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Abstract Stochastic mixed-integer nonlinear programming (MINLP) is a very
challenging class of problems. Although there have been recent advances in de-
veloping decomposition algorithms to solve stochastic MINLPs [5, 9, 18, 20],
none of the existing algorithms can address stochastic MINLPs with continu-
ous distributions. We propose a sample average approximation-based outer
approximation algorithm (SAAOA) that can address nonconvex two-stage
stochastic programs (SP) with any continuous or discrete probability distribu-
tions. The SAAOA algorithm does internal sampling within a nonconvex outer
approximation algorithm where we iterate between a mixed-integer linear pro-
gramming (MILP) master problem and a nonconvex nonlinear programming
(NLP) subproblem. We prove that the optimal solutions and optimal value
obtained by the SAAOA algorithm converge to the optimal solutions and the
optimal value of the true SP problem as the sample size goes to infinity. The
convergence rate is also given to estimate the sample size. However, the the-
oretical sample size estimate is too conservative in practice. Therefore, we
propose an SAAOA algorithm with confidence intervals for the upper bound
and the lower bound at each iteration of the SAAOA algorithm. Two policies
are proposed to update the sample sizes dynamically within the SAAOA al-
gorithm with confidence intervals. The proposed algorithm works well for the
special case of pure binary first stage variables and continuous stage two vari-
ables since in this case the nonconvex NLPs can be solved for each scenario
independently. The proposed algorithm is tested with a stochastic pooling
problem and is shown to outperform the external sampling approach where
large scale MINLPs need to be solved.
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1 Introduction

Mixed-integer nonlinear programming (MINLP) is a framework to model op-
timization problems that involve discrete and continuous variables and non-
linear constraints. Many applications can be modeled with MINLP, such as
the pooling problem [25], batch plant design [17], and water network synthe-
sis [10]. Although there have been significant advances to solve deterministic
MINLPs [15], fewer works have been proposed to solve MINLP problems under
uncertainty.

Two-stage stochastic programming (SP) is a framework to model decision-
making problems under uncertainty [31]. Specifically, stage 1 decisions are
made ‘here and now’ and are then followed by the resolution of uncertainty.
Stage 2 decisions, or recourse decisions, are taken ‘wait and see’ as corrective
actions. The objective of SP is to optimize the expected value of an objective
function over a known probability distribution. The probability distribution
is usually assumed to be discrete so that the two-stage SP problem can be
modeled using a scenario-based approach.

Decomposition algorithms, such as Benders decomposition [4], are used
to solve SP problems. Recently, some advances in decomposition algorithms
for scenario-based two-stage stochastic MINLP problems have been proposed.
For convex stochastic MINLP, where the nonlinear feasible region of the con-
tinuous relaxation is convex, Mijangos [24] proposes an algorithm based on
Branch-and-Fix Coordination method [2] for convex problems with mixed-
binary variables in the first stage and only continuous variables in the second
stage. Atakan and Sen [3] propose a progressive hedging-based branch-and-
bound algorithm for convex stochastic MINLP. An improved L-shaped method
where the Benders subproblems are convexified by rank-one lift-and-project,
and Lagrangean cuts are added to tighten the Benders master problem is
proposed by Li and Grossmann [17]. Li and Grossmann further propose a gen-
eralized Benders decomposition-based branch and bound algorithm [16] with
finite ε-convergence for convex stochastic MINLPs with mixed-binary first and
second stage variables.

For nonconvex stochastic MINLP, where the nonlinear functions in the
stochastic MINLPs can be nonconvex, Li et al. [20] propose a nonconvex gener-
alized Benders decomposition algorithm, which can solve two-stage nonconvex
MINLPs with pure binary variables in a finite number of iterations. For the
more general case where the first stage variables can be mixed-integer, Ogbe
and Li [27] propose a joint decomposition algorithm. A perfect information-
based branch and bound algorithm that solves nonseparable nonconvex stochas-
tic MINLPs to global optimality is proposed by Cao and Zavala [5]. Kannan
and Barton [9] propose a modified Lagrangean relaxation-based (MLR) branch
and bound algorithm, and they prove that MLR has finite ε-convergence. A
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generalized Benders decomposition-based branch and cut algorithm for non-
convex stochastic MINLPs with mixed-binary first and second stage variables
was proposed by Li and Grossmann [18].

All the decomposition algorithms mentioned above for stochastic MINLPs
assume that the SP is scenario-based, i.e., the probability distribution is dis-
crete. For SP with continuous distributions, the ‘true’ problem can be solved
using sample average approximation (SAA) [14, 31]. SAA approximates the
‘true’ value of SP with the sample average of N i.i.d. (independent and iden-
tically distributed) samples. There are two classes of sample average methods:
‘external sampling’ and ‘internal sampling’.

‘External sampling’ means that the sampling is performed external to
(prior to) the solution procedure. Mak et al. [23] prove bounding properties for
external sampling. Kleywegt et al. [14] study a Monte Carlo simulation-based
approach for SP with only discrete variables in the first stage. Linderoth et
al. [22] analyze the quality of solutions obtained from sample-average approx-
imations to two-stage stochastic linear programs in a computational study.

‘Internal sampling’ means that the sampling is done within the solution
procedure. Norkin et al. [26] propose a stochastic branch and bound method
for solving stochastic global optimization problems. Higle and Sen [8] solve
two-stage stochastic linear programs with stochastic decomposition, where
they construct statistical estimates of supports of the objective function using
Benders-like cutting planes. Wei and Realff [33] perform Monte Carlo sampling
within the outer approximation (OA) algorithm [6] to solve stochastic convex
MINLPs.

In this paper, we address two-stage stochastic nonconvex MINLPs with
continuous probability distribution P using SAA. The sampling is performed
in an ‘internal sampling’ manner within a nonconvex OA procedure similar to
the one proposed by Kesavan et al. [11]. The contributions of this paper are
as follows,

1. We propose an internal sampling-based outer approximation (OA) algo-
rithm for two-stage stochastic nonconvex MINLP with continuous distri-
bution.

2. We prove that the proposed algorithm converges to the ‘true’ value and
optimal solution of the stochastic program (SP) as the sample sizes in all
the internal sampling steps tend to infinity.

3. We provide sample size estimates and convergence rates for the proposed
algorithm.

4. We propose an efficient way to implement the sample average-based OA
algorithm using confidence interval estimates.

5. We propose two policies for updating the sample size within SAAOA.
6. Case studies for a stochastic pooling problem are used to demonstrate

different update policies for the sample sizes in the OA algorithm.

In section 2, we define the problem addressed in this paper. Section 3 presents
an overview of the SAAOA algorithm and defines the subproblems in each step
of the OA procedure. We then provide the steps of the SAAOA algorithm. In
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section 4, we prove that the proposed algorithm converges as the sample size
tends to infinity and find its convergence rate. Section 5 describes an efficient
implementation of the algorithm using confidence interval estimates. In section
6, we demonstrate the effectiveness of the proposed algorithm with a stochastic
pooling problem. We draw the conclusions in section 7.

2 Problem Statement

The problem that we address in this paper is defined in Eq. (1),

(SP-MINLP) min
x∈X,y∈{0,1}m

E
θ∼P

min
z∈Z

f (x, y, z, θ) (1a)

s.t. g(x, z, y, θ) ≤ 0 ∀θ ∈ Θ (1b)

where, x and y are vectors of continuous and discrete decision variables, re-
spectively. Notice that any bounded general integer variable can be modeled
using binary variables. z is a vector of continuous recourse variables, which can
vary depending on the realization of uncertain parameter θ. The uncertain pa-
rameter θ ∈ Θ follows a continuous probability distribution P. Functions f
and g are smooth functions, which can be nonconvex and sets X and Z are
compact. Problem (1) is a two-stage SP where variables x and y represent
the first stage decisions, variable z represents the second stage decisions. The
expectation is taken over the probability distribution of uncertainty parameter
θ. We make the following assumption about problem (SP-MINLP).

Assumption 1 Problem (SP-MINLP) has relatively complete recourse, i.e.,
any solution (x, y) that satisfies the first stage constraints has feasible recourse
decisions in the second stage.

Solving (SP-MINLP) with continuous probability distribution directly involves
integrating over the distribution, which is usually computationally intractable.
Instead of minimizing the ‘true’ expectation, one can generate N i.i.d. samples
for the uncertain parameter θ and minimize the empirical risk. The empiri-
cal risk minimization problem described in Eq. (2) is called sample average
approximation (SAA) [31] in the SP literature.

(SAA-MINLP) min
x∈X,zi∈Z,y∈{0,1}m

1

N

N∑
i=1

f (x, y, zi, θi) (2a)

s.t. g(x, y, zi, θi) ≤ 0 ∀i ∈ [N ] (2b)

where [N ] represents the set {1, 2, · · · , N}, θi, i ∈ [N ], are N i.i.d. samples of
uncertain parameter, zi is the stage 2 variable corresponding to θi. One option
to solve (SP-MINLP) is to approximate it with (SAA-MINLP), which can be
regarded as ‘external sampling’. The convergence properties of (SAA-MINLP)
have been widely studied [1, 31]. In this paper, we take an internal sampling
approach to solve (SP-MINLP) by using a nonconvex OA algorithm.
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3 Sampling Average Approximation within the Outer Approxima-
tion Algorithm (SAAOA)

We first give a high-level overview of the SAAOA algorithm before we go to
the details. Let us take a step back and consider a nonconvex OA algorithm
to solve deterministic MINLP. We have an MILP master problem where the
nonconvex functions in the original MINLP are replaced by their polyhedral
relaxations. The MILP master problem provides a lower bound (LB) to the
original MINLP’s optimal objective function value. After solving the MILP
master problem, we fix the binary variables in the original MINLP to the
optimal solution of the master problem and solve the resulting nonconvex
NLP. If the nonconvex NLP provides a feasible solution, it is feasible to the
original problem and yields an upper bound (UB) of the optimal objective
function value.

Additionally, we include a ‘no-good’ cut that removes from the feasible set
at iteration k all the previously found binary variable combinations,

m∑
i=1

ak
′

i yi ≤ bk
′
,where ak

′

i =

{
1 if yk

′

i = 1

−1 if yk
′

i = 0
and bk

′
=

m∑
i=1

yk
′

i − 1,∀k′ < k

(3)

Finally, we keep iterating between the MILP master problem and the NLP
subproblem until the upper and lower bounds lie within certain tolerance.

The deterministic nonconvex OA algorithm can be extended to the solution
of (SP-MINLP) by generating i.i.d. samples for both the master problem and
the nonconvex subproblem using an internal sampling approach. We define all
the subproblems in the SAAOA algorithm in the next subsection.

3.1 Subproblems definition

The (SP-OA-MILP) master problem at iteration k is defined as

(SP-OA-MILP) LBk = min
x∈X,y∈{0,1}m

E
θ∼P

min
z∈Z

f̂ (x, y, z, θ) (4a)

s.t. ĝ(x, y, z, θ) ≤ 0; Eq. (3) (4b)

where f̂ and ĝ are polyhedral relaxations for function f , and g, respectively.
LBk represents the LB of (SP-MINLP) after k − 1 iterations, where k − 1
‘no-good’ cuts (3) have been added. Parameter yk

′

i is the optimal value of the
ith binary variable at iteration k′.

Problem (SP-OA-MILP) can be approximated by generating N i.i.d. sam-
ples of θi from probability distribution P and solving the following (SAA-OA-
MILP) master problem.

(SAA-OA-MILP) ŵkN = min
x∈X,zi∈Z,y∈{0,1}m

1

N

N∑
i=1

f̂ (x, y, zi, θi) (5a)
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s.t. ĝ(x, y, zi, θi) ≤ 0 ∀i ∈ [N ]; Eq. (3) (5b)

An UB to (SP-MINLP) can be found by fixing the binary variables at a value
ȳ and solving problem (SP-nonconvex-NLP),

(SP-nonconvex-NLP) UB(ȳ) = min
x∈X

E
θ∼P

min
z∈Z

f (x, ȳ, z, θi) (6a)

s.t. g(x, ȳ, z, θ) ≤ 0 (6b)

The nonconvex NLP at fixed binary variable ȳ by SAA is defined as,

(SAA-nonconvex-NLP) ûN (ȳ) = min
x∈X,zi∈Z

1

N

N∑
i=1

f (x, ȳ, zi, θi) (7a)

s.t. g(x, ȳ, zi, θi) ≤ 0 ∀i ∈ [N ] (7b)

where N i.i.d. samples of θi ∈ Θ are generated from probability distribution
P.

3.2 Internal sampling using outer approximation

The OA algorithm iterates between the (SAA-OA-MILP) master problem and
the (SAA-nonconvex-NLP) subproblem. N i.i.d. samples are generated for
both the master and the subproblem at each iteration. A ‘no-good’ cut (3) is
added to the (SAA-OA-MILP) master problem to eliminate the current integer
solution. The steps of the SAAOA algorithm are described in Algorithm 1.

Algorithm 1
Initialization: Iteration counter k = 1; upper bound UB = +∞; sample size N
Step 1 Convexify the (SAA-nonconvex-MINLP) with samples of size N and generate
(SAA-OA-MILP)
Step 2 Solve the (SAA-OA-MILP). Denote the optimal objective value as ŵkN and the

integer variable value as ȳk. Set LB = ŵkN
If LB ≥ UB − ε, then go to step 5; otherwise go to step 3.
Step 3 Fix the binary variables in the (SAA-nonconvex-NLP) to ȳk, i.e., set ȳ = ȳk

Solve the (SAA-nonconvex-NLP) to global optimality. Denote the objective value as ûkN
and the optimal solution as x̃k, ȳk.
If ûkN ≤ UB − ε , then let UB = ûkN , x∗p = x̃k, y∗p = ȳk.
If LB ≥ UB − ε, then go to step 5; otherwise go to step 2.
Step 4 Let k = k + 1 and return to step 2
Step 5 Stop, the optimal solution is x∗p, y∗p , and the optimal objective value is UB.
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4 Convergence results

4.1 Convergence of objective values and solutions

In this subsection, we prove that the optimal value and solutions obtained
by the proposed Algorithm 1 converge to the optimal value and solutions of
(SP-MINLP) with probability (w.p.) 1 as the sample size N →∞. Note that
by optimal solutions, we mean the optimal first-stage decisions.

4.1.1 Convergence of the upper bound.

In order to establish the results, we first prove that the convergence of the
UB (SAA-nonconvex-NLP) to (SP-nonconvex-NLP). Note that the optimal
objective values of (SAA-nonconvex-NLP) and (SP-nonconvex-NLP) when y
is fixed at ȳ are defined as UB(ȳ) and ûN (ȳ), respectively. We further define
the set of optimal solutions of (SP-nonconvex-NLP) as S∗(ȳ); the set of op-
timal solutions of (SAA-nonconvex-NLP) as ŜN (ȳ). We want to prove that
limN→∞ ûN (ȳ) = UB(ȳ) and the event {S∗(ȳ) = ŜN (ȳ)} happens w.p. 1 as
N →∞.

We define function UB(ȳ, x) as

UB(ȳ, x) = E
θ∼P

min
z∈Z

f (x, ȳ, z, θ) (8a)

s.t. g(x, ȳ, z, θ) ≤ 0 (8b)

Function ûN (ȳ, x) is defined as,

ûN (ȳ, x) =
1

N

N∑
i=1

min
zi∈Z

f (x, ȳ, zi, θi) (9a)

s.t. g(x, ȳ, zi, θi) ≤ 0 ∀i ∈ [N ] (9b)

Note that ûN (ȳ, x) contains the summation of N i.i.d samples. According to
the Law of Large Numbers, ûN (ȳ, x) converges pointwise w.p. 1 to UB(ȳ, x)
as N → ∞. Moreover, under some mild conditions ([13, 29, 30, 31]), the
convergence is uniform. To prove the convergence of the UB, we make the
following assumptions, which are similar to the assumptions in Theorem 5.3
of Shapiro et al. [31].

Assumption 2 All the samples θis, i ∈ [N ], in all the SAA problems are
i.i.d. from a distribution P.

Assumption 3 Set X is compact.

Assumption 4 The set S∗(ȳ) of optimal solutions of the problem (SP-nonconvex-
NLP) is nonempty, for any vector ȳ ∈ {0, 1}m.

Assumption 5 The function UB(ȳ, x) is finite valued and continuous in x
on X, for any vector ȳ ∈ {0, 1}m.
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Remark 1 Note that for a given uncertain parameter θi, the cost-to-go function
is discontinuous in general. However, UB(ȳ, x) is the expected cost over a
continuous distribution. Under some mild assumptions, UB(ȳ, x) is continuous
for all x ∈ X [28].

Assumption 6 The set ŜN (ȳ) is nonempty w.p. 1 for N →∞, for any vector
ȳ ∈ {0, 1}m.

Assumption 7 The function ûN (ȳ, x) converges to UB(ȳ, x) w.p. 1, as N →
∞, uniformly on X, for any vector ȳ ∈ {0, 1}m.

Under assumptions 3-7, the following lemma holds.

Lemma 1 If Assumptions 3-7 hold true, limN→∞ ûN (ȳ) = UB(ȳ) and the
event {S∗(ȳ) = ŜN (ȳ)} happens w.p. 1 as N →∞, for any vector ȳ ∈ {0, 1}m
(Theorem 5.3 of Shapiro et al. [31]).

Proof According to Assumption 7,

max
x∈X
|ûN (ȳ, x)− UB(ȳ, x)| → 0, w.p. 1 as N →∞

We can bound |ûN (ȳ)− UB(ȳ)| by,

|ûN (ȳ)− UB(ȳ)| = |min
x∈X

ûN (ȳ, x)−min
x∈X

UB(ȳ, x)|

= max
{

min
x∈X

ûN (ȳ, x)−min
x∈X

UB(ȳ, x),min
x∈X

UB(ȳ, x)−min
x∈X

ûN (ȳ, x)
}

≤ max
{
ûN (ȳ, x∗UB(ȳ))− UB(ȳ, x∗UB(ȳ)), UB(ȳ, x∗u(ȳ))− ûN (ȳ, x∗u(ȳ))

}
≤ max

x∈X
|ûN (ȳ, x)− UB(ȳ, x)|

where x∗UB(ȳ) = argminx∈XUB(ȳ, x), x∗u(ȳ) = argminx∈X ûN (ȳ, x). Therefore,
we have limN→∞ ûN (ȳ) = UB(ȳ).

Now we need to prove that the event {S∗(ȳ) = ŜN (ȳ)} happens w.p. 1 as
N → ∞, for any vector ȳ ∈ {0, 1}m. We prove this by contradiction. Due to
the compactness of X, we can assume that there exists x̂N (ȳ) ∈ ŜN (ȳ) such
that dist

(
x̂N (ȳ), S∗(ȳ)

)
≥ ε, for some ε > 0, and that x̂N (ȳ) tends to a point

x∗(ȳ) ∈ X. Since x∗(ȳ) /∈ S∗(ȳ), we have UB(ȳ, x∗(ȳ)) > UB(ȳ).

ûN
(
ȳ, x̂N (ȳ)

)
− UB

(
ȳ, x∗(ȳ)

)
=
[
ûN
(
ȳ, x̂N (ȳ)

)
− UB(ȳ, x̂N (ȳ))

]
+
[
UB

(
ȳ, x̂N (ȳ)

)
− UB

(
ȳ, x∗(ȳ)

)]
The first term on the right hand side goes to zero by the uniform convergence
of ûN (ȳ, x) (Assumption 7). The second term goes to zero by the continuity
of function UB(ȳ, x) (Assumption 5). Then we have limN→∞ ûN

(
ȳ, x̂N (ȳ)

)
=

UB
(
ȳ, x∗(ȳ)

)
> UB(ȳ), which contradicts with the convergence of the objec-

tive value ûN (ȳ) to UB(ȳ). ut
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4.1.2 Convergence of the optimal values and solutions of the lower bound.

Next, we prove the convergence of the LB estimators. Similar to the analysis
of the UB, we define function, LBk(x, y),

LBk(x, y) = E
θ∼P

min
z∈Z

f̂ (x, y, z, θ) (10a)

s.t. ĝ(x, y, z, θ) ≤ 0; Eq. (3) (10b)

Function ŵkN (x, y) is defined as,

ŵkN (x, y) =
1

N

N∑
i=1

min
zi∈Z

f̂ (x, y, zi, θi) (11a)

s.t. ĝ(x, y, zi, θi) ≤ 0; Eq. (3) (11b)

The optimal value of (SP-OA-MILP) is defined as LBk. The optimal value
of (SAA-OA-MILP) is defined as ŵkN . We define the set of optimal solution
for (SP-OA-MILP) at iteration k as T ∗k , and the set of optimal solutions for

problem (SAA-OA-MILP) at iteration k with sample size N as T̂Nk . We want

to prove that limN→∞ ŵkN = LBk and the event {T ∗k = T̂Nk } happens w.p. 1
as N → ∞. The complication compared with the previous subsection is the
presence of binary variables in (SP-OA-MILP). Note that in the proof for the
convergence of (SP-nonconvex-NLP) the binary variables are fixed. However,
if we consider some fixed ȳ that is feasible for (SP-OA-MILP) at iteration k, by
making similar assumptions to Assumptions 3-5, we can prove the convergence
of the optimal values and solutions of the LB estimators in (SAA-OA-MILP)
to (SP-OA-MILP) with the y variables fixed at ȳ. Let the optimal value of
(SP-OA-MILP) with y fixed at ȳ be LBk(ȳ). The optimal value of (SP-OA-
MILP) can be seen as taking the minimum over all the possible LBk(ȳ). Since
the combinations of binary variables are finite, the convergence of both the
optimal values and optimal solutions to (SP-OA-MILP) can be established. We
state the following lemma whose major steps of proofs are similar to Lemma
1, therefore, we omit its proof.

Lemma 2 Under mild conditions similar to Assumptions 3-7, the optimal
value and the optimal solutions of (SAA-OA-MILP) converges to those of (SP-
OA-MILP) w.p. 1 as N →∞, i.e., limN→∞ ŵkN = LBk, the event {T ∗k = T̂Nk }
happens w.p. 1 as N →∞.

4.1.3 Convergence of optimal objective values and solutions of the proposed
algorithm.

The convergence of the optimal values and solutions of the LB and the UB is
proved setting up the main theorem of this section.

Theorem 1 The proposed Algorithm 1 returns the optimal value and the set
of optimal solutions (x∗, y∗) of (SP-MINLP) w.p. 1 as N →∞.
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Proof Note that the Algorithm 1 can only miss finding the optimal solution y∗

in 1) the comparison of the optimal objective value of (SAA-nonconvex-NLP),
ûkN , and the current upper bound UB, and 2) the comparison of the objective
value of the (SAA-OA-MILP) with the current UB. We need to prove that
neither of these two cases can happen as N → ∞. Note that Lemmas 1 and
2 prove that all the estimators are ‘exact’ in the sense they converge to the
optimal value of the corresponding true stochastic programming problems (SP-
nonconvex-NLP) and (SP-OA-MILP). Therefore, the optimal solution cannot
be missed in either of the two cases. Since there are only finite combinations of
binary variables, it takes the proposed algorithm a finite number of iterations
to converge. The optimal value returned is the optimal value of the true (SP-
MINLP) and the optimal solution corresponds to the y∗ that yields the best
UB. ut

4.2 Estimates of sample sizes

Now that we have proved that Algorithm 1 converges in the limit, it is desirable
to estimate the sample size to achieve finite error ε with high probability.

Ahmed and Shapiro [1] give the sample size estimator for two-stage SP. An
SAA estimator, which is solved to δ-optimality, gives the ε-optimal solution to
the corresponding true problem with probability at least 1 − α if the sample
size

N ≥ 12σ2

(ε− δ)2
(
n1 ln

2DL

ε− δ − lnα
)

(12)

where D is the diameter of set X, i.e., D = supx∈X,x′∈X ||x−x′||, the objective
function of the SP problem is assumed to be L-Lipschitz continuous on X, n1
is the dimension of the first stage variables, and σ2 is the maximal variance of
certain differences between values of the objective function of the SAA problem
(see [14]).

Remark 2 Eq. (12) gives the rate of convergence for any SAA estimators of
any two-stage SP. Theoretically, it can be used to calculate the sample sizes of
the MILP master problem and the nonconvex NLP subproblem, respectively,
if we have the upper bounds of the diameter of the feasible set X and the
Lipschitz constant L. However, for stochastic MINLP problems, the Lipschitz
constant L is difficult to estimate. Moreover, the sample size estimates from
(12) is usually too conservative in practice [14]. Therefore, we need to design
an algorithm based on Algorithm 1 that is more efficient in practice.

5 Algorithm Design

Here we extend Algorithm 1 to a more practical algorithm based on the ideas
of Kleywegt et al. [14] where an empirical method is proposed to construct
confidence intervals for the optimal objective value of the ‘true’ SP problem.
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For a finite sample size N , Mak et al. [23] prove that the expectation of the
SAA problems provides lower bounds for the corresponding true SP problems.
More specifically, for the objective of (SP-OA-MILP), LBk, and the objective
of (SAA-OA-MILP), ŵkN , at iteration k, we have,

Eθi∼P
[
ŵkN
]
≤ LBk

For the objective of (SP-nonconvex-NLP), UB(ȳ), and the objective of the
corresponding (SAA-nonconvex-NLP), ûN (ȳ), we have,

Eθi∼P [ûN (ȳ)] ≤ UB(ȳ)

Therefore, the SAA estimators, ŵkN and ûN (ȳ), can be regarded as the lower
estimators of (SP-OA-MILP) and (SP-nonconvex-NLP), respectively. In order
to construct the confidence intervals for (SP-OA-MILP) and (SP-nonconvex-
NLP), we need to provide their upper estimators.

5.1 Upper estimators

Mak et al. [23] prove that the upper estimator of a SP can be obtained by
evaluating the sample mean at a given feasible first stage decision. In our case,
the upper estimator of the (SP-OA-MILP) can be obtained by solving the
following problem for random sample θi, i = 1, ..., N ′l

(single-OA-LP) ŵ
(i),k
1 = min

zi∈Z
f̂ (x̃, ỹ, zi, θi) (13a)

s.t. ĝ(x̃, ỹ, zi, θi) ≤ 0 (13b)

where the first stage decisions (x, y) are fixed at (x̃, ỹ). The values of (x̃, ỹ)
can come from a good estimate of the optimal solution of (SP-OA-MILP), for
example, the optimal solution of (SAA-OA-MILP). The upper estimator of
the (SP-OA-MILP) can be the average of the N ′l (single-OA-LP) problems,

w̄kN ′
l

=
1

N ′l

N ′
l∑

i=1

ŵ
(i),k
1

Similarly, the upper estimator of (SP-nonconvex-NLP) can be derived by fixing
the first stage decisions (x, y) to (x̄, ȳ) and solve the rest of the nonconvex NLP
for N ′u samples of θi. The values for (x̄, ȳ) can come from the optimal solution
of (SAA-OA-MILP) (x̄k, ȳk). The ith single size nonconvex NLP at iteration
k is defined as,

(single-nonconvex-NLP) û
(i),k
1 = min

zi∈Z
f (x̄, ȳ, zi, θi) (14a)

s.t. g(x̄, ȳ, zi, θi) ≤ 0 (14b)

The upper estimator of the (SP-nonconvex-NLP) can be the average of the
N ′u (single-nonconvex-NLP) problems,

ūkN ′
u

=
1

N ′u

N ′
u∑

i=1

û
(i),k
1
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5.2 Confidence intervals for the upper and lower bound

We show how the confidence intervals of the upper and the lower bounds at
every iteration k of the SAAOA algorithm can be constructed.

We first show how the confidence interval of (SP-nonconvex-NLP) can be
constructed at each iteration. Recall that the expectation of (SAA-nonconvex-
NLP) provides a LB of (SP-nonconvex-NLP), i.e., E[ûN (ȳ)] ≤ UB(ȳ). To have
a good estimate for the expectation, we solve Mu batches of (SAA-nonconvex-
NLP). We make the following assumption about the batches of the SAA prob-
lems,

Assumption 8 All the Mu (Ml) batches of samples in the (SAA-nonconvex-
NLP) and (SAA-OA-MILP) problems are i.i.d..

At each iteration k, (SAA-nonconvex-NLP) with Nu samples is solved Mu

times to obtain a lower estimator of the upper bound UB(ȳk). We use random

variable û
(m),k
Nu

to denote the optimal objective value of the mth batch of
(SAA-nonconvex-NLP) at iteration k. From Mak et al. [23], random variable

û
(m),k
Nu

is a biased estimator of UB(ȳk), i.e.,

Eθi∼P
[
û
(m),k
Nu

]
≤ UB(ȳk) (15)

The mean of the Mu batches (SAA-nonconvex-NLP) is defined as ūkNu,Mu
=

1
Mu

∑Mu

m=1 û
(m),k
Nu

. By the central limit theorem,√
Mu

(
ūkNu,Mu

− Eθi∼P
[
ūkNu,Mu

] )
⇒ N (0, σ2

u,k) (16)

where ‘⇒’ denotes convergence in distribution, and N (0, σ2) denotes a normal

distribution with mean zero and variance σ2. (Ŝu,kMu
)2 is the standard sample

variance estimator of σ2
u,k, which is defined by

(Ŝu,kMu
)2

Mu
=

1

Mu(Mu − 1)

Mu∑
m=1

(û
(m),k
Nu

− ūkNu,Mu
)2 (17)

Therefore, the (1−α) confidence interval of the lower estimator of the UB can
be approximated by,

(
ūkNu,Mu

− tα/2Mu−1
Ŝu,kMu√
Mu

, ūkNu,Mu
+ t

α/2
Mu−1

Ŝu,kMu√
Mu

)
(18)

where t
α/2
Mu−1 is the 1− α/2 quantile of t-distribution with Mu − 1 degrees of

freedom.
At each iteration k, N ′u (single-nonconvex-NLP)s are solved to obtain the

upper estimator of (SP-nonconvex-NLP). We use û
(i),k
1 to denote the optimal

objective value of the ith sample of (single-nonconvex-NLP) at iteration k. By
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definition, we also have the mean of the N ′u samples, ūkN ′
u

= 1
N ′

u

∑N ′
u

i=1 û
(i),k
1 .

From Mak et al. [23], we have

Eθi∼P
[
ūkN ′

u

]
≥ UB(ȳk) (19)

In Eqs. (16) and (17), by the central limit theorem,√
N ′u

(
ūkN ′

u
− Eθi∼P

[
ūkN ′

u

] )
⇒ N(0, σ2

u′,k) (20)

The standard sample variance estimator (Ŝu,kN ′
u

)2 of σ2
u′,k is defined by,

(Ŝu,kN ′
u

)2

N ′u
=

1

N ′u(N ′u − 1)

N ′
u∑

i=1

(
û
(i),k
1 − ūkN ′

u

)2
(21)

Therefore, the (1 − α) confidence interval of the upper estimator of the UB
can be approximated by,(

ūkN ′
u
− tα/2N ′

u−1
Ŝu,kN ′

u√
N ′u

, ūkN ′
u

+ t
α/2
N ′

u−1
Ŝu,kN ′

u√
N ′u

)
(22)

where t
α/2
N ′

u−1
is the 1− α/2 quantile of the t-distribution with N ′u − 1 degrees

of freedom. By combining (22) and (18), we have with probability at least
(1− α), the UB obtained at iteration k, UB(ȳk), lies within the interval,

(UB,UB) =
(
ūkNu,Mu

− tα/2Mu−1
Ŝu,kMu√
Mu

, ūkN ′
u

+ t
α/2
N ′

u−1
Ŝu,kN ′

u√
N ′u

)
(23)

where (Ŝu,kN ′
u

)2 is the standard sample variance estimator of σ2
u′,k, the vari-

ance of the scaled normal distribution to what ūkN ′
u

minus its expected value
converges in distribution.

Similarly, to construct the confidence interval for (SP-OA-MILP) at each
iteration k, we can solve the (SAA-OA-MILP) with Nl i.i.d. samples for Ml

i.i.d. batches. The optimal objective of the mth batch is denoted as ŵ
(m),k
Nl

.
We compute the mean and variance of the Ml batches by,

w̄kNl,Ml
= 1

Ml

∑Ml

m=1 ŵ
(m),k
Nl

and
(Ŝw,k

Ml
)2

Ml
= 1

Ml(Ml−1)
∑Ml

m=1(ŵ
(m),k
Nl

− w̄kNl,Ml
)2

Similar to Eq. (18), the (1 − α) confidence interval of the lower estimator of
the LB is approximately,(

w̄kNl,Ml
− tα/2Ml−1

Ŝw,kMl√
Ml

, w̄kNl,Ml
+ t

α/2
Ml−1

Ŝw,kMl√
Ml

)
(24)

For the upper estimator of (SP-OA-MILP), we can solve (single-OA-LP) N ′l
times with N ′l i.i.d. samples of θi. The optimal objective value of the ith

(single-OA-LP) is denoted as ŵ
(i),k
1 . We can compute the mean and variance

of the objective values with,



14 C. Li, D.E. Bernal, K.C. Furman, I.E. Grossmann

w̄kN ′
l

= 1
N ′

l

∑N ′
l

i=1 ŵ
(i),k
1 and

(Ŝw,k

N′
l
)2

N ′
l

= 1
N ′

l (N
′
l−1)

∑N ′
l

i=1(ŵ
(i),k
1 − w̄kN ′

l
)2

As in Eq. (22), the (1− α) confidence interval of the for the upper estimator
of the LB can be approximated by,

(
w̄kN ′

l
− tα/2N ′

l−1

Ŝw,kN ′
l√
N ′l

, w̄kN ′
l

+ t
α/2
N ′

l−1

Ŝw,kN ′
l√
N ′l

)
(25)

With Eqs. (24) and (25), the (1 − α) confidence interval of the LB can be
approximated by,

(LB,LB) =
(
w̄kNl,Ml

− tα/2Ml−1
Ŝw,kNl,Ml√
Ml

, w̄kN ′
l

+ t
α/2
N ′

l−1

Ŝw,kN ′
l√
N ′l

)
(26)

5.3 SAAOA with confidence intervals

With the confidence interval results from Eqs. (23) and (26), we can approx-
imate the values of the upper and lower bounds of the ‘true’ SP at each iter-
ation of the OA algorithm with high probability. The high-level overview of
the SAAOA with confidence intervals is shown in Figure 1. At each iteration,
we solve Ml (SAA-OA-MILP) problems each with size Nl. Then we fix the
first stage binary and continuous variables and solve N ′l (single-OA-LP) to
construct the upper estimator of the LB. After that, we only fix the first stage
binary variables y and solve Mu batches of (SAA-nonconvex-NLP) each with
sample size Nu to construct the lower estimator of the UB. Then we solve Nu
(single-nonconvex-NLP) to construct the upper estimator of the UB. At the
end of each iteration, we check if the algorithm converges (if LB ≥ UB − ε).
The steps of the SAAOA method with confidence interval estimators are de-
scribed in Algorithm 2.

It is difficult to estimate the desired sample sizes for the estimators a
priori. Therefore, we may need to update the sample sizes, Nu, Mu, N ′u, Nl,
Ml, N

′
l , if the confidence intervals are not tight enough. The update policies

for those parameters are not unique. We discuss the update policies in the
next subsection.

5.4 Update policies

As we have discussed, estimating the proper sample size before we solve any of
the SAA problems is challenging. Small sample sizes may yield large confidence
intervals and provide poor estimates for the upper and lower bounds. On the
other hand, large sample sizes becomes too conservative and increases the
computational time. Therefore, choosing the update policies on Nu, Mu, N ′u,
Nl, Ml, N

′
l , is crucial to the performance of the algorithm.
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Algorithm 2
Initialization: Iteration counter k = 1; upper bound UB = +∞.
Generate Ml i.i.d. batches of samples with size Nl, one batch of samples with size N ′l , Mu

i.i.d. batches of samples with size Nu and one batch of samples with size N ′u of θ ∼ P
Step 1
for m = 1 to Ml do

Convexify the (SAA-nonconvex-MINLP) with the mth batch of samples of size Nl and
generate (SAA-OA-MILP).
end for
Step 2
for m = 1 to Ml do

Solve the (SAA-OA-MILP) with the mth batch of samples. Denote the objective value

as ŵ
(m),k
Nl

and the optimal binary variable value as ȳ(m),k

end for
Step 3 Compute the mean and variance of the solutions:

w̄kNl,Ml
= 1

Ml

∑Ml
m=1 ŵ

(m),k
Nl

and
(Ŝ

w,k
Ml

)2

Ml
= 1

Ml(Ml−1)

∑Ml
m=1(ŵ

(m),k
Nl

− w̄kNl,Ml
)2

Let ȳk be the most common integer solution among all the ȳ(m),k, m ∈ [Ml].
Step 4
for i = 1 to N ′l do

Convexify (SAA-MINLP) with the ith single sample. Generate (single-OA-LP).
end for
Step 5 For all the following N ′l problems, fix x := x̃ (x̃ can be any feasible solution or a

solution of any batch of (SAA-OA-MILP) at iteration k where the optimal solution ȳk is
found).
for i = 1 to N ′l do

Solve (single-OA-LP), with a single sample θi. Denote the objective value as ŵ
(i),k
1

end for
Compute the mean and variance of the objective values:

w̄k
N′

l
= 1

N′
l

∑N′
l

i=1 ŵ
(i),k
1 and

(Ŝ
w,k

N′
l

)2

N′
l

= 1
N′

l
(N′

l
−1)

∑N′
l

i=1(ŵ
(i),k
1 − w̄k

N′
l
)2

Step 6 Compute the confidence interval of the lower bound

(LB,LB) =
(
w̄kNl,Ml

− tα/2Ml−1

Ŝ
w,k
Nl,Ml√
Ml

, w̄k
N′

l
+ t

α/2

N′
l
−1

Ŝ
w,k

N′
l√
N′

l

)

For the upper estimators, we are solving N ′u or N ′l single sample size prob-
lems. The numbers N ′u, N ′l affect the accuracy of the estimates of the feasible
solutions (x̃, ỹ). The sample sizes N ′u, N ′l should increase if the confidence
intervals for the upper estimators in Eqs. (22) and (25) are too large.

For the lower estimators, we have two types of parameters to tune, i.e., the
batch sizes Ml and Mu, and the sample size of each batch Nl, Nu. Increasing
the value of the batch sizes Ml and Mu make the estimators for the expected
value more accurate, i.e., the length of the confidence intervals for the lower
estimators in Eqs. (18) and (24) will decrease. The impact of increasing the
value of the sample sizes Nl, Nu is two-fold. First, the expectation of the
lower estimators becomes tighter with the increase in the sample size, which
is proved by Mak et al. [23].

Eθi∼P
[
û
(m),k
Nu

]
≤ Eθi∼P

[
û
(m),k
Nu+1

]
≤ UB(ȳk), ∀Nu (27)
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Update the sample size with some update policy. Go back to step 1 if necessary.

Let LB = w̄k
N′ ,LB = w̄kNl,Ml

− tα/2Ml−1

Ŝ
w,k
Nl,Ml√
Ml

, LB = w̄k
N′

l
+ t

α/2

N′
l
−1

Ŝ
w,k

N′
l√
N′

l

.

If LB ≥ UB − ε, then go to step 11; otherwise go to step 7.
Step 7 Fix y := ȳk.
for m = 1 to Mu do

Solve (SAA-nonconvex-NLP) to global optimality. Denote objective value as û
(m),k
Nu

end for
Compute the mean and variance of the lower estimator of the upper bound,

ūkNu,Mu
= 1

Mu

∑Mu
m=1 û

(m),k
Nu

,
(Ŝ

u,k
Mu

)2

Mu
= 1

Mu(Mu−1)

∑Mu
m=1(û

(m),k
Nu

− ūkNu,Mu
)2

Step 8 For all the following N ′u problems, fix x := x̃k, given by heuristics.
for i = 1 to N ′u do

Solve the single-nonconvex-NLP. Denote the objective value as û
(i),k
1

end for
Compute the mean and variance of the upper estimator of the upper bound,

ūk
N′

u
= 1

N′
∑N′

u
i=1 û

(i),k
1 ,

(Ŝ
u,k

N′
u
)2

N′
u

= 1
N′

u(N′
u−1)

∑N′
u

i=1

(
û
(i),k
1 − ūk

N′
u

)2
Step 9 Compute the confidence interval of the optimality gap for the upper bound(

ūkNu,Mu
− tα/2Mu−1Ŝ

u,k
Mu

, ūk
N′

u
+ t

α/2
N′

u−1
Ŝu,k
N′

u

)
Update the sample size with some update policy. Go back to step 1 or step 7 if necessary.

Otherwise if ūk
N′

u
< UB − ε , then let UB = ūk

N′
u

, UB = ūkNu,Mu
− tα/2Mu−1Ŝ

u,k
Mu

, UB =

ūk
N′

u
+ t

α/2
N′

u−1
Ŝu,k
N′

u
, y∗p = ȳk, x∗p = x̃k. Add ‘no-good’ cut corresponding to ȳk to (SAA-

OA-MILP).
If LB ≥ UB − ε, then go to step 11; otherwise go to step 10.
Step 10 Let k = k + 1 and return to step 2
Step 11 Stop, the optimal solution is y∗p , x∗p and the optimal objective value is UB.

Fig. 1 Flowchart of the SAAOA algorithm with confidence interval estimators

Therefore, increasing the sample size makes the lower estimator tighter and
Algorithm 2 may converge in fewer iterations. Second, the variance of the
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lower estimator decreases with the increase in the number of samples. With
the same number of batches, tighter confidence intervals can be obtained with
larger sample size.

We describe two update policies for choosing the sample and batch sizes.
Policy 1 (P1): Increase if loose confidence interval policy At each iteration,

check if the confidence interval is tight enough. If not, multiply the number of

samples by a fixed ratio. For example, if t
α/2
Ml−1

Ŝw,k
Nl,Ml√
Ml

is large, increase Nl by

setting Nnew
l = βNold

l , increase Ml by setting Mnew
l = γMold

l , where β and
γ are parameters greater than 1. Note that the ‘no-good’ cut is only added
when the confidence interval for the UB is tight. Upper limits for Nu, Mu, N ′u,
Nl, Ml, N

′
l are set to avoid intractability, which could sacrifice the tightness

of the confidence intervals.
Policy 2 (P2): Increase until overlap policy Do not increase the initial

sample sizes until the confidence interval of the LB and the confidence interval
of the UB overlap. After the overlap occurs, increase the sample sizes of (SAA-
OA-MILP) and/or (single-OA-LP) at the current iteration if the confidence
interval of the LB is not tight and increase the sample sizes of (SAA-nonconvex-
NLP) and/or (single-nonconvex-NLP) corresponding to the best UB found so
far if the confidence interval for the UB is not tight. The increase strategy could
be multiplying fixed ratios similar to P1. Keep increasing the sample sizes until
one of the three cases occur: 1) the confidence intervals of the lower and the
upper bound become tight; 2) the confidence intervals no longer overlap but
the LB is still lower than the current best UB; 3) the confidence intervals no
longer overlap but the LB is greater than the best UB. In case 1), check if the
UB is less than the LB, if not, keep iterating. Otherwise, terminate. In case
2), keep iterating until the bounds overlap again. In case 3), terminate. The
‘no-good’ cut is added in a given iteration if the confidence intervals do not
overlap or the UB confidence interval is tight. Note that if one keeps iterating,
then the same strategy is used recursively until one of the termination criteria
is satisfied. Since the confidence intervals of the UB are not necessarily tight
when the algorithm terminates, reevaluating all the integer solutions ȳks may
be needed to find the best feasible solution.

We make the following remark to end this section.

Remark 3 The algorithm can be applied to two-stage SP with both continuous
and binary first stage variables in the first stage. However, it works better for
problems with pure binary variables in the first stage. In this case, we do not
have to solve (SAA-nonconvex-NLP), which can be a large scale nonconvex
NLP. Instead, we need to solve (single-nonconvex-NLP), potentially in parallel.

6 Computational Results

Algorithm 2 with the two proposed update policies is implemented in Pyomo
/ Python [7]. The proposed algorithm is implemented in a python package
saaoa.py and can take a two-stage model in the data structure of PySP [32].
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6.1 Stochastic Pooling problem

The stochastic pooling problem has been studied by Li et al. [19, 21]. The
first stage decisions are investment decisions on sources, pools, and pipelines,
which are represented as binary variables. The second stage decisions are the
mass flows and the split fractions, which are represented as continuous vari-
ables. The constraints include mass balance, investment capacity, and quality
specifications. The objective is to minimize the expected cost. We assume that
the uncertainty arises from the quality of one source whose deviation from the
nominal value follows a truncated distribution N (0, σ) where the parameter
values less than −2σ or greater 2σ are truncated .

We apply the SAAOA algorithm described in Algorithm 2 to solve the
problem for σ = 0.0031 and σ = 0.004 using both update policies P1 and P2.
Since the problem only has pure binary first stage variables, we do not need
to solve (SAA-nonconvex-NLP). The sample sizes and batch sizes that need
to be updated are Nl, Ml, N

′
l , N

′
u. We multiply the sizes by fixed ratios, i.e.,

Nnew
l = βNold

l , Mnew
l = γMold

l , N ′
new
l = βN ′

old
l , N ′

new
u = βN ′

old
u , where β

and γ are constants greater than 1. In the SAAOA algorithm, we start with
Nl = 50, Ml = 10, N ′l = 50, N ′u = 50 and update the sample sizes using P1
and P2 respectively. We calculate the 95% confidence intervals for both the
upper and lower bound, i.e., α = 5%. A confidence interval is considered tight
if the relative gap between its upper and lower estimators is less than 5%.

The convex relaxation for (SAA-MINLP) is obtained using a special version
of BARON [12] which provides the root node polyhedral relaxation. (SAA-OA-
MILP) and (single-OA-LP) are solved using CPLEX v.12.9 and the (single-
nonconvex-NLP) problems are solved with BARON v.19.3.24.

To compare with the SAAOA algorithm, we use BARON to solve 10
batches of (SAA-MINLP) problems each with a sample size of 50. The time
limit for each (SAA-MINLP) problem is set to 10,000 seconds. The expectation
of (SAA-MINLP) provides a lower bound for the original (SP-MINLP). The
lower estimator of (SP-MINLP) can be obtained similar to Eq. (26). Once we
fix the binary variables from the optimal solution of (SAA-MINLP), we solve
100 individual (single-nonconvex-NLP) to estimate the expected value of the
optimal solution. The best solution for the 10 batches is reported. All the
problems are solved using one processor of an Intel Xeon (2.67GHz) machine
with 64 GB RAM.

The computational results for σ = 0.0031 and σ = 0.004 are shown in
Table 1. In the case of σ = 0.0031, P1 and P2 give the same results. We
use different constants β and γ for updating the sample sizes. The upper and
lower bound estimators when the SAAOA algorithm terminates are shown in
the table. Note that we allow the algorithm to terminate after the confidence
interval of the LB is strictly greater than the confidence interval of the UB. In
all the four cases, the SAAOA algorithm returns the same optimal solution,
which gives an optimal value of -115.0. In both policies, the parameters Ml,
Nl, N

′
l are updated once at the last iteration to tighten the LB. After the up-

date, the algorithm terminates. Therefore, the smallest update ratio, β = 1.5,
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Table 1 Computational results.

Variance σ = 0.0031 σ = 0.004

Policy P1 and P2 DE P1 P2 DE

β 2 2 1.5 1.5 - 2 2 1.5 1.5 2 2 1.5 1.5 -
γ 2 1.5 2 1.5 - 2 1.5 2 1.5 2 1.5 2 1.5 -

Wall time (s) 833 712 612 541 100,412 19,397 16,162 16,871 11,610 12,578 13,444 7,676 9,829 100,471
Iteration 9 9 9 9 - 22 24 20 20 21 22 10 12 -

UB -115.0 -115.0 -115.0 -115.0 -115.0 -115.0 -115.0 -115.0 -115.0 -115.0 -115.0 -115.0 -115.0 -115.0
UB -115.0 -115.0 -115.0 -115.0 -115.0 -115.0 -115.0 -115.0 -115.0 -115.0 -115.0 -115.0 -115.0 -115.0

LB -105.0 -115.0 -105.0 -105.0 - -107.2 -105.5 -109.6 -111.4 -108.7 -105.0 -103.5 -109.5 -
LB -113.5 -109.8 -110.9 -109.1 -172.4 -114.5 -114.8 -114.6 -114.5 -114.2 -113.8 -114.8 -113.9 -171.3

Nl 100 100 75 75 50 200 200 168 168 200 200 168 252 50
Ml 20 15 20 15 10 40 22 80 33 40 22 80 49 10
N ′l 100 100 75 75 - 3,200 2,000 2,868 2,868 1,600 3,200 75 168 -
N ′u 50 50 50 50 100 2,000 3,200 2,000 2,000 2,000 2,000 50 75 100
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Fig. 2 Bounds convergence for test case with σ = 0.004, β = 1.5, γ = 2

γ = 1.5 gives the least computational time. The column ‘DE’ (deterministic
equivalent) represents using BARON to solve (SAA-MINLP) directly. Here,
we slightly abuse notation to report the UB estimator and the LB estimator
returned by external sampling. It is easy to see that the SAAOA algorithm
outperforms external sampling given that it avoids solving the large scale non-
convex MINLP problem directly.

Compared with the low variance case, in the case with σ = 0.004 the
algorithms need more iterations to converge especially for P1. Recall that in
P1, the sample sizes are updated whenever the confidence intervals are not
tight. Therefore, if the confidence interval of the UB in a given iteration is
not tight enough, we need to run another iteration with an increased sample
size without adding a ‘no-good’ cut to cut off the current binary solution. In
P2, the algorithm keeps adding one ‘no-good’ cut to the master problem at
each iteration until the confidence intervals of the upper and the lower bound
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overlap. In general, P2 takes less computational time and fewer iterations to
converge than P1.

To show how P1 and P2 perform differently, we show the convergence of
the confidence intervals of σ = 0.004, β = 1.5, γ = 2 in Figure 2. In the begin-
ning, the confidence intervals for both the upper and lower bounds are tight.
When the confidence intervals become loose, P1 increases the sample sizes
immediately to get tighter confidence intervals. As a result, P1 spends several
iterations just to tighten the confidence intervals while the gap between bounds
does not reduce significantly. On the other hand, P2 keeps adding ‘no-good’
cuts until the upper and the lower confidence intervals overlap. Therefore, P2
converges in a fewer number of iterations and saves computational time.

Remark 4 In general, P2 outperforms P1 in terms of the number of iterations
and computational time. In the test cases, they yield the same optimal solution.
P1 is more conservative in adding ‘no-good’ cuts to the master problem, i.e., a
‘no-good’ cut can only be added if the confidence interval corresponding to the
integer solution is tight. Computational time can be wasted in constructing a
tight estimate for suboptimal solutions. However, if the user prefers to have
a tight estimate for each solution so that one can be more certain that one
solution is suboptimal, P1 is preferable.

7 Conclusions

In this paper, we propose a sample average approximation based outer ap-
proximation (SAAOA) algorithm for solving two-stage nonconvex stochastic
MINLPs. The SAAOA algorithm iterates between an MILP master problem
(SAA-OA-MILP) and nonconvex NLP subproblems (SAA-nonconvex-NLP).
We prove that the SAAOA algorithm converges as the sample size tends to in-
finity and provides a theoretical estimate for the sample size. Since the sample
size estimates are too conservative in practice, we design an SAAOA algorithm
with confidence interval estimates for the upper bound and the lower bound at
each iteration of the OA algorithm. To construct the confidence intervals, we
define (single-OA-LP) and (single-nonconvex-NLP), which are proved to pro-
vide upper estimators for the lower bound and upper bound, respectively. The
sample sizes are updated dynamically using some update polices. We propose
two update policies, namely, P1: Increase if loose confidence interval policy
and P2: Increase until overlap policy. The algorithm is suitable for solving
two-stage stochastic MINLPs with pure binary variables where the nonconvex
NLP subproblems can be solved for each scenario separately. Computational
results are shown for a stochastic pooling problem. The SAAOA algorithm with
confidence interval estimates is shown to perform better than solving the de-
terministic equivalent (SAA-MINLP) directly in terms of computational time
and optimality gap. We provide some criteria for selecting between update
Policy 1 and Policy 2 in Remark 4.

Future work can be focused on improving the update policies. To find an
update policy that works well in general, we need to have more test cases
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to benchmark different update policies and tune the parameters like the fixed
ratio in the two update policies proposed in this paper. Although the algorithm
can be used to address stochastic nonconvex MINLPs with mixed-binary first
stage variables in theory, it is only computationally efficient for stochastic
nonconvex MINLPs with pure binary first stage variables. Another possible
future direction would be making the algorithm more efficient for problems
with mixed-binary first stage variables.
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12. Kılınç, M.R., Sahinidis, N.V.: Exploiting integrality in the global opti-
mization of mixed-integer nonlinear programming problems with baron.
Optimization Methods and Software 33(3), 540–562 (2018)

13. King, A.J., Rockafellar, R.T.: Asymptotic theory for solutions in statisti-
cal estimation and stochastic programming. Mathematics of Operations
Research 18(1), 148–162 (1993)

14. Kleywegt, A.J., Shapiro, A., Homem-de Mello, T.: The sample average
approximation method for stochastic discrete optimization. SIAM Journal
on Optimization 12(2), 479–502 (2002)

15. Kronqvist, J., Bernal, D.E., Lundell, A., Grossmann, I.E.: A review and
comparison of solvers for convex minlp. Optimization and Engineering
20(2), 397–455 (2019)

16. Li, C., Grossmann, I.E.: A finite ε-convergence algorithm for two-stage
stochastic convex nonlinear programs with mixed-binary first and second-
stage variables. Journal of Global Optimization pp. 1–27

17. Li, C., Grossmann, I.E.: An improved l-shaped method for two-stage con-
vex 0-1 mixed integer nonlinear stochastic programs. Computers & Chem-
ical Engineering 112, 165–179 (2018)

18. Li, C., Grossmann, I.E.: A generalized benders decomposition-based
branch and cut algorithm for two-stage stochastic programs with noncon-
vex constraints and mixed-binary first and second stage variables. Journal
of Global Optimization pp. 1–26 (2019)

19. Li, X., Armagan, E., Tomasgard, A., Barton, P.I.: Stochastic pooling prob-
lem for natural gas production network design and operation under un-
certainty. AIChE Journal 57(8), 2120–2135 (2011)

20. Li, X., Tomasgard, A., Barton, P.I.: Nonconvex generalized benders de-
composition for stochastic separable mixed-integer nonlinear programs.
Journal of Optimization Theory and Applications 151(3), 425 (2011)

21. Li, X., Tomasgard, A., Barton, P.I.: Decomposition strategy for the
stochastic pooling problem. Journal of Global Optimization 54(4), 765–
790 (2012)

22. Linderoth, J., Shapiro, A., Wright, S.: The empirical behavior of sam-
pling methods for stochastic programming. Annals of Operations Research
142(1), 215–241 (2006)

23. Mak, W.K., Morton, D.P., Wood, R.K.: Monte carlo bounding techniques
for determining solution quality in stochastic programs. Operations Re-



SAA for Stochastic Nonconvex MINLP via OA 23

search Letters 24(1-2), 47–56 (1999)
24. Mijangos, E.: An algorithm for two-stage stochastic mixed-integer non-

linear convex problems. Annals of Operations Research 235(1), 581–598
(2015)

25. Misener, R., Thompson, J.P., Floudas, C.A.: Apogee: Global optimization
of standard, generalized, and extended pooling problems via linear and
logarithmic partitioning schemes. Computers & Chemical Engineering
35(5), 876–892 (2011)

26. Norkin, V.I., Pflug, G.C., Ruszczyński, A.: A branch and bound method
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