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Abstract 

This paper presents a multiple time grid continuous time MILP model for the short-term scheduling of 

single stage, multiproduct batch plants where the objective is the minimization of total cost or total 

earliness. It can handle both release and due dates and it can determine the products delivery dates 

explicitly if these need to be considered in the objective function. This formulation is compared to other 

mixed-integer linear programming approaches that have appeared in the literature, to a constraint 

programming model, and to a hybrid mixed integer linear/constraint programming algorithm. The 

results show that the proposed formulation is significantly more efficient than the MILP and CP models 

and comparable to the hybrid model when the objective is the minimization of total cost. For one large 

instance, both methods exceeded the time limit but the hybrid method failed to find a feasible solution. 

The results also show that a discrete-time formulation performs very efficiently even when a large 

number of time intervals are used. 
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1. Introduction 

Scheduling is concerned with allocation of resources over time so as to execute the processing tasks 

required to manufacture a given set of products (Pinedo, 2001). Depending on the amount of resources 

and time that one has available, finding a feasible or an optimal schedule with respect to a certain 

objective, can be trivial or very complex. The simplest scheduling problem is the single machine 

sequencing problem. If more than one equipment or machine exists, the solution involves not only order 

sequencing of tasks or orders, but also their assignment to a particular machine. The machines can be 

arranged in parallel, in series or on a more complex structure where a given machine can be used for 

tasks belonging to different stages of the process. On multistage problems we need to account for the 

flow of material between stages to ensure that a given order only starts being processed on a stage after 

it has gone through the previous one, which adds more complexity to the problem. In the limit, orders 

do not have an identity throughout the process and the materials that make the orders must be 

considered instead. In that case, order sequencing becomes undefined and different types of variables 

must be used to model this more general problem. 

General mathematical formulations for scheduling are either based on the State Task Network 

(Kondili et al., 1993) or Resource Task Network (Pantelides, 1994) process representations. STN or 

RTN-based formulations can be applied to any process plant featuring operations spanning from batch 

to continuous, consisting of fixed or variable duration tasks, with the major difference being that the 

STN treats equipment resources implicitly, while the RTN treats them explicitly. Earlier formulations 

use a discrete representation of time and may involve several thousands of binary variables in order to 

handle a sufficiently fine discretization that closely matches the exact problem data. As a consequence, 

when solving large problems, problem data is usually rounded to maintain problem tractability. Overall, 

discrete-time mixed integer linear programming formulations are usually very tight and perform well for 

a variety of objective functions, even makespan minimization (Maravelias & Grossmann, 2003b). 

Continuous-time formulations began to appear in the last decade, and have received much attention 

recently. Recent examples of STN-based formulations are the work of Giannelos & Georgiadis (2002a, 



3 

2002b), Maravelias & Grossmann (2003a) and Janak et al. (2004), while for the RTN we have the work 

of Castro et al. (2004a, 2005). In continuous-time formulations one needs to specify the number of 

points that compose the time grid(s), depending on whether the formulation uses a single time grid 

(Maravelias & Grossmann, 2003a, Castro et al., 2004a, 2005) or one for each equipment resource 

(Giannelos & Georgiadis, 2002a, 2002b, Janak et al., 2004). Both the computational effort and quality 

of the solution depend greatly on the number of time points selected, so one must solve a few problems 

before the optimal solution is found. Overall, MILP continuous-time formulations consider the exact 

problem data but tend to have larger integrality gaps, meaning that they can only be used to solve small 

problems. They are also less flexible in terms of handling different objective functions and general, 

efficient constraints for modeling both release and due dates have still not appeared in the literature. 

Single or multistage, multiproduct plants have special characteristics that allow for a different type of 

mathematical programming approach, where some of the model variables are more closely related to the 

real world decisions (e.g. assign order i to machine m, make order i before i’). Examples of sequential 

MILP short-term scheduling models can be found in Pinto & Grossmann (1995), Mendez & Cerda 

(2000, 2002), Jain & Grossmann (2001), Harjunkoski & Grossmann (2002). When compared to the 

general continuous-time formulations, the more recent sequential models do not need to specify the 

number of event points, meaning that they only need to be solved once. Another important advantage is 

that heuristic rules can be used to pre-order items in order to decrease the complexity of the problems 

and allow for bigger problems to be solved. 

Constraint programming (CP) is another technique that can be used for solving some classes of 

scheduling problems (Baptiste, Le Pape, & Nuijten, 2001). CP is particularly effective for solving 

feasibility problems and seems to be better suited than traditional MILP approaches in special types of 

discrete optimization problems where finding a feasible solution is difficult. The lack of an obvious 

relaxation, however, makes CP worse for loosely constrained problems, where the focus is on finding 

the optimal solution among many feasible ones and proving optimality. Overall, CP and MILP have 

complementary strengths that can be combined into hybrid algorithms, yielding considerable 
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computational improvements when compared to the standalone approaches. Examples of these are the 

work of Jain & Grossmann (2001) for single-stage, Harjunkoski & Grossmann (2002) for multistage 

multiproduct plants, and Maravelias & Grossmann (2004a, 2004b) for multipurpose plants. 

This paper presents a new RTN-based continuous-time MILP model for minimizing cost in the short-

term scheduling of single stage multiproduct plants with parallel units of machines. It is based on the 

general formulation of Castro et al. (2004a), but has one important difference: a different time grid is 

used for each machine of the process instead of a single time grid for all events taking place. New 

constraints are presented that allow the consideration of both release and due dates in a general way. We 

also add new variables to the model that represent the delivery dates of the several product orders. In 

this way, more complex objective functions, such as earliness minimization can also be considered. This 

however, gives rise to loose MILP models with which only medium-sized problems can be solved to 

optimality. In order to address larger problems effectively, we propose an approximation algorithm that 

first uses a discrete-time formulation to determine the assignments of orders to machines, and then 

solves the earliness minimization single machine problem for all machines of the process. The new 

formulation is shown to perform much better than other continuous-time MILP formulations and 

standalone CP models, and is comparable to the hybrid MILP/CP algorithm of Maravelias & 

Grossmann (2004b) on a set of example problems where the objective is the minimization of total cost. 

The strengths and limitations of the six approaches under consideration will be emphasized. 

The rest of the paper is structured as follows: Section 2 gives the problem definition. Section 3 

presents the new multiple time grid continuous-time formulation as well as the simplified version (for 

the single stage parallel machine problem) of the general discrete and uniform time grid continuous-

time formulations. The main characteristics of other approaches that have been used to solve this 

specific type of problem are given in section 4, while the results for the two sets of well known 

problems is left for section 5. Finally, the conclusions are given in section 6. 



5 

2. Problem definition 

In this paper, the short-term scheduling problem of single stage multiproduct batch plants with 

parallel units is considered. A set I of product orders is to be processed on a set M of dissimilar parallel 

machines, where any given machine m can process all orders belonging to set Im. The processing time of 

order i on machine m is assumed to be known (pi,m), as well as its release ri and due dates di, which are 

treated as hard constraints. It is also assumed that if setup times exist, they are not sequence dependent, 

so that they can be incorporated on the processing time. Two alternative objectives are considered: i) 

minimization of the total cost, where the processing cost of order i on unit m is given by ci,m; ii) 

minimization of total earliness. 

3. Mathematical formulations 

In this section, three Mixed-Integer Linear Programming models based on the Resource Task 

Network are presented. Although they use similar sets of variables and constraints, each treats time 

differently, giving rise to problems of different size and complexity. The type of time grid used by each 

formulation is shortly described before the model entities are presented. 

3.1. Uniform-time grid formulations 

In uniform time grid formulations, all events taking place report to a single time grid. The time 

horizon of interest H, given by difference between the highest due date and the lowest release date 

( iIiiIi
rd

∈∈
−minmax ), is divided into |T|-1 time slots. If a discrete representation of time is used, all intervals 

will have the same duration (δ), with H being a multiple of δ. All processing times must also be 

multiples of δ, which means that a very small value of δ, and consequently a large number of time 

intervals, may be required to achieve good approximation to the exact problem data. If one finds that the 

resulting mathematical problem becomes too difficult to solve, one can use a higher value of δ and 

round the duration of the tasks to the next integer multiple of δ (τi,m). The drawback is that suboptimal 
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or infeasible solutions may result since the problem being considered is an approximation of the real 

one. The discrete-time grid is shown in Figure 1. 
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Figure 1. Uniform time grid for discrete-time formulation 

The number of time intervals can be reduced if a continuous representation of time is used instead. In 

such a case, the time points (the elements of set T) usually have at least one task starting or ending† so 

are often called event points. The absolute time of all time points that compose the time grid, and hence 

the duration of all time intervals, is known only after solving the model. The lower bound on the 

absolute time of the first event point is equal to the minimum release date and the upper bound on the 

absolute time of the last event point is equal to the maximum due date. The continuous-time grid is 

shown in Figure 2. 
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Figure 2. Uniform time grid for continuous-time formulation 

3.1.1. Discrete-time formulation (F1) 

The discrete-time formulation is very simple since it uses only two sets of variables and constraints 

plus the objective function. The processing of order i on machine m starting at time point t is identified 

through the binary variable Ni,m,t, while the availability of a given machine at the same time point is 

                                                 
† When more time points are used than those required to find the optimal solution, there can be time 
points where no task is starting or ending. However, these are easily identified since they will have the 
same absolute time as other event points. 
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given by the excess resource variable Rm,t (equal to one if the machine is available, zero otherwise). It is 

worth mentioning that the excess resource balance (eq 1) ensures that the excess resource variables Rm,t 

can only take 0 or 1 values, so they can be defined as continuous variables instead of binary variables. 

The large number of time intervals usually required in discrete-time formulations makes this option 

computationally more effective. Note however, that when few intervals are used, e.g. in continuous-time 

formulations, the effect can be the opposite so the two alternatives should be tried. 

Due to the release and due dates, each order can only start on a subset of the total number of time 

points on the grid, |T|. Furthermore, since the approximated processing times (τi,m) on the various 

machines can be different, the number of possible starting points will also be machine dependent. The 

set of orders that can start at time point t on machine m is specified in It,m and its consideration 

significantly reduces the number of binary variables in the model. The other required subsets are given 

in the Nomenclature section. 

The first constraint is the excess resource balance, which is a typical multiperiod balance, where the 

availability of machine m at time point t is equal to that at the previous time point, minus one if there is 

a task starting at t, plus one if there is a task ending at t (starting at t-τi,m). Notice that 1 represents the 

initial resource availability, only used at the first time point. The second constraint is simpler, stating 

that all orders must be processed exactly once. 

TtMmNNRR
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As mentioned in section 2, two different objective functions will be considered. The first, 

minimization of total cost, is given in eq 3, 

∑ ∑ ∑
∈ ∈ ∈mi iTt Mm Ii

mitmi cN
,

,,, min  (3) 

The second, minimization of total earliness, is more difficult to define. In eq 4, the second term 

represents the time corresponding to the first time point, while the third term represents the ending times 
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of all processing tasks (number of time intervals spanned by all tasks multiplied by the duration of each 

time interval). 

∑ ∑ ∑∑
∈ ∈ ∈

∈
∈

−+−−=
mi iTt Mm Ii

mitmiiIiIi
i tNrd

,

)1(min Zmin ,,,''
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3.1.2. Continuous-time formulation (F2) 

The continuous-time formulation presented below is a simplified version of the general formulation 

presented in Castro et al. (2004a) with the addition of release and due date constraints. Due to the 

special characteristics of the problem being considered, a processing task is now referred by two 

indexes (order i, plus m for the machine where it is executed) and we only need to be concerned with 

the equipment resources, |M|. 

The continuous time formulation uses more sets of variables and constraints than its discrete-time 

counterpart due to the fact that the time corresponding to each event point (Tt) is unknown. The other 

important difference is that when considering batch tasks, we do not know a priori how many time 

intervals a particular task will span. Thus, both the starting and ending event point of the task must be 

considered, which means that the binary extent variables will have two time indexes instead of one: 

',,, ttmiN . Regarding this set of variables, it will be assumed that each task can only span a limited number 

of time intervals: ttt ∆+≤' . Although ∆t may act as a hidden constraint, the use of a value smaller than 

the maximum one (|T|-1) substantially improves the performance of the formulation (further details can 

be found in Castro et al., 2005). 

The first two constraints (eq 5 and 6) are equivalent to eq 1 and 2, but now one more summation is 

required to find the exact event point where the task ends (if started at t) or starts (if it ends at t), see eq 

5. Notice also that all orders can start at any point but the last. This is because we do not know for sure 

which variables can be eliminated from the formulation without compromising the optimal solution, 

even so it is expected that orders with earlier due dates will end at lower event points. 
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The next set of constraints relates the time of two event points to the processing time of the task 

occurring between those two event points. Although it can either be written per order or per machine, 

the latter option is preferred (eq 7) since it leads to a better performance (see Castro et al., 2004a). The 

model would be complete if it were not for the release and due date constraints. Eq 8 states that if order 

i starts at time point t, the absolute time of event point t cannot be lower than its release date. Eq 9 is the 

equivalent constraint for due dates, and is formulated as a big-M constraint (active if there is an order 

being processed on machine m that actually ends at t, otherwise the constraint is relaxed, see eq 10). Eq 

11 fixes the time of the last event point to the maximum due date, which although not necessary, also 

improves the performance of the model. 
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If one intends to minimize the total cost, the model ends with eq 14. Otherwise, if one wants to 

minimize the total earliness (eq 15), one additional set of positive continuous variables DDi, the delivery 

date of order i, and two more sets of big-M constraints, must be defined. Note that in eq 12, the delivery 

date of order i must not be lower than the absolute time of event point t if it ends at or after t. Similarly, 

in eq 13, the delivery date must not be higher than Tt if the order ends at or before t. 
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3.2. Multiple time grid, continuous time formulation (F3) 

The continuous-time formulation presented below uses multiple time grids, i.e. each machine uses a 

time grid similar to the one given in Figure 2. As a consequence, events occurring on machine m will 

report only to time grid m, and all |M| time grids are completely independent, meaning that no relation is 

assumed between event points of different time grids. Nevertheless, the time grids have two things in 

common: i) same number of time points; ii) same lower and upper bounds on the first and last time 

points, respectively. A representation of the multiple time grid formulation, which highlights the 

independence of the several time grids, is shown in Figure 3. 

M1

M2

M3
 

Figure 3. Possible solution of non-uniform time grid continuous-time formulation (|I|=15, |M|=3, |T|=6) 

The advantage of considering |M| independent time grids is that we can assume, without loss of 

generality, that all processing tasks last exactly one time interval. This means that if a task starts at 

event point t, it will end at t+1 so only one time index needs to be considered in the binary extent 

variables, Ni,m,t, just like in the discrete time formulation. The other difference in terms of model 

variables, when compared to the uniform time grid continuous-time formulation, is that |M|×|T| event 

points must be assigned a time, so the continuous variables that represent the absolute time of a given 

event point have two indices: Tt,m. Variables Rm,t have the same meaning as in the two previous models, 

but based on computational experience it is better to consider them as binary variables. 
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The model constraints shown next are very similar to the constraints of the uniform-time grid 

formulation, so there is no need of explaining them again. There are however, two exceptions. The first, 

is that we also consider time matching constraints (eq 19) to enforce the difference between the times of 

two consecutive event points to be equal to the processing time of the order being executed, if there is 

one (if not, the constrained is relaxed to Tt+1,m-Tt,m≤H). These constraints, although not necessary, lead 

to better computational performances whenever its inclusion does not increase the number of time 

points required to find the global optimum solution (note that without the time matching constraint each 

task may last more than its processing time, and thus incorporate an eventual idle time of the machine 

where it is being processed, which is an effective way of decreasing the required number of time 

points). Note also, that if one wants to remove solutions that feature waiting periods between orders, 

then the first term on the right-hand side of eq 19 can be removed, which is equivalent to turning 

equation 18 into an equality. Although this typically leads to an improved computational performance, 

there is the risk of excluding the optimal solution from the formulation. The second exception, is that it 

is not convenient to fix the time of the last time point of all grids to the maximum due date, since we do 

not know where that order is going to be processed (see eq 22). The objective for minimizing earliness 

is written in exactly the same way as for model F2 (see eq 15). 
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4. Other approaches 

The single stage parallel scheduling problem can also be solved by other approaches. The three 

alternative models tested are essentially those described in Jain & Grossmann (2001). Thus, instead of 

showing the detailed models we will focus on the main characteristics of each method and highlight its 

differences and similarities to the formulations shown in section 3. The changes made to the original 

continuous-time and hybrid models will also be mentioned. 

4.1. MILP model with sequencing variables (F4) 

Not all continuous-time formulations need to consider one or more time grids explicitly. If one 

considers binary assignment xi,m and sequencing variables yi,i’, no time indexes are required to generate 

a MILP that can solve the problem at hand. In this way, only one problem needs to be solved to find the 

optimal solution, instead of a few problems (in the search for the adequate number of event points, |T|, 

see sections 3.1.2 and 3.2). Other advantages include the possibility to enforce or forbid certain product 

sequences and the way sequence-dependent due dates are considered. Enforcing and/or forbidding 

certain product sequences means considering fewer binary sequencing variables, while sequence 

dependent due dates are treated with exactly the same constraints (one more term is added to the timing 

constraints relating the starting time of orders i and i’). These two problem characteristics, which are 

very common in reality, can be difficult to implement on the mathematical formulations presented in 

section 3, and usually involve adding more variables and constraints, thus increasing its complexity. 
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When testing the performance of the MILP model of Jain & Grossmann (2001), it was found that for 

the objective of minimizing cost, removing the logical cuts (constraints 22 and 23 of their original 

work), which involve a large number of constrains (constraint 23 uses 4 indexes: i,i’,m,m’), generally 

yields better computational performance. For the objective of minimizing earliness, the results were not 

conclusive so we opted to maintain those constraints. 

4.2. Constraint programming model (F5) 

The same scheduling problem can also be modeled using constraint programming (CP). CP models, in 

contrast to MILP models, are highly dependent on the CP package used to model the problem. In this 

paper we use ILOG’s OPL modeling language (van Hentenryck, 1999), which has a set of constructs 

especially designed for scheduling problems. The basic OPL modeling framework is similar to the 

Resource Task Network in how it looks at the problem: a set of activities (tasks) that need to be 

performed using a certain set of resources, where the equipment resources (the machines) are defined as 

unary resources. CP models can be viewed as discrete-time models with intervals of one time unit 

length, since all variables of a given activity (start, duration and end, with start+duration=end) are 

integer variables. 

4.3. Hybrid MILP/CP model (F6) 

The strengths of both models can be combined by using a simplified version of the MILP for the 

assignments, and then solve |M| single machine problems with CP to sequence the orders that were 

assigned to a particular machine. When minimizing the total cost (defined in the MILP by Σxi,mci,m), this 

decomposition strategy has the advantage of always leading to the global optimum solution since the 

objective function only depends on the assignment variables and the simplified MILP is a less 

constrained model than the full MILP. The only drawback is that the assignments may be infeasible on 

one or more machines, but that can be overcome simply be adding integer cuts to the MILP and 

iterating until all CP sequencing problems are feasible. While the same decomposition strategy can be 

used when minimizing earliness, or generally when considering an objective that is a function of the 
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sequencing variables, the performance of this decomposition is likely to worsen as then the CP has to 

solve an optimization problem rather than a feasibility problem. 

Following the work of Jain & Grossmann (2001), Bockmayr & Pisaruk (2003) generalized the integer 

cuts and used them in a branch and cut framework, while Sadykov & Wolsey (2005) proposed a tighter 

formulation for the MILP and explored several integrated schemes. Also, Maravelias & Grossmann 

(2004b) have proposed a pre-processing algorithm that generates knapsack constraints or cover cuts for 

certain subsets of orders that can be added to the cut pool of the MILP a priori. The pre-processing 

algorithm was shown to reduce the computational effort by one order of magnitude in the set of 

instances studied by Jain & Grossmann (2001). This work uses the knapsack constraints proposed by 

Maravelias & Grossmann (2004b) for the single stage plant. 

5. Computational results 

In this section, the performance of the mathematical formulations is illustrated through the solution of 

several example problems. Two sets of case studies will be considered. The first set concerns total cost 

minimization and all 6 approaches presented in sections 3 and 4 will be tested. The second set of case 

studies involves the minimization of total earliness, and all except the hybrid MILP/CP approach (for 

the reasons explained in section 4.3) will be tested. All MILP models, where solved to optimality (1E-6 

relative tolerance), unless otherwise stated, on a Pentium-4 2.8GHz machine, running the commercial 

solver GAMS/CPLEX 9.0. The CP and hybrid MILP/CP models where implemented and solved in 

ILOG’s OPL studio 3.7, on the same machine. 

5.1. Problem set 1: minimize total cost 

The first six problems to be considered correspond to the single stage example problems 3.1-5.2 of 

Harjunkoski and Grossmann (2002), with the size of the problems spanning from 12 orders on three 

machines to 20 orders on five machines. It will be seen that half of the models tested can solve all of 

these 6 instances rather fast, so in order to find the best approach, four other, five machine problems, are 

solved. The data for these problems are given in Table 1, where problem S1G comprises the first 25 
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orders and problem S1J the full set of orders. Further and less constrained versions of these problems 

were also solved: in problem S1H the processing times of S1G were increased 5% and rounded to the 

closest integer value, while in S1I the processing times of S1J were decreased by 20% and rounded. The 

results obtained are summarized in Table 2 and discussed in the next couple of sections. 

Table 1. Data for problems S1G and S1H 

 Dates 
(day) 

pi,m (day)/ci,m 

Order ri di M1 M2 M3 M4 M5 
I1 66 110 30/5 53/2 39/4 36/4 56/1 
I2 40 188 30/5 50/2 50/2 57/1 43/3 
I3 65 163 35/4 45/3 42/3 45/3 41/3 
I4 28 137 46/3 40/3 38/4 41/3 31/5 
I5 36 221 46/3 34/4 50/2 55/1 57/1 
I6 10 126 47/3 49/2 31/5 29/5 54/2 
I7 56 286 38/4 55/1 33/4 34/4 51/2 
I8 50 237 29/5 57/1 42/3 42/3 49/2 
I9 20 254 48/2 54/2 50/2 38/4 40/3 
I10 26 119 32/5 39/4 50/2 42/3 39/4 
I11 46 229 33/4 48/2 49/2 53/2 34/4 
I12 78 189 31/5 57/1 49/2 52/2 42/3 
I13 88 159 53/2 40/3 42/3 44/3 36/4 
I14 53 219 28/5 55/1 29/5 28/5 57/1 
I15 46 281 51/2 58/1 33/4 53/2 40/3 
I16 95 269 43/3 57/1 32/5 39/4 44/3 
I17 94 200 38/4 39/4 45/3 37/4 49/2 
I18 12 258 55/1 34/4 58/1 56/1 40/3 
I19 72 142 54/2 53/2 49/2 44/3 38/4 
I20 12 184 28/5 57/1 38/4 43/3 51/2 
I21 66 294 33/4 55/1 36/4 43/3 48/2 
I22 29 184 54/2 58/1 49/2 47/2 31/5 
I23 2 295 48/2 54/2 49/2 33/4 31/5 
I24 99 156 50/2 29/5 37/4 40/3 45/3 
I25 81 142 43/3 53/2 41/3 33/4 38/4 
I26 3 270 42/3 50/2 33/4 52/2 37/4 
I27 45 277 41/3 54/1 57/1 43/3 49/2 
I28 2 134 49/2 50/2 40/3 37/4 45/3 
I29 16 170 54/2 37/4 48/2 48/2 43/3 
I30 75 157 57/1 43/3 57/1 52/2 37/4 
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Table 2. Overview of computational performance (CPU s) for total cost minimization 

Type of Model Discrete-time 
MILP 

Continuous-time MILP CP Hybrid 
MILP/CP 

Problem/Model F1 F2 F3 F4 F5 F6 
S1A (12 orders, 3 machines) 18.9 3600†,‡ 10.7 15.2 0.98 0.44 
S1B (12 orders, 3 machines) 5.67 0.13 0.10 0.05 0.13 0.03 
S1C (15 orders, 4 machines) 13.9 - 1.16 33.3 97.3 0.63 
S1D (15 orders, 4 machines) 5.48 - 0.14 5.32 6.53 0.45 
S1E (20 orders, 5 machines) 7.25 - 62.1 421 3600†,* 0.99 
S1F (20 orders, 5 machines) 35.6 - 1.96 3600†,* 2326 0.77 
S1G (25 orders, 5 machines) 2.47 - 471 3600†,* 518 172 
S1H (25 orders, 5 machines) 4.70 - 115 3600†,* 4133 968 
S1I (30 orders, 5 machines) 13.5 - 45.5 107.8 183 46.8 
S1J (30 orders, 5 machines) 27.2 - 3600†,* 3600†,* 3600†,* 3600†,‡ 

†Maximum resource limit 
‡ No solution found 
*Suboptimal solution returned 

5.1.1. Problems S1A-S1F 

The computational statistics for the first six problems are given in Table 3 through Table 5. Each table 

features the two problems of similar complexity, i.e. same number of orders and machines. The analysis 

of the results is performed model by model. 

In the discrete-time formulation (F1), in order to match the exact problem data, we must set δ= 1 and 

use a total of 380 time intervals in problems S1A/B/E/F and 370 intervals in problems S1C/D. As a 

consequence, large MILPs are generated. Despite their size, the resulting MILPs are solved rather fast, 

in part due to their low integrality gaps, and usually on the first nodes of the search tree. Furthermore, 

increasing the complexity of the problem from 12 orders on 3 machines to 20 orders on 5 machines has 

little effect on the computational effort. 

The constraint programming model (F5), like the discrete-time formulations, is also limited to integer 

data. This is the only resemblance to F1 since CP uses much fewer variables and constraints and its 

performance is highly dependent on the problem size. As the size increases so does the number of 

choice points and the computational effort. While problems S1A/B are solved in less than one second, 

problems S1C/D take several seconds to solve, S1F takes almost 40 minutes to solve and most 

importantly, the optimal solution cannot be found for S1E in one hour of computational time 
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(Harjunkoski & Grossmann, 2002, report 189,244 s to find the optimum), even though a good solution 

is found in less than one minute. 

The results in Table 3 show that the uniform time grid continuous-time formulation (F2) has the worst 

performance of all models tested. Interestingly, it has completely distinct performances for problems 

S1A and S1B. While the former is intractable, the latter is solved in just 0.13 s. This difference in 

behaviour is better understood by recalling that the computational effort increases substantially with an 

increase in the number of event points (|T|) and/or the maximum number of time intervals that a 

particular task can span (∆t). While S1A requires |T|=12 and ∆t=5 to find the global optimum (this can 

be confirmed by using the solution from F3 to fix the binary variables of model F2), S1B requires only 

|T|=9 and ∆t=2. Since an increase in the number of orders leads to an increase in the number of event 

points required to solve the problem, there is no point in solving the other problems of this section with 

model F2. 

When going from the uniform to the multiple time grid continuous-time formulation (F3) the size of 

the resulting MILPs is significantly smaller, the integrality gap is lower and, above all, the 

computational performance is greatly reduced (S1A is solved in 10.7 s). When using multiple time grids 

all orders last only one time interval, which means that we only need to be concerned with specifying |T| 

(one starts at |I|/|M|+1 and continues to increase the number of time points until no improvement is 

found on the value of the objective function). The other advantage becomes apparent when comparing 

the results for problems S1A/B and S1C/D. Although the size roughly doubled, due to the fact that 

S1C/D consider three more orders and two more machines, the number of orders per machine, which 

has a direct influence on the number of required time points and hence on the computational effort, 

decreased. As a consequence, problems S1C/D took less time to solve by (F3) than S1A/B, while for the 

continuous-time formulation with sequencing variables (F4) the computational time increased 

substantially. Furthermore, the MILPs resulting from (F3) have slightly lower integrality gaps than 

those resulting from (F4), require a larger number of binary variables, but are solved in significantly less 

time. Note also that the continuous-time formulation with sequencing variables (F4) cannot find the 
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optimal solution for S1F in one hour of computational time, while the proposed formulation takes less 

than two seconds to find and prove optimality. 

Table 3. Computational statistics for problems S1A-S1B 

Problem S1A S1B 
Model F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6 
|T| 381 12 6    381 9 9    
Discrete 
variables 

6948 1620 198 168   8914 540 315 168   

Single 
variables 

8092 1669 217 181 72  10058 577 343 181 72  

Constraint
s 

1156 250 91 358 84  1156 133 136 358 84  

RMIP 101.86 84.67 98.10 97.89   84.92 84.54 84.9 84.88   
Obj 104 - 104 104 104 104 85 85 85 85 85 85 
CPU 18.9 3600† 10.7 15.2 0.98 0.44 5.67 0.13 0.10 0.05 0.13 0.03
Nodes 153 864752 20570 10469   7 0 0 0   
Choice 
points 

    3593      818  

Major 
iterations 

     3      1 

Total cuts      109      31 
†Resource limit exceeded (best possible solution= 88.01, total tree size= 590 MB) 

Table 4. Computational statistics for problems S1C-S1D 

Problem S1C S1D 
Model F1 F3 F4 F5 F6 F1 F3 F4 F5 F6 
|T| 371 6    371 8    
Discrete variables 13320 405 285   16950 565 285   
Single variables 15176 436 301 90  18806 606 301 90  
Constraints 1871 146 771 135  1871 196 771 135  
RMIP 116 113.03 112.73   104 104 103.78   
Obj 116 116 116 116 116 105 105 105 105 105 
CPU 13.9 1.16 33.3 97.3 0.63 5.48 0.14 5.32 6.53 0.45
Nodes 15 1305 10356   1 0 2704   
Choice points    424969     22791  
Major iterations     2     2 
Total cuts     302     174 

 

The hybrid MILP/CP model (F6) has the best performance overall, being beaten only by the proposed 

formulation for problem S1D. The cuts proposed by Maravelias & Grossmann (2004b) make the hybrid 

model very efficient, since few assignment problems (the number of major iterations) need to be solved 

(the maximum, 3 iterations, was found for problem S1A). Without the knapsack constraints of 

Maravelias & Grossmann (2004b), S1A requires a total of 27 major iterations and 42 integer cuts to find 
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the optimal solution in 9.0 CPUs (instead of 0.44 s, see Table 3), while S1E requires 22 major iterations 

and 38 integer cuts for a total computational effort of 18.0 CPUs, instead of 0.99 s, see Table 5. 

Table 5. Computational statistics for problems S1E-S1F 

Problem S1E S1F 
Model F1 F3 F4 F5 F6 F1 F3 F4 F5 F6 
|T| 381 7    381 9    
Discrete 
variables 

18790 635 480   23320 845 480   

Single variables 20696 671 501 120  25226 891 501 120  
Constraints 1926 176 1376 180  1926 226 1376 180  
RMIP 158.5 155.79 155.46   142.94 143 142.11   
Obj 159 159 159 169 159 144 144 145 144 144 
CPU 7.25 62.1 421 57.0† 0.99 35.6 1.96 3600† 2326 0.77
Nodes 0 74653 100399   82 1238 573844   
Choice points    207504     6580032  
Major iterations     1     1 
Total cuts     592     411 

†Resource limit exceeded (best possible solution= 143, total tree size= 91 MB) 

5.1.2. Problems S1G-S1J 

The purpose of the last four problems is to identify which model is more adequate for significantly 

larger problems, since S1G and S1H deal with 25 orders and S1I and S1J with 30 orders on five 

machines (see Table 1). The results in Table 6 and Table 7 are conclusive since only the discrete-time 

formulation (F1) remains quite efficient for all cases (the most difficult problem, S1J takes only 27.2 s 

to solve). The continuous-time formulation with multiple time grids (F3), the constraint programming 

model (F5) and the hybrid model (F6) can all find the optimal solution of problems S1G-S1I in 

reasonable time, while the continuous model with sequencing variables (F4) only finds a reasonable 

solution. Making the problems more constrained, by increasing the processing times (when going from 

S1G to S1H and S1I to S1J), besides increasing the value of the objective function, generally increases 

the computational effort, the only exception being the continuous multiple grid model (F3), which 

solves problem S1H in about one fourth of the time required to solve S1G. Problem S1J is by far the 

most difficult instance and some models (F4 and F6) are even unable to find a feasible solution to the 

problem. A more detailed analysis of the performance of each formulation follows. 
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The discrete-time formulation is surprisingly efficient. Even considering that the MILPs resulting 

from F1 exhibit the lowest integrality gap of all three MILPs and that the size of the resulting MILPs are 

now smaller than in the previous two problems, because the time horizon as been reduced (problems 

S1G-S1J require 294 time points instead of 381), it is difficult to explain why so few nodes are required. 

One could think that this is because the solution of the relaxed problem has most of the binary variables 

set to 0 or 1, but this is completely false. It just seems that every decision has a large impact on the 

model, so CPLEX is able to find the optimal solution very rapidly. The solution for problem S1J is 

shown in Figure 4. Notice that the 30 orders have been divided equally between the five machines and 

that there are few waiting periods. 

0 50 100 150 200 250 300

M1

M2

M3

M4

M5

Time (h)

29 1 30 11 18 23

6 10 13 5 16 7

28 22 19 12 14 27

26 4 25 2 8 15

20 3 24 17 9 21

 

Figure 4. Optimal solution for problem S1J 

The performance of the multiple time grid continuous-time formulation (F3) is also very good. Even 

though it is only the third best performer for problem S1G, for the other three problems (S1H-S1J) is 

only beaten by the discrete-time formulation (F1). Notice that for S1J, the number of event points was 

set to the minimum possible value, 7 (|I|/|M|+1=30/5+1), but the problem complexity is already very 

large (the tree size continued to increase rapidly, after one hour of computational time), even though the 

solver finds a very good solution. Interestingly, 7 event points are enough to find the global optimum 

solution (if one uses the solution from F1 to fix the assignments and sequence on machine M1, i.e. order 

29 starts at the first event point, order 1 at the second event point and so on, the problem is solved in 

less than 19 s, even without fixing the absolute times of the several event points). The large influence on 
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computational effort resulting from just a few assignments is a characteristic of these types of 

continuous-time formulations and it can be used to derive more efficient algorithms (see for instance 

work by Castro et al., 2004b). 

Table 6. Computational statistics for problem S1G-S1H 

Problem S1G S1H 
Model F1 F3 F4 F5 F6 F1 F3 F4 F5 F6 
|T| 294 6    294 6    
Discrete 
variables 

13548 655 725   13273 655 725   

Single 
variables 

15019 686 751 150  14744 686 751 150  

Constraints 1496 156 2156 225  1496 156 2156 225  
RMIP 50.25 43.28 46.72   53.71 46.87 46.98   
Obj 51 51 54 51 51 54 54 60 54 54 
CPU 2.47 471 3600† 518 172 4.70 115 3600‡ 4133 968 
Nodes 0 311077 398140   0 64070 487058   
Choice points    829542     6538160  
Major 
iterations 

    50     53 

Total cuts     933     954 
†Resource limit exceeded (best possible solution= 47.13, total tree size= 176 MB) 
‡Resource limit exceeded (best possible solution= 47.26, total tree size= 240 MB) 

Table 7. Computational statistics for problem S1I-S1J 

Problem S1I S1J 
Model F1 F3 F4 F5 F6 F1 F3 F4 F5 F6 
|T| 294 7    294 7    
Discrete 
variables 

18063 935 1020   16753 935 1020   

Single variables 19534 971 1051 180  18224 971 1051 180  
Constraints 1501 186 3111 270  1501 186 3111 270  
RMIP 53 50 51.44   73.85 69.32 59.62   
Obj 53 53 53 53 53 75 76 98 83 - 
CPU 13.5 45.5 107.8 183 46.8 27.2 3600† 3600‡ 107* 3600♦ 
Nodes 8 17345 11470   3 1081000 68467   
Choice points    228701     259260  
Major iterations     12     1 
Total cuts     1150     1163 

†Resource limit exceeded (best possible solution= 72.75, total tree size= 344 MB) 
‡Resource limit exceeded (best possible solution= 61.55, total tree size= 57 MB) 
*Computational time required to find the solution reported (solver terminated at 3600 CPUs) 
♦Resource limit exceeded for first MILP (integer solution= 75, best possible solution= 67.15) 

The failure of the hybrid MILP/CP model (F6), the best performer so far (see Table 2), for S1J, is the 

most surprising result. Until now, the global optimal solution could be found in few iterations and this 
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was done in less than one second. The problems considered in this section are however more complex 

and more iterations are required to find the global optimal solution. Furthermore, each iteration takes 

more time to complete, for example problem S1G and S1I average 3.4-3.9 s per iteration, while S1H 

averages more than 18 s. These two combined factors significantly decrease the performance of the 

hybrid MILP/CP model. Nevertheless, it is still the second best formulation for problem S1G and the 

third best for problems S1H and S1I. The major drawback of the hybrid model is highlighted when 

solving problem S1J. The MILP with assignment and sequencing variables is intractable (see results for 

model F4) mainly due to its very large integrality gap. The simplified MILP generated from the hybrid 

model suffers from a similar problem and even though the integrality gap is lower (the solution of the 

relaxed problem equals 64.4) and a feasible solution is found, the solver is still far from proving 

optimality in one hour of computational time. Interestingly, the best solution found has the same 

objective as the global optimum solution, the difference being that for the simplified MILP we are not 

sure that that solution is even feasible. It is now clear that the decision of dividing the problem in two, 

assignment and feasibility problems, is good but has two important limitations. The first was already 

known, this decomposition strategy is only effective when the objective function depends solely on the 

assignment variables. The second is that several assignment problems may need to be solved to find the 

optimal solution. If the resulting MILPs have a small size and a low integrality gap, this approach works 

fine, but if at least one of the conditions fails, then we have a problem, as seen for problem S1J. And as 

the hybrid model only reaches the feasible region when it finds the optimal solution, we are even 

without a feasible solution to the problem. Thus, replacing the pure MILP or constraint programming 

models with the hybrid approach by Jain & Grossmann (2001) is not a good idea for large problems. 

Finally, the constraint programming model (F5) also has reasonable performance. It is particularly 

interesting to see that for problem S1G it performs almost as well as the multiple time-grid continuous-

time formulation (F3), a behaviour that was observed only in the first problems (S1A/S1B). For S1J, the 

CP model finds a good solution in less than two minutes of computational time but one more hour of 

computational time does not lead to any improvements. Nevertheless, it is significantly better than the 
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solution found by the continuous-time formulation with sequencing variables (F4) in the same 

computational time. 

5.2. Total earliness vs. total cost 

Changing the objective function from total cost to total earliness does not affect the model constraints 

in the case of the discrete-time formulation (F1) (see section 3.1.1) or the constraint programming 

model (F5). However, the continuous-time formulations need some changes. All three models require a 

new set of variables, the orders delivery dates (DDi), and some changes in the model constraints. While 

in the time grid models two additional sets of constraints are required (eqs 12 and 13 for F2, and eqs 23 

and 24 for F3), in the one with sequencing variables (F4) only one adjustment is needed (in equation 17 

of Jain & Grossmann, 2001, replace di by DDi and turn the inequality into equality). To see the impact 

of the objective function change on the computational effort, we have solved problems S1A-S1B for 

minimizing earliness. The results are given in Table 8. 

When comparing Table 8 to Table 3 it is clear that only the discrete-time model (F1) performs better 

for total earliness than for total cost. The reason for this behaviour can be explained by the fact that 

now, the time point at which each order is executed also affects the objective function, meaning fewer 

degenerate solutions and better performance. The constraint programming model (F5) has the second 

best performance, but the computational effort for S1B has increased by two orders of magnitude (19 

vs. 0.13 s), despite requiring fewer variables than for total cost minimization (60 vs. 72). Nevertheless, 

it still performs much better than the two continuous-time models tested (F2 even has a worse 

performance than F3, so it was not considered). It is interesting to see that the continuous-time model 

with sequencing variables (F4) is much more efficient than the multiple time grid model (F3), behaviour 

that is the exact opposite from that found for minimizing cost. The reason for this was already given in 

the previous paragraph. While (F4) originates very similar MILPs for both objectives, (F3) must 

consider two more sets of complex, big-M constraints, which are known to increase the integrality gap 

and make the MILPs more difficult to solve (note that while F3 and F4 have the same integrality gap, 
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optimality can be proved in a reasonable time for problems resulting from F4, whereas the absolute gaps 

for those resulting for F3 were still very large after one hour of computational time). 

Table 8. Problems S1A-S1B revisited. Computational statistics for total earliness minimization. 

Problem S1A S1B 
Model F1 F3 F4 F5 F1 F3 F4 F5 
|T| 381 6   381 6   
Discrete variables 6948 198 168  8914 198 168  
Single variables 8092 229 193 60 10058 229 193 60 
Constraints 1156 436 820 84 1156 436 820 84 
RMIP 733 0 0  97 0 0  
Obj 770 770 770 770 98 98 98 98 
CPU 5.61 3600* 1663 4.56 1.56 3600† 95.0 19.0 
Nodes 107 859548 463155  3 686730 62867  
Choice points    4570    93048

*Resource limit exceeded (best possible solution= 380.5, total tree size= 111 MB) 
†Resource limit exceeded for first MILP (best possible solution= 0, total tree size= 97 MB) 

5.3. An efficient strategy for total earliness minimization 

The results of the previous section have shown that the size of the problems that can be solved 

efficiently by the continuous-time or constraint programming models is smaller for earliness 

minimization than for cost minimization. The discrete-time formulation is very efficient but has one 

important disadvantage: due to the discretization of the time horizon, a very large number of time 

intervals may be required to consider the exact problem data, inevitably leading to problem 

intractability. However, as mentioned in section 3.1, one can always consider an approximation of the 

problem by rounding the problem data to integer multiples of the interval length (δ). Rounding up the 

data ensures that if the approximate problem is feasible so is the real problem. Furthermore, the optimal 

solution of the former will be a very good upper bound to the optimal solution of the latter, with better 

approximations resulting from lower rounding errors. 

The optimal solution from the discrete-time formulation (approximate problem) can then be used to 

find a very good solution to the exact scheduling problem by using one of the two continuous-time 

formulations. The proposed strategy is the following: i) solve the approximate problem by the discrete-

time formulation (F1) to find the assignments of orders to machines. Although it is desirable to solve the 
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problem to optimality, a feasible solution is enough to proceed to the next step; ii) solve a simplified 

version of the continuous-time model with multiple time grid (F3) or sequencing variables (F4), by 

considering in sets Im and Mi, only the orders assigned to machine m and the machine assigned to order 

i, or only the variables xi,m with i∈Im, respectively. Note that once the assignments are fixed, each 

machine is totally independent from the others so it is better to solve |M| single machine problems 

instead of a more complex parallel machines problem. For model (F3), the number of event points to 

use for solving the single machine problem, for machine m, is given by |T|=|Im|+1. iii) if the complexity 

of one or more single machine problems in the previous step is still too much to handle, further reduce 

the complexity by also fixing the event point at which each order is processed (the first order allocated 

to a particular machine will start at the first event point, the second order at the second and so on, for 

model F3), or by fixing the sequencing variables yi,i’ (F4). In this case, there are fewer degrees of 

freedom and hence the exact schedule corresponding to the near optimal solution found in the first step 

is generated. 

Overall, the proposed strategy does not guarantee global optimality, but is capable of generating 

better solutions than those reported so far in the literature for two complex example problems, as will be 

seen in the next section. 

5.4. Problem set 2: minimize total earliness 

The data for the set of problems considered in this section was taken from Méndez & Cerdá (2003) 

and is given in Table 9. Notice that there are no release dates, meaning that all orders can start to be 

processed from the beginning of the time horizon (time zero). The complete problem and two 

subproblems will be solved in increasing order of complexity: problem S2A will consider the first 12 

orders; problem S2B the first 29 orders and problem S2C the full set of orders (40). Note that a 

particular order can only be processed on a subset of the available machines, which allows us to use 

fewer variables and constraints. This is the reason why we consider a 40 order problem, which is more 

than the maximum number of orders considered when minimizing total cost, even after knowing from 

section 5.2 that the resulting problems are more difficult to solve. 
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Table 9. Data for second set of problems (S2A-S2C) 

  pi,m (day)   pi,m (day) 
Order di 

(day) 
M1 M2 M3 M4 Order di 

(day) 
M1 M2 M3 M4 

I1 15 1.718   1.424 I21 30 7.497  3.614  
I2 30 1.680   1.019 I22 20   0.864  
I3 22 1.787   1.048 I23 12   3.624  
I4 25   1.564 2.373 I24 30   2.667 4.230
I5 20   0.736 1.247 I25 17 6.132  3.448 5.132
I6 30 5.443   3.430 I26 20 4.004   1.987
I7 21 5.045  3.025 3.444 I27 11 6.590   4.167
I8 26   1.500 1.670 I28 30 5.680   3.465
I9 30   1.869 2.689 I29 25    4.516
I10 29  1.457   I30 26    2.384
I11 30  3.925  3.230 I31 22  1.744  1.593
I12 21  6.971 7.000 5.830 I32 18   2.698 3.884
I13 30 11.430   6.946 I33 15  2.322   
I14 25 2.812   1.757 I34 10 3.445  2.658  
I15 24 5.180   3.215 I35 10 3.660   2.780
I16 30 1.430   1.013 I36 14  2.433   
I17 30 4.654   3.266 I37 24  2.320 2.194  
I18 30  1.604   I38 16 2.545   2.080
I19 13  3.305  2.917 I39 22 2.210    
I20 19 2.604  1.074 1.830 I40 23  2.065   

5.4.1. Results of standalone models for problems S2A-S2C 

The discrete-time formulation (F1) requires an exceedingly large number of time intervals to consider 

the exact problem data (30/0.001+1=30001). This is too much, so one needs to round the problem data 

as described in section 3.1. The smaller the interval length (δ), the more difficult it is to solve a 

particular problem. Thus, an increase in problem complexity (e.g. increase in the number of orders) 

should be compensated by an increase in interval length, in order to maintain problem tractability. For 

these set of problems we have chosen δ=0.01, 0.05 and 0.1 days for problems S2A, S2B and S2C, which 

means considering 3001, 601 and 301 time points, respectively. Despite the decrease in problem size, 

the computational effort increases significantly from S2A (7.35 s) to S2B (300 s) to S2C (3600 s), with 

the latter representing the maximum resource limit (integer solution within 2.63% of the optimum). The 

solutions from the discrete-time model (F1) are good upper bounds on the true optimal solution, with 

the quality of the approximation generally increasing with an increase in the number of time intervals. 

For S2A, the solution of 1.03 days is very close to the optimal solution found by the continuous-time 
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models, 1.026 (see Table 10). For S2B and S2C the solutions are better than the best solutions found by 

the continuous-time models, and the solution of S2B is even better than the best solution reported in the 

literature, 62.377 days (see Méndez & Cerdá, 2003). 

The constraint programming model (F5) like the discrete-time formulation (F1) uses integer data for 

the processing times. This means that we need to multiply the values in Table 9 by 1000 before we 

solve the problem in ILOG (the objective function is then divided by 1000, to find the total earliness). 

Problem S2A is solved in 3266 CPUs, which is already too much time. To overcome this problem we 

can use a smaller basis by multiplying the problem data by 100 and then rounding it to the next integer. 

Doing this ensures that the problem data is exactly the same as that considered in the discrete-time 

formulation (F1), thus allowing for a more valid comparison. The computational statistics in Table 10 

clearly show that the CP model (F5) performs worse than model (F1). Since a significantly worse 

solution was found for S2B, there is no point on solving S2C by the CP model. 

The uniform time grid continuous-time formulation (F2) can find the global optimal solution rather 

fast but due to the 100% relative integrality gap it is very difficult to prove optimality (about 1.5 hours 

of computational time). The other disadvantage is that a few problems needed to be solved to find the 

minimum number of event points (10) and the minimum value of ∆t (5) to get to the optimal solution. 

Thus, like with the first set of problems, the uniform time grid continuous-time formulation has a poor 

performance and is only useful for small problems. 

The multiple time grid continuous-time formulation (F3) has very good performance for S2A (1.1 s). 

A minimum number of 4 event points (|I|/|M|+1) is required to get a feasible solution of 2.457 days in 

0.14 s. A single increase in the number of event points allows us to find a better solution (1.026 days), 

which we know is the global optimum. A further increase in the number of event points leads to a 

degenerate solution in 6.5 s. Contrary to the first set of problems, where they improved the 

computational performance, the time matching constraints (eq 19) were not included.  

For problem S2B, the multiple time grid continuous-time formulation (F3) generates the worst 

solution of the four models tested. Note, that is very difficult to reduce the integrality gap (after one 
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hour of computational time, the best possible solution, 1.151, was still very distant to the best integer 

solution found, 90.182). Furthermore, this solution is for 9 event points (the minimum number that 

ensures feasibility), a number that is probably insufficient to find the optimal solution (the results for 

machine M3 indicate the necessity of 11 event points, see Table 11). 

The MILP with assignment and sequencing variables (F4) has the best performance of the three 

continuous-time models since it can always find reasonably good solutions. When compared to the 

multiple time grid formulation (F3), it has the advantage of considering the time grid implicitly (in the 

model constraints), which means that it only needs to be solved once. For S2A, the problem is solved in 

less than one third of the time despite using a larger number of variables and constraints, due to a faster 

increase in the objective of the relaxed model (i.e. it does a better job at reducing the gap between the 

relaxed model and the MILP). This seems to suggest that fixing a particular binary variable has a greater 

impact on model (F4) than in model (F3). 

Table 10. Computational statistics for problems S2A-S2C 

Problem S2A S2B S2C 
Model F1 F2 F3 F4 F5 F1 F3 F4 F5 F1 F4 
|T| 3001 10 5   601 9   301  
Discrete 
variables 

53955 875 120 157  23190 492 869  14189 1634 

Single 
variables 

66000 938 153 182 60 25595 558 928 145 15394 1715 

Constraint
s 

12017 445 265 512 84 2434 1042 2845 203 1245 5088 

RMIP 1.03 0 0 0 - 60.183 0 0 - 125.49 0 
Obj 1.03 1.026 1.026 1.026 1.03 61.35 90.182 64.441 68.05 133.9 143.78 
CPU 7.35 5256 1.10 0.30 300 300 3600† 3600‡ 3355* 3600♦ 3600◊ 
Nodes 0 1508390 1283 22 - 892 210026 550451  29878 240332
Choice 
points 

    20931    12935204   

†Resource limit exceeded (best possible solution= 1.151, total tree size= 90 MB) 
‡Resource limit exceeded (best possible solution= 23.137, total tree size= 263 MB) 
*Computational time required to find the solution reported (solver terminated at 3600 CPUs) 
♦Resource limit exceeded (best possible solution= 130.47, total tree size= 371 MB) 
◊Resource limit exceeded (best possible solution= 26.711, total tree size= 204 MB) 
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5.4.2. Results of proposed strategy for problems S2B-S2C 

In the previous section we have seen that the solutions from the discrete-time formulation (F1), which 

are valid upper bounds on the true optimal solution, are better than the best solutions found by the 

continuous-time formulation and the constraint programming model. Thus, the strategy presented in 

section 5.3 can be applied. First, we fix the assignments of orders to machines to the optimal 

assignments of the approximated problem (solution of F1). Then, we solve the four single machine 

problems to find an optimal solution to the real problem. Both the continuous-time model with multiple 

time grids and the one with sequencing variables (F4) are used to find out which one is the best. 

The results for S2B (see Table 11) show that both (F3) and (F4) solve the single machine problems 

very efficiently with model (F4) showing a better performance for machine M3, which has more orders 

assigned to. This trend is confirmed for S2C (see Table 12). While the multiple time grid formulation 

(F3) performs similarly to (F4) for machines M1 and M2, the computational effort increases roughly by 

two orders of magnitude for the other two machines. This is a typical behaviour of time-grid(s) based 

continuous-time formulations (see Castro et al. 2004a): at high values of |T|, a single increase in the 

number of event points causes a one order of magnitude effect on computational effort. This significant 

difference in computational effort is even more interesting when one realizes that the MILPs generated 

by (F3) and (F4) are identical in terms of the number of discrete variables, constraints and integrality 

gap, which are classic performance indicators. 

The optimal solution for problem S2B is given in Figure 5. The first thing to note is that there is not a 

limiting machine throughout the time horizon since all have waiting periods after they start to be used 

(M1 stops 0.955 days between orders 1 and 7 and 0.104 days between 7 and 14; M2 stops 1.026 days 

between orders 19 and 12 and 2.014 days between 12 and 11; M3 stops 0.664 days between orders 23 

and 25; M4 stops 0.206 days between orders 27 and 29 and 0.065 days between orders 3 and 28). 

Overall, M3 and M4 can be viewed as more limiting machines since they stop for less time. Curiously, 

all orders that were assigned to M3 and M4 have the lowest processing time on these machines, which 
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seems to indicate that the minimization of total processing time would also be an indirect way to 

achieve the goal of minimizing total earliness. 

Pinto & Grossmann (1995) were the firsts to propose minimizing the total processing time to find the 

assignments of orders to machines for this same problem, before solving the sequencing problem. They 

found that with this objective the MILP problems resulting from their formulation became much easier 

to solve, due to their zero integrality gap. The same approach was tried with the multiple time grid 

continuous-time formulation (F3) and we also found that by changing the objective function, which 

allows us to neglect the hard constraints 23 and 24, the resulting MILP becomes much easier to solve. 

Unfortunately, and although we were able to find reasonable solutions, they were much worse than 

those found by using the discrete-time formulation first. One order in the optimal schedule of Figure 5 

that goes completely against the objective of minimizing total processing time is order 13, which is 

assigned to M1, where it has a processing time of 11.43 days (see Table 9), while in M4 it would take 

only 6.946 days to complete.  

Preordering of orders based on their due dates is a heuristic that as also been used to decrease the 

complexity of the single stage parallel machine problem. Pinto & Grossmann (1995) and Ierapetritou et 

al. (1999) used the earliest due date (EDD) method on this problem to find solutions of 82.202 and 

94.814 days, respectively. Mendéz & Cerdá (2003) used the increasing slack times (MST) rule to 

simplify their MILP formulation and found a better solution (62.377 days), which was further improved 

by using a very efficient rescheduling MILP to re-sequence orders assigned to a particular machine. 

Models (F3) and (F4), when applied to the single stage problem, can be viewed as more general 

formulations than their re-sequencing problem. The schedule of Figure 5, corresponds to a solution that 

has a total earliness of 59.896 days, 2.481 days better (almost 4%) than the best solution found by 

Méndez & Cerdá (2003), clearly showing that is better to use a discrete-time formulation with 

approximate problem data instead of a heuristic procedure. Order 13 is again a good example why the 

preordering heuristics fail: it is only the 19th order according to the EDD rule and the 15th order 

according to the MST rule but is the 4th order to be completed.  
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The best solution found for problem S2C has a total earliness of 126.949 days and is shown in Figure 

6. It is 4.4% better than the solution reported by Méndez & Cerdá (2003), which has a total earliness of 

132.727. When compared to Figure 5, the machines have fewer waiting periods (M1 stops for 0.263 

days between orders 38 and 39; M2 stops for 1.871 days between orders 33 and 37 and 0.014 days 

between orders 40 and 11; and M3 and M4 never stop) and maintain most of the assignments for the 

first 29 orders. Of the 40 orders, only 6 orders are delivered exactly at their due dates (orders 2, 9, 16, 

18, 38 and 40). 

Table 11. Computational statistics for single machine problems (problem S2B) 

Model |T
| 

discrete 
variable
s 

single 
variable
s 

constraint
s 

RMIP MIP CPUs nodes

F1+F3 - - - - - 59.896 303 - 
M1 7 42 63 98 0 19.232 0.22 93 
M2 6 30 48 72 0 3.665 0.09 2 
M3 11 110 143 242 0 16.907 2.5 3121 
M4 9 72 99 162 0 20.092 0.55 583 
F1+F4 - - - - - 59.896 301 - 
M1 - 36 49 74 0 19.232 0.07 2 
M2 - 25 36 52 0 3.665 0.10 0 
M3 - 100 121 202 0 16.907 0.24 202 
M4 - 64 81 130 0 20.092 0.14 97 

Table 12. Computational statistics for single machine problems (problem S2C) 

Model |T
| 

discrete 
Variable
s 

single 
variable
s 

constraint
s 

RMIP MIP CPUs nodes 

F1+F3 - - - - - 126.949 4798 - 
M1 8 56 80 128 0 30.849 0.24 149 
M2 10 90 120 200 0 21.616 0.80 870 
M3 14 182 224 392 0 42.880 1178 552483
M4 12 132 168 288 0 31.604 13.3 9932 
F1+F4      126.949 3612 - 
M1 - 49 64 100 0 30.849 0.24 28 
M2 - 81 100 164 0 21.616 0.14 88 
M3 - 169 196 340 0 42.880 8.8 34145 
M4 - 121 144 244 0 31.604 0.23 612 

 



32 

0 3 6 9 12 15 18 21 24 27 30

M1

M2

M3

M4

Time (h)

13 1 7 14 17 16

19 12 11 10 18

23 25 20

22

5 21 4 8 24 9

27 29 26 15 3 28 6 2

 

Figure 5. Optimal solution for problem S2B 
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Figure 6. Optimal solution for problem S2C 

6. Conclusions 

This paper presents a new continuous-time formulation for the short-term scheduling of single-stage 

parallel machine plants. It can be viewed as an improvement from the general continuous-time 

formulation for multipurpose plants of Castro et al. (2004), which proved to be extremely limited for the 

specific type of problem considered. Multiple time grids are used, one for each equipment resource, 

instead of a single time grid, to take advantage of the lack of common resources like manpower or 

utilities, and intermediate materials. This, allows us to consider each machine independently, which in 

turn makes it possible to restrict the duration of all batch tasks to a single time interval. The advantage 

is that both the number of event points required to find the optimal solution as well as the integrality 
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gap, two commonly used performance indicators for MILPs and for continuous-time formulations, are 

greatly reduced. 

Other novel features presented in this paper, concerning the continuous-time formulations, are the 

introduction of hard constraints to model release and due dates as well as a set of constraints to 

determine the release dates of the final products. Although restricted here for single stage problems, 

these can easily be adapted for the general multipurpose plant. Also, some characteristics of the general 

multipurpose formulation of Castro et al. (2004) such as its ability to handle variable duration tasks can 

easily be implemented on the single stage, multiple time grid formulation, but this is beyond the scope 

of this paper. 

The other goal of the paper has been to provide a critical review of other existing approaches that are 

able to solve this type of scheduling problem. These included a RTN-based discrete-time formulation 

(Pantelides, 1994), a continuous-time formulation that relies on sequencing variables instead of event 

points and a constraint programming formulation (Jain & Grossmann, 2001), and the hybrid MILP/CP 

model of Maravelias & Grossmann, 2004b. The analysis was performed for two widely used objective 

functions: minimization of total cost and minimization of total earliness. A total of 15 example 

problems were solved with the aim of finding the limit of applicability of all six approaches. The results 

were very conclusive and allowed us to arrive at the following conclusions. 

The discrete-time RTN formulation was shown to be the best formulation. It has a very consistent 

performance for different problem sizes and for the two different objective functions tested. As is well 

known, its most important limitation is that it cannot handle variable duration tasks. Another 

disadvantage is that it may need to use a large number of time intervals to consider the exact problem 

data. We disagree with this argument because fewer time intervals can always be used if the problem 

data is rounded to the next integer multiple of the interval length, to decrease the size and complexity of 

the problem. In that case, the solution obtained will be an upper bound on the true global optimum. This 

important feature of the discrete-time formulation has been used to propose an efficient optimization 

strategy for total earliness minimization. It consists on finding the assignments of orders to machines by 
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solving the parallel machine single stage scheduling problem with the discrete-time formulation and 

subsequent solution of |M| single machine problems with one of the two most efficient continuous-time 

formulations. This optimization strategy was shown to be better than preordering heuristics as we were 

able to find better solutions than those reported in the literature for problems S2B and S2C. 

The two problem specific continuous-time formulations (F3) and (F4) follow the discrete-time 

formulation in terms of computational performance. While the multiple time grid formulation performs 

better for the minimization of total cost, the one with sequencing variables performs better for the 

minimization of total earliness both for the parallel and single machine problems. The worsening in the 

performance of the multiple time grid continuous-time formulation when going from cost minimization 

to earliness minimization is due to the addition of two sets of big-M constraints, whereas the 

continuous-time formulation with sequencing variables only requires minor changes. The latter 

formulation is also easily adapted in order to deal with sequence dependent changeovers, while the 

former requires additional sets of variables and constraints to model the cleaning tasks and the different 

equipment states, like all RTN-based formulations. 

Finally, there are the constraint programming and the hybrid MILP/CP approach by Jain & 

Grossmann (2001). The former always gives a reasonably good solution, even though it may be 

impossible to find the global optimal solution for medium sized problems. The latter has the best 

performance of all 6 models tested for small to medium sized problems, but it failed to find a solution 

for the larger problem since the assignment part of the hybrid model (the simplified MILP) becomes 

intractable like the complete MILP from which it originates. Another disadvantage of the hybrid 

approach is that the only feasible solution it generates is the global optimum so there are no 

intermediate feasible solutions. Furthermore, it is only efficient when the objective function depends 

solely on the assignment variables, e.g. total cost minimization. 
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Nomenclature 

Sets/Indices 
I/i, i’= process orders 
Im= orders to be processed on machine m 
It,m= orders that can start on time point t on machine m 
M/m= process equipments (machines) 
Mi=machines that can process order i 
T/t, t’,t’’=Points of the time grid 
Ti,m=Time points where order i can start to be processed on machine m 
Parameters 
ci,m=cost of processing order i on machine m 
di=due date of order i 
H=time horizon 
pi,m=processing time of order i on machine m 
ri=release date of order i 
δ=duration of each time interval on the discrete-time grid 
∆t=number of event points allowed between the beginning and end of a processing task 
τi,m=processing time of order i on machine m as an integer multiple of δ 
Variables 
DDi=delivery date of order i 
Ni,m,t=binary variable that assigns the start of order i on machine m to time point t 

',,, ttmiN =binary variable that assigns the end of order i, processed on machine m, which began at t, to 
event point t’ 

Rm,t=excess amount of machine m at time point t 
Tt=absolute time of event point t 
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