
1

An Efficient MILP Model for the Short-Term

Scheduling of Single Stage Batch Plants

Pedro M. Castro*,†,‡ and Ignacio E. Grossmann‡

†Departamento de Modelação e Simulação de Processos, INETI, 1649-038 Lisboa, Portugal

‡Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract

This paper presents a multiple time grid continuous time MILP model for the short-term scheduling of

single stage, multiproduct batch plants where the objective is the minimization of total cost or total

earliness. It can handle both release and due dates and it can determine the products delivery dates

explicitly if these need to be considered in the objective function. This formulation is compared to other

mixed-integer linear programming approaches that have appeared in the literature, to a constraint

programming model, and to a hybrid mixed integer linear/constraint programming algorithm. The

results show that the proposed formulation is significantly more efficient than the MILP and CP models

and comparable to the hybrid model when the objective is the minimization of total cost. For one large

instance, both methods exceeded the time limit but the hybrid method failed to find a feasible solution.

The results also show that a discrete-time formulation performs very efficiently even when a large

number of time intervals are used.

* To whom correspondence should be addressed. Tel.: +351-217162712. Fax: +351-217167016. E-mail:

pedro.castro@ineti.pt

2

1. Introduction

Scheduling is concerned with allocation of resources over time so as to execute the processing tasks

required to manufacture a given set of products (Pinedo, 2001). Depending on the amount of resources

and time that one has available, finding a feasible or an optimal schedule with respect to a certain

objective, can be trivial or very complex. The simplest scheduling problem is the single machine

sequencing problem. If more than one equipment or machine exists, the solution involves not only order

sequencing of tasks or orders, but also their assignment to a particular machine. The machines can be

arranged in parallel, in series or on a more complex structure where a given machine can be used for

tasks belonging to different stages of the process. On multistage problems we need to account for the

flow of material between stages to ensure that a given order only starts being processed on a stage after

it has gone through the previous one, which adds more complexity to the problem. In the limit, orders

do not have an identity throughout the process and the materials that make the orders must be

considered instead. In that case, order sequencing becomes undefined and different types of variables

must be used to model this more general problem.

General mathematical formulations for scheduling are either based on the State Task Network

(Kondili et al., 1993) or Resource Task Network (Pantelides, 1994) process representations. STN or

RTN-based formulations can be applied to any process plant featuring operations spanning from batch

to continuous, consisting of fixed or variable duration tasks, with the major difference being that the

STN treats equipment resources implicitly, while the RTN treats them explicitly. Earlier formulations

use a discrete representation of time and may involve several thousands of binary variables in order to

handle a sufficiently fine discretization that closely matches the exact problem data. As a consequence,

when solving large problems, problem data is usually rounded to maintain problem tractability. Overall,

discrete-time mixed integer linear programming formulations are usually very tight and perform well for

a variety of objective functions, even makespan minimization (Maravelias & Grossmann, 2003b).

Continuous-time formulations began to appear in the last decade, and have received much attention

recently. Recent examples of STN-based formulations are the work of Giannelos & Georgiadis (2002a,

3

2002b), Maravelias & Grossmann (2003a) and Janak et al. (2004), while for the RTN we have the work

of Castro et al. (2004a, 2005). In continuous-time formulations one needs to specify the number of

points that compose the time grid(s), depending on whether the formulation uses a single time grid

(Maravelias & Grossmann, 2003a, Castro et al., 2004a, 2005) or one for each equipment resource

(Giannelos & Georgiadis, 2002a, 2002b, Janak et al., 2004). Both the computational effort and quality

of the solution depend greatly on the number of time points selected, so one must solve a few problems

before the optimal solution is found. Overall, MILP continuous-time formulations consider the exact

problem data but tend to have larger integrality gaps, meaning that they can only be used to solve small

problems. They are also less flexible in terms of handling different objective functions and general,

efficient constraints for modeling both release and due dates have still not appeared in the literature.

Single or multistage, multiproduct plants have special characteristics that allow for a different type of

mathematical programming approach, where some of the model variables are more closely related to the

real world decisions (e.g. assign order i to machine m, make order i before i’). Examples of sequential

MILP short-term scheduling models can be found in Pinto & Grossmann (1995), Mendez & Cerda

(2000, 2002), Jain & Grossmann (2001), Harjunkoski & Grossmann (2002). When compared to the

general continuous-time formulations, the more recent sequential models do not need to specify the

number of event points, meaning that they only need to be solved once. Another important advantage is

that heuristic rules can be used to pre-order items in order to decrease the complexity of the problems

and allow for bigger problems to be solved.

Constraint programming (CP) is another technique that can be used for solving some classes of

scheduling problems (Baptiste, Le Pape, & Nuijten, 2001). CP is particularly effective for solving

feasibility problems and seems to be better suited than traditional MILP approaches in special types of

discrete optimization problems where finding a feasible solution is difficult. The lack of an obvious

relaxation, however, makes CP worse for loosely constrained problems, where the focus is on finding

the optimal solution among many feasible ones and proving optimality. Overall, CP and MILP have

complementary strengths that can be combined into hybrid algorithms, yielding considerable

4

computational improvements when compared to the standalone approaches. Examples of these are the

work of Jain & Grossmann (2001) for single-stage, Harjunkoski & Grossmann (2002) for multistage

multiproduct plants, and Maravelias & Grossmann (2004a, 2004b) for multipurpose plants.

This paper presents a new RTN-based continuous-time MILP model for minimizing cost in the short-

term scheduling of single stage multiproduct plants with parallel units of machines. It is based on the

general formulation of Castro et al. (2004a), but has one important difference: a different time grid is

used for each machine of the process instead of a single time grid for all events taking place. New

constraints are presented that allow the consideration of both release and due dates in a general way. We

also add new variables to the model that represent the delivery dates of the several product orders. In

this way, more complex objective functions, such as earliness minimization can also be considered. This

however, gives rise to loose MILP models with which only medium-sized problems can be solved to

optimality. In order to address larger problems effectively, we propose an approximation algorithm that

first uses a discrete-time formulation to determine the assignments of orders to machines, and then

solves the earliness minimization single machine problem for all machines of the process. The new

formulation is shown to perform much better than other continuous-time MILP formulations and

standalone CP models, and is comparable to the hybrid MILP/CP algorithm of Maravelias &

Grossmann (2004b) on a set of example problems where the objective is the minimization of total cost.

The strengths and limitations of the six approaches under consideration will be emphasized.

The rest of the paper is structured as follows: Section 2 gives the problem definition. Section 3

presents the new multiple time grid continuous-time formulation as well as the simplified version (for

the single stage parallel machine problem) of the general discrete and uniform time grid continuous-

time formulations. The main characteristics of other approaches that have been used to solve this

specific type of problem are given in section 4, while the results for the two sets of well known

problems is left for section 5. Finally, the conclusions are given in section 6.

5

2. Problem definition

In this paper, the short-term scheduling problem of single stage multiproduct batch plants with

parallel units is considered. A set I of product orders is to be processed on a set M of dissimilar parallel

machines, where any given machine m can process all orders belonging to set Im. The processing time of

order i on machine m is assumed to be known (pi,m), as well as its release ri and due dates di, which are

treated as hard constraints. It is also assumed that if setup times exist, they are not sequence dependent,

so that they can be incorporated on the processing time. Two alternative objectives are considered: i)

minimization of the total cost, where the processing cost of order i on unit m is given by ci,m; ii)

minimization of total earliness.

3. Mathematical formulations

In this section, three Mixed-Integer Linear Programming models based on the Resource Task

Network are presented. Although they use similar sets of variables and constraints, each treats time

differently, giving rise to problems of different size and complexity. The type of time grid used by each

formulation is shortly described before the model entities are presented.

3.1. Uniform-time grid formulations

In uniform time grid formulations, all events taking place report to a single time grid. The time

horizon of interest H, given by difference between the highest due date and the lowest release date

(iIiiIi
rd

∈∈
−minmax), is divided into |T|-1 time slots. If a discrete representation of time is used, all intervals

will have the same duration (δ), with H being a multiple of δ. All processing times must also be

multiples of δ, which means that a very small value of δ, and consequently a large number of time

intervals, may be required to achieve good approximation to the exact problem data. If one finds that the

resulting mathematical problem becomes too difficult to solve, one can use a higher value of δ and

round the duration of the tasks to the next integer multiple of δ (τi,m). The drawback is that suboptimal

6

or infeasible solutions may result since the problem being considered is an approximation of the real

one. The discrete-time grid is shown in Figure 1.

1 T
2 4 T-2 T-1

Slot 1 Slot 2 Slot T-2

H

3

Slot 3

δ

Slot T-1

iIi
r

∈
min iIi

d
∈

max

Figure 1. Uniform time grid for discrete-time formulation

The number of time intervals can be reduced if a continuous representation of time is used instead. In

such a case, the time points (the elements of set T) usually have at least one task starting or ending† so

are often called event points. The absolute time of all time points that compose the time grid, and hence

the duration of all time intervals, is known only after solving the model. The lower bound on the

absolute time of the first event point is equal to the minimum release date and the upper bound on the

absolute time of the last event point is equal to the maximum due date. The continuous-time grid is

shown in Figure 2.

1 T
2 3 T-2 T-1

Slot 1 Slot 2 Slot T-2 Slot T-1

,[min i
Ii

r
∈

]max, iIi
d

∈

Figure 2. Uniform time grid for continuous-time formulation

3.1.1. Discrete-time formulation (F1)

The discrete-time formulation is very simple since it uses only two sets of variables and constraints

plus the objective function. The processing of order i on machine m starting at time point t is identified

through the binary variable Ni,m,t, while the availability of a given machine at the same time point is

† When more time points are used than those required to find the optimal solution, there can be time
points where no task is starting or ending. However, these are easily identified since they will have the
same absolute time as other event points.

7

given by the excess resource variable Rm,t (equal to one if the machine is available, zero otherwise). It is

worth mentioning that the excess resource balance (eq 1) ensures that the excess resource variables Rm,t

can only take 0 or 1 values, so they can be defined as continuous variables instead of binary variables.

The large number of time intervals usually required in discrete-time formulations makes this option

computationally more effective. Note however, that when few intervals are used, e.g. in continuous-time

formulations, the effect can be the opposite so the two alternatives should be tried.

Due to the release and due dates, each order can only start on a subset of the total number of time

points on the grid, |T|. Furthermore, since the approximated processing times (τi,m) on the various

machines can be different, the number of possible starting points will also be machine dependent. The

set of orders that can start at time point t on machine m is specified in It,m and its consideration

significantly reduces the number of binary variables in the model. The other required subsets are given

in the Nomenclature section.

The first constraint is the excess resource balance, which is a typical multiperiod balance, where the

availability of machine m at time point t is equal to that at the previous time point, minus one if there is

a task starting at t, plus one if there is a task ending at t (starting at t-τi,m). Notice that 1 represents the

initial resource availability, only used at the first time point. The second constraint is simpler, stating

that all orders must be processed exactly once.

TtMmNNRR
mmipt

mi

mt Ii
tmi

Ii
tmittmttm ∈∈∀+−+= ∑∑

−∈
−

∈
≠−= ,)1(

,,

,

,

,,,,11,1, τ (1)

IiN
mi iTt Mm

tmi ∈∀=∑ ∑
∈ ∈

 1
,

,, (2)

As mentioned in section 2, two different objective functions will be considered. The first,

minimization of total cost, is given in eq 3,

∑ ∑ ∑
∈ ∈ ∈mi iTt Mm Ii

mitmi cN
,

,,, min (3)

The second, minimization of total earliness, is more difficult to define. In eq 4, the second term

represents the time corresponding to the first time point, while the third term represents the ending times

8

of all processing tasks (number of time intervals spanned by all tasks multiplied by the duration of each

time interval).

∑ ∑ ∑∑
∈ ∈ ∈

∈
∈

−+−−=
mi iTt Mm Ii

mitmiiIiIi
i tNrd

,

)1(min Zmin ,,,''
δτ (4)

3.1.2. Continuous-time formulation (F2)

The continuous-time formulation presented below is a simplified version of the general formulation

presented in Castro et al. (2004a) with the addition of release and due date constraints. Due to the

special characteristics of the problem being considered, a processing task is now referred by two

indexes (order i, plus m for the machine where it is executed) and we only need to be concerned with

the equipment resources, |M|.

The continuous time formulation uses more sets of variables and constraints than its discrete-time

counterpart due to the fact that the time corresponding to each event point (Tt) is unknown. The other

important difference is that when considering batch tasks, we do not know a priori how many time

intervals a particular task will span. Thus, both the starting and ending event point of the task must be

considered, which means that the binary extent variables will have two time indexes instead of one:

',,, ttmiN . Regarding this set of variables, it will be assumed that each task can only span a limited number

of time intervals: ttt ∆+≤' . Although ∆t may act as a hidden constraint, the use of a value smaller than

the maximum one (|T|-1) substantially improves the performance of the formulation (further details can

be found in Castro et al., 2005).

The first two constraints (eq 5 and 6) are equivalent to eq 1 and 2, but now one more summation is

required to find the exact event point where the task ends (if started at t) or starts (if it ends at t), see eq

5. Notice also that all orders can start at any point but the last. This is because we do not know for sure

which variables can be eliminated from the formulation without compromising the optimal solution,

even so it is expected that orders with earlier due dates will end at lower event points.

TtMmNNRR
mm Ii

tttt
Tt

ttmi
Ii

tttt
Tt

ttmittmttm ∈∈∀+−+= ∑ ∑∑ ∑
∈

<≤∆−
∈∈

∆+≤<
∈

≠−= ,)1(
'

'
,',,

'
'

',,,11,1, (5)

9

IiN
iMm Tt

tttt
Tt

ttmi ∈∀=∑ ∑ ∑
∈ ∈

∆+≤<
∈

 1
'
'

',,, (6)

The next set of constraints relates the time of two event points to the processing time of the task

occurring between those two event points. Although it can either be written per order or per machine,

the latter option is preferred (eq 7) since it leads to a better performance (see Castro et al., 2004a). The

model would be complete if it were not for the release and due date constraints. Eq 8 states that if order

i starts at time point t, the absolute time of event point t cannot be lower than its release date. Eq 9 is the

equivalent constraint for due dates, and is formulated as a big-M constraint (active if there is an order

being processed on machine m that actually ends at t, otherwise the constraint is relaxed, see eq 10). Eq

11 fixes the time of the last event point to the maximum due date, which although not necessary, also

improves the performance of the model.

ttttTttMmpNTT
mIi

mittmitt ∆+≤<∈∈∀≥− ∑
∈

',',, ,',,,' (7)

||,,
'
'

',,, TtTtMmrNT
mIi

tttt
Tt

ittmit ≠∈∈∀≥ ∑ ∑
∈

∆+≤<
∈

 (8)

1,,)1(
'

'
,',,

'
'

,',, ≠∈∈∀+−≤ ∑ ∑∑ ∑
∈

<≤∆−
∈∈

<≤∆−
∈

tTtMmdNNHT
mm Ii

i

tttt
Tt

ttmi
Ii

tttt
Tt

ttmit (9)

TtHTt ∈∀≤ (10)

 max|| iIiT dHT
∈

== (11)

If one intends to minimize the total cost, the model ends with eq 14. Otherwise, if one wants to

minimize the total earliness (eq 15), one additional set of positive continuous variables DDi, the delivery

date of order i, and two more sets of big-M constraints, must be defined. Note that in eq 12, the delivery

date of order i must not be lower than the absolute time of event point t if it ends at or after t. Similarly,

in eq 13, the delivery date must not be higher than Tt if the order ends at or before t.

1,,)1(
''''

''
'
'

','',, ≠∈∈∀−−≥ ∑ ∑ ∑
∈

<≤∆−
∈

≥
∈

tTtIiNHTDD
iMm

tttt
Tt

tt
Tt

ttmiti (12)

10

1,,)1(
''''

''
'
'

','',, ≠∈∈∀−−≤ ∑ ∑ ∑
∈

<≤∆−
∈

≤
∈

tTtIiNdTDD
iMm

tttt
Tt

tt
Tt

ttmiiti (13)

∑ ∑ ∑ ∑
∆+≤<

∈ ∈ ∈ ∈
tttt

Tt Tt Mm Ii
mittmi

i

cN
'
'

,',,, min (14)

∑
∈

−
Ii

ii DDd)(min (15)

3.2. Multiple time grid, continuous time formulation (F3)

The continuous-time formulation presented below uses multiple time grids, i.e. each machine uses a

time grid similar to the one given in Figure 2. As a consequence, events occurring on machine m will

report only to time grid m, and all |M| time grids are completely independent, meaning that no relation is

assumed between event points of different time grids. Nevertheless, the time grids have two things in

common: i) same number of time points; ii) same lower and upper bounds on the first and last time

points, respectively. A representation of the multiple time grid formulation, which highlights the

independence of the several time grids, is shown in Figure 3.

M1

M2

M3

Figure 3. Possible solution of non-uniform time grid continuous-time formulation (|I|=15, |M|=3, |T|=6)

The advantage of considering |M| independent time grids is that we can assume, without loss of

generality, that all processing tasks last exactly one time interval. This means that if a task starts at

event point t, it will end at t+1 so only one time index needs to be considered in the binary extent

variables, Ni,m,t, just like in the discrete time formulation. The other difference in terms of model

variables, when compared to the uniform time grid continuous-time formulation, is that |M|×|T| event

points must be assigned a time, so the continuous variables that represent the absolute time of a given

event point have two indices: Tt,m. Variables Rm,t have the same meaning as in the two previous models,

but based on computational experience it is better to consider them as binary variables.

11

The model constraints shown next are very similar to the constraints of the uniform-time grid

formulation, so there is no need of explaining them again. There are however, two exceptions. The first,

is that we also consider time matching constraints (eq 19) to enforce the difference between the times of

two consecutive event points to be equal to the processing time of the order being executed, if there is

one (if not, the constrained is relaxed to Tt+1,m-Tt,m≤H). These constraints, although not necessary, lead

to better computational performances whenever its inclusion does not increase the number of time

points required to find the global optimum solution (note that without the time matching constraint each

task may last more than its processing time, and thus incorporate an eventual idle time of the machine

where it is being processed, which is an effective way of decreasing the required number of time

points). Note also, that if one wants to remove solutions that feature waiting periods between orders,

then the first term on the right-hand side of eq 19 can be removed, which is equivalent to turning

equation 18 into an equality. Although this typically leads to an improved computational performance,

there is the risk of excluding the optimal solution from the formulation. The second exception, is that it

is not convenient to fix the time of the last time point of all grids to the maximum due date, since we do

not know where that order is going to be processed (see eq 22). The objective for minimizing earliness

is written in exactly the same way as for model F2 (see eq 15).

TtMmNNRR
mm Ii

tmi
Ii

tmittmttm ∈∈∀+−+= ∑∑
∈

−
∈

≠−= ,)1(1,,,,11,1, (16)

IiN
iMm Tt

tmi ∈∀=∑ ∑
∈ ∈

 1,, (17)

||,, ,,,,,1 TtTtMmpNTT
mIi

mitmimtmt ≠∈∈∀≥− ∑
∈

+ (18)

||,,)1(,,,,,,,1 TtTtMmpNNHTT
mm Ii

mitmi
Ii

tmimtmt ≠∈∈∀+−≤− ∑∑
∈∈

+ (19)

||,, ,,, TtTtMmrNT
mIi

itmimt ≠∈∈∀≥ ∑
∈

 (20)

1,,)1(1,,1,,, ≠∈∈∀+−≤ ∑∑
∈

−
∈

− tTtMmdNNHT
mm Ii

itmi
Ii

tmimt (21)

12

TtMmdHT iIimt ∈∈∀=≤
∈

, max, (22)

1,,,)1(
'
'

1',,, ≠∈∈∈∀−−≥ ∑ ∑
∈

≥
∈

− tTtMmIiNHTDD i
Mm

tt
Tt

tmimti
i

 (23)

1,,,)1(
'
'

1',,, ≠∈∈∈∀−−≤ ∑ ∑
∈

≤
∈

− tTtMmIiNdTDD i
Mm

tt
Tt

tmiimti
i

 (24)

∑ ∑ ∑
∈ ∈ ∈Tt Mm Ii

mitmi
i

cN ,,, min (25)

4. Other approaches

The single stage parallel scheduling problem can also be solved by other approaches. The three

alternative models tested are essentially those described in Jain & Grossmann (2001). Thus, instead of

showing the detailed models we will focus on the main characteristics of each method and highlight its

differences and similarities to the formulations shown in section 3. The changes made to the original

continuous-time and hybrid models will also be mentioned.

4.1. MILP model with sequencing variables (F4)

Not all continuous-time formulations need to consider one or more time grids explicitly. If one

considers binary assignment xi,m and sequencing variables yi,i’, no time indexes are required to generate

a MILP that can solve the problem at hand. In this way, only one problem needs to be solved to find the

optimal solution, instead of a few problems (in the search for the adequate number of event points, |T|,

see sections 3.1.2 and 3.2). Other advantages include the possibility to enforce or forbid certain product

sequences and the way sequence-dependent due dates are considered. Enforcing and/or forbidding

certain product sequences means considering fewer binary sequencing variables, while sequence

dependent due dates are treated with exactly the same constraints (one more term is added to the timing

constraints relating the starting time of orders i and i’). These two problem characteristics, which are

very common in reality, can be difficult to implement on the mathematical formulations presented in

section 3, and usually involve adding more variables and constraints, thus increasing its complexity.

13

When testing the performance of the MILP model of Jain & Grossmann (2001), it was found that for

the objective of minimizing cost, removing the logical cuts (constraints 22 and 23 of their original

work), which involve a large number of constrains (constraint 23 uses 4 indexes: i,i’,m,m’), generally

yields better computational performance. For the objective of minimizing earliness, the results were not

conclusive so we opted to maintain those constraints.

4.2. Constraint programming model (F5)

The same scheduling problem can also be modeled using constraint programming (CP). CP models, in

contrast to MILP models, are highly dependent on the CP package used to model the problem. In this

paper we use ILOG’s OPL modeling language (van Hentenryck, 1999), which has a set of constructs

especially designed for scheduling problems. The basic OPL modeling framework is similar to the

Resource Task Network in how it looks at the problem: a set of activities (tasks) that need to be

performed using a certain set of resources, where the equipment resources (the machines) are defined as

unary resources. CP models can be viewed as discrete-time models with intervals of one time unit

length, since all variables of a given activity (start, duration and end, with start+duration=end) are

integer variables.

4.3. Hybrid MILP/CP model (F6)

The strengths of both models can be combined by using a simplified version of the MILP for the

assignments, and then solve |M| single machine problems with CP to sequence the orders that were

assigned to a particular machine. When minimizing the total cost (defined in the MILP by Σxi,mci,m), this

decomposition strategy has the advantage of always leading to the global optimum solution since the

objective function only depends on the assignment variables and the simplified MILP is a less

constrained model than the full MILP. The only drawback is that the assignments may be infeasible on

one or more machines, but that can be overcome simply be adding integer cuts to the MILP and

iterating until all CP sequencing problems are feasible. While the same decomposition strategy can be

used when minimizing earliness, or generally when considering an objective that is a function of the

14

sequencing variables, the performance of this decomposition is likely to worsen as then the CP has to

solve an optimization problem rather than a feasibility problem.

Following the work of Jain & Grossmann (2001), Bockmayr & Pisaruk (2003) generalized the integer

cuts and used them in a branch and cut framework, while Sadykov & Wolsey (2005) proposed a tighter

formulation for the MILP and explored several integrated schemes. Also, Maravelias & Grossmann

(2004b) have proposed a pre-processing algorithm that generates knapsack constraints or cover cuts for

certain subsets of orders that can be added to the cut pool of the MILP a priori. The pre-processing

algorithm was shown to reduce the computational effort by one order of magnitude in the set of

instances studied by Jain & Grossmann (2001). This work uses the knapsack constraints proposed by

Maravelias & Grossmann (2004b) for the single stage plant.

5. Computational results

In this section, the performance of the mathematical formulations is illustrated through the solution of

several example problems. Two sets of case studies will be considered. The first set concerns total cost

minimization and all 6 approaches presented in sections 3 and 4 will be tested. The second set of case

studies involves the minimization of total earliness, and all except the hybrid MILP/CP approach (for

the reasons explained in section 4.3) will be tested. All MILP models, where solved to optimality (1E-6

relative tolerance), unless otherwise stated, on a Pentium-4 2.8GHz machine, running the commercial

solver GAMS/CPLEX 9.0. The CP and hybrid MILP/CP models where implemented and solved in

ILOG’s OPL studio 3.7, on the same machine.

5.1. Problem set 1: minimize total cost

The first six problems to be considered correspond to the single stage example problems 3.1-5.2 of

Harjunkoski and Grossmann (2002), with the size of the problems spanning from 12 orders on three

machines to 20 orders on five machines. It will be seen that half of the models tested can solve all of

these 6 instances rather fast, so in order to find the best approach, four other, five machine problems, are

solved. The data for these problems are given in Table 1, where problem S1G comprises the first 25

15

orders and problem S1J the full set of orders. Further and less constrained versions of these problems

were also solved: in problem S1H the processing times of S1G were increased 5% and rounded to the

closest integer value, while in S1I the processing times of S1J were decreased by 20% and rounded. The

results obtained are summarized in Table 2 and discussed in the next couple of sections.

Table 1. Data for problems S1G and S1H

 Dates
(day)

pi,m (day)/ci,m

Order ri di M1 M2 M3 M4 M5
I1 66 110 30/5 53/2 39/4 36/4 56/1
I2 40 188 30/5 50/2 50/2 57/1 43/3
I3 65 163 35/4 45/3 42/3 45/3 41/3
I4 28 137 46/3 40/3 38/4 41/3 31/5
I5 36 221 46/3 34/4 50/2 55/1 57/1
I6 10 126 47/3 49/2 31/5 29/5 54/2
I7 56 286 38/4 55/1 33/4 34/4 51/2
I8 50 237 29/5 57/1 42/3 42/3 49/2
I9 20 254 48/2 54/2 50/2 38/4 40/3
I10 26 119 32/5 39/4 50/2 42/3 39/4
I11 46 229 33/4 48/2 49/2 53/2 34/4
I12 78 189 31/5 57/1 49/2 52/2 42/3
I13 88 159 53/2 40/3 42/3 44/3 36/4
I14 53 219 28/5 55/1 29/5 28/5 57/1
I15 46 281 51/2 58/1 33/4 53/2 40/3
I16 95 269 43/3 57/1 32/5 39/4 44/3
I17 94 200 38/4 39/4 45/3 37/4 49/2
I18 12 258 55/1 34/4 58/1 56/1 40/3
I19 72 142 54/2 53/2 49/2 44/3 38/4
I20 12 184 28/5 57/1 38/4 43/3 51/2
I21 66 294 33/4 55/1 36/4 43/3 48/2
I22 29 184 54/2 58/1 49/2 47/2 31/5
I23 2 295 48/2 54/2 49/2 33/4 31/5
I24 99 156 50/2 29/5 37/4 40/3 45/3
I25 81 142 43/3 53/2 41/3 33/4 38/4
I26 3 270 42/3 50/2 33/4 52/2 37/4
I27 45 277 41/3 54/1 57/1 43/3 49/2
I28 2 134 49/2 50/2 40/3 37/4 45/3
I29 16 170 54/2 37/4 48/2 48/2 43/3
I30 75 157 57/1 43/3 57/1 52/2 37/4

16

Table 2. Overview of computational performance (CPU s) for total cost minimization

Type of Model Discrete-time
MILP

Continuous-time MILP CP Hybrid
MILP/CP

Problem/Model F1 F2 F3 F4 F5 F6
S1A (12 orders, 3 machines) 18.9 3600†,‡ 10.7 15.2 0.98 0.44
S1B (12 orders, 3 machines) 5.67 0.13 0.10 0.05 0.13 0.03
S1C (15 orders, 4 machines) 13.9 - 1.16 33.3 97.3 0.63
S1D (15 orders, 4 machines) 5.48 - 0.14 5.32 6.53 0.45
S1E (20 orders, 5 machines) 7.25 - 62.1 421 3600†,* 0.99
S1F (20 orders, 5 machines) 35.6 - 1.96 3600†,* 2326 0.77
S1G (25 orders, 5 machines) 2.47 - 471 3600†,* 518 172
S1H (25 orders, 5 machines) 4.70 - 115 3600†,* 4133 968
S1I (30 orders, 5 machines) 13.5 - 45.5 107.8 183 46.8
S1J (30 orders, 5 machines) 27.2 - 3600†,* 3600†,* 3600†,* 3600†,‡

†Maximum resource limit
‡ No solution found
*Suboptimal solution returned

5.1.1. Problems S1A-S1F

The computational statistics for the first six problems are given in Table 3 through Table 5. Each table

features the two problems of similar complexity, i.e. same number of orders and machines. The analysis

of the results is performed model by model.

In the discrete-time formulation (F1), in order to match the exact problem data, we must set δ= 1 and

use a total of 380 time intervals in problems S1A/B/E/F and 370 intervals in problems S1C/D. As a

consequence, large MILPs are generated. Despite their size, the resulting MILPs are solved rather fast,

in part due to their low integrality gaps, and usually on the first nodes of the search tree. Furthermore,

increasing the complexity of the problem from 12 orders on 3 machines to 20 orders on 5 machines has

little effect on the computational effort.

The constraint programming model (F5), like the discrete-time formulations, is also limited to integer

data. This is the only resemblance to F1 since CP uses much fewer variables and constraints and its

performance is highly dependent on the problem size. As the size increases so does the number of

choice points and the computational effort. While problems S1A/B are solved in less than one second,

problems S1C/D take several seconds to solve, S1F takes almost 40 minutes to solve and most

importantly, the optimal solution cannot be found for S1E in one hour of computational time

17

(Harjunkoski & Grossmann, 2002, report 189,244 s to find the optimum), even though a good solution

is found in less than one minute.

The results in Table 3 show that the uniform time grid continuous-time formulation (F2) has the worst

performance of all models tested. Interestingly, it has completely distinct performances for problems

S1A and S1B. While the former is intractable, the latter is solved in just 0.13 s. This difference in

behaviour is better understood by recalling that the computational effort increases substantially with an

increase in the number of event points (|T|) and/or the maximum number of time intervals that a

particular task can span (∆t). While S1A requires |T|=12 and ∆t=5 to find the global optimum (this can

be confirmed by using the solution from F3 to fix the binary variables of model F2), S1B requires only

|T|=9 and ∆t=2. Since an increase in the number of orders leads to an increase in the number of event

points required to solve the problem, there is no point in solving the other problems of this section with

model F2.

When going from the uniform to the multiple time grid continuous-time formulation (F3) the size of

the resulting MILPs is significantly smaller, the integrality gap is lower and, above all, the

computational performance is greatly reduced (S1A is solved in 10.7 s). When using multiple time grids

all orders last only one time interval, which means that we only need to be concerned with specifying |T|

(one starts at |I|/|M|+1 and continues to increase the number of time points until no improvement is

found on the value of the objective function). The other advantage becomes apparent when comparing

the results for problems S1A/B and S1C/D. Although the size roughly doubled, due to the fact that

S1C/D consider three more orders and two more machines, the number of orders per machine, which

has a direct influence on the number of required time points and hence on the computational effort,

decreased. As a consequence, problems S1C/D took less time to solve by (F3) than S1A/B, while for the

continuous-time formulation with sequencing variables (F4) the computational time increased

substantially. Furthermore, the MILPs resulting from (F3) have slightly lower integrality gaps than

those resulting from (F4), require a larger number of binary variables, but are solved in significantly less

time. Note also that the continuous-time formulation with sequencing variables (F4) cannot find the

18

optimal solution for S1F in one hour of computational time, while the proposed formulation takes less

than two seconds to find and prove optimality.

Table 3. Computational statistics for problems S1A-S1B

Problem S1A S1B
Model F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6
|T| 381 12 6 381 9 9
Discrete
variables

6948 1620 198 168 8914 540 315 168

Single
variables

8092 1669 217 181 72 10058 577 343 181 72

Constraint
s

1156 250 91 358 84 1156 133 136 358 84

RMIP 101.86 84.67 98.10 97.89 84.92 84.54 84.9 84.88
Obj 104 - 104 104 104 104 85 85 85 85 85 85
CPU 18.9 3600† 10.7 15.2 0.98 0.44 5.67 0.13 0.10 0.05 0.13 0.03
Nodes 153 864752 20570 10469 7 0 0 0
Choice
points

 3593 818

Major
iterations

 3 1

Total cuts 109 31
†Resource limit exceeded (best possible solution= 88.01, total tree size= 590 MB)

Table 4. Computational statistics for problems S1C-S1D

Problem S1C S1D
Model F1 F3 F4 F5 F6 F1 F3 F4 F5 F6
|T| 371 6 371 8
Discrete variables 13320 405 285 16950 565 285
Single variables 15176 436 301 90 18806 606 301 90
Constraints 1871 146 771 135 1871 196 771 135
RMIP 116 113.03 112.73 104 104 103.78
Obj 116 116 116 116 116 105 105 105 105 105
CPU 13.9 1.16 33.3 97.3 0.63 5.48 0.14 5.32 6.53 0.45
Nodes 15 1305 10356 1 0 2704
Choice points 424969 22791
Major iterations 2 2
Total cuts 302 174

The hybrid MILP/CP model (F6) has the best performance overall, being beaten only by the proposed

formulation for problem S1D. The cuts proposed by Maravelias & Grossmann (2004b) make the hybrid

model very efficient, since few assignment problems (the number of major iterations) need to be solved

(the maximum, 3 iterations, was found for problem S1A). Without the knapsack constraints of

Maravelias & Grossmann (2004b), S1A requires a total of 27 major iterations and 42 integer cuts to find

19

the optimal solution in 9.0 CPUs (instead of 0.44 s, see Table 3), while S1E requires 22 major iterations

and 38 integer cuts for a total computational effort of 18.0 CPUs, instead of 0.99 s, see Table 5.

Table 5. Computational statistics for problems S1E-S1F

Problem S1E S1F
Model F1 F3 F4 F5 F6 F1 F3 F4 F5 F6
|T| 381 7 381 9
Discrete
variables

18790 635 480 23320 845 480

Single variables 20696 671 501 120 25226 891 501 120
Constraints 1926 176 1376 180 1926 226 1376 180
RMIP 158.5 155.79 155.46 142.94 143 142.11
Obj 159 159 159 169 159 144 144 145 144 144
CPU 7.25 62.1 421 57.0† 0.99 35.6 1.96 3600† 2326 0.77
Nodes 0 74653 100399 82 1238 573844
Choice points 207504 6580032
Major iterations 1 1
Total cuts 592 411

†Resource limit exceeded (best possible solution= 143, total tree size= 91 MB)

5.1.2. Problems S1G-S1J

The purpose of the last four problems is to identify which model is more adequate for significantly

larger problems, since S1G and S1H deal with 25 orders and S1I and S1J with 30 orders on five

machines (see Table 1). The results in Table 6 and Table 7 are conclusive since only the discrete-time

formulation (F1) remains quite efficient for all cases (the most difficult problem, S1J takes only 27.2 s

to solve). The continuous-time formulation with multiple time grids (F3), the constraint programming

model (F5) and the hybrid model (F6) can all find the optimal solution of problems S1G-S1I in

reasonable time, while the continuous model with sequencing variables (F4) only finds a reasonable

solution. Making the problems more constrained, by increasing the processing times (when going from

S1G to S1H and S1I to S1J), besides increasing the value of the objective function, generally increases

the computational effort, the only exception being the continuous multiple grid model (F3), which

solves problem S1H in about one fourth of the time required to solve S1G. Problem S1J is by far the

most difficult instance and some models (F4 and F6) are even unable to find a feasible solution to the

problem. A more detailed analysis of the performance of each formulation follows.

20

The discrete-time formulation is surprisingly efficient. Even considering that the MILPs resulting

from F1 exhibit the lowest integrality gap of all three MILPs and that the size of the resulting MILPs are

now smaller than in the previous two problems, because the time horizon as been reduced (problems

S1G-S1J require 294 time points instead of 381), it is difficult to explain why so few nodes are required.

One could think that this is because the solution of the relaxed problem has most of the binary variables

set to 0 or 1, but this is completely false. It just seems that every decision has a large impact on the

model, so CPLEX is able to find the optimal solution very rapidly. The solution for problem S1J is

shown in Figure 4. Notice that the 30 orders have been divided equally between the five machines and

that there are few waiting periods.

0 50 100 150 200 250 300

M1

M2

M3

M4

M5

Time (h)

29 1 30 11 18 23

6 10 13 5 16 7

28 22 19 12 14 27

26 4 25 2 8 15

20 3 24 17 9 21

Figure 4. Optimal solution for problem S1J

The performance of the multiple time grid continuous-time formulation (F3) is also very good. Even

though it is only the third best performer for problem S1G, for the other three problems (S1H-S1J) is

only beaten by the discrete-time formulation (F1). Notice that for S1J, the number of event points was

set to the minimum possible value, 7 (|I|/|M|+1=30/5+1), but the problem complexity is already very

large (the tree size continued to increase rapidly, after one hour of computational time), even though the

solver finds a very good solution. Interestingly, 7 event points are enough to find the global optimum

solution (if one uses the solution from F1 to fix the assignments and sequence on machine M1, i.e. order

29 starts at the first event point, order 1 at the second event point and so on, the problem is solved in

less than 19 s, even without fixing the absolute times of the several event points). The large influence on

21

computational effort resulting from just a few assignments is a characteristic of these types of

continuous-time formulations and it can be used to derive more efficient algorithms (see for instance

work by Castro et al., 2004b).

Table 6. Computational statistics for problem S1G-S1H

Problem S1G S1H
Model F1 F3 F4 F5 F6 F1 F3 F4 F5 F6
|T| 294 6 294 6
Discrete
variables

13548 655 725 13273 655 725

Single
variables

15019 686 751 150 14744 686 751 150

Constraints 1496 156 2156 225 1496 156 2156 225
RMIP 50.25 43.28 46.72 53.71 46.87 46.98
Obj 51 51 54 51 51 54 54 60 54 54
CPU 2.47 471 3600† 518 172 4.70 115 3600‡ 4133 968
Nodes 0 311077 398140 0 64070 487058
Choice points 829542 6538160
Major
iterations

 50 53

Total cuts 933 954
†Resource limit exceeded (best possible solution= 47.13, total tree size= 176 MB)
‡Resource limit exceeded (best possible solution= 47.26, total tree size= 240 MB)

Table 7. Computational statistics for problem S1I-S1J

Problem S1I S1J
Model F1 F3 F4 F5 F6 F1 F3 F4 F5 F6
|T| 294 7 294 7
Discrete
variables

18063 935 1020 16753 935 1020

Single variables 19534 971 1051 180 18224 971 1051 180
Constraints 1501 186 3111 270 1501 186 3111 270
RMIP 53 50 51.44 73.85 69.32 59.62
Obj 53 53 53 53 53 75 76 98 83 -
CPU 13.5 45.5 107.8 183 46.8 27.2 3600† 3600‡ 107* 3600♦
Nodes 8 17345 11470 3 1081000 68467
Choice points 228701 259260
Major iterations 12 1
Total cuts 1150 1163

†Resource limit exceeded (best possible solution= 72.75, total tree size= 344 MB)
‡Resource limit exceeded (best possible solution= 61.55, total tree size= 57 MB)
*Computational time required to find the solution reported (solver terminated at 3600 CPUs)
♦Resource limit exceeded for first MILP (integer solution= 75, best possible solution= 67.15)

The failure of the hybrid MILP/CP model (F6), the best performer so far (see Table 2), for S1J, is the

most surprising result. Until now, the global optimal solution could be found in few iterations and this

22

was done in less than one second. The problems considered in this section are however more complex

and more iterations are required to find the global optimal solution. Furthermore, each iteration takes

more time to complete, for example problem S1G and S1I average 3.4-3.9 s per iteration, while S1H

averages more than 18 s. These two combined factors significantly decrease the performance of the

hybrid MILP/CP model. Nevertheless, it is still the second best formulation for problem S1G and the

third best for problems S1H and S1I. The major drawback of the hybrid model is highlighted when

solving problem S1J. The MILP with assignment and sequencing variables is intractable (see results for

model F4) mainly due to its very large integrality gap. The simplified MILP generated from the hybrid

model suffers from a similar problem and even though the integrality gap is lower (the solution of the

relaxed problem equals 64.4) and a feasible solution is found, the solver is still far from proving

optimality in one hour of computational time. Interestingly, the best solution found has the same

objective as the global optimum solution, the difference being that for the simplified MILP we are not

sure that that solution is even feasible. It is now clear that the decision of dividing the problem in two,

assignment and feasibility problems, is good but has two important limitations. The first was already

known, this decomposition strategy is only effective when the objective function depends solely on the

assignment variables. The second is that several assignment problems may need to be solved to find the

optimal solution. If the resulting MILPs have a small size and a low integrality gap, this approach works

fine, but if at least one of the conditions fails, then we have a problem, as seen for problem S1J. And as

the hybrid model only reaches the feasible region when it finds the optimal solution, we are even

without a feasible solution to the problem. Thus, replacing the pure MILP or constraint programming

models with the hybrid approach by Jain & Grossmann (2001) is not a good idea for large problems.

Finally, the constraint programming model (F5) also has reasonable performance. It is particularly

interesting to see that for problem S1G it performs almost as well as the multiple time-grid continuous-

time formulation (F3), a behaviour that was observed only in the first problems (S1A/S1B). For S1J, the

CP model finds a good solution in less than two minutes of computational time but one more hour of

computational time does not lead to any improvements. Nevertheless, it is significantly better than the

23

solution found by the continuous-time formulation with sequencing variables (F4) in the same

computational time.

5.2. Total earliness vs. total cost

Changing the objective function from total cost to total earliness does not affect the model constraints

in the case of the discrete-time formulation (F1) (see section 3.1.1) or the constraint programming

model (F5). However, the continuous-time formulations need some changes. All three models require a

new set of variables, the orders delivery dates (DDi), and some changes in the model constraints. While

in the time grid models two additional sets of constraints are required (eqs 12 and 13 for F2, and eqs 23

and 24 for F3), in the one with sequencing variables (F4) only one adjustment is needed (in equation 17

of Jain & Grossmann, 2001, replace di by DDi and turn the inequality into equality). To see the impact

of the objective function change on the computational effort, we have solved problems S1A-S1B for

minimizing earliness. The results are given in Table 8.

When comparing Table 8 to Table 3 it is clear that only the discrete-time model (F1) performs better

for total earliness than for total cost. The reason for this behaviour can be explained by the fact that

now, the time point at which each order is executed also affects the objective function, meaning fewer

degenerate solutions and better performance. The constraint programming model (F5) has the second

best performance, but the computational effort for S1B has increased by two orders of magnitude (19

vs. 0.13 s), despite requiring fewer variables than for total cost minimization (60 vs. 72). Nevertheless,

it still performs much better than the two continuous-time models tested (F2 even has a worse

performance than F3, so it was not considered). It is interesting to see that the continuous-time model

with sequencing variables (F4) is much more efficient than the multiple time grid model (F3), behaviour

that is the exact opposite from that found for minimizing cost. The reason for this was already given in

the previous paragraph. While (F4) originates very similar MILPs for both objectives, (F3) must

consider two more sets of complex, big-M constraints, which are known to increase the integrality gap

and make the MILPs more difficult to solve (note that while F3 and F4 have the same integrality gap,

24

optimality can be proved in a reasonable time for problems resulting from F4, whereas the absolute gaps

for those resulting for F3 were still very large after one hour of computational time).

Table 8. Problems S1A-S1B revisited. Computational statistics for total earliness minimization.

Problem S1A S1B
Model F1 F3 F4 F5 F1 F3 F4 F5
|T| 381 6 381 6
Discrete variables 6948 198 168 8914 198 168
Single variables 8092 229 193 60 10058 229 193 60
Constraints 1156 436 820 84 1156 436 820 84
RMIP 733 0 0 97 0 0
Obj 770 770 770 770 98 98 98 98
CPU 5.61 3600* 1663 4.56 1.56 3600† 95.0 19.0
Nodes 107 859548 463155 3 686730 62867
Choice points 4570 93048

*Resource limit exceeded (best possible solution= 380.5, total tree size= 111 MB)
†Resource limit exceeded for first MILP (best possible solution= 0, total tree size= 97 MB)

5.3. An efficient strategy for total earliness minimization

The results of the previous section have shown that the size of the problems that can be solved

efficiently by the continuous-time or constraint programming models is smaller for earliness

minimization than for cost minimization. The discrete-time formulation is very efficient but has one

important disadvantage: due to the discretization of the time horizon, a very large number of time

intervals may be required to consider the exact problem data, inevitably leading to problem

intractability. However, as mentioned in section 3.1, one can always consider an approximation of the

problem by rounding the problem data to integer multiples of the interval length (δ). Rounding up the

data ensures that if the approximate problem is feasible so is the real problem. Furthermore, the optimal

solution of the former will be a very good upper bound to the optimal solution of the latter, with better

approximations resulting from lower rounding errors.

The optimal solution from the discrete-time formulation (approximate problem) can then be used to

find a very good solution to the exact scheduling problem by using one of the two continuous-time

formulations. The proposed strategy is the following: i) solve the approximate problem by the discrete-

time formulation (F1) to find the assignments of orders to machines. Although it is desirable to solve the

25

problem to optimality, a feasible solution is enough to proceed to the next step; ii) solve a simplified

version of the continuous-time model with multiple time grid (F3) or sequencing variables (F4), by

considering in sets Im and Mi, only the orders assigned to machine m and the machine assigned to order

i, or only the variables xi,m with i∈Im, respectively. Note that once the assignments are fixed, each

machine is totally independent from the others so it is better to solve |M| single machine problems

instead of a more complex parallel machines problem. For model (F3), the number of event points to

use for solving the single machine problem, for machine m, is given by |T|=|Im|+1. iii) if the complexity

of one or more single machine problems in the previous step is still too much to handle, further reduce

the complexity by also fixing the event point at which each order is processed (the first order allocated

to a particular machine will start at the first event point, the second order at the second and so on, for

model F3), or by fixing the sequencing variables yi,i’ (F4). In this case, there are fewer degrees of

freedom and hence the exact schedule corresponding to the near optimal solution found in the first step

is generated.

Overall, the proposed strategy does not guarantee global optimality, but is capable of generating

better solutions than those reported so far in the literature for two complex example problems, as will be

seen in the next section.

5.4. Problem set 2: minimize total earliness

The data for the set of problems considered in this section was taken from Méndez & Cerdá (2003)

and is given in Table 9. Notice that there are no release dates, meaning that all orders can start to be

processed from the beginning of the time horizon (time zero). The complete problem and two

subproblems will be solved in increasing order of complexity: problem S2A will consider the first 12

orders; problem S2B the first 29 orders and problem S2C the full set of orders (40). Note that a

particular order can only be processed on a subset of the available machines, which allows us to use

fewer variables and constraints. This is the reason why we consider a 40 order problem, which is more

than the maximum number of orders considered when minimizing total cost, even after knowing from

section 5.2 that the resulting problems are more difficult to solve.

26

Table 9. Data for second set of problems (S2A-S2C)

 pi,m (day) pi,m (day)
Order di

(day)
M1 M2 M3 M4 Order di

(day)
M1 M2 M3 M4

I1 15 1.718 1.424 I21 30 7.497 3.614
I2 30 1.680 1.019 I22 20 0.864
I3 22 1.787 1.048 I23 12 3.624
I4 25 1.564 2.373 I24 30 2.667 4.230
I5 20 0.736 1.247 I25 17 6.132 3.448 5.132
I6 30 5.443 3.430 I26 20 4.004 1.987
I7 21 5.045 3.025 3.444 I27 11 6.590 4.167
I8 26 1.500 1.670 I28 30 5.680 3.465
I9 30 1.869 2.689 I29 25 4.516
I10 29 1.457 I30 26 2.384
I11 30 3.925 3.230 I31 22 1.744 1.593
I12 21 6.971 7.000 5.830 I32 18 2.698 3.884
I13 30 11.430 6.946 I33 15 2.322
I14 25 2.812 1.757 I34 10 3.445 2.658
I15 24 5.180 3.215 I35 10 3.660 2.780
I16 30 1.430 1.013 I36 14 2.433
I17 30 4.654 3.266 I37 24 2.320 2.194
I18 30 1.604 I38 16 2.545 2.080
I19 13 3.305 2.917 I39 22 2.210
I20 19 2.604 1.074 1.830 I40 23 2.065

5.4.1. Results of standalone models for problems S2A-S2C

The discrete-time formulation (F1) requires an exceedingly large number of time intervals to consider

the exact problem data (30/0.001+1=30001). This is too much, so one needs to round the problem data

as described in section 3.1. The smaller the interval length (δ), the more difficult it is to solve a

particular problem. Thus, an increase in problem complexity (e.g. increase in the number of orders)

should be compensated by an increase in interval length, in order to maintain problem tractability. For

these set of problems we have chosen δ=0.01, 0.05 and 0.1 days for problems S2A, S2B and S2C, which

means considering 3001, 601 and 301 time points, respectively. Despite the decrease in problem size,

the computational effort increases significantly from S2A (7.35 s) to S2B (300 s) to S2C (3600 s), with

the latter representing the maximum resource limit (integer solution within 2.63% of the optimum). The

solutions from the discrete-time model (F1) are good upper bounds on the true optimal solution, with

the quality of the approximation generally increasing with an increase in the number of time intervals.

For S2A, the solution of 1.03 days is very close to the optimal solution found by the continuous-time

27

models, 1.026 (see Table 10). For S2B and S2C the solutions are better than the best solutions found by

the continuous-time models, and the solution of S2B is even better than the best solution reported in the

literature, 62.377 days (see Méndez & Cerdá, 2003).

The constraint programming model (F5) like the discrete-time formulation (F1) uses integer data for

the processing times. This means that we need to multiply the values in Table 9 by 1000 before we

solve the problem in ILOG (the objective function is then divided by 1000, to find the total earliness).

Problem S2A is solved in 3266 CPUs, which is already too much time. To overcome this problem we

can use a smaller basis by multiplying the problem data by 100 and then rounding it to the next integer.

Doing this ensures that the problem data is exactly the same as that considered in the discrete-time

formulation (F1), thus allowing for a more valid comparison. The computational statistics in Table 10

clearly show that the CP model (F5) performs worse than model (F1). Since a significantly worse

solution was found for S2B, there is no point on solving S2C by the CP model.

The uniform time grid continuous-time formulation (F2) can find the global optimal solution rather

fast but due to the 100% relative integrality gap it is very difficult to prove optimality (about 1.5 hours

of computational time). The other disadvantage is that a few problems needed to be solved to find the

minimum number of event points (10) and the minimum value of ∆t (5) to get to the optimal solution.

Thus, like with the first set of problems, the uniform time grid continuous-time formulation has a poor

performance and is only useful for small problems.

The multiple time grid continuous-time formulation (F3) has very good performance for S2A (1.1 s).

A minimum number of 4 event points (|I|/|M|+1) is required to get a feasible solution of 2.457 days in

0.14 s. A single increase in the number of event points allows us to find a better solution (1.026 days),

which we know is the global optimum. A further increase in the number of event points leads to a

degenerate solution in 6.5 s. Contrary to the first set of problems, where they improved the

computational performance, the time matching constraints (eq 19) were not included.

For problem S2B, the multiple time grid continuous-time formulation (F3) generates the worst

solution of the four models tested. Note, that is very difficult to reduce the integrality gap (after one

28

hour of computational time, the best possible solution, 1.151, was still very distant to the best integer

solution found, 90.182). Furthermore, this solution is for 9 event points (the minimum number that

ensures feasibility), a number that is probably insufficient to find the optimal solution (the results for

machine M3 indicate the necessity of 11 event points, see Table 11).

The MILP with assignment and sequencing variables (F4) has the best performance of the three

continuous-time models since it can always find reasonably good solutions. When compared to the

multiple time grid formulation (F3), it has the advantage of considering the time grid implicitly (in the

model constraints), which means that it only needs to be solved once. For S2A, the problem is solved in

less than one third of the time despite using a larger number of variables and constraints, due to a faster

increase in the objective of the relaxed model (i.e. it does a better job at reducing the gap between the

relaxed model and the MILP). This seems to suggest that fixing a particular binary variable has a greater

impact on model (F4) than in model (F3).

Table 10. Computational statistics for problems S2A-S2C

Problem S2A S2B S2C
Model F1 F2 F3 F4 F5 F1 F3 F4 F5 F1 F4
|T| 3001 10 5 601 9 301
Discrete
variables

53955 875 120 157 23190 492 869 14189 1634

Single
variables

66000 938 153 182 60 25595 558 928 145 15394 1715

Constraint
s

12017 445 265 512 84 2434 1042 2845 203 1245 5088

RMIP 1.03 0 0 0 - 60.183 0 0 - 125.49 0
Obj 1.03 1.026 1.026 1.026 1.03 61.35 90.182 64.441 68.05 133.9 143.78
CPU 7.35 5256 1.10 0.30 300 300 3600† 3600‡ 3355* 3600♦ 3600◊
Nodes 0 1508390 1283 22 - 892 210026 550451 29878 240332
Choice
points

 20931 12935204

†Resource limit exceeded (best possible solution= 1.151, total tree size= 90 MB)
‡Resource limit exceeded (best possible solution= 23.137, total tree size= 263 MB)
*Computational time required to find the solution reported (solver terminated at 3600 CPUs)
♦Resource limit exceeded (best possible solution= 130.47, total tree size= 371 MB)
◊Resource limit exceeded (best possible solution= 26.711, total tree size= 204 MB)

29

5.4.2. Results of proposed strategy for problems S2B-S2C

In the previous section we have seen that the solutions from the discrete-time formulation (F1), which

are valid upper bounds on the true optimal solution, are better than the best solutions found by the

continuous-time formulation and the constraint programming model. Thus, the strategy presented in

section 5.3 can be applied. First, we fix the assignments of orders to machines to the optimal

assignments of the approximated problem (solution of F1). Then, we solve the four single machine

problems to find an optimal solution to the real problem. Both the continuous-time model with multiple

time grids and the one with sequencing variables (F4) are used to find out which one is the best.

The results for S2B (see Table 11) show that both (F3) and (F4) solve the single machine problems

very efficiently with model (F4) showing a better performance for machine M3, which has more orders

assigned to. This trend is confirmed for S2C (see Table 12). While the multiple time grid formulation

(F3) performs similarly to (F4) for machines M1 and M2, the computational effort increases roughly by

two orders of magnitude for the other two machines. This is a typical behaviour of time-grid(s) based

continuous-time formulations (see Castro et al. 2004a): at high values of |T|, a single increase in the

number of event points causes a one order of magnitude effect on computational effort. This significant

difference in computational effort is even more interesting when one realizes that the MILPs generated

by (F3) and (F4) are identical in terms of the number of discrete variables, constraints and integrality

gap, which are classic performance indicators.

The optimal solution for problem S2B is given in Figure 5. The first thing to note is that there is not a

limiting machine throughout the time horizon since all have waiting periods after they start to be used

(M1 stops 0.955 days between orders 1 and 7 and 0.104 days between 7 and 14; M2 stops 1.026 days

between orders 19 and 12 and 2.014 days between 12 and 11; M3 stops 0.664 days between orders 23

and 25; M4 stops 0.206 days between orders 27 and 29 and 0.065 days between orders 3 and 28).

Overall, M3 and M4 can be viewed as more limiting machines since they stop for less time. Curiously,

all orders that were assigned to M3 and M4 have the lowest processing time on these machines, which

30

seems to indicate that the minimization of total processing time would also be an indirect way to

achieve the goal of minimizing total earliness.

Pinto & Grossmann (1995) were the firsts to propose minimizing the total processing time to find the

assignments of orders to machines for this same problem, before solving the sequencing problem. They

found that with this objective the MILP problems resulting from their formulation became much easier

to solve, due to their zero integrality gap. The same approach was tried with the multiple time grid

continuous-time formulation (F3) and we also found that by changing the objective function, which

allows us to neglect the hard constraints 23 and 24, the resulting MILP becomes much easier to solve.

Unfortunately, and although we were able to find reasonable solutions, they were much worse than

those found by using the discrete-time formulation first. One order in the optimal schedule of Figure 5

that goes completely against the objective of minimizing total processing time is order 13, which is

assigned to M1, where it has a processing time of 11.43 days (see Table 9), while in M4 it would take

only 6.946 days to complete.

Preordering of orders based on their due dates is a heuristic that as also been used to decrease the

complexity of the single stage parallel machine problem. Pinto & Grossmann (1995) and Ierapetritou et

al. (1999) used the earliest due date (EDD) method on this problem to find solutions of 82.202 and

94.814 days, respectively. Mendéz & Cerdá (2003) used the increasing slack times (MST) rule to

simplify their MILP formulation and found a better solution (62.377 days), which was further improved

by using a very efficient rescheduling MILP to re-sequence orders assigned to a particular machine.

Models (F3) and (F4), when applied to the single stage problem, can be viewed as more general

formulations than their re-sequencing problem. The schedule of Figure 5, corresponds to a solution that

has a total earliness of 59.896 days, 2.481 days better (almost 4%) than the best solution found by

Méndez & Cerdá (2003), clearly showing that is better to use a discrete-time formulation with

approximate problem data instead of a heuristic procedure. Order 13 is again a good example why the

preordering heuristics fail: it is only the 19th order according to the EDD rule and the 15th order

according to the MST rule but is the 4th order to be completed.

31

The best solution found for problem S2C has a total earliness of 126.949 days and is shown in Figure

6. It is 4.4% better than the solution reported by Méndez & Cerdá (2003), which has a total earliness of

132.727. When compared to Figure 5, the machines have fewer waiting periods (M1 stops for 0.263

days between orders 38 and 39; M2 stops for 1.871 days between orders 33 and 37 and 0.014 days

between orders 40 and 11; and M3 and M4 never stop) and maintain most of the assignments for the

first 29 orders. Of the 40 orders, only 6 orders are delivered exactly at their due dates (orders 2, 9, 16,

18, 38 and 40).

Table 11. Computational statistics for single machine problems (problem S2B)

Model |T
|

discrete
variable
s

single
variable
s

constraint
s

RMIP MIP CPUs nodes

F1+F3 - - - - - 59.896 303 -
M1 7 42 63 98 0 19.232 0.22 93
M2 6 30 48 72 0 3.665 0.09 2
M3 11 110 143 242 0 16.907 2.5 3121
M4 9 72 99 162 0 20.092 0.55 583
F1+F4 - - - - - 59.896 301 -
M1 - 36 49 74 0 19.232 0.07 2
M2 - 25 36 52 0 3.665 0.10 0
M3 - 100 121 202 0 16.907 0.24 202
M4 - 64 81 130 0 20.092 0.14 97

Table 12. Computational statistics for single machine problems (problem S2C)

Model |T
|

discrete
Variable
s

single
variable
s

constraint
s

RMIP MIP CPUs nodes

F1+F3 - - - - - 126.949 4798 -
M1 8 56 80 128 0 30.849 0.24 149
M2 10 90 120 200 0 21.616 0.80 870
M3 14 182 224 392 0 42.880 1178 552483
M4 12 132 168 288 0 31.604 13.3 9932
F1+F4 126.949 3612 -
M1 - 49 64 100 0 30.849 0.24 28
M2 - 81 100 164 0 21.616 0.14 88
M3 - 169 196 340 0 42.880 8.8 34145
M4 - 121 144 244 0 31.604 0.23 612

32

0 3 6 9 12 15 18 21 24 27 30

M1

M2

M3

M4

Time (h)

13 1 7 14 17 16

19 12 11 10 18

23 25 20

22

5 21 4 8 24 9

27 29 26 15 3 28 6 2

Figure 5. Optimal solution for problem S2B

0 3 6 9 12 15 18 21 24 27 30

M1

M2

M3

M4

Time (h)

13 1

7

14

17 16

19

12 11 10 18

23 25 20

22

5 21 4 8 24 9

27 29 26 15 3 28

6

2

38 39

36 33 37 31 40

34 32

35 30

Figure 6. Optimal solution for problem S2C

6. Conclusions

This paper presents a new continuous-time formulation for the short-term scheduling of single-stage

parallel machine plants. It can be viewed as an improvement from the general continuous-time

formulation for multipurpose plants of Castro et al. (2004), which proved to be extremely limited for the

specific type of problem considered. Multiple time grids are used, one for each equipment resource,

instead of a single time grid, to take advantage of the lack of common resources like manpower or

utilities, and intermediate materials. This, allows us to consider each machine independently, which in

turn makes it possible to restrict the duration of all batch tasks to a single time interval. The advantage

is that both the number of event points required to find the optimal solution as well as the integrality

33

gap, two commonly used performance indicators for MILPs and for continuous-time formulations, are

greatly reduced.

Other novel features presented in this paper, concerning the continuous-time formulations, are the

introduction of hard constraints to model release and due dates as well as a set of constraints to

determine the release dates of the final products. Although restricted here for single stage problems,

these can easily be adapted for the general multipurpose plant. Also, some characteristics of the general

multipurpose formulation of Castro et al. (2004) such as its ability to handle variable duration tasks can

easily be implemented on the single stage, multiple time grid formulation, but this is beyond the scope

of this paper.

The other goal of the paper has been to provide a critical review of other existing approaches that are

able to solve this type of scheduling problem. These included a RTN-based discrete-time formulation

(Pantelides, 1994), a continuous-time formulation that relies on sequencing variables instead of event

points and a constraint programming formulation (Jain & Grossmann, 2001), and the hybrid MILP/CP

model of Maravelias & Grossmann, 2004b. The analysis was performed for two widely used objective

functions: minimization of total cost and minimization of total earliness. A total of 15 example

problems were solved with the aim of finding the limit of applicability of all six approaches. The results

were very conclusive and allowed us to arrive at the following conclusions.

The discrete-time RTN formulation was shown to be the best formulation. It has a very consistent

performance for different problem sizes and for the two different objective functions tested. As is well

known, its most important limitation is that it cannot handle variable duration tasks. Another

disadvantage is that it may need to use a large number of time intervals to consider the exact problem

data. We disagree with this argument because fewer time intervals can always be used if the problem

data is rounded to the next integer multiple of the interval length, to decrease the size and complexity of

the problem. In that case, the solution obtained will be an upper bound on the true global optimum. This

important feature of the discrete-time formulation has been used to propose an efficient optimization

strategy for total earliness minimization. It consists on finding the assignments of orders to machines by

34

solving the parallel machine single stage scheduling problem with the discrete-time formulation and

subsequent solution of |M| single machine problems with one of the two most efficient continuous-time

formulations. This optimization strategy was shown to be better than preordering heuristics as we were

able to find better solutions than those reported in the literature for problems S2B and S2C.

The two problem specific continuous-time formulations (F3) and (F4) follow the discrete-time

formulation in terms of computational performance. While the multiple time grid formulation performs

better for the minimization of total cost, the one with sequencing variables performs better for the

minimization of total earliness both for the parallel and single machine problems. The worsening in the

performance of the multiple time grid continuous-time formulation when going from cost minimization

to earliness minimization is due to the addition of two sets of big-M constraints, whereas the

continuous-time formulation with sequencing variables only requires minor changes. The latter

formulation is also easily adapted in order to deal with sequence dependent changeovers, while the

former requires additional sets of variables and constraints to model the cleaning tasks and the different

equipment states, like all RTN-based formulations.

Finally, there are the constraint programming and the hybrid MILP/CP approach by Jain &

Grossmann (2001). The former always gives a reasonably good solution, even though it may be

impossible to find the global optimal solution for medium sized problems. The latter has the best

performance of all 6 models tested for small to medium sized problems, but it failed to find a solution

for the larger problem since the assignment part of the hybrid model (the simplified MILP) becomes

intractable like the complete MILP from which it originates. Another disadvantage of the hybrid

approach is that the only feasible solution it generates is the global optimum so there are no

intermediate feasible solutions. Furthermore, it is only efficient when the objective function depends

solely on the assignment variables, e.g. total cost minimization.

Acknowledgments

The authors gratefully acknowledge financial support from Fundação Calouste Gulbenkian.

35

Nomenclature

Sets/Indices
I/i, i’= process orders
Im= orders to be processed on machine m
It,m= orders that can start on time point t on machine m
M/m= process equipments (machines)
Mi=machines that can process order i
T/t, t’,t’’=Points of the time grid
Ti,m=Time points where order i can start to be processed on machine m
Parameters
ci,m=cost of processing order i on machine m
di=due date of order i
H=time horizon
pi,m=processing time of order i on machine m
ri=release date of order i
δ=duration of each time interval on the discrete-time grid
∆t=number of event points allowed between the beginning and end of a processing task
τi,m=processing time of order i on machine m as an integer multiple of δ
Variables
DDi=delivery date of order i
Ni,m,t=binary variable that assigns the start of order i on machine m to time point t

',,, ttmiN =binary variable that assigns the end of order i, processed on machine m, which began at t, to
event point t’

Rm,t=excess amount of machine m at time point t
Tt=absolute time of event point t

References

Baptiste, P., Le Pape, C., & Nuijten, W. (2001). Constrained-based Scheduling: Applying Constraint

Programming to Scheduling Problems. Kluwer Academic Publishers.

Bockmayr, A., & Pisaruk, N. (2003). Detecting Infeasibility and Generating Cuts for MIP using CP.

Proceedings CPAIOR’03, 24.

Castro, P.M., Barbosa-Póvoa, A.P., & Novais, A.Q. (2005). Simultaneous Design and Scheduling of

Multipurpose Plants using RTN-based Continuous-time Formulations. Ind. Eng. Chem. Res., 343.

Castro, P.M., Barbosa-Póvoa, A.P., Matos, H.A., & Novais, A.Q. (2004a). Simple Continuous-Time

Formulation for Short-Term Scheduling of Batch and Continuous Processes. Ind. Eng. Chem. Res., 43,

105.

36

Castro, P.M., Barbosa-Póvoa, A.P., Matos, H.A., & Novais, A.Q. (2004b). A Divide and Conquer

Strategy for the Scheduling of Process Plants Subject to Changeovers Using Continuous-Time

Formulations. Ind. Eng. Chem. Res., 43, 7939.

Giannelos, N.F., & Georgiadis, M.C. (2002a). A Novel Event-Driven Formulation for Short-Term

Scheduling of Multipurpose Continuous Processes. Ind. Eng. Chem. Res., 41, 2431.

Giannelos, N.F., & Georgiadis, M.C. (2002b). A Simple Continuous-Time Formulation for Short-

Term Scheduling of Multipurpose Batch Processes. Ind. Eng. Chem. Res., 41, 2178.

Harjunkoski, I., & Grossmann, I.E. (2002). Decomposition Techniques for Multistage Scheduling

Problems using Mixed-integer and Constraint Programming Methods. Comp. Chem. Eng., 26, 1533.

Ierapetritou, M.G., Hené, T.S. & Floudas, C.A. (1999). Effective Continuous-Time Formulation for

Short-Term Scheduling. 3 Multiple Intermediate Due Dates. Ind. Eng. Chem. Res., 38, 3446.

Jain, V., & Grossmann, I.E. (2001). Algorithms for Hybrid MILP/CP Models for a Class of

Optimization Problems. Informs Journal on Computing, 13, No. 4, 258.

Janak, S.L., Lin, X.; & Floudas, C.A. (2004). Enhanced Continuous-Time Unit-Specific Event-Based

Formulation for Short-Term Scheduling of Multipurpose Batch Processes: Resource Constraints and

Mixed Storage Policies. Ind. Eng. Chem. Res., 43, 2516.

Kodili, E., Pantelides, C.C., & Sargent, R. (1993). A General Algorithm for Short-Term Scheduling of

Batch Operations I. MILP Formulation. Comp. Chem. Eng., 17, 211.

Maravelias, C.T., & Grossmann, I.E. (2003a). New General Continuous-Time State-Task Network

Formulation for Short-Term Scheduling of Multipurpose Batch Plants. Ind. Eng. Chem. Res., 42, 3056.

Maravelias, C.T., & Grossmann, I.E. (2003b). Minimization of the Makespan with a Discrete-Time

State-Task Network Formulation. Ind. Eng. Chem. Res., 42, 6252.

37

Maravelias, C.T., & Grossmann, I.E. (2004a). A Hybrid MILP/CP decomposition approach for the

continuous time scheduling of multipurpose batch plants. Comp. Chem. Eng., 28, 1921.

Maravelias, C.T., & Grossmann, I.E. (2004b). Using MILP and CP for the Scheduling of Batch

Chemical Processes. Proceedings CPAIOR’04, 1.

Méndez, C., & Cerdá, J. (2000). Optimal scheduling of a resource-constrained multiproduct batch

plant supplying intermediates to nearby end-product facilities. Comp. Chem. Eng., 24, 369.

Méndez, C., & Cerdá, J. (2002). An efficient MILP continuous-time formulation for short-term

scheduling of multiproduct continuous facilities. Comp. Chem. Eng., 26, 687.

Méndez, C., & Cerdá, J. (2003). Dynamic scheduling in multiproduct batch plants. Comp. Chem.

Eng., 27, 1247.

Pantelides, C.C. (1994). Unified Frameworks for the Optimal Process Planning and Scheduling. In

Proceeding of the Second Conference on Foundations of Computer Aided Operations; Cache

Publications: New York, 253.

Pinedo, M. (2001). Scheduling: Theory, Algorithms and Systems. Prentice Hall.

Pinto, J.M., & Grossmann, I.E. (1995). A Continuous Time Mixed Integer Linear Porgramming

Model for Short Term Scheduling of Multistage Batch Plants. Ind. Eng. Chem. Res., 34, 3037.

Sadykov, R., & Wolsey, L. (2005). Integer Programming and Constraint Programming in Solving a

Multi-Machine Assignment Scheduling Problem with Deadlines and Release Dates. To appear in

INFORMS Journal on Computing.

Van Hentenryck, P. (1999). The OPL Optimization Programming Language. MIT Press, Cambridge,

MA.

