ2x
up
A

− xlo
A

yA
λ2

+
xlo
A

xup
A

) ≥ 0

λ2(1−
x2B

λ2x
up
B

− xlo
B(

y2B
λ2

) +
xlo
B

xup
B

) ≥ 0

λ1 + λ2 = 1
xlo
Aλ1 ≤ x1A ≤ xlo

Aλ1

xlo
Bλ1 ≤ x1B ≤ xlo

Bλ1

xlo
Aλ2 ≤ x2A ≤ xlo

Aλ2

xlo
Bλ2 ≤ x2B ≤ xlo

Bλ2

x−up
A λ1 ≤ y1A ≤ x−lo

A λ1

x−up
B λ1 ≤ y1B ≤ x−lo

B λ1

x−up
A λ2 ≤ y2A ≤ x−lo

A λ2

x−up
B λ2 ≤ y2B ≤ x−lo

B λ2

V1k1x
lo
A
a1xlo

B
b1λ1 ≤ gen1 ≤ V1k1x

up
A

a1xup
B

b1λ1

V2k2x
lo
A
a2xlo

B
b2λ2 ≤ gen2 ≤ V2k2x

up
A

a2xup
B

b2λ2

Appendix F.3. Heat exchanger network models with linear fractional terms

STEP 1: Finding a convex GDP relaxation
Finding tight relaxations for fractional terms has been a challenge for a few
years until a thorough analysis was given by Tawarmalani and Sahinidis [14]
(see Appendix D ). In that work they present the convex and concave en-
velopes for fractional terms. By following this technique, the convex and
concave envelopes for zi = Qi/∆Ti are as follows:

zpi ≥
QL

i (Q
L
i ∆Tpi −Qi(∆TL

i +∆TU
i ) +QU

i (∆TL
i +∆TU

i −∆Tpi))

(QU
i −QL

i )(∆TL
i ∆TU

i )
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(zi − zpi)(Q
U
i −QL

i )(∆TU
i −∆TL

i )
2 ≥ QU

i (Qi −QL
i )

2

∆TL
i (Q

U
i −Qi) ≤ ∆Tpi(Q

U
i −QL

i ) ≤ ∆TU
i (QU

i −Qi)

∆TL
i (Qi −QL

i ) ≤ (∆Ti −∆Tpi)(Q
U
i −QL

i ) ≤ ∆TU
i (Qi −QL

i )

zi − zpi, zpi ≥ 0

By replacing Qi/∆Ti with zi and introducing the equations presented
above we obtain a disjunctive convex program whose hull relaxation is a re-
laxation for the original nonconvex program.

min C = c1A1 + c2A2 + c3A3 + c4A4 + C3 + C4 (HENstep1)
s.t.

zpi ≥
QL

i (Q
L
i ∆Tpi −Qi(∆TL

i +∆TU
i ) +QU

i (∆TL
i +∆TU

i −∆Tpi))

(QU
i −QL

i )(∆TL
i ∆TU

i )
(zi − zpi)(Q

U
i −QL

i )(∆TU
i −∆TL

i )
2 ≥ QU

i (Qi −QL
i )

2

∆TL
i (Q

U
i −Qi) ≤ ∆Tpi(Q

U
i −QL

i ) ≤ ∆TU
i (QU

i −Qi) i = 1,2
∆TL

i (Qi −QL
i ) ≤ (∆Ti −∆Tpi)(Q

U
i −QL

i ) ≤ ∆TU
i (Qi −QL

i )

zi − zpi, zpi ≥ 0

Y3

zp3 ≥ QL
3 (Q

L
3 ∆Tp3−Q3(∆TL

3 +∆TU
3 )+QU

3 (∆TL
3 +∆TU

3 −∆Tp3))

(QU
3 −QL

3 )(∆TL
3 ∆TU

3 )

(z3 − zp3)(Q
U
3 −QL

3 )(∆TU
3 −∆TL

3 )
2 ≥ QU

3 (Q3 −QL
3 )

2

∆TL
3 (Q

U
3 −Q3) ≤ ∆Tp3(Q

U
3 −QL

3 ) ≤ ∆TU
3 (QU

3 −Q3)
∆TL

3 (Q3 −QL
3 ) ≤ (∆T3 −∆Tp3)(Q

U
3 −QL

3 ) ≤ ∆TU
3 (Q3 −QL

3 )
z3 − zp3, zp3 ≥ 0

c3 = γ3


∨

 ¬Y3

A3 = 0
c3 = 0





Y4

zp4 ≥ QL
4 (Q

L
4 ∆Tp4−Q4(∆TL

4 +∆TU
4 )+QU

4 (∆TL
4 +∆TU

4 −∆Tp4))

(QU
4 −QL

4 )(∆TL
4 ∆TU

4 )

(z4 − zp4)(Q
U
4 −QL

4 )(∆TU
4 −∆TL

4 )
2 ≥ QU

4 (Q4 −QL
4 )

2

∆TL
4 (Q

U
4 −Q4) ≤ ∆Tp4(Q

U
4 −QL

4 ) ≤ ∆TU
4 (QU

4 −Q4)
∆TL

4 (Q4 −QL
4 ) ≤ (∆T4 −∆Tp4)(Q

U
4 −QL

4 ) ≤ ∆TU
4 (Q4 −QL

4 )
z4 − zp4, zp4 ≥ 0

c4 = γ4


∨

 ¬Y4

A4 = 0
c4 = 0


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Q1 = FCPH1(T1 − TH1,out) , Q2 = FCPH2(T2 − TH2,out)
Q3 = FCPC2(T3 − TC2,in) , Q3 = FCPH1(TH1,in − T1)
Q4 = FCPC3(T4 − TC3,in) , Q4 = FCPH2(TH2,in − T2)

T1 ≥ TC1,in + EMAT , T2 ≥ TC1,in + EMAT
Q1 +Q2 = Qtotal

∆T1 =
(T1−TC1,out)+(TH1,out−TC1,in)

2
,∆T2 =

(T2−TC1,out)+(TH2,out−TC1,in)

2

∆T3 =
(T1−TC2,in)+(TH1,in−T3)

2
,∆T4 =

(T2−TC3,in)+(TH2,in−T4)

2

TH1,out ≤ T1 ≤ TH1,in , TH2,out ≤ T4 ≤ TH2,in

TC2,in ≤ T3 , TC3,in ≤ T4

Qi ≥ 0, ∆Ti ≥ EMAT , i = 1, ..., 4

STEP 2: Application of basic steps

By introducing the global constraints inside the disjunctions we obtain
a new disjunctive set which hull relaxation is tighter, leading to a tighter
relaxation for the nonconvex problem. For the sake of simplicity in the
presentation, we will skip the explicit representation of the GDP after the
application of basic steps and the final NLP relaxation.
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