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Abstract  

This paper presents a novel mixed-integer linear programming (MILP) formulation for 

the Tank Farm Operation Problem (TFOP), which involves simultaneous scheduling of 

continuous multi-product processing lines and the assignment of dedicated storage tanks 

to finished products. These products are not allowed to mix in storage tanks. Therefore, 

once an assignment is made, it has to be maintained until the end of the operating 

horizon. Since all products processed by finishing lines have to go into the tank farm 

before being shipped, there is the potential to run out of storage, ultimately impacting the 

throughput of the finishing lines, a condition known as blocking. The objective of the 

problem is to minimize blocking of the finished lines by obtaining an optimal schedule 

and an optimal allocation of storage resources. The scheduling part of the model is based 

on the Multi-operation Sequencing (MOS) model by Mouret et al., (2011). The 

formulation is tested in three examples of different size and complexity. The possibility 

of incorporating the MILP model into a decision support system in combination a 

Discrete Event Simulation (DES) model of a tank farm is also discussed. 

 

Keywords: Tank farm operation, production scheduling, tank assignment, multi-

operation sequencing.  

 

Introduction 

Chemical manufacturing sites ship finished products to customers using different modes 

of transportation (MOT) such as railcars, tank trucks, and pipelines. These MOTs are 

usually loaded from or connected to storage tanks. Consequently, all finished products 

have to be fed from the process into the storage tanks before being shipped to customers. 

This type of operation imposes the need for available storage space at all times in order to 
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avoid unnecessary shut-downs of the upstream chemical process. When these shutdowns 

occur, they are said to be a result of storage tanks blocking the process. If the chemical 

process produces several products and each one requires dedicated tanks, the product-

tank assignment and the processing schedule at the finishing lines determines how 

efficiently the storage space is used. An inefficient assignment of tanks or processing 

schedule can result in blocking the production of certain products, even when there is 

plenty of available storage space in tanks assigned to other products.  

 

In this paper, we consider a multiproduct manufacturing facility that includes finishing 

lines connected to a number of storage tanks from which products are shipped to 

customers using different modes of transportation (MOT). The tanks are dedicated to one 

product, meaning that once a product is assigned to a tank, it cannot be used for another 

product. Cleaning of tanks to store different products is not allowed. We are concerned 

with finding the best possible assignment of products to dedicated storage tanks, and the 

best processing schedule at the finishing lines in order to minimize the unallocated 

production. For scheduling purposes, there is a set of production orders that requires the 

processing of a certain amount of product in the finishing lines. Orders have a known 

release date and all are due at the end of the time horizon. The release date corresponds to 

the moment when a certain amount of an unfinished product becomes available for 

processing in the finishing lines. These lines can process the order immediately and feed 

the storage tanks, or delay the order for a while until there is available storage space. The 

main decisions in this problem are the tank-product assignment and the scheduling of 

processing orders.  The set of storage tanks included in the production facility is 

collectively known as a Tank Farm, and therefore, the problem outlined above is referred 

to in this paper as the Tank Farm Operation Problem (TFOP).    

 

The paper by Sharda and Vazquez (2009) illustrates the relevance of the tank farm 

operation problem (TFOP) for the Dow Chemical company. The authors describe the 

development of a Decision Support System to evaluate the operation of a tank farm at a 

chemical production site in Freeport, TX. The system they propose is based on Discrete 

Event Simulation (DES). In discrete event models the system changes states as events 
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occur and only when those events occur (ExtendSim, 2007). DES works by representing 

the occurrence of an event by generating and passing items among the elements of the 

simulation model. Cassandras et al. (1993), Banks et al. (2005), and ExtendSim (2007) 

are useful references on Discrete Event Systems and Discrete Event Simulation. Sharda 

and Vazquez (2009) evaluated the operation of a tank farm in a Dow Chemical site that 

consists of more than 80 tanks for storing 60 product families, processed in 6 finishing 

lines. Their simulation model captures complex operating constraints, such as the effect 

of recycle lines on the simultaneous loading and unloading of tanks, operational logic 

when dealing with delayed processing orders, and the stochastic nature and dynamics of 

the operation of loading from tanks unto the different modes of transportation (MOT). 

Since the approach is based on simulation, it is not intended for finding an optimal 

resource allocation or production schedule; it is a tool for evaluating different storage 

tank allocations for a given production schedule.  

 

Other authors have used this type of DES as a support tool for operating a tank farm. 

Chen et al. (2002) from the Mathematical Modeling Group at BASF provide another 

example of a DES study of logistics in a chemical plant. The tank farm problem is also 

relevant in crude refining operations. For instance, Stewart and Trierwiler (2005) carried 

out a study of the tankage requirement in different operational scenarios for the Kuwait 

National Petroleum Company. Their main tool is DES which they combine with Linear 

Programming (LP). Chryssolouris et al. (2005) present an integrated simulation based 

approach that manages scheduling, tank farm, inventory, and distillation operations in a 

refinery. Their approach is based on generating random solutions within a given search 

space and evaluating them using the simulation model.  

 

Mathematical programming is another approach to the Tank Farm Operation Problem 

(TFOP). Optimization methods can determine the best possible tank allocation and/or 

production schedule within a given search space, as opposed to simulation tools that 

require the allocation and schedule to be specified. The disadvantage of this approach is 

that it requires operational constraints to be expressed as algebraic equations. Many of the 

operational constraints of TFOP have to be simplified in order to express them with 
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algebraic equations for the optimization algorithms. Even with this limitation, 

optimization approaches have been successfully used in problems related to storage tank 

allocation and tank transfer scheduling. Hvattum et al. (2009) addressed the storage tank 

allocation problem (TAP) in a maritime bulk shipping operation. A ship is equipped with 

a set of storage tanks that are loaded and unloaded according to a scheduled route. This 

problem has similar constraints as the tank farm operation problem we address in this 

paper; each tank holds only one type of product and several tank-product assignments are 

infeasible due to structural or safety constraints. The loads received and delivered at 

different ports are similar to product loading and unloading to storage vessels in the tank 

farm according to a production and shipping schedule. A Mixed-integer Linear 

Programming (MILP) model is used to either test the feasibility of a shipping route, to 

minimize tank cleanup time, or to maximize the vacant space in storage tanks. The main 

difference between the TAP and the TFOP is that the TFOP deals with a continuous 

production system, whereas the TAP deals with a limited number of discrete loading and 

unloading events. The work by Ha et al. (2000) is a good example of a research topic 

related with storage tank allocation, namely, the optimization of intermediate buffer 

sizing and allocation in multi-product batch process systems. Ha et al. (2000) determine 

the location, number, and size of storage tanks with the objective of minimizing the 

makespan. As opposed to the Tank Farm Operation Problem (TFOP), storage vessels can 

be shared by different types of batches. Vecchietti and Montagna (1998) address a similar 

problem.  

 

From the above review, we can conclude that Discrete Event Simulation (DES) is the 

approach that has received the most attention for addressing the TFOP in process 

industries. Mathematical optimization has been mostly aimed at related problems such as 

buffer tank allocation in multiproduct batch scheduling, or to assignment problems such 

as in the case of the tank allocation problem in maritime operations. Some authors (Zeng 

and Yang, 2009; Chen et al., 2002) have correctly pointed out that the number of 

variables and constraints, the operational complexity, and the stochastic nature of logistic 

processes involved in tank farm management produce either intractable or oversimplified 

mathematical optimization models. Zeng and Yang (2009) proposed integrating 
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simulation and optimization for solving the TFOP. Their argument is that an approximate 

optimization model is sufficient for obtaining good solutions that can be evaluated using 

the simulation model in a second step. They used neural networks and genetic algorithms 

for the optimization module.  

The objective of this paper is to present an optimization method based on mathematical 

programming, namely Mixed-Integer Programming (MILP), for solving the TFOP. Our 

model of the TFOP includes scheduling of orders that arrive to the finishing lines as well 

as the optimal tank allocation. We use the description of the tank farm operation given by 

Sharda and Vazquez (2009), and try to incorporate in our MILP model as much of the 

operational details as possible. This paper does not include simulation by DES. 

Nevertheless, we believe that the output of the optimization model we propose could be 

evaluated, validated, and communicated using DES.  

 

In the following sections of this paper we give a more detailed description of the tank 

farm problem, state the optimization problem, discuss the mathematical model, and apply 

the formulation to three case studies. We end this paper with a summary of our findings 

and a discussion of possible future work. 

 

Problem Statement 

A downstream section of a chemical production facility includes a set M  of continuous 

finishing lines that represent the last step in the manufacturing of a set J  of products, 

along with a set K  of storage tanks (the tank farm) from where the products are shipped 

to the consumers. The shipping operation uses different modes of transportation, usually 

railcars, tank trucks, or pipelines. Figure 1 (Sharda and Vazquez, 2009) shows a 

representation of this system.  
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Fig. 1 Downstream section of chemical production process 

 

The processing step in lines Mm  is carried out according to processing orders. A 

processing order is generated when a batch of unfinished product from the upstream 

chemical plant is ready to be processed by the finishing lines, which operate 

continuously. The parameter jod ,  specifies the amount of product j to be produced 

according to order o . Each order Oo has a release date ord  that corresponds to the 

moment when the unfinished product is available for processing in the finishing lines, 

and when the corresponding production order gets generated. All orders are due at the 

end of the operating horizon. If an order cannot be processed at its release date, its 

production can be delayed as long as it can still meet the due date.  The production rate of 

each product Jj  in line m , mjrate , , is a known deterministic parameter. After its 

release date, ord , the order o is processed in the finishing lines and sent to storage in one 

of the Kk tanks of the tank farm. At the beginning of the time horizon, some or all of 

the tanks are empty. However, once a tank k  has been allocated to store a product j , it 

remains dedicated to this product throughout the operating horizon considered in this 

paper. One of the biggest operational challenges of this problem is that an order cannot be 

processed and transferred to a tank, unless there is available space in the tanks. When 

transfer is not possible and the production order has to be delayed, it is said that tanks are 
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blocking the finishing lines. In this case the processing of orders in the finishing lines has 

to be rescheduled.   

Figure 2 is adapted from Sharda and Vazquez (2009); it shows the operational logic for 

processing production orders and transferring finished product into storage tanks. 

 

 
Fig. 2 Operational logic in tank farm simulation model 

 

Since the time horizon is finite, blocking and delaying or orders ultimately results in 

some orders that cannot be produced. Such unsatisfied orders generate unallocated 

product at the end of the time horizon.   The main decisions that this paper is concerned 

with are the assignment of finished products to storage tanks, and the scheduling of 

production orders.  

 

There are a number of operational characteristics that make the management of an actual 

tank farm a complex problem. The processing of certain products might not be possible 

in every finishing line, and a product can only be transferred from a line to a tank if there 

is piping or some other type of connection between them. Simultaneous loading and 

unloading is prohibited for some tanks. Finally, shipping can be done using different 
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modes of transportation (MOTs), namely, railcars and tank trucks that are loaded in 

batches at specified times that correspond to the arrival of available MOTs.    

  

The problem can be summarized as follows: 

 

Given are: 

 A finite time horizon  

 A set of finishing lines and their operational characteristics: 

o Subset of products that can be processed in it 

o Processing rate for each product 

o Subset of tanks that the line is connected to, and to which it can transfer 

material 

 A set of production orders with the following information: 

o Product to be processed 

o Quantity of product to be processed  

o Release date 

o A due date corresponding to the end of the operating horizon 

 A set of products 

 A set of storage tanks and their characteristics: 

o Maximum capacity (volume or mass) 

o Subset of products that are compatible with its operating conditions 

o Frequency of unloading to MOT 

o Rate of transfer to MOT during unloading   

 

The simplifications with respect to realistic tank farm operation are as follows: 

 Unloading operations occur at the same time in all tanks. Otherwise, the 

unloading of each tank at the end of each day could potentially require a priority 

slot (defined later in the paper), and the problem size would increase 

considerably.  

 Simultaneous loading and unloading of tanks is prohibited. 
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 Modes of transportation operate in semi continuous mode only; there are no 

continuous MOTs. 

 Changeover times are neglected for the scheduling.  

 

The problem is to determine: 

 The assignment of products to dedicated storage tanks 

 The assignment of orders to finishing lines 

 The start and duration of the processing time for each order 

 The tank or tanks to which each order will be transferred to 

 

Subject to: 

 Assignment constraints: 

o One product per tank 

o Maximum and minimum number of tanks for a product 

o Physical and chemical compatibility of finished product and tank 

conditions  

o Constraints given by existing connections between finishing lines and 

storage tanks 

 Mass balance constraints 

o The rate of processing of an order is equal to the rate of transfer to storage 

tanks 

o Accumulation in storage tanks is equal to all transfers from lines minus all 

quantity loaded to MOTs 

 Scheduling constraints 

o No two orders can be processed simultaneously in the same line 

o An order can only be processed after its release date 

 Tank operation constraints 

o Simultaneous loading and unloading is not allowed for some tanks  

o Unloading operations to MOTs occur with predetermined frequency 

o Unloading operations to MOTs have a predetermined maximum duration 
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With the objective of: 

 Minimizing unallocated production that results from blocking finishing lines by 

unavailability of storage space 

 

 

Continuous time scheduling in the Tank Farm Operation Problem (TFOP) 

The fact that production orders can be delayed, allows for optimization of the processing 

schedule at the continuous finishing lines. An important characteristic of the finishing 

process is that once an order has started, it has to be processed completely or the 

unprocessed quantity has to be declared as unallocated product. This fact is a result of the 

operational logic shown in Figure 2.  

 

There are alternative models that can be used for scheduling continuous parallel 

production lines. Since we are interested in the material balance in the storage tanks, we 

need to consider the transfer of different products from several parallel finishing lines. 

The simplest alternative to do so is to use a discrete time formulation. The state-task-

network (Kondili et al., 1993) and the resource-task-network (Pantelides, 1994) are the 

most general discrete time formulations for batch processes. Since the process at hand is 

single-stage and continuous, a much simpler formulation where at most one production 

order can be assigned to each time interval and each line could be used. The transfer to 

storage tanks would be equal to the processing rate, and the unloading of tanks to MOTs 

could also be specified for some of the time intervals. The balance of the inventory tank 

could be easily calculated at the end of each time interval. The drawback of this simple 

discrete time formulation is that when a large number of time intervals are needed, the 

problem may become intractable.   

 

Continuous time scheduling models are now common since they can potentially decrease 

the combinatorial complexity that results from discrete time models (Floudas and Lin, 

2004). Erdirik-Dogan and Grossmann (2008) present a model for simultaneous planning 

and scheduling of continuous parallel production lines that divides the operating horizon 

into planning time periods. The inventory mass balance is calculated at the beginning and 
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at the end of each time period. A slot-based MILP scheduling problem in continuous time 

is solved within each time period. This model has a very natural way for incorporating 

sequence-dependent changeovers that has been extended by Lima et al. (2011) and 

Kopanos et al. (2011) to consider production changeovers across time periods. Yet 

another type of continuous time models relevant to the TFOP comes from the study of 

tank transfer and crude oil scheduling problems in the refining industry (Furman et al., 

2007; Mouret et al., 2009; Mouret et al., 2011 ).  Among these alternative models, we use 

the Multi-operation Sequencing (MOS) model described by Mouret et. al (2011). In 

Appendix A we discuss how the MOS model was chosen over some alternative 

formulations.  

 

Mathematical Model 

The mathematical model in this paper is based on the Multi-operation sequencing (MOS) 

model of Mouret et. al (2011). It has been modified to account for specific considerations 

of the TFOP. The MOS formulation by Mouret et. al (2011) uses the idea of operations 

assigned to priority time slots that enforce a precedence of time events. Multi-operation 

sequencing (MOS) receives its name from the fact that several operations can be assigned 

to the same slot unless they are considered as non-overlapping. To illustrate this concept, 

consider the six operations and three resources shown in Table 1 (Mouret et al., 2011). 

Operation v4 consumes resources r1 and r2, which means it cannot be performed 

simultaneously with either operation v1 or v2. Operations that share resources are termed 

non-overlapping.      

 

Table 1. Set of operations and resources used by each operation 

Operation v1 v2 v3 v4 v5 v6 

Resource r1 r2 r3 r1 r2 r1 r3 r2 r3 

 

Figure 3 (Mouret et al., 2011) shows another way of representing operations and the non-

overlapping relationship among some of them. The graph in this figure has an arc 

between all non-overlapping operations. The idea of a clique from graph theory is used to 

group subsets of non-overlapping operations. For instance, the subset },,{ 642 vvv  is a 
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clique in the graph on Figure 3. Figure 4 (Mouret et al., 2011) shows a schedule with the 

six operations in Table 1 that illustrates the idea of multi-operation sequencing (MOS) 

and non-overlapping operations for a set of 4 priority time slots. For instance, note that 

operations 1v  and 6v  are assigned to slot 1, while operations 2v  and 5v  are assigned to 

slot 2. In general, let V be the set of operations, L  the set of slots, ,vS  the start of 

operation Vv  in slot L , ,vE  the ending time, and ,vZ  a binary equal to 1 if v is 

assigned to  . Then, the basic idea of the MOS model is summarized by the following 

constraints: 

1
*

, 
Vv

vZ       )(*, VcliqueVL              (MOS1) 

and 

)1(
*

,
*

,
*

, 221 



Vv

v
Vv

v
Vv

v ZHSE    )(*,,,, 2121 VcliqueVL   ,   (MOS2) 

where )(Vclique  is formed by all subset of operations VV *  such that any two 

operation in *V  must not overlap. For instance, all operations that use a common 

resource would be part of a set )(* VcliqueV  . Note that constraints (MOS1) states that 

at most one operation v  from a given subset of operations *V  can be assigned to a slot 

, while constraint (MOS2) enforces for all operations from the subset *V , that the end 

time of slot 1  takes place before the start time of slot 2  if an assignment is made. 

 
Figure 3. Non-overlapping graph 

 



13 
 

 

Figure 4. An illustrative solution schedule 

 

In this paper we use the same approach by defining as non-overlapping operations those 

that occur in the same processing line, as well as any pair of shipping and processing 

operations. Shipping and processing are non-overlapping since loading and unloading of 

a tank cannot occur at the same time. The set V is a collection of two types of operations: 

processing of an order in a finishing line and an unloading or shipping event. The first 

type is defined by a pair MOmo ),( ; the second type of operation considers any 

shipping event  Ss . In set notation:  SsMmOosmoV  ,,:)(),,( . The cliques 

that appear in equations (MOS1) and (MOS2) are 

  MmSsOosmoVcliquem  ,,:)(),,()( . These cliques are result of defining that 

the processing of two orders on the same finishing line, and that loading and unloading of 

a tank must not overlap. As an example, consider the small system described in Table 2, 

where three processing orders have to be scheduled in two finishing lines. The finished 

products are stored in three tanks from which there will be shipped once to the customer. 
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Table 2. Small illustrative example 

Processing orders o1 o2 o3 

Product in order i  A B C 

Finishing lines m1 m2  

Storage tanks T1 T2 T3 

Shipping events s1   

 

Table 3. Definition of operations in small illustrative Example 

Processing operations (o1,m1) (o2,m1) (o3,m1) (o1,m2) (o2,m2) (o3,m2) 

Shipping operations s1      

 

Figure 5 shows the non-overlapping graph that corresponds to the operations in Table 3. 

 
   Fig. 5 Non-overlapping graph in small illustrative example 

 

There are two cliques in the graph of Figure 5: 
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Recalling that the set of slots is L, the non-overlapping constraint (MOS1) in the small 

illustrative example is written below:  

1
*

, 
Vv

vZ       Mm  cliqueVL m  *, , 

or alternatively, if variable ,vZ  is disaggregated into a variable for assigning processing 

operations to slots ,,mowo  and another for assigning shipping events to slots ,sws , 

1,,, 
 Ss

s
Oo

mo wswo     MmL  , . 

The latter form has the advantage that the cliques do not have to be explicitly defined, 

and that the constraint is described in terms of the naturally occurring sets L and M. This 

is the form that we use in equations (4) and (5) of the mathematical model. Finally, a 

feasible schedule for this illustrative case using 3 priority time slots is found in Figure 6. 

 

 
Fig. 6 A feasible schedule for the illustrative example 
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sS /     Shipping or unloading events 

 

 

Variables 

,,mowo  binary variable to denote that order o   is processed in line 

m  during slot   

,sws  binary variable to denote that unloading event s occurs in 

slot   

kjz ,  binary variable to denote that tank k  is dedicated to 

product j  

in
kmov ,,,  quantity of material corresponding to processing order o   

transferred to tank k from line m  during slot   

out
ksv ,,  quantity of material shipped or unloaded from tank k  

during unloading event s  in slot   

klv ,  inventory levels in tank k  at the end of slot   

,,mosto  start time for processing order o  in line m  during slot    

,ssts  start time shipping event s in slot    

,,modro  duration of processing of order o  in line m  during slot    

,sdrs  duration of shipping event s in slot    

,,moeo  end time for processing order o  in line m  during slot    

,ses  end time of shipping event s in slot    

ap  total amount of finished product allocated to storage tanks 

0
ks  initial inventory in tank k 

 

Parameters 

H  length of time horizon  

kv  volume of tank k 
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jo,d  amount of finished product j  requested by processing 

order o  

jo,  1 if product j  is requested in processing order o ; 0 

otherwise  

ord  release date of processing order o  

kjcmp ,  1 if physical and chemical properties of product j are 

compatible with the operating conditions of tank k; 0 

otherwise  

kltlc ,  1 if any product can be transferred between line   and tank 

k; 0 otherwise 

jmxk  maximum number of tanks that can be assigned to product j 

jmnk  minimum number of tanks that must be assigned to product 

j 

mjrate ,     rate of production of product j in line m  

jssh ,  shipping rate of product j in shipping event s    

sshd  maximum duration of shipping event s    

sstime  time when a shipping event s is allowed to start; the 

maximum shipping event frequency is determined a priori, 

according to logistics of modes of transportation  

sshipwin  time window during which unloading of tank into modes 

transportation is allowed; the length of this shipping 

window is predetermined by the logistics of the process 

system   

o  Weighting parameter of order o according to its importance 

in the production schedule 
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Objective function  

The objective is to minimize the unallocated product. This objective is equivalent to 

maximizing the amount of finished product that is allocated to the storage tanks during 

the time horizon. The parameter o  is included to give different weights to different 

production orders. For instance, if an order is urgent it could have a large value of o . 

For all the results in this paper we set Ooo  ,1 . 


   


Oo L Mm Kk

in
kmoovap


 ,,,             (obj) 

 

Scheduling constraints 

Equations (1a) and (1b) establish that the start time for the processing of order o in line 

m at slot  is zero if the order is not assigned to that line during that slot, or otherwise it 

must be sometime after the release date and before the end of the horizon. Equation (1c) 

is a constraint on the frequency of shipping events.  This equation fixes the start of each 

event s at slot   to either zero or the predetermined shipping time sstime . In equation 

(1d) the duration of the processing operation of order o in line m can only be non-zero if 

has to been assigned to slot  . The duration of a shipping event is either zero or less than 

the predetermined maximum duration of shipping events, as established by equation (1e). 

Equations (1f) and (1g) set the ending time of any slot to either zero if it is not assigned 

to processing or shipping, or to less than the operating horizon.  Equations (2a) and (2b) 

establish that the ending time of any slot is equal to its starting time plus its duration. 

 

 Hwosto momo ,,,,        MmLOo  ,,        (1a) 

omomo rdwosto ,,,,        MmLOo  ,,                       (1b) 

sss stimewssts  ,,       LSs  ,         (1c)  

Hwodro momo ,,,,        MmLOo  ,,                       (1d) 

sss shipwinwsdrs  ,,       LSs  ,         (1e) 

Hwoeo momo ,,,,        MmLOo  ,,        (1f)  

Hwses ss  ,,        LSs  ,                                   (1g) 
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momomo drostoeo ,,,,,,       MmLOo  ,,        (2a)  

 ,,, sss drsstses       LSs  ,         (2b) 

It should be noted that the sum of all processing durations modro ,,  for each order are 

bounded by the sum of the product demands jodo ,  as will be specified later in constraint 

(6). 

By constraint (3a) an operation can be assigned at most once to any slot or finishing line; 

by constraint (3b) each shipping event only takes place once.  

1,, 
 L Mm

mowo


      Oo                 (3a) 

1, 
L

sws


        Ss                 (3b) 

 

Constraint (4) enforces that no overlapping operations are assigned to the same slot. It 

was described in more detail in the previous sections. 

1,,, 
 Ss

s
Oo

mo wswo      MmL  ,           (4)  

 

According to the idea of priority slots (Mouret et al., 2009), slot 1  in equation (5) has a 

higher priority than slot 2 in the sense that it takes place before or at the same time as 

slot 2 . If two non-overlapping operations, such as processing on the same finishing line 

or a shipping event and a processing operation, are assigned to  1  and 2 , then 2  must 

start after the end of 1 . Equation (5) enforces this constraint. The duration of the 

intermediate slots 21:    is considered in order to strengthen this constraint 

(Mouret et al., 2011). 

)1(
2222

2121

11

,,,,,,

,,,,,,,













smo
Ss

s
Oo

mo

L
ms

L
mo

Ss
s

Oo
mo

wswoHstssto

drsdroeseo

















 MmL  ,,,, 2121          (5) 
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Tank transfer constraint 

Equations (6) and (7) allow the transfer of a finished product to storage tank k from line 

m during slot  , only if an order corresponding to that product is being processed, and if 

the tank is assigned to this product (i.e. 1, kjz ) . In both constraints 
Jj

jod , is a valid 

upper bound. Constraint (8) allows transfer between a line and a tank only if there is 

feasible connection (e.g., a pipe) between them. Constraint (9) sets the maximum rate of 

transfer to tanks equal to the rate of processing at the finishing lines. Equation (10) sets 

the maximum amount that can be unloaded from a tank for a shipping event in a given 

slot. The maximum rate of unloading is set by constraint (11) 

 





Jj

jomo
Kk

in
kmo dwov ,,,,,,      MmLOo  ,,                     (6) 

)( ,,,,, 



Jj

jokj
in

kmo dzv       KkMmLOo  ,,,         (7) 





Jj

jomk
in

kmo dtlcv ,,,,,      KkMmLOo  ,,,              (8) 





Jj

momjjo
in

kmo droratev )( ,,,,,,,      KkMmLOo  ,,,         (9) 

ks
out

ks vwsv  ,,,        KkLSs  ,,                   (10) 

 ,,,, sjs
out

ks drsshv       KkLSs  ,,                   (11) 

 

Material balance in storage tanks 

The concept of priority slots 21,  where,
21 ˆ21  stet  , allows the material 

balance at each tank to be calculated as in constraint (12). 

  
   


Ss

out
ks

Mm Oo

in
kmok vvlv







11

1

11

1
:

,,
:

,,,,    KkL  ,        (12) 

Constraint (13) limits the level of inventory to the capacity of tank k, 

kk vlv ,        KkL  ,        (13) 
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Tank assignment constraints 

Equation (14) enforces the condition that at most one product can be assigned to each 

dedicated tank. Constraint (15) establishes the minimum and maximum number of tanks 

to which a product can be assigned. Constraint (16) allows an assignment only if the 

chemical and physical properties of a product are compatible with the operating 

conditions of a tank. 

1, 
j

kjz        Kk                      (14) 

j
k

kjj mxkzmnk   ,     Jj           (15) 

kjkj cmpz ,,        KkJj  ,          (16) 

 

Variable domain specifications 

 1,0,, mowo     MmLOo  ,,                  (17) 

 1,0, sws     LSs  ,         (18) 

 1,0, kjz     KkJj  ,         (19) 

out
ks

in
kmo vv ,,,,, ,      SsKkMmLOo  ,,,,   (20) 

momomo eodrosto ,,,,,, ,,      MmLOo  ,,        (21)  

 ,,, ,, sss esdrssts     LSs  ,         (22) 

klv ,     KkL  ,         (23) 

ap              (24) 

 

Example 1 

In this   example we wish to determine the optimal tank assignment and optimal schedule 

for a system of five tanks and two finishing lines where three products are processed. We 

have a set of production orders that arrive during an interval of two weeks. This set of 

production orders is representative of the frequency of orders and the quantity ordered 

during long term operation of the system. Thus, it can be used for optimally assigning 

tanks to products. Tables 4 – 6 contain the data required for the optimization model. In 
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this example we consider that all products can be stored in all tanks, and that there is a 

feasible connection between every line and every tank. 

  

 

 

Table 4. Production orders in Example 1 

 
 

Table 5. Production rate and tank capacities in Example 1 

 

 

Table 6. Interval between shipping, duration of unloading, and unloading rate   

 

 

The TFOP formulation described in the mathematical model section is used to solve 

Example 1. After some pre-analysis, 6 priority time slots are postulated. The main idea is 

that we need 4 slots to process the 8 orders in the 2 production lines, and, given the rates 

of unloading of tanks, about 2 or 3 slots for shipping operations. Computational results 

indicate that 6 priority slots yield the same solution as 7 but require less computational 

time.  The resulting Mixed-Integer Linear Programming (MILP) model has 195 binary 

Order Product

Quantity 

[ton/hr]

Release date 

[hr]

1 A 105 0

2 C 69 0

3 C 35 48

4 B 98 72

5 A 110 96

6 B 56 168

7 C 102 216

8 B 90 264

Tank  

Interval 

[hr]

Duration 

[hr]

Transfer rate 

[ton/hr]

1 24 6 12.07

2 24 6 13.86

3 24 6 12.01

4 24 6 12.31

5 24 6 11.83
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variables, 1,471 continuous variables, and 3,358 constraints. It was implemented in 

GAMS version 23.6 for Windows and solved using CPLEX 12.2 with an Intel Core i7 

CPU at 2.93 GHz, and 4.00 GB of RAM. A solution within 0.2% of the optimum was 

found in 60 CPU seconds. The results are summarized in Table 7, and Figures 7 – 8. As 

seen in Table 7, 1.4 ton of product B cannot be allocated. 

 

Table 7. Allocated product for Example 1   

 
 

Figure 7 shows the optimal product-tank assignment. The total production volume 

specified by the production orders of Product B is the highest, and it is assigned the 

largest total storage tank capacity. Product A has a larger production target than product 

C, but product A is allotted less storage space. Figure 8 shows that the two production 

orders of product A are scheduled at the beginning and end of the time horizon, allowing 

for the complete unloading of the storage tank. This fact is observed in Figure 9(d). The 

Gantt chart in Figure 8 shows how the scheduling of non-overlapping operations, such as 

the processing operations in the same line, and processing and unloading operations are 

never scheduled in the same slot. From this figure we can also confirm that the ordering 

of the priority slots is maintained: every slot that has a lower numbering than a shipping 

slot ends before the shipping starts.  

Product

Ordered amount 

[ton]

Allocated  Quanity 

[ton]

A 215 215

B 244 242.6

C 206 206

Total 665 663.6
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Fig 7. Optimal product-tank assignments in Example 1 

 

 
Fig. 8 Gantt chart of optimal schedule in Example 1 

 

The plots of the tank levels in Figure 9 show a common pattern. Towards the end of the 

operating horizon all tanks except number 5 are completely full. This result is a 

combination of the objective function of the TFOP that requires a maximal amount of 

product going into the tanks, and the finite operating horizon. In real-life operations a 

shipping event would probably take place at the end of the time horizon. A cyclic 

A
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C

Tank 1
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schedule is an approach that eliminates this effect in case it is found to be an undesirable 

way of operating the system. We explore this alternative in Example 3. 

 
Fig. 9 Tank levels in the optimal solution to Example 1 

 

 

Example 2 

The purpose of this example is to highlight the advantage of solving the TFOP including 

scheduling of processing orders instead of considering a fixed processing schedule. We 

consider a system of two parallel finishing lines where 8 products are processed and fed 

into 10 storage tanks. The operating horizon is 672 hours (4 weeks). Tables 8 – 10 

contain the operating data of this system.  

 

(a) (b)

(c) (d)

(e)

/ Prod C

/ Prod C

/ Prod B

/ Prod B

/ Prod A
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Table 8. Production orders in Example 2 

 

 

Table 9. Production rate and tank capacities in Example 2 

 

Order Product

Quantity 

[ton]

Release date 

[hr]

1 P1 30 0

2 P1 40 0

3 P1 18 10

4 P2 10 14

5 P2 40 16

6 P2 20 18

7 P3 30 21

8 P3 20 124

9 P3 20 156

10 P4 30 198

11 P4 30 220

12 P4 10 272

13 P5 50 284

14 P5 30 316

15 P5 18 378

16 P6 25 380

17 P6 25 412

18 P7 30 544

19 P7 10 536

20 P8 25 558

21 P8 15 560

Production rate [ton/hr] Tank Capacity [ton]

Line 1 Line 2

P1 1.29 1.29 T1 30

P2 1.07 1.07 T2 27

P3 1.07 1.07 T3 18

P4 1.07 1.07 T4 15

P5 1.64 1.64 T5 15

P6 0.55 0.55 T6 15

P7 0.71 0.71 T7 12

P8 0.71 0.71 T8 12

T9  15

T10 39
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Table 10. Interval between shipping, duration of unloading, and unloading rate   

 

 

In the case where the schedule is fixed each production order starts exactly at the release 

date and lasts until it is completed or until a new order has to be processed. Every time 

that the tanks block the finishing lines, there is a quantity of unallocated product 

generated that is equal to the time the line was blocked multiplied by the processing rate 

of the line. The 21 production orders can in principle be processed in 11 priority slots by 

the two finishing lines, and we estimated 2 or 3 shipping events per week. After some 

computational experiments we specified 18 priority slots. The resulting MILP has 1,340 

binary variables, 16,561 continuous variables, and 40,261 constraints. We solve it with 

the same hardware as in Example 1. However, instead of using the solver CPLEX as we 

did in Example 1, we use Gurobi 4.0. Computations with both solvers showed that for 

this example Gurobi found better solution in about an order of magnitude less time than 

CPLEX. Table 11 shows the best solutions and solution times found with fixed schedule 

and with optimal scheduling. Note that fixing the schedule actually makes the problem 

harder to solve, presumably because it becomes more constrained.  

 

Table 11. Computational results of the TFOP with fixed and optimal scheduling 

  

  

 

 

 

 

Tank  

Interval 

[hr]

Duration 

[hr]

Transfer rate 

[ton/hr]

1 24 4 2.50

2 24 4 2.25

3 24 4 1.50

4 24 4 1.25

5 24 4 1.25

6 24 4 1.25

7 24 4 1.00

8 24 4 1.00

9 24 6 0.83

10 24 6 2.17

 Fixed Scheduling Optimal Scheduling 

Best Solution [ton] 439 517 

Optimality Gap [%] 19.9 1.7 

Linear Relaxation [ton] 526 526 

CPU [second] 10,000 530 
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The total quantity required by production orders is 526 tons. The best solution with fixed 

schedule (439 tons) after 10,000 CPU s corresponds to approximately 16% unallocated 

product, while a solution of 517 tons involving less than 2% unallocated product is found 

when optimal scheduling is included in the TFOP. Table 8 shows that seven production 

orders are released between hour 0 and hour 21. A similar accumulation of orders occurs 

between hours 540 and 560. When the schedule requires each order to be processed at its 

release date, as is the case with fixed schedule, some orders have to be cut short or 

missed all together.   

 

 

Fig. 10 Optimal tank assignments with fixed schedule 
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Fig. 11 Optimal tank assignments with optimal schedule 

 

The main point in this example is that including the optimal scheduling in the TFOP has a 

significant effect on the quality of the solution found and on the computation times 

required. When scheduling is included, a solution within 2% of the optimum and 

involving almost no unallocated product can be found in 530 CPUs. In contrast, the best 

solution found after 10,000 CPUs for the problem with fixed scheduling involves 

significant amounts of unallocated product and an optimality gap of ~20%.   

 

Example 3 

This example involves the same system as in Example 2 but with an extended time 

horizon of 6 weeks (1008 hrs.), which is longer than usual for scheduling problems. The 

reason is that we require a schedule that is representative of the medium to long-term 

operation of the plant in order to make the tank allocation decisions.  An important 

difference from previous examples is that we consider a cyclic operating mode where the 

cycle time is 1008 hrs. A new variable, 0
ks , is introduced in the equation for the inventory 

balance, yielding equation (25).  

  
   


Ss

out
ks

Mm Oo

in
kmokk vvslv







11

1

11

1
:

,,
:

,,,
0

,    KkL  ,        (25) 
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The following constraint to enforce similar initial and final inventory is added to the 

model: 

kkkkk svs   0
,

0
      KkL  , ,       (26) 

where k is a small scalar introduced to constraint (26) in order to relax the strict equality 

between initial and final inventory in cyclic scheduling. Computations showed that this 

relaxation has a significant effect on the speed of convergence of the MILP solvers we 

used. For this case study, we set k  to 2. For instance, increasing the value of k  from 2 

to 5 reduces the required CPU time to about one fourth. However, we considered a value 

of 2 the largest reasonable slack in equation (26). 

To ensure the slot L  corresponds chronologically to the last slot, we enforce the 

following precedence constraint: 





Ss

s
Oo

mo
Ss

s
Oo

mo stsstoeseo
2211 ,,,,,,    MmLL  ,, 21        (27) 

 

Table 12 contains data of the orders corresponding to the extra two weeks in Example 3. 

Selecting 24 priority slots, the resulting MILP has 2,500 binary variables, 31,691 

continuous variables, and 77,212 constraints. 
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Table 12. Processing orders in weeks 5 and 6 in Example 3 

    

 

Table 13 shows the best solution found after 7 hours of computations. The product tank 

assignment is shown in Figure 12, while the initial and final inventories are shown in 

Table 14.  

Table 13. Computational results of the TFOP with cyclic scheduling 

 

    

 

 

 

 

Order Product

Quantity 

[ton]

Release date 

[hr]

1 P1 30 0

2 P1 40 0

3 P1 18 10

4 P2 10 14

5 P2 40 16

6 P2 20 18

7 P3 30 21

8 P3 20 124

9 P3 20 156

10 P4 30 198

11 P4 30 220

12 P4 10 272

13 P5 50 284

14 P5 30 316

15 P5 18 378

16 P6 25 380

17 P6 25 412

18 P7 30 544

19 P7 10 536

20 P8 25 558

21 P8 15 560

Best Solution [ton] 769 

Unallocated product [%]  7.5 

Optimality Gap [%]                     5.9 

CPU [second] 24,538  
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Figure 12 Tank assignments with cyclic schedule 

 

Table 14. Initial and final inventory in storage tanks 

 *Final inventory = Initial inventory +/-  2 

 

After 7 hours of CPU time the optimality gap is still 6%. We are interested in obtaining a 

lower bound on the amount of unallocated product (an upper bound to equation obj) that 

would be possible to achieve if storage tank space was not a limitation. Therefore, we 

solve a relaxation of Example 3 that involves unlimited storage capacity.  

Remark Since we allow several lines to feed the same tank simultaneously, and we 

assume there is at least as many tanks as products, unlimited storage capacity turns the 

P3

P5

P8

T 1

T 3

T 5

T 7

T 9

P4

P7

P2

P6

P1

T 2

T 4

T 6

T 8

T 10

Tank Capacity 

[ton] 

Initial inventory 

[ton] 

Final inventory* 

[ton] 

T1  90  0.0  2.0 

T2 37 19.0 21.0 

T3 28  0.0  2.0 

T4 24 8.8              10.8 

T5 25 0.0 2.0 

T6 36              12.0              14.0 

T7 43 27.6 29.6 

T8  23 13.0 15.0 

T9 29 13.3 15.3 

T10 40 38.0 40.0 
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product-assignment into a meaningless decision variable. For this reason we a priori 

assign a product to a tank arbitrarily. 

 

Table 15. Computational results of the TFOP with cyclic scheduling with unlimited tank sizes 

  

    

 

 

 

 

 

Table 16. Storage requirements, initial, and final inventory in TFOP with unlimited tank sizes 

  

 * Final inventory = Initial inventory +/- 2. 

 

Comparing Tables 14 and 16 we can see the storage requirement for the solution 

corresponding to 828 tons of allocated product (vs. 769 tons in the finite storage setting) 

requires more storage capacity than what is available in the tank farm. The total storage 

capacity required to meet the maximum inventory levels obtained from solving the 

problem assuming unlimited storage capacity is 454 tons, while the original problem with 

finite storage has a total capacity of 375 tons. This type of analysis could be used to 

evaluate capital investment decisions in tank farms.   

 

Best Solution [ton] 828 

Unallocated product [%] 0.4 

Optimality Gap [%] 0.4 

CPU [second] 219 

Product Maximum inventory 

[ton] 

Initial inventory 

[ton] 

Final inventory* 

[ton] 

P1  76.0 46.0               48.0 

P2 98.0 58.0 60.0 

P3 50.0 0.0 2.0 

P4 65.1 25.1 27.1 

P5 50.0 0.0 2.0 

P6 50.0 0.0  0.0 

P7 40.0 0.0  0.0 

P8  25.0 3.0  5.0 
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Conclusions and future work 

We have presented a novel MILP formulation for the Tank Farm Operation Problem 

(TFOP) that integrates continuous production scheduling with storage resource allocation 

when the storage vessels are dedicated tanks. One of the examples in this paper shows the 

impact of including optimal scheduling in the TFOP, as opposed to assuming a fixed 

schedule. Even though the scheduling part of the problem corresponds to an efficient 

model for continuous-time scheduling based on the idea of Multi-operation Sequencing 

(Mouret et al., 2011), the scheduling horizon that can be contemplated within reasonable 

computational time is limited to a few weeks. For this reason a representative set of 

production orders and release dates has to be chosen in order to obtain an efficient 

product-assignment for medium to long-term operation. Alternatively, a cyclic schedule 

can be assumed as we did in Example 3. 

We envision our MILP formulation combined with Discrete Event Simulation like the 

one in Sharda and Vazquez (2009) as part of a comprehensive decision support system. 

Consequently, testing and integration with a simulation tool is a natural next step. In this 

way the MILP capabilities of rigorous search among alternative could be combined with 

the capability for representing complex operational issues of DES.  
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Appendix A 

 

In this section we present the reasoning for choosing the MOS model over two alternative 

scheduling formulations in discrete and continuous time. We base the selection of the 

algorithm on the combinatorial complexity of the model measured by the number of 

binary variables required in each model.  

 

A discrete time model (DTM) requires binary variable 1
,, dtmow  to indicate the production 

of order o  in line m  during time interval dt . The use of this variable is illustrated in 

Figure A.1. The model is of order dTMO  . The model EDG by Erdirik-Dogan and 
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Grossmann (2008) requires a binary variable 2
,,, tmow  for each order o , processing line m , 

time slot  , and time interval t . Each time period has a predetermined number of 

processing slots as shown in Figure A.2. This model has a number of binary variables in 

the order of 



cTt

tLMO . Finally, the model MOS by Mouret et. al (2011) requires a 

binary variable 3
,, mow for each order o , finishing line m , and processing slot  . The 

model is of size LMO   in terms of binary variables (Figure A.3). In this case the 

number of processing slots is also predetermined. It is important to note that the number 

of time intervals dT  in the discrete model is not necessarily the same as cT  in the 

continuous time model EDG of Erdirik-Dogan and Grossmann (2008). Likewise, the 

number of slots in each time period in this last model tL  is not the same as the total 

number of slots L  in the continuous time model MOS by Mouret et. al (2011).  

 

 

 
Fig. A.1 Discrete time representation 

 

o,m,t
w

Line 1

Line m

hour 1 hour 2 hour t-1 hour t

...

1 if processing of order o occurs in line m during time period t

order 2 order o - 2 order o - 1

order 1 order 3 order o 
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Fig. A.2 Continuous time representation in the model EDG 

 
Fig. A.3 Continuous time representation in the MOS model 
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For a given problem with a certain number of orders O  to be processed in a set L  of 

finishing lines, we can estimate the order of the number of binary variables required in 

each model. To do so, we exploit certain operational conditions: (i) each order cannot be 

split into two processing steps; it has to be completed once it is started, and (ii) shipping 

or unloading of the tanks occurs regularly with intervals much smaller than the time 

horizon, but larger than the required interval in discrete time optimization. The first 

operational condition above allows us to postulate that the maximum number of slots in 

the MOS model by Mouret et. al (2011) is at most equal to the number of orders. In the 

model EDG by Erdirik-Dogan and Grossmann (2008) we should postulate a number of 

processing slots for each time period equal to all the processing orders released before the 

start time of the time period. Also, from the operational constraint (ii), we have to impose 

that the time intervals cc Tt   in the model EDG by Erdirik-Dogan and Grossmann (2008) 

coincide with the shipping intervals in order to keep track of inventory levels in storage 

tanks. Then, form operational characteristic (ii), we can establish that 

dc tthorizon   and cd TT  .     

 

The number of binary variables in each model is: 

 dTMODTM    

 ct
Tt

t TLMOLMOEDG
d

 


, where tL  is the average number of slots 

in each time period. 

 OMOLMOMOS  . 

 

Since the number of orders and lines is the same in each model, it is enough to compare 

the following quantities: dT  , ct TL  , and O .  

To give a concrete reference to these magnitudes we specify that DTM uses intervals of 4 

hours. This means that if the average time between releasing of orders is more than 4 

hours then there will be more time intervals in the discrete time model than the total 

number of orders. Thus OTd  .  



39 
 

For the EDG model, we consider that each time interval is one day (unloading of tanks 

occurs once a day). We also specify that each week a fixed number of new processing 

orders are released. This specification means that a plot of orders released vs. time will be 

linear, starting at 0 orders at time 0, and ending with O orders at the end of the time 

horizon. Therefore, the average number of orders released per time interval is equal to  

2

O
. The average number of slots in each time interval in the EDG model can be set equal 

to the average number of orders, that is 
2

O
Lt  . Then, if the scheduling horizon is more 

than two days OT
2

O
TL cct  .  

Under this assumptions that resemble real operating conditions: 

LMOMOSTMODTM d   

and 

 LMOMOSTLMOEDG ct   

We recognize that the number of binary variables is not always a reliable indicator of the 

computational time required for a solving a scheduling model. The tightness of the linear 

relaxation and the model structure are also important. However, we think that the number 

of binary variables is a good indicator for selecting the scheduling model. 

 

 


