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ABSTRACT 

The scheduling and feed quality optimization for processing solid concentrates in the copper 

refining industry is formulated as a large-scale discrete time non-convex Mixed-Integer Non-

Linear Program (MINLP) that includes logistics operations and ad-hoc blending constraints. For 

this complex problem, the full space MINLP for the blending of concentrates and the scheduling 

of the logistics is partitioned into a Mixed-Integer Linear Program (MILP) and in a Non-Linear 

Program (NLP). The solution strategy considers the relax-and-fix rolling horizon with nearby 

time window overlaps and the use of multiple MILP solutions to be applied in a two-step MILP-

NLP procedure. Two models are proposed for the flowsheet balances: a split fraction model and 

a process network model. The results indicate that the split fraction model yields near optimal 

solutions with a large computational effort, while the process network can generate several 

feasible solutions faster. We present a motivating example and an industrial problem with MILP 

to NLP gaps close to 0%. 
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1. Introduction 

Copper is one of the most important metals in industry because of inherent properties: high 

thermal and electrical conductivity, good corrosion resistance, malleability, among others.1 With 

the widespread evolution of the internet of things and the brand-new projects on smart cities, the 

demand of copper for telecommunications, energy supply, and traffic infrastructures, is expected 

to increase. Among other applications, copper plays an important role in the development of 

electric vehicles. According to a research conducted by IDTechEx 2, the battery of an electric 

vehicle has 83 kg of copper, which is more than 3.5 times the content of an internal combustion 

engine. Consequently, copper demand for electric vehicles is expected to increase from 185,000 

tons in 2017 to 1.74 million tons in 2027. Renewable energy generation technologies, such as 

wind, ocean and solar installations are also copper intensive3. The installation of 1 MW of 

offshore wind energy requires about 6 tons of copper; a photovoltaic plant requires about 4 

tons/MW, appreciably more than an oil-fired power plant (1.1 tons/MW) or a nuclear power 

plant (0.7 tons/MW).   

Given the current and future importance of copper, this work proposes a methodology to 

optimize the scheduling and feed-mix blending of concentrates in a copper refinery, with the 

purpose of improving the operational results based on an economic metric. The final product of 

the process is copper cathodes, a high purity sheet of copper that can be sold as a commodity. 

The typical process of transforming copper concentrates into copper cathodes can be divided into 

three stages: smelting, converting and electrorefining. These processes transform the raw 

materials into a final product containing more than 99.99% copper.1 
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Since copper concentrates with diverse composition are obtained from ores widespread over 

the world, the procurement of concentrates is an important decision-making challenge. In 

addition, many quality restrictions apply to the chemical composition of the concentrates because 

of the conditions required for smelting and other steps of the refining process. Therefore, an 

enterprise-wide optimization approach integrating the scheduling and feed blending operations in 

the processing site can lead to high-performance production since the smelter and downstream 

units are very sensitive the composition of the raw materials. For this reason, a blend scheduling 

optimization model can unveil the potential value of complex quality feeds. 

To the best of our knowledge, there is no research work reported on scheduling and feed 

quality optimization in the copper processing industry. Nevertheless, we can find similarities 

with the crude-oil blend scheduling problem: both processes integrate batch, semi-continuous, 

and continuous operations as blending and scheduling are executed considering logistic and 

quality constraints. Therefore, similar modeling and solution strategies can be used to tackle the 

blending and scheduling problems of both crude-oils and copper concentrates, despite the 

difference arising from operating with solid materials instead of liquids. As described in the next 

sections, several logistics constraints must be considered to transport, store, and mix copper 

concentrates.  

The blend scheduling optimization of copper concentrates involving its logistics and quality 

aspects in a given topology is a challenging problem since it gives rise to a complex MINLP 

model. To optimize such systems of raw materials, Lee et al.4 developed a first approach for 

scheduling in crude-oil refineries based on a discrete-time formulation. The MINLP model is 

reformulated as an MILP problem by relaxing the bilinear terms representing the blending 

quality constraints, which can lead to streams with different component concentration leaving the 
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same quality tank. Mendez et al.5 proposed a sequential MILP approach to simultaneously solve 

the blending and scheduling optimization of petroleum fuels using an approximation that 

successively updates a delta (the difference between the linear and nonlinear blending 

correlations) to iteratively correct the MILP blending predictions.  

However, the main strategy in the literature of blending and scheduling optimization to 

consider several stages of storage, mixing, and movement of raw materials involved in the 

logistics and feed quality operations, is to decompose the MINLP model into the solution of 

MILP and NLP programs.6-11 In such MILP-NLP decomposition approach, the quality 

information from the mixing of streams is neglected in the MILP step, which might produce 

infeasibilities in the NLP subproblems if the discrete assignments found in the MILP do not 

allow matching the quality constraints of the NLP. Alternatives in the literature to approximate 

the non-linearities of blending in the MILP before solving the NLPs make use of: a) piecewise 

McCormick envelopes to linearly under- and over-estimate the bilinear terms,12-15 b) 

multiparametric disaggregation,7 and c) augmented equality balances as cuts of quality material 

flows.16 Successive substitution to iteratively correct the MILP predictions5,16 have also been 

used to start the NLPs. 

In terms of the time representation, despite the advances in MILP solvers, the simultaneous 

blending and scheduling optimization in both continuous- and discrete-time formulations have 

moved away the efforts from the latter to the more compact continuous-time approaches.6-10,17,18 

Strengths and weaknesses of discrete- and continuous-time formulations have been summarized 

by Joly and Pinto19 and Floudas and Lin.20 Broadly speaking, discrete-time models are faster and 

easier to understand, and ultimately to implement at the operating/process level. However, the 

time intervals must be sufficiently short to properly represent the blending and scheduling 
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problems. Although the discrete-time models present a tighter LP relaxation, the solution of 

industrial problems may demand strategies such as Benders21 or Lagrangean22 decomposition, or 

some sort of rolling-horizon techniques integrated with a relax-and-fix method for the discrete 

decisions.15,23,24 On the other hand, continuous-time formulations can be easily solved for several 

types of problems since a smaller number of discrete decision are required. Major drawbacks are 

in the weaker LP relaxation and possible solutions including very small-time intervals which 

cannot be executed in practice. In addition, manpower bottlenecks can be a barrier to execute the 

scheduling in a specific point in time of the continuous-time rather than in a time-step window as 

in the discrete-time model. Lee and Maravelias25 proposed a hybrid modeling of time by 

combining continuous-time in a refined discrete-time approach that can bring new alternative to 

scheduling problems. 

Further to the discussion on MINLP solution strategies and the time representation, a major 

topic concerning the proposed blending and scheduling optimization problem is the modeling of 

the quantity and quality balances in the blending or pooling locations. Misener and Floudas26 

present a comprehensive survey on modeling and optimization of the pooling problem. The main 

two formulations are: a) the p-formulation by Haverly27 based on total flows and composition 

variables, which is widely used in chemical industry and b) the q-formulation by Ben-Tal et al.28 

that keeps track of the proportion of raw materials in the flows, which often performs better with 

branch-and-cut algorithms.29 Sahinidis and Tawarmalani30 also presented a pq-formulation 

producing a tighter relaxation for the pooling problem by adding two particular constraint sets to 

the q-formulation. 

Recently, Lotero et al.31 formulated the source based (SB) model which is similar to the split 

fraction (SF) model proposed by Quesada and Grossmann,32 although the sources are tracked 
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instead of the specifications. In the (SF) model, the fraction of specification q in a stream is 

defined as the amount of flow of specification q in the stream divided by the total flow between 

tanks (see eq. 3b). In the (SB) model, the composition of a stream is determined from the 

compositions of each of the sources present in the stream. More details about the difference 

between models can be found in Lotero et al.31 

We propose two alternative formulations for the discrete-time multiperiod blend scheduling 

problem of copper concentrates: the multiperiod process network formulation that derives from 

the standard p-formulation and the multiperiod split fraction formulation that derives from the 

split fraction model proposed by Quesada and Grossmann32, which is similar but not identical to 

the q-formulation. 

The remaining of this article is organized as follows. In section 2, the problem statement of the 

blend scheduling of copper concentrates is explained. In section 3, the split fraction and process 

network formulations for modeling the mass and quality balances in the problem are presented, 

as well as the binary relations for specific logistics operations and quality constraints in terms of 

composition of elements. In section 4, solution strategies to solve the decomposed MILP are 

presented, namely the relax-and-fix rolling horizon scheme using time blocks with time-step 

overlapping and the generation of multiple binary solutions. Finally, computational results are 

presented to show the effectiveness of the proposed solution strategy and the performance of the 

split fraction and process network models. Both, the motivating example and the industrial 

problem are modeled using the two different formulations. 
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2. The raw material blend scheduling problem 

The raw material blend scheduling problem in this article considers the arrivals of maritime 

vessels containing solid copper concentrates. These raw materials are initially unloaded at the 

maritime port, where the different copper concentrates are separately piled in preparation for the 

first mixing step (see Figure 1). The mixed concentrates are loaded in transfer ships and 

dispatched to the processing facility through a river transportation system. These pre-blends are 

received at the production facility to be directly fed into several bins of the smelter furnace. 

Daily arrival of non-concentrate materials are also added to the bins in lower amounts. 

 

Figure 1. Topology of the blend scheduling network for the copper refining plant  

Similar to the final quality constraints in blending and scheduling of crude oils, there are upper 

bounds on the mass fraction of key components in the mixtures to be processed in the smelter. In 
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addition, the process includes interdependency constraints based on individual key component 

flowrates; these constraints model restrictions for the subsequent stages in the refining process, 

such as the converting and electro-refining stages.1 In such linear constraints, for example, a 

flowrate of K1 component would be lower than a flowrate of K2, or other linear constraints 

involving flowrates and other parameters can be modeled as will be shown in the industrial 

example.  

In a crude oil blend scheduling problem4,6, the objective function considers the gross margin 

for processing the raw materials and the cost of inventory management and unloading. In the 

proposed blending and scheduling of copper raw materials, variations in the concentration of key 

components in the mixture are undesirable in the smelting process due to operational stability. 

Therefore, penalties are also considered for variations in the concentration of certain key 

components in the objective function, since it provides a balance between profit and operational 

stability. 

Complex logistic operations of intermediate units such as transfer ships and bins, are also 

needed for processing the copper containing raw materials. They are described in detail below. 

Operation of the maritime vessels. Vessels with different types of copper concentrates arrive 

on the port during the time horizon. The vessels unload all the materials as piles at the expected 

arrival time period and it is assumed that the time period is long enough for the vessels to 

discharge all materials. There are unlimited capacities on the port. Inventory cost and unloading 

cost are neglected. 

Operation of the pre-blender. The pre-blender on the port has unlimited capacity and can 

simultaneously receive material from several piles while it is not charging a transfer ship. Part of 
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a pile can be sent to the pre-blender in one time period, not necessarily the whole pile. The pre-

blender can also be discharged to two or more transfer ships simultaneously. The quality of 

mixed raw materials in the pre-blender is not under control. 

Operation of the transfer ships. River cargo ships transfer the pre-blends of copper 

concentrates from the maritime port to the production facility. There is a cycle time for the 

transfer considering time of loading, transporting, unloading, and returning, which gives rise to 

the transport delay. Unloading materials from the river ships in the production facility follows a 

general rule: shut down when empty. This means that unloading operations are executed until the 

ships are empty. The transfer ships can be discharged into two or more bins simultaneously. Two 

or more transfer ships are allowed to unload materials simultaneously to different bins. 

Operation of the bins. Several bins feed the smelter through conveyor belts simultaneously 

and continuously. One bin can only be charged by one resource at one time period, either from 

one transfer ship or from one pile of daily-arrival material. If a vessel arrives when all bins are 

being charged by difference resources, the vessel must wait to unload the materials. The bins 

function similarly to the charging tanks in crude oil scheduling problem but not exactly in the 

same way. First, a charging tank cannot be charged and discharged simultaneously, but a bin is 

charged and discharged simultaneously and continuously feeding the smelter throughout the time 

horizon. Second, all materials in a charging tank are well-blended; a bin can contain more than 

one feed mix or blend since there is no mechanical agitation nor blending of the solids in the 

bins. Therefore, a single bin can successively feed the smelter with blends having different 

concentrations. In the process, the smelter is charged by a continuous moving belt that transport 

the raw materials stored at the bins. For better control of the process, it is required that the 

feeding process from the bins are coordinated to start and end a given feeding recipe (or smelter 
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diet) simultaneously. Otherwise, if one bin starts feeding the smelter with new mixtures, there 

might be the need to abruptly adjust another conveyor belt to satisfy quality constraints. 

Operation of the sub-bins. To model the operations for the bins described above (without 

simultaneous charging and discharging such as a standing-gauge tank), we model each bin by 

dividing it into two sub-bins. The sub-bins follow the assumptions as shown below. 

i. The sub-bins have unlimited capacity. 

ii. Each sub-bin cannot be charged and discharged simultaneously. It can only be charged 

from one source at a time, either from one transfer ship or from one pile of non-concentrate 

material, when it is empty. Blending is forbidden in the sub-bins, i.e. a sub-bin cannot be charged 

by two different resources in successive time periods.  

iii. The sub-bins can only start charging the smelter a few time periods after the transfer 

process is initiated because there are no initial inventories in the intermediate units. Based on the 

proposed rules of operation and the transport delay for the transfer ships, it takes time for the raw 

materials to reach the smelter from the port. In this particular case, the smelter can work 

continuously after time period 5 as shown in Figure 2. 

 

Figure 2. Time delay for the material transport 
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iv. The sub-bins are grouped into two pre-defined sets with only one set charging the smelter 

at any time t, i.e. when a group of sub-bins are feeding the smelter, the other group can be 

charged. In addition, every sub-bin in one working group must start to feed the smelter 

simultaneously and must stop feeding the smelter simultaneously. Figure 3 illustrates how this 

modeling scheme works. 

 

Figure 3. Modeling method: 2 sub-bins for each bin. 

v. The sub-bins obey the general rule, shut down when empty, which means that a working 

sub-bin can be supplying material to the smelter over one or more time periods until it becomes 

empty. If the sub-bins of the working group become empty, a feeding blend ends and another 

blend can start using the other group. 

Operation of the daily arrivals of non-concentrate materials. There are daily arrivals of 

non-concentrate materials in the production facility, which are mainly leftovers from other 

refining processes. It is required that the daily arrival material is not accumulated in the 

production facility and it must be consumed at the end of the scheduling horizon. 

Operation of the smelter. The smelter must be operated continuously at full capacity. 

The goal of the optimization problem is to maximize the gross margin obtained from 

processing raw materials, which implies determining the schedule of the operations to be 
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executed as well as the amount of concentrates to be transferred from the port to the plant. 

Penalties for variation in the composition of key components are also considered. Therefore, the 

model aims to find the most profitable blend schedule with consideration of the logistic 

restrictions and the operational stability of the smelting furnace. 

3. Mathematical model 

The mathematical model for blending and scheduling of copper concentrates shown in Figure 4 

involves quantity and quality balances, as well as operational relationships considering the 

resources and their connections. Figure 4 is a schematic representation of the illustrative example 

proposed for the scheduling and feed quality optimization problem of copper concentrates. Each 

bin is modeled by two sub-bins, as we shall discuss in section 3.2.5. The main resources used in 

the model are concentrates c, marine vessels v, piles p, pre-blender b, transfer ships ts, daily 

arrival piles dp, sub-bins sb, and the smelter s.  

 

Figure 4. Schematic representation of the mixing network of the motivating example 
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In the problem, copper concentrates with different concentration of key components k are 

unloaded at the maritime port, and different piles p are formed separately. A first mixing step 

takes place in the pre-blending facility b, where the blend is loaded into the transfer ships ts that 

transport it to the processing plant. Once the transfer ships arrive to the plant, they feed the sub-

bins sb. The final blend is the result of a second mixing step that is controlled by varying the 

speed of the conveyor belts connecting each sub-bin to the smelter s.  

As mentioned earlier, we developed two alternatives to describe mathematically the flow, 

storage, and mixing of copper concentrates. For a unit n, considering upstream units 𝑖𝑖 ∈ 𝐼𝐼𝑛𝑛and 

downstream units 𝑜𝑜 ∈ 𝑂𝑂𝑛𝑛, we formulate the models based on the following approaches: 

a) A multiperiod Process Network model (PN) including raw material concentrations xn,c,t in total 

flows (Fi,n,t or Fn,o,t) and total amounts (Mi,n,t or Mn,o,t), derived from the standard p-formulation 

for continuous process in the Harvely pooling formulation27; 

b) A multiperiod Split Fraction model (SF) considering flow proportions of inlets i and outlets o 

(fi,n,t or fn,o,t), derived from the split fraction model for continuous process proposed by Quesada 

and Grossmann32.  

3.1. Quantity and quality balances of blending and scheduling  

We formulate the process network and the split fraction models for the quantity and quality 

balances of the blending and scheduling processes that originate at the maritime port and end at 

the smelter. The process network formulation includes total inventories, flow, and composition 

variables of each intermediate unit and stockpile; in this model, the nonlinearities arise on the 

blending of flows when calculating the blended material composition. Disaggregated inventories 
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and flow variables for each type of copper concentrate are considered in the split fraction model 

and the bilinear terms appear when intermediate units are discharging.  

3.1.1. Process network model (PN)  

The process network formulation is derived from the standard p-formulation. The mass and 

quality balances in this model for a continuous process are shown in eq. 1a and eq. 1b, 

, ,
n n

i n n o
i I o O

F F
∈ ∈

=∑ ∑    n N∈               (1a) 

, , , ,
n n

i n i c n o o c
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F x F x
∈ ∈

=∑ ∑   ,n N c C∈ ∈             (1b) 

where Fi,n  represents the total inlet from unit i  to the unit n and Fn,o is the total outlet from the 

unit n to the unit o. xi,c is the mass fraction of concentrate c in unit i  and xo,c is the mass fraction 

of concentrate c in the unit o. 

The multiperiod process network model requires two additional equations: eq. 2a models the 

total mass balance of inventories; eq.2b represents inventories of individual concentrates c 

modeled by the total inventories Mn,t times the composition variables xn,c,t, which is the mass 

fraction of concentrate c in unit n at time t. 
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3.1.2. Split fraction model (SF) 
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Quesada and Grossmann32 proposed a split fraction model including the flow variables and 

inventory of different concentrates c and the split fraction of discharge, as shown in eq. 3a and 

eq. 3b.         

, , , ,
n n

i n c n o c
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f f
∈ ∈

=∑ ∑   ,n N c C∈ ∈             (3a) 
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, ,

, , , ,
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i I

f
f
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∈

′ ′
∈

=
∑
∑

  , , ( )nn N o O c c C′∈ ∈ ≠ ∈           (3b) 

Eq. 3a is the mass balance for inlet (fi,n,c) and outlet (fn,o,c) flows of concentrate c  going  

through unit n; eq. 3b forces the split fraction of the outlet flows to be identical to the aggregated 

concentrate fraction of inlet flows.  

The split fraction model mentioned above is not the same as the standard q-formulation28. The 

split fraction model tracks exactly the specifications, which is the individual flow of concentrate 

c in the proposed blending problem instead of proportion variables. The proportion variables in 

the q-formulation29 are the fraction of flows coming from different sources, which are the raw 

materials in different vessels and initial inventories at the port in the proposed blending problem.  

We apply the idea of split fraction model for continuous process to the multiperiod blending 

problem and introduce variables for total inventories and flowrates in the stockpiles and units. 

The mass balances aggregating the amounts of different concentrates are shown in eq. 4a-4d. 

, , ,n t n c t
c C

M m
∈

=∑     ,n N t T∈ ∈               (4a) 
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, , , , ,n o t n o c t
c C

F f
∈

=∑     , ,nn N o O t T∈ ∈ ∈                      (4b) 

Eq. 4a correspond to the balances between total inventory variables and disaggregated 

inventories. Eq. 4b represents the balances between total flows and disaggregated flows. In 

particular, Mn,t models the total inventory of intermediate unit n at time t; mn,c,t is the 

corresponding individual inventory of concentrate c; Fn,o,t represents the total outflow of unit n to 

the downstream unit o; and fn,o,c,t is the corresponding individual outflow of concentrate c . 

The individual inventory of concentrate c  at time t is defined by adding to the individual 

inventory at t-1 all the inlet and outlet individual flowrate at time t as shown in eq. 4c. 

, , , , 1 , , , , , ,
n n
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i I o O

m m f f−
∈ ∈

= + −∑ ∑  , ,n N c C t T∈ ∈ ∈                     (4c)  

The composition of the products transferred during a transfer operation at t must be identical to 

the composition at the origin tank at t-1, 

, , 1 , , ,

, 1 , ,

n c t n o c t

n t n o t

m f
M F

−

−

=     , , ,nn N c C o O t T∈ ∈ ∈ ∈      

which can be reformulated with bilinear terms according to eq. 4d. 

, , 1 , , , 1 , , ,n c t n o t n t n o c tm F M f− −=  , , ,nn N c C o O t T∈ ∈ ∈ ∈                              (4d) 

The logic constraints modeling the transfer of material from unit n to their downstream units 

𝑜𝑜 ∈ 𝑂𝑂𝑛𝑛 are shown in constraints 5a and 5b, 

, , , , ,n o t n o n o tF F D≥   , ,nn N o O t T∈ ∈ ∈                         (5a) 
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, , , , ,n o t n o n o tF F D≤   , ,nn N o O t T∈ ∈ ∈             (5b) 

where , ,[ , ]n o n oF F  are defined as the bounds on flow from unit n to unit o, and Dn,o,t are binary 

variables indicating if unit n is charging unit o at time t. 

3.2. Operations for blending and scheduling of stock piles 

The operation to handle the solid stock piles and flows of concentrates c are modeled with the 

mixed–integer constraints described below. 

3.2.1. Operation of the maritime vessels 

The vessels transporting copper concentrates unload all the raw material when they arrive to the 

port, in contrast to the crude oil tankers4,6, which typically unload in multiple time-periods due to 

pipeline bottlenecks. In our model, the vessels can unload all material on the port as a pile p 

without considering unloading cost or storage tanks. Therefore, the vessels’ operation is pre-

defined. We define the parameter Fv,p,t to indicate the flowrate from vessel v to pile p at time t. 

3.2.2. Operation of the pre-blender 

The pre-blender b cannot be charged and discharged simultaneously. Instead of defining binary 

variables for flow from piles to the pre-blender, we define binary variables Xb,t to indicate if the 

pre-blender is charging any transfer ships (see Figure 5). Then, the flow from piles to the pre-

blender is indicated by 1-Xb,t. Db,ts,t is a binary variable indicating if the pre-blender b is charging 

transfer ship ts at time t. The corresponding constraints are given by the inequalities 6-7.  
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Figure 5. The method for modeling the operations of the pre-blender 

If the pre-blender is charging any transfer ship ( , , 1b ts tD = ), Xb,t must be 1. 

, , ,b ts t b tD X≤    , ,b B ts TS t T∈ ∈ ∈                 (6a)   

If the pre-blender is not charging any transfer ship ( , , 0b ts t
ts TS

D
∈

=∑ ), Xb,t must be 0. 

, , ,b ts t b t
ts TS

D X
∈

≥∑    ,b B t T∈ ∈              (6b)       

If the pre-blender is not charging any transfer ship ( , 0b tX = ), the feeding process from piles is 

allowed and its flow Fp,b,t is given by:  

, , , ,(1 )p b t p b b tF F X≥ −   , ,b B p P t T∈ ∈ ∈           (7a) 

, , , ,(1 )p b t p b b tF F X≤ −   , ,b B p P t T∈ ∈ ∈            (7b) 

3.2.3. Operation of the transfer ships 

The operations of the transfer ships between the port and production facility consider a transport 

delay, which means that the duration time for loading, transportation, and unloading are all equal 
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to one time period. The transfer ships should always unload all the material in the production 

facility, which is the shut down when empty condition. 

The constraints for transport delay are given by inequalities 8a-8c. 

The transfer ships cannot be charged (Db,ts,t) and discharged (Dts,sb,t) simultaneously, 

, , , , 1ts sb t b ts tD D+ ≤   , , ,b B ts TS sb SB t T∈ ∈ ∈ ∈           (8a) 

where Dts,sb,t is defined as a binary variable to indicate if transfer ship ts is charging sub-bins sb 

at time t.   

The transfer ships cannot be charged and discharged in successive time periods. 

, , 1 , , 1ts sb t b ts tD D+ + ≤   , , ,b B ts TS sb SB t T∈ ∈ ∈ ∈           (8b) 

, , , , 1 1ts sb t b ts tD D ++ ≤   , , ,b B ts TS sb SB t T∈ ∈ ∈ ∈           (8c) 

In order to model the shut down when empty condition for unloading operations in a single 

time period, we define the binary variable Ets,t to indicate if there are materials in transfer ship ts 

at the end of time t; this condition is modeled with constraints 9a and 9b.  

, ,ts t ts ts tM M E≤   ,ts TS t T∈ ∈            (9a)  

, ,ts t ts ts tM M E≥   ,ts TS t T∈ ∈             (9b) 

where [ , ]ts tsM M  are the bounds on inventories of transfer ship ts. 
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Constraints 10a-10b ensure that each transfer ship ts charges only one sub-bin sb at the same 

time; binary variables Xts,t indicate if the transfer ship ts is charging any sub-bin sb at time t; 

binary variables Dts,tb,t, indicate if transfer ship ts is charging sub-bin sb at time t. A similar 

formulation was proposed by Zyngier and Kelly.33 

, , ,ts sb t ts tD X≤   , ,ts TS sb SB t T∈ ∈ ∈          (10a)                          

, , ,ts sb t ts t
sb SB

D X
∈

≥∑   ,ts TS t T∈ ∈                       (10b) 

The shut down when empty is enforced with constraints 11a and 11b. If transfer ship ts is 

unloading material at time t (
, 1ts tX = ), it must be empty at the end of time t (

, 0ts tE = ).  

, , 1ts t ts tX E+ ≤   ,ts TS t T∈ ∈                       (11a) 

Furthermore, if transfer ship ts is being charged by the pre-blender at time t ( , , 1b ts t
b B

D
∈

=∑ ), the 

transfer ship ts must be initially empty (
, 1 0ts tE − = ). 

, 1 , , 1ts t b ts t
b B

E D−
∈

+ ≤∑    ,ts TS t T∈ ∈           (11b) 

3.2.4. Operation of the daily arrivals of non-concentrate materials 

The inventory of daily arrival material should be below a certain value at the end of the time 

horizon. This constraint is different for the split fraction model and the process network model. 

Since the split fraction model has variables indicating the inventories each raw material in, the 

condition can be easily described with the linear constraint 12, 
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, , , ,dp c t sb c t
dp DP sb SB

m m MD
∈ ∈

+ ≤∑ ∑   ,c DC t TMH∈ =           (12) 

where mdp,c,t and msb,c,t represent the amount of non-concentrate material c (c ∈ DC) in daily 

arrival pile dp and in sub-bin sb at time t, respectively. MD represents the maximum amount of 

this non-concentrate material in the system at the end of time horizon, TMH. The recycling and 

reprocessing materials c (c ∈ DC) both stocked in the daily arrival piles and in the sub-bin 

downstream connected to them are regarded in constraints 12 and 13.     

In the process network model, bilinear terms are necessary for describing the amount of non-

concentrate materials both stocked in the piles and within the sub-bins at the end of scheduling 

horizon. In order to propose a MILP approximation necessary for the solution strategy described 

in Section 4, we impose the constraints that the sub-bins should be empty at the end of 

scheduling horizon. These condition is modeled with constraints 13a and 13b. 

,dp tM MD≤   ,dp DP t TMH∈ =            (13a) 

, 0sb tM =    ,sb SB t TMH∈ =           (13b) 

Even though the formulations of the split fraction and process network models are not 

equivalent, the difference does not affect the optimal solution as will be shown in the 

computational results section. In other words, the sub-bins with non-concentrate materials (c ∈ 

DC) are always empty at the end of time horizon, whether we impose eq. 13b or not.  

3.2.5. Operation of the sub-bins  

The purpose of the sub-bins as a modeling strategy is to force the bins to feed the same recipe 

simultaneously and coordinate the change-over to the next recipe. We divide all sub-bins (set 
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FSB and set SSB) into two groups containing exactly one sub-bin from every bin. For each 

group, we define a set of binary variables, Dft and Dst, indicating if the first (Dft) or second (Dst) 

group of sub-bins is charging the smelter at time t. Constraints 14a and 14b ensure that each sub-

bin is either being charged with non-concentrate materials dp, is being charged with concentrates 

from the transfer ships ts, or is feeding the smelter. 

, , , , 1dp sb t t ts sb t
dp DP ts TS

D Df D
∈ ∈

+ + ≤∑ ∑   ,sb FSB t T∈ ∈         (14a) 

, , , , 1dp sb t t ts sb t
dp DP ts TS

D Ds D
∈ ∈

+ + ≤∑ ∑   ,sb SSB t T∈ ∈        (14b) 

The two groups of sub-bins should work in cycles after the starting of smelting process (t ≥ ET) 

as imposed with eq. 15. 

1t tDf Ds+ =   t ET≥              (15) 

In order to model the operation shut down when empty of the sub-bins’ feeding process in 

multiple time periods, we define the variable Esb,t to indicate if there are materials in the sub-bin 

sb at time t according to constraints 16a and 16b. 

, ,sb t sb sb tM M E≤   ,sb SB t T∈ ∈            (16a) 

, ,sb t sb sb tM M E≥    ,sb SB t T∈ ∈            (16b) 

New binary variables t̂Df  and t̂Ds  are introduced to indicate when one feeding recipe ends 

as shown in Figure 6. Consider the first group of sub-bins as an example. 
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Figure 6. Binary variables indicating end of recipe. 

Constraints 17a-17c model the end of a feeding recipe with variables t̂Df  and t̂Ds . If one 

feeding recipe ends at time t ( ˆ 1tDf = ), the sub-bins must feed the smelter at time t ( 1tDf = ). 

t̂ tDf Df≤    t T∈              (17a) 

If one feeding recipe ends at time t ( ˆ 1tDf = ), the group of sub-bins cannot feed the smelter at 

time t+1 ( 1 0tDf + = ). 

1
ˆ 1t tDf Df ++ ≤  t T∈              (17b) 

If the sub-bins feed the smelter at time t ( 1tDf = ), and do not feed the smelter at time t+1         

( 1 0tDf + = ), the group of sub-bins end a feeding recipe at time t ( ˆ 1tDf = ). 

1
ˆ

t t tDf Df Df+ + ≥  t T∈              (17c) 

The same definition is applied to t̂Ds  as shown in constraints 18a-18c. 

 t̂ tDs Ds≤   t T∈             (18a) 
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1ˆ 1t tDs Ds ++ ≤  t T∈                   (18b) 

1 ˆt t tDs Ds Ds+ + ≥  t T∈              (18c) 

The shut down when empty condition is enforced with constraints 19a-19c.  

If the sub-bins finish charging the smelter at time t (e.g., ˆ 1tDf =  for the first bins), then they 

must be empty at the end of time t ( , 0sb tE = ). 

,
ˆ 1t sb tDf E+ ≤    ,sb FSB t T∈ ∈           (19a) 

,ˆ 1t sb tDs E+ ≤   ,sb SSB t T∈ ∈          (19b) 

If the sub-bin sb is non-empty ( , 1 1sb tE − = ), it cannot be charged by any of the transfer ships or 

daily arrival piles ( , , , , 0dp sb t ts sb t
dp DP ts TS

D D
∈ ∈

+ =∑ ∑ ). 

, , , , , 1 1dp sb t ts sb t sb t
dp DP ts TS

D D E −
∈ ∈

+ + ≤∑ ∑   ,sb SB t T∈ ∈         (19c) 

3.3. Final blending and quality constraints 

The smelter works at full capacity continuously starting at ET and the sum of flowrate from sub-

bins are equal to the maximum flowrate into the smelter, as shown in eq. 20a and eq.20b, 

, ,t sb s t
sb SB

F F
∈

= ∑   t T∈              (20a) 

t sF F=


  t ET≥             (20b) 
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where sF


 corresponds to the full capacity of the smelter.  

The conversion from concentrates total flow to the flow of individual key components ,k tF  is 

calculated based on their assay. The constraints necessary for the split fraction model are linear 

as shown in eq. 21. The equivalent constraints are nonlinear for the process network model as in 

eq. 22. 

, , , , ,k t sb s c t k c
sb SB c C s S

F f θ
∈ ∈ ∈

= ∑ ∑∑    ,k K t T∈ ∈              (21) 

, , , , , 1 ,k t sb s t sb c t k c
sb SB c C s S

F F x θ−
∈ ∈ ∈

= ∑ ∑∑   ,k K t T∈ ∈            (22) 

Here, ,k cθ is the assay describing the composition of key components k in concentrate c, and xsb,c,t-

1 represents the mass fraction of concentrate c at time t-1. 

Quality constraints. We specify an upper bound for the mass fraction of key components, kχ  in 

the final blending. 

,t k k tF Fχ ≥    ,k K t T∈ ∈              (23) 

Interdependency constraints. The constraints model complex quality restrictions that relate the 

content of different key components in the blends. Equations 24a-24c are based on individual 

flows, where kk is alias of k. kUe  and kKe  are the parameters related to the interdependency 

constraints. 

2, 7,0.64 k t k tF F≥    t T∈              (24a) 
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2, 7,0.58 k t k tF F≤   t T∈              (24b) 

, ,( )k kk kk t k k t
kk K

Ue Ke F Ke F
∈

≥∑      ,k K t T∈ ∈         (24c) 

3.4. Objective function 

The objective is to maximize the gross margin of processing different kinds of raw materials, 

while considering penalties for the variation in concentration of key components. The objective 

function for both split fraction model (SF) and the process network model (PN) have the same 

physical interpretation; however, their formulations are different. Eq. 25 presents the linear 

objective function for the split fraction model (SF). The nonlinear objective function of the 

process network model is presented in eq. 26. 

, , , ,max sb s c t c k t k
t T sb SB s S c C t T k K

f Zα β
∈ ∈ ∈ ∈ ∈ ∈

−∑ ∑ ∑∑ ∑∑             (25) 

, , , , 1 ,max sb s t sb c t c k t k
t T sb SB s S c C t T k K

F x Zα β−
∈ ∈ ∈ ∈ ∈ ∈

−∑ ∑ ∑∑ ∑∑            (26) 

Here, cα  is defined as the income for processing unit concentrate c, while kβ  is the pre-defined 

weight of flow change for key component k . The positive variables ,k tZ , defining the flow 

change for key component k, is defined according to eq. 27a and 27b. 

, , , 1k t k t k tZ F F −≥ −     ,k K t T∈ ∈            (27a) 

, , 1 ,k t k t k tZ F F−≥ −    ,k K t T∈ ∈            (27b) 
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4. Solution strategy 

4.1. Solution strategy for split fraction model 

4.1.1. MILP-NLP decomposition method 

Theoretically, the nonconvex MINLP model can be solved using any global solver such as 

BARON or a local optimal solver such as DICOPT. However, because of the high nonlinearity 

and large size of the model, BARON can be prohibitively expensive to use, while DICOPT may 

converge to poor suboptimal solutions. Therefore, a two-step procedure is proposed that leads to 

local optimal solutions with an estimation of the optimality gap. In the first step, an MILP 

relaxation of the model without the nonlinear constraints (4d), is solved using CPLEX. In the 

second step, the nonlinear constraints are enforced, and all binary variables are fixed, which 

means the schedule of operations is fixed. The resulting nonlinear programming model is solved 

using the solution of the MILP as a starting point by a global NLP solver, BARON or local NLP 

solver CONOPT. The solution at this stage may not correspond to the global optimum of the 

model in the full space or may even be infeasible. However, the optimality gap can be estimated 

from the solution of the MILP and the feasible NLP. If the NLP returns an objective value 

identical to the MILP’s, then global optimality is proven. As shown in the computational results 

section, near-optimal solutions are obtained in which the MILP-NLP gap is close to zero. 

4.1.2. Relax-and-fix rolling horizon with nearby time window overlaps 

The MILP model of the motivating example in a split fraction model can be solved by CPLEX in 

the full space considering all binary variables are simultaneously calculated. However, for the 

industrial problem in a split fraction model, the first MILP model cannot be solved in reasonable 
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solution time since the size of industrial problem is too large. Therefore, a relax-and-fix rolling 

horizon with nearby time window overlaps method is proposed to solve this large scale MILP 

model. A rolling horizon algorithm is applied similar to the production-distribution coordination 

of crude-oil scheduling presented by Assis et al.15 and industrial gases supply chains presented 

by Zamarripa et al.23 The rolling horizon method divides the time horizon into a detailed time 

block where binary variables are considered and an aggregate time block where binary variables 

are relaxed to 0-1 continuous variables; the method successively solves a set of subproblems in 

which discrete decisions are fixed in previous time periods, as shown in Figure 7. 

 

Figure 7. The illustrative example of rolling horizon by Zamarripa et al (2016) 

However, considering that in this raw material blending problem we have special operation 

rules, the rolling horizon mentioned above can lead to infeasible solutions after fixing binary 

decisions in the previous time block; this can lead to infeasible problem in subsequent sub-

problems. Therefore, a rolling horizon strategy with relaxation overlaps is applied in this work. 

We have overlapping time periods for the binary relaxations between the aggregate time block 

and the next detailed time block to avoid infeasible solutions in the solution process.  
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Figure 8. Proposed rolling horizon with relaxation overlapping for the illustrative example. 

The scheme presented in Figure 8 shows an illustrative example in which we describe a problem 

with 25 time periods. We have 9 subproblems solved sequentially. Subproblem 1: time periods 

1-5 are considered as the detailed time block, while the rest time periods are considered as the 

aggregate time block. Subproblem 2: Even though the solution from time period 1-5 is known, 

we only fix the binary variables of time period 1-3, which means the overlap between the first 

and second detailed time block is 2 time periods. Then the detailed time block of subproblem 2 is 

from 4-8. This procedure is repeated until the last subproblem in which there is only one detailed 

time block to the end of the scheduling horizon.  

Theoretically, the objective value by this rolling horizon with overlap method is always lower 

than the one obtained by solving the full space. However, the suitable combination of the length 

of the detailed time block and overlap can reduce the gap between the solution by this strategy 

and the global optimal solution. There is trade-off between the lengths of the detailed time block 

and overlap periods, and the computational result. If the detailed time block and overlap are 

longer, it will require a large computational effort, but the solution can be expected to be closer 
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to the optimal solution from solving the full space model. If the detailed time block is shorter, the 

computational effort is smaller, but the solution might be further away from the optimal solution, 

and there is a higher potential for infeasible solutions. Since the length of the detailed time 

blocks and overlaps need to be postulated before running the rolling horizon with the relaxation 

overlapping algorithm, we have tested different combinations of the length of detailed time 

blocks and overlaps and select the best combination to obtain the best objective value with 

relatively less computational effort. We applied this rolling horizon with overlap strategy to the 

MILP of the industrial problem as shown in the computational results section. 

4.2. Solution strategy for process network model 

4.2.1. MILP-NLP decomposition method 

The MILP-NLP decomposition algorithm is also applied to the process network model but with 

some differences. For the split fraction model, the objective functions of the MILP and NLP are 

the same, which is the gross margin minus the penalties of variation in feed concentration. 

However, in the process network model, once we drop the nonlinear eq. 2b and 26 in the MILP, 

there is one total flow throughout the flowsheet and the composition information is no longer 

available, which means that it is not possible to estimate the gross margin in the first MILP 

model. To overcome this problem, we substitute the objective function shown eq.26 by eq. 28, 

which maximizes the total flowrate into the smelter during the scheduling horizon. 

max t
t T

F
∈
∑                 (28) 

Since the objective functions of the MILP and NLP are different, the MILP-NLP gap cannot 

be estimated for the solutions obtained with the process network model. Therefore, this MILP-
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NLP method cannot guarantee that a feasible solution is within a certain gap of the global 

optimum. The motivation here is to generate a schedule (solution of binary variables) quickly 

that can guarantee the smelter is working at full capacity throughout the scheduling horizon. We 

then solve the NLP model to find a solution that maximizes the actual objective value, but the 

schedule obtained from the MILP might restrict the quality of the solution in reference to the 

original MINLP problem.  

4.2.2. Multiple solutions in first MILP 

In order to obtain better NLP solutions and avoid infeasible solutions, multiple solutions are 

generated in the first MILP stage. These solutions provide multiple schedules that can keep the 

smelter working at full capacity are generated. The MILP optimality gap for all solutions are set 

to 0. Then, a set of NLP problems are generated from all solutions in the MILP solution pool. 

Theoretically, we can collect a sufficiently large number of multiple solutions (>10000) and try 

to find the best solution in the NLP model. But this would require a large computational effort. 

Therefore, we collect 15 multiple solutions with the purpose of reducing the computational time. 

Inevitably, the solutions might be symmetric or similar to each other. GAMS provides a function 

for CPLEX to create a solution pool34 that generates and keeps multiple solutions; a description 

of how to set up the corresponding parameters is presented in the Supporting Information. 

5. Examples 

5.1. Motivating example 

We present a small motivating example to provide some insight on the complexity of this raw 

material blending problem. The instance consists of 2 vessels, 4 piles with initial inventories at 
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the port, 1 pre-blender, 2 transfer ships, 1 non-concentrate material, 4 bins (8 sub-bins) and 1 

smelter. Figure 2 shows a schematic representation of the motivating example. 

The data for the for the motivating example represented in Figure 4 is given in Table S1 in the 

Supporting Information. The scheduling horizon is composed of 13 days and two marine vessels 

are scheduled to arrive at the beginning of day 1 (t=0) and day 7 (t = 6); they contain 11,380 and 

10,800 tons of concentrates, respectively. Together with 3 piles of concentrates already present at 

the port, they can be mixed in the pre-blender. Two transfer ships transport material from the 

pre-blender to the production facility. There is one non-concentrate arriving on a daily basis to 

the production facility. The smelter is operated at full capacity, 1500 tons/time period. The 

properties that are being tracked are the mass fraction of four key components (K1-K4). There is 

a positive gross margin for every concentrate, but none for the non-concentrate materials. The 

transfer flowrates for the operations at the port are unlimited. In addition, the interdependency 

constraints and penalties for variation in concentration are not considered in the motivating 

example. The objective is to maximize the gross margin for processing raw materials during the 

scheduling horizon. 

5.2. Industrial problem 

We provide an industrial problem which is significantly larger than the motivating example. The 

problem consists of 5 vessels, 6 piles with initial inventories at the port, 1 pre-blender, 2 transfer 

ships, 3 non-concentrate materials, 6 bins (12 sub-bins) and 1 smelter. Interdependency 

constraints and penalties for variation in concentration of one key component are also 

considered. The duration of each time period is 0.5 days. Figure 9 shows a schematic 
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representation of the industrial problem. The complete problem data is given in Table S2 in the 

Supporting Information. 

 

Figure 9. Schematic representation of the mixing network of the industrial problem. 

6. Computational results 

In this section, we address the raw material blend scheduling problem for the small motivating 

example and the industrial problem. For each of them, we compare the performance of the two 

formulations, the split fraction model and process network model. Therefore, we have 4 models 

to solve: 1) motivating example in split fraction model; 2) motivating example in process 



 34 

network model; 3) industrial problem in split fraction model; 4) industrial problem in process 

network model.  

The differences between split fraction model and process network model, as shown in section 

3, are mainly about: a) the mass balance equation, eq. 2a-2b and eq.4a-4d; b) the operations for 

non-concentrate materials, eq.12 and eq.13a-13b; c) the final blending, eq.21 and eq.22; d) the 

objective function, eq.25 and eq.26. We do not consider the interdependency constraints and 

penalties for the variation in concentration of the key components in the motivating example. 

Therefore, eq. 24a-24c and 27a-27b are excluded in the motivating example. The equations 

considered in each model are shown in Table 1.   

Table 1. Equations of the four instances 
Instance Equations involved 
Motivating example (SF) (4)-(12),(14)-(21),(23),(25) 
Motivating example (PN) (2),(5)-(11),(13)-(20),(22),(23),(26) 
Industrial problem (SF) (4)-(12),(14)-(21),(23)-(25),(27) 
Industrial problem (PN) (2),(5)-(11),(13)-(20),(22),(23),(24),(26),(27) 

 

We present the computational results of applying the solution strategy described in the previous 

section to the motivating example and industrial problem. The computational statistics of the 

instances are presented in Table 2. The algorithms and models were implemented in GAMS 

24.7.135. All computations were performed on a ASUS UX305 computer with two Intel Core i5 

processors at 2.30 GHz and 2.40 GHz, 8 GB of RAM. 

Table 2. The problems size of motivating and industrial instances 
Model Binary var. Variables Constraints 
Motivating example (SF) MILP 559 5,171 5,563 

NLP  5,171 7,435 
Motivating example (PN) MILP 559 1,850 3,096 

NLP  2,714 4,009 
Industrial problem (SF) MILP 2,490 45,253 47,404 
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NLP  45,253 62,832 
Industrial problem (PN) MILP 2,490 12,090 12,963 

NLP  18,404 19,510 
 

 

6.1. Motivating example (SF)  

Table 3. Performance in the motivating example (SF) 
Motivating example (SF) MILP (CPLEX, gap = 2%) NLP (CONOPT)  
MILP-NLP method solution CPU time solution CPU time gap 
 8.792 137 s 8.792 2 s 0% 
      
 MINLP (BARON, gap = 2%) 
solved in a full space solution CPU time 
 8.793 3,007 s 
 

As shown in Table 3, after 140 s CPU time, the optimality gap is 0 between the solution of the 

MILP and the NLP, which means that the global optimum has been found. We also solve the full 

space MINLP model with BARON. A similar objective value is obtained but with a much longer 

CPU time, namely 3007 s. The slightly different objective values are because the MILP-NLP 

method and BARON converge to different MILP gap within 2%. Therefore, the solution by 

MILP-NLP method is applied for the following discussion.  
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Figure 10. Gantt chart of optimal schedule for motivating example (profit: $8,792,740) 
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Figure 11. Inventories of sub-bins of the motivating example 

Figure 10 depicts the Gantt Chart (see Table S3 for serial number of the operations) for the 

optimal solution of the motivating example with a profit of $8,792,740. Each task is represented 

by a horizontal bar and each row corresponds to a specific operation. The feeding operations 1-8 

represent the discharging of sub-bins 1-8; we can observe that the first group of sub-bins 

(feeding 1,3,5,7) and the second group of sub-bins (feeding 2,4,6,8) work in cycles to keep the 
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smelter operated continuously. From Figure 11, either the first group or the second group of sub-

bins finish one feed recipe and becomes empty simultaneously, which physically means that the 

8 bins use up to one mixture and start a new feed recipe simultaneously. In this case, there are 4 

feeding recipes during the scheduling horizon which cover time periods 5-8, 9-10, 11-12, and 13. 

  

Figure 12. The inventories of transfer ships 

From Figure 12, we can see the operation rule modeling the “transport delay” clearly apply for 

the transfer ships. The cycle time for loading, transporting, unloading, and returning is 4 time 

periods. Consider the first transfer operation of transfer ship 1 as an example. The ship is loading 

at time 2, transporting to the production facility at time 3, unloading material in at time 4, and 

returning to the port at time 5. The transfer ship 1 transfers materials three times during the 

scheduling horizon, which are at times 2-5, 6-9, 10-13. The transfer ship 2 transfers material two 

times at times2-5 and 8-11.  
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6.2. Motivating example (PN)  

Table 4. Performance of the motivating example (PN) 
Motivating example (PN) MILP (CPLEX, gap = 2%)   
MILP-NLP 
decomposition 

solution CPU time Number of alternative solutions 

 13,500* 6 s 15 
    
 NLP (CONOPT)    
Binary decisions NLP 

solution  
Binary decisions NLP 

solution  
Binary 
decisions  

NLP 
solution 

Schedule 1 7.980  Schedule 6 6.201 Schedule 11 4.809 
Schedule 2 6.201  Schedule 7 6.201 Schedule 12 4.809 
Schedule 3 6.201 Schedule 8 5.301 Schedule 13 4.809 
Schedule 4 6.201 Schedule 9 5.601 Schedule 14 4.809 
Schedule 5 6.201 Schedule 10 4.809 Schedule 15 6.201 
      
 MINLP (BARON, gap = 2%)   
solved in a full space lower bound upper bound CPU 

time 
 7.960 8.832 15,000 s 

* The objective value, 13,500 is equal to the total amount of processing materials when the smelter 

is operated at full capacity (i.e. 9×1,500). 

We also applied the process network model for the motivating example. As mentioned in the 

previous section, the MINLP model is decomposed into MILP and NLP subproblems. The first 

MILP whose objective function is to maximize the total flowrate into the smelter is solved by 

CPLEX to generate multiple solutions. Then, the different binary decisions are fixed to solve the 

second NLP. The best objective value of NLP is selected. 

As shown in Table 2, the model size of the process network model is smaller than the split 

fraction model, which is because in a process network model there are no variables for individual 

flows and inventories of components but their concentrations instead. On the other hand, the 

non-linearity of the NLP in the process network model is higher than the split fraction model.  
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Due to the large number of non-linearities, the motivating example (PN) cannot be solved by 

BARON in reasonable time. The proposed MILP-NLP decomposition method requires less 

computational effort. As shown in Table 4, 15 different binary decisions are generated from the 

first MILP model with an objective value equal to 13,500, which is the total amount of materials 

processed when the smelter is operated at full capacity (i.e. 9×1,500). Correspondingly, 15 NLP 

models are solved. There are only 6 different objective values out of 15 schedules, which is 

caused by neighboring schedules that are very similar to each other and lead to the same NLP 

solution. In this case, we select the solution based on schedule 1 as the final solution of the 

motivating example (PN); this solution yields an objective function value of 7,980. Note that this 

objective value is lower than the objective value of 8,792 obtained in the (SF) model.  

6.3. Industrial problem (SF) 

Table 5. Performance of the industrial problem (SF) 
Industrial problem (SF) MILP (CPLEX, gap = 1%), Rolling horizon with overlap 
The number of time periods 
in overlaps 

The number of time periods in detailed time blocks 
2 3 4 5 6 

1 Infes  
(sub 4) 

Infes  
(sub 2) 

Infes  
(sub 2) 

Infes  
(sub 2) 

Infes  
(sub 2) 

2  Infes  
(sub 3) 

Infes  
(sub 2) 

Infes  
(sub 3) 

Infes  
(sub 2) 

3   15.884 
(1,114 s) 

15.972 
(705s) 

15.860 
(932s) 

4    15.884 
(2,094s) 

16.050 
(1,088s) 

5     >2,500s 
      
(3,5) NLP (CONOPT4) 
 solution CPU time MILP-NLP gap 
 15.972 42s 0% 
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We try different combinations of the length of the detailed time block from 2-6, and the length 

of overlap from 1-5 to find the best solution with relatively less computational effort for a 

general solution process. Here, (3,5) means the combination of 3 time periods in overlap and 5 

time periods in detailed time block. In Table 5, if the problem is feasible, the objective value and 

CPU time are displayed. Under the same length of the detailed time block, the required 

computational effort is larger as the overlap becomes longer. The (5,6) case does not return a 

solution after 2,500 seconds. Feasible solutions are available for the combinations (3,4), (3,5), 

(3,6), (4,5), and (4,6). Considering that all the objective values are close to each other and the 

CPU time of strategy (3,5) is 705s, which is the shortest, we select the binary decisions of (3,5) 

for the second NLP. It takes 42 seconds for the NLP model to return the same objective value 

obtained with in the MILP; the optimal objective value equals 15.972. Note that even if the 

MILP-NLP gap is 0 in this case, global optimality cannot be guaranteed since the MILP is solved 

by a rolling horizon strategy. 

6.4. Industrial problem (PN) 

Table 6. Performance of the industrial problem (PN)  

Motivating 
example (PN) 

MILP (CPLEX, gap = 2%)   

MILP-NLP 
decomposition 

solution CPU time Number of alternative solutions 

 39,000* 221 s 15 
    

 NLP (CONOPT)    
Binary decisions NLP solution  Binary 

decisions 
NLP solution  Binary 

decisions  
NLP 
solution 

Schedule 1 Infes  Schedule 6 Infes Schedule 11 Infes 
Schedule 2 1.314 (7s)  Schedule 7 Infes Schedule 12 Infes 
Schedule 3 Infes Schedule 8 Infes Schedule 13 Infes 
Schedule 4 Infes Schedule 9 Infes Schedule 14 Infes 
Schedule 5 Infes Schedule 10 -10.995 (25s) Schedule 15 1.314 (6s) 
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* The objective value, 39,000 is equal to the total amount of processing materials when the smelter 
is operated at full capacity (i.e. 26×1,500). 

For the process network model, we applied to the industrial problem (PN) the same procedure 

used in motivating example (PN). From Table 6, only 3 binary decisions lead to a feasible 

solution in the second NLP. The reasons are first, neighboring schedules that are very similar to 

each other are infeasible; second, for the industrial problem, the MILP relaxation ignores all 

composition equations, and therefore, the NLP with the quality constraints is infeasible; third, the 

MILP relaxation does not generate starting points of the composition information for the second 

NLP, and therefore, the poor starting point may lead to an infeasible solution. We select the 

solution based on schedule 15 with an objective value of 1,314 as a final solution of industrial 

problem (PN). 

6.5. Variation in concentration of the key component 

We consider the penalties of variation in concentration of the key component in the industrial 

problem. 

Table 7. Economic data of the final solution of the industrial problem 
Industrial 
problem 

Objective 
value 

Gross 
margin 

 Penalties for variation in 
concentration 

SF 15.972 15.972  0 
PN 1.314 13.751  12.394 
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Figure 13. The mass fraction of K3 in the industrial problem 

As seen in Table 7, the process network model returns a solution with lower gross margin and 

higher penalties. Also, one may notice that the solution of schedule 10 in Table 7 has a negative 

value which means the penalties are higher than the gross margin. However, the split fraction 

model can return an optimal solution without any penalties. The reason is that in the split fraction 

model, the penalties can be considered in the first MILP relaxation. But in the process network 

model, all composition information is ignored, and we only get binary decisions that can keep 

the smelter operated at full capacity. As a result, large penalties are generated in the second NLP 

model as shown in Figure 13. As mentioned in the problem statement section, the weight of 

penalties of variation in concentration of K3 is set to 100. In industrial analysis, one can reset the 

weight of penalties to obtain solutions with special requirement for the variation of key 

components’ concentration.  

7. Conclusion 

The scheduling and feed quality optimization for processing raw materials in a copper smelter 

with two blending steps has been addressed in this paper. It was shown that this problem has 

some similarities with the crude oil scheduling problem. Special operation rules, such as 
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transport delay and shut down when empty for operations in single time period and multiple time 

periods have been successfully modeled. Penalties for variations in concentration and linear 

constraints are considered in the objective function. Solution strategies, such as MILP-NLP 

decomposition method, relax-and-fix rolling horizon with nearby time window overlaps, and 

multiple solutions for MILP were applied to solve the large scale non-convex MINLP model. 

Two formulations, process network model and split fraction model, were applied to this 

scheduling problem and the performances are contrasted as follows. 

The split fraction model provides a tight MILP relaxation so that the optimality gap is close to 

0. However, the model size is much larger and requires large computational effort since there are 

variables for individual flows and inventories. For the industrial problem, even the first MILP 

relaxation cannot be solved in the full space. Therefore, the relax-and-fix rolling horizon with 

nearby time window overlaps is applied. In summary, the split fraction model can be used to find 

better solutions with relatively larger computational efforts. Though global optimality cannot be 

guaranteed. 

The process network model is smaller than the split fraction model, but with higher non-

linearities, which cannot be solved in global MINLP solver in reasonable time. Once the 

nonlinear constraints are dropped, the MILP relaxation without any composition information can 

be solved in relatively less computational efforts. By generating multiple solutions in first MILP, 

we can find feasible and infeasible solutions for the NLP model, depending on the complexity of 

the problem. Since the objective functions of the MILP and NLP problems are different, it is not 

possible to estimate the optimality gap of its solutions. In summary, the process network model 
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can be used to generate several feasible solutions faster without considering the optimality of the 

solutions.      

ASSOCIATED CONTENT 

Readers can find the data of the motivating example (Table S1) and industrial problem (Table 

S2), serial number of the operations for the motivating example (Table S3) and the parameters to 

set up solution pool from CPLEX (Table C1) in the supporting information. 
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NOMENCLATURE 
Subscripts 
t: time period 

(n, i, o): intermediate unit 

v: vessel 
p: pile on the port 

b: pre-blender 

TS: transfer ship 
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dp: daily arrival pile 

sb: sub-bin 

s: smelter 

c: concentrate 

k: key component 

Sets 
T: time periods 

N: intermediate units N P B TS DP SB= ∪ ∪ ∪ ∪  

nO : The downstream units of unit n 

nI : The upstream units of unit n 

V : vessels 

P : piles on the port 

B : pre-blender 

TS : transfer ships 

DP: daily arrival piles  

SB: sub-bins SB FSB SSB= ∪  

FSB: first group of sub-bins 
SSB: second group of sub-bins 

S : smelter 

C : concentrates 

DC : daily arrival concentrates 

K : key components 

Parameters 
, ,[ , ]n o n oF F : bounds on flow from intermediate unit n to o  

[ , ]n nM M : bounds on inventories of intermediate unit n 

0
nM : initial total inventories of intermediate unit n 

0
,n cm : initial inventories of concentrate c of intermediate unit n 

,k cθ : mass fraction of component k in concentrate c 

kKe : parameters for interdependency constraints of component k 
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kUe : parameters for interdependency constraints of component k 

cα : income for processing unit concentrate c 

kβ : weight of flow change for key component k 

sF


: the maximum operating capacity of the smelter s 

kχ : upper bound of mass fraction of key component k for the final blending 

MD : maximum amount of non-concentrates material at the end of scheduling horizon 

TMH : the length of scheduling horizon 

ET : the earliest time period when smelter is operated 

Fv,p,t: the flowrate from vessel v to pile p at time t 

Variables 

Binary variables 

, ,n o tD : variables that indicates the existence of flow from intermediate unit n to o at time t 

tDf : variables that indicate if the first group of sun-bins are feeding the smelter at time t 

t̂Df : variable that indicate if the first group of sub-bins finish feeding recipe at time t 

tDs : variables that indicate if the second group of sub-bins are feeding the smelter at time t 

t̂Ds : variables that indicate if the second group of sub-bins finish feeding recipe at time t 

,n tX : variables that indicate if the intermediate unit n is discharged at time t 

,n tE : variables that indicate if there are materials in the intermediate unit n at time t 

Continuous variables 

, ,n o tF : total flowrate from intermediate unit n to n′  at time t 

, , ,n o c tf : flowrate of concentrate c from intermediate unit n to n′  at time t 

,n tM : total inventories of intermediate unit n at time t  

, ,n c tm : inventories of concentrate c of intermediate unit n at time t 

, ,n c tx : mass fraction of concentrate c in intermediate unit n at time t 

,k tF : flowrate of key component k into the smelter at time t 
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tF : total flowrate into the smelter at time t  

,k tZ : flowrate change of key component k in final mixture at time t 
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