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Abstract

This paper presents the simultaneous solution of the optimal sequencing and
optimal dynamic transitions of two multigrade polymerization CSTRs. The si-
multaneous formulation results in a Mixed-Integer Dynamic Optimization (MIDO)
problem. The profiles of the state variables during dynamic transitions are dis-
cretized using orthogonal collocation on finite elements, transforming the MIDO
problem into a Mixed-Integer Non Linear Problem. The objective of this formula-
tion is to maximize the profit of the manufacturing operation, considering polymer
sales, inventory cost and transition cost. The transition cost term is determined by
the duration of the transition stages and the manipulated variable profile during
transitions. The two industrial reaction systems are used to analyze the optimal so-
lution and compare it to other solutions obtained using different methods. Finally
a sensitivity analysis is carried out to describe the impact of changes in certain

problem parameters.



1 Introduction

The importance of industrial production scheduling and control is broadly recognized.
Works on the subject are numerous, focusing on batch as well as continuous production
facilities. There has been a recent interest in addressing simultaneous scheduling and
control problems [1], [2], [3], [4]. Because scheduling and control (SC) problems have
strong interactions it looks reasonable to consider them in a simultaneous and integrated
framework.

However, until recent, scheduling and control problems were approached indepen-
dently. As a matter of fact, scheduling problems commonly assume constant transition
times and almost any aspect related to process dynamics. On the other hand, process
control problems normally assume fixed production sequences. The close relationship
between scheduling and control problems and the importance of a simultaneous solution
is currently recognized [1],[2],[3]. Moreover, a recent publication [4] concluded that not
including process dynamics in scheduling problem formulations can lead to suboptimal
solutions.

An important area of application for a simultaneous scheduling and control approach
is the polymer industry. It is now common for polymerization plants to operate in a con-
tinuous manner while several product grades are produced using the same equipment. In
this context grades are understood as products made from the same polymer but that ex-
hibit different end use properties such as brightness, color, mechanical strength [5]. These
end use properties of grades are dependent on molecular weight distribution and monomer
conversion, which in turn are determined by operating conditions [6]. Transitions times
in grade polymerization systems can be long, resulting in considerable amount of off-spec
product which clearly impacts the profitability of plant operation. As such, the choice of
transitions to be made during a production sequence is an important aspect to consider
when determining a production schedule for polymerization plants. The rigorous inclusion
of process dynamics for optimal grade transitions in a scheduling formulation, as proposed

in this work, results in a Mixed Integer Dynamic Optimization (MIDO) formulation.



Nystrom et.al. [3] recently addressed scheduling and grade transition for polymerization
systems. The authors proposed a solution strategy for solving MIDO problems based on
a decomposition scheme by Barton and Allgor [7]. The MIDO formulation is decomposed
in a primal problem containing the dynamic part and a master problem containing the
scheduling formulation. Results of this study include a successful treatment of grade tran-
sitions during production scheduling for a polymerization plant. However, it should be
noted that their strategy is highly application specific. Another approach for addressing
the integrated scheduling and control problem has been proposed by Prata et.al. [8].
The dynamic optimization (control) problem is solved using single and multiple shooting
methods instead of simultaneous dynamic optimization (SDO) used here. In [8] there is
no inventory cost included in the objective function. Instead, the total amount of raw
material consumed during the total production schedule is accounted for. Also due to
confidentiality reasons the mathematical model of the polymerization process is not avail-

able. Therefore, the extent and degree of nonlinearities cannot be known with accuracy.

In our previous work [9] we considered an iterative scheme for simultaneous scheduling
and control in which transition times were approximated manually at each iteration. In
contrast in this paper we consider explicitly the transition times as part of the mathe-
matical formulation, thereby eliminating the need for the approximate iterative scheme.
The MIDO formulation is applied to polymerization reactors which approximate real life
applications as opposed to the simpler cases used in previous works to test our former
iterative formulation [9].

In the present work a simultaneous cyclic scheduling and optimal control approach is
proposed and studied in two polymerization systems. The resulting problem is cast as a
Mixed-Integer Dynamic Optimization (MIDO) problem that involves integer variables for
sequencing decisions and continuous variables for production and transition times, cycle
duration and inventory levels. The solution methodology used in this work [9], consists in

transforming the MIDO problem into a MINLP. This method involves the transformation



of the ordinary differential equations that describe the dynamic model into a set of al-
gebraic equations through the use of orthogonal collocation equations [10]. The problem
can then be solved using any known MINLP techniques such as the Outer-Approximation
method [11],[12]. This paper emphasizes the analysis of the optimal solutions. One main
concern addressed in the following pages is the influence of transition times and profiles
on the optimal solution. Both, transition times and profile, are consequences of process
dynamics, so their influence on the solution reflects the importance of including rigorous

dynamics on the scheduling problems.

2 Problem definition

In polymerization plants a certain number of polymer grades are specified in terms of
their conversion and/or molecular weight distribution (MWD). These grades are to be
formed using a single CSTR operating isothermally. Each grade is obtained from the
same raw material but using different operating conditions. Since the reactor operates
continuously, the switch from a certain grade to another involves a dynamic transition,
which is carried out by manipulating the monomer feed flow rate or the initiator feed
flow rate. The transition is accomplished once the conversion and/or MWD are within a
certain tolerance of their desired steady state value.

In terms of the scheduling problem, lower bounds for the demands rates are specified
for all different polymer grades. In order to satisfy these demands, all grades must be
manufactured once during a production cycle whose cyclic time is to be determined. The
manufacturing operation involves inventory holding costs and transition costs. Inventory
holding costs, raw material costs and product prices of each grade are known, as well as
steady state and upper and lower bounds for all variable.

Given the above stated problem the objective of the present work is to find the optimal
manufacturing cycle in order to meet all demands for the grades while maximizing profit.
The optimal cycle is described by the following decision variables. (1) Grade manufac-

turing sequence. The sequencing of grades will influence the transitions to be carried



out. (2) Optimal transition times. Transition costs are functions of transition times and
manipulated variable profiles. The duration of those transitions must be calculated so
that the switch from one grade to another is carried successfully while minimizing costs.
Transition times also influence overall cycle time. (3) Optimal dynamic transitions. The
behavior of the manipulated variables during grade transition must be defined in order
to minimize transition costs. (4) Optimal cycle duration. The cycle time, which dictates
the inventory requirements, must be calculated as to maximize hourly profits. (5) The
length of the production runs must be such that the demands are satisfied, while profit
is maximized through the production of a profitable grade mix.

Certain assumptions are made in order to obtain the optimal solution: (a) Demand,
inventory costs and raw material costs are deterministic parameters, (b) All polymer
produced is sold. There is no upper bound on production, (¢) All grades are produced
only once during the production cycle, (d) Once a grade has been produced it is stored and
depleted until the end of the cycle, (e) Profit is defined as product sales minus inventory
holding costs minus transition costs divided by total cycle time (hourly profits). All other
costs are not taken into account, (f) Transition cost is defined as the cost of the raw

material spent during transition when no useful end product is being manufactured.

3 Scheduling and Control MIDO Formulation

As mentioned before, the manufacturing operation relevant to this work is carried out in
production cycles. As shown in Figure 1(a) the cyclic time is divided into a series of slots.
Within each slot two operations are carried out: (a) the production period during which
a given product is manufactured around steady-state conditions and (b) the transition
period during which dynamic transitions between two products take place. According to
this description, Figure 1(b) depicts a typical dynamic operating response curve within
each slot. At the beginning of each slot, material of a given product is manufactured
until the demand imposed on such product is met. During this period both the system

states x and the manipulated variables u remain constant. Afterwards, the CSTR process



conditions are changed (by modifying the manipulated variables u) until new desired
process operating conditions (as represented by the system states x) are reached leading
to the manufacture of a new product. In this work we assume that only one product can
be produced in a slot and that each product is produced only once within each production
wheel. Also, we assume that once a production wheel is completed, new identical cycles
are executed indefinitely.

The indices, decision variables and system parameters used in the SSC MIDO problem

formulation are as follows:

1. Indices
Products t,p=1,...N,
Slots k=1,...N
Finite elements f=1,... Ny
Collocation points c,l=1,...Ng
System states n=1,...N,

Manipulated variables m =1,... N,



2. Decision variables

Yik

3. Parameters

Binary variable to denote if product 7 is assigned to slot k
Processing time at slot k

Final time at slot &

Start time at slot k

Production rate

Cyclic time [h]

N-th system state in finite element f and collocation point ¢ of slot k
M-th manipulated variable in finite element f and

collocation point ¢ of slot &

Amount produced of each product [kg]

Processing time of product ¢ in slot k

Transition time at slot k

Total processing time of product ¢

n-th state value at the beginning of the finite element f of slot k&
Desired value of the n-th state at the end of slot k

Desired value of the m-th manipulated variable at the end of slot &
n-th state value at the beginning of slot &

m-th manipulated variable value at the beginning of slot k
Conversion in finite element f and collocation point ¢ of slot k
Molecular Weight Distribution in finite element f

and collocation point ¢ of slot k

N,  Number of products

N, Number of slots

N¢.  Number of finite elements

«p Number of collocation points

N, Number of system states

N, Number of manipulated variables



D; Demand rate [kg/h]

c? Price of products [$/kg]

Cs Cost of inventory [$/kg-hr]

cr Cost of raw material [$/1t of feed solution]

o Cost of initiator [$/1t of feed solution]

Iy Length of finite element f in slot &

Qee Matrix of Radau quadrature weights

zy Desired value of the n-th system state at slot &

uy’ Desired value of the m-th manipulated variable at slot k

gmar Upper bound on processing time

t‘;p Estimated value of the transition time between product ¢ and p
T, n-th state steady value of product i

(O m-th manipulated variable value of product ¢

E? Feed stream volumetric flow rate at steady state for grade i
MW ,onomer  Monomer molecular weight [kg/kmol]

KXs,i Desired conversion degree of grade i

MW Dy, ; Desired molecular weight distribution of grade 4

Tins Tovae  Minimum and maximum value of the state z"

wro sur, . Minimum and maximum value of the manipulated variable u™

T, Maximum absolute value for state derivatives at the end of dynamic transition

Ty Maximum absolute deviation from desired final value, allowable for state
variable " at the end of dynamic transition

ufont Maximum absolute change for ™ between finite elements

U,y Maximum absolute change for u™ between collocation points

Ye Roots of the Lagrange orthogonal polynomial

In order to clarify the SSC MIDO problem formulation, it has been divided into two
parts. The first one deals with the scheduling part and the second one with the dynamic

optimization part.



e Objective function.

N, N,
LW Te O 3Gy — Wi/ T.)6:
max Z T — Z 5
i=1 ¢ i=1
a Nfe t ym s m OT ol I Int CI
- Z Z thkekaax Z Uter Ve ? - Z Qmaxu ekT (1)
k=1 f=1 c=1 ¢ k=1 ¢

The total process profit is given by the amount and cost of the manufactured products
minus the sum of the inventory costs and the product transition costs. The first term of the
objective function represents product sales. The second term states that inventory costs
are calculated from the amount to be stored of each grade, and the time this production
must be hold (from midpoint through the production stage until the end of the cycle).
The third and fourth terms refer to transition costs in terms of wasted, offspec material
during transitions. The offspec material is calculated as the amount of raw material and

initiator fed into the reactor for all the duration of the transition. Since monomer flow

Nc
c=

rate is a manipulated variable, the term )’ T U’V represents a weighted average of

the manipulated variable for each finite element. This type of transition cost forces the
transition to be done as economically as possible, which usually derives in fast transitions

in order to waste the least amount of raw material.
1. Scheduling part.

a) Product assignment

oy = 1, Vi (2a)

>y = 1, Vk (2b)

Equation 2a states that, within each production wheel, any product can only

be manufactured once, while constraint 2b implies that only one product is
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manufactured at each slot. Due to this constraint, the number of products and

slots turns out to be the same.

b) Amounts manufactured

W, > DT., Vi (3a)
W, = Gi©;, Vi (3b)
Gi - -FiOCmOMWmonomera Vi (30)

Equation 3a states that the total amount manufactured of each product ¢ must
be equal or greater than the specified demand rate times the duration of the
production wheel, while Equation 3b indicates that the amount manufactured
of product i is computed as the product of the production rate (G;) times
the time used (©;) for manufacturing such product. The production rate is
computed from Equation 3c as a simple relationship between the feed stream
flowrate (F?), the feed stream composition (C,), and monomer molecular

weight (MWonomer) -

c) Processing times

eik < emaxyilm V'l,kf (4&)
N
k=1
Np

pr = Y O, Vk (4c)
=1

The constraint given by Equation 4a sets an upper bound on the time used for
manufacturing product ¢ at slot k. Equation 4b is the time used for manufac-

turing product ¢, while Equation 4c¢ defines the duration time at slot k.
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e) Timing relations

Lk

ty +pr + 05, Vk (5a)

C Ly VE# 1 (5b)

T., Vk (5¢)
O . bk

(f — 1)Nfe + N—fe’}/c, \V/f, C, k (5d)

Equation 5a is used for computing the time at the end of each slot as the sum of

the slot start time plus the processing time and the transition time. Equation

5b states that the start time of all the slots, different than the first one, is

just the end time of the previous slot. Equation 5c¢ is used to force that the

end time at each slot be less than the production wheel cyclic time. Finally,

Equation 5d is used to obtain the time value inside each finite element and for

each internal collocation point.

2. Dynamic Optimization part.

To address the optimal control part, the simultaneous approach [10] for solving dy-

namic optimization problems was used. In this approach the dynamic mathematical

model representing system behavior is discretized using the method of orthogonal

collocation on finite elements [13],[14]. According to this procedure, a given slot k

is divided into a number of finite elements. Within each finite element an adequate

number of internal collocation points is selected as depicted in Figure 2. Using

several finite elements is useful to represent dynamic profiles with non-smooth vari-

ations. Thereby, the set of ordinary differential equations comprising the system

model, is approximated at each collocation point leading to a set of nonlinear equa-

tions that must be satisfied.
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a) Dynamic mathematical model discretization

Nc

Vg = ot Ohhpe Y iy, Vn, foek (6)

=1

The constraints given by Equations 6 are used to compute the value of the
system states at each one of the discretized points (x}‘ck) by using the monomial
basis representation. xy ;. is the n-th system state at the beginning of each
element, (2. is the collocation matrix and @%, is the first order derivative of the
n-th state. Notice that when working with the first element, x7y ;; represents
the specified initial value of the n-th state. Also notice that in the present

formulation the length of all finite elements is the same and computed as

1
Ny

hyp =

b) Continuity constraint between finite elements

Nep

xg,fk = 13?,#1,1@+eihffl,kZQl,Ncpi?q,z,ka vn, f =2,k (8)
=1

In the simultaneous approach for dynamic optimization problems, the states
must be continuous when crossing from one given finite element to the next
one. We use Equations 8 to force continuous state profiles on all the elements
at the beginning of each element (27 ;) and they are computed in terms of the

same monomial basis used before for defining the value of the system states.

¢) Model behavior at each collocation point
: 1 1
ZL‘?Ck = fn({L‘fck,...,[E?Ck,Ufck,...U?ck), V?’L, f, C,k (9)

Equations 9 are used for computing the value of the first order derivatives of the

systems at finite element f of collocation point ¢ in slot k. Those equations
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simply represent the right hand sides of the dynamic model. Because our
scheduling and control formulation is system independent, we have used the
notation f™ to represent the right hand side of the n-th ordinary differential

equation describing any desired dynamic system.

d) Initial and final controlled and manipulated variable values at each slot:

Np
Thg = D ThiYin Yn,k (10)
i=1
NP
IZ’Z = Z$?s7iyi,k+17 vnak 7£ Ns (11)
i=1
NP
Tho= Y al.yii, Vn k=N, (12)
i=1
NP
U = Zu;’;iyi,k, Ym, k (13)
i=1
Np
. = Zugiy@kﬂ, Vm,k # Ng — 1 (14)
i=1
NP
' = Zugiyi,l, Vm, k = Nj (15)
i=1
:I;R[fechpyk — i’Z, \V/n,k‘ (16)
'y y = Uy, Ymyk (17)
u%fevNprk - a?:%k’ Vm,k‘ (18)
l“?;,k = :E?mk, vn, k (19)
Tk = TNfeNek — Thy VN, K (20)
Tk S TNfeNek — Thy VMK (21)

Equations 10 define the values of the state variables at the beginning of each

slot k& (22 ). The desired value of each state at the end of the same slot k (z})

in,k
is computed in Equations 11-12. It should be stressed that the state values at

the beginning and end of each slot k are given by the corresponding steady-

n

n
58,8

) calculated a priori. z,; simply stands for the steady-state

state values (x
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value of the manufacturing product . They can be easily obtained from open-
loop steady-state simulation of the processing system. Similarly, Equations
13-15 define the values of the manipulated variables at the beginning of each
slot k (ujy ) and at the end of the slot & (u}'). Equations 16 enforce the system
states to take the desired state values at each slot k. A similar situation occurs
with the values of the manipulated variables. Equations 17 fix the values at
the first finite element and first collocation point of each slot k (uf’, ;) as the
value that such variable takes at the beginning of the same slot k. Equations
18 determine the values of the manipulated variables at the last finite element
and last collocation point of slot & (u?\}fm Ncp,k:> as the desired steady-state value
of the same variable at slot k£ (u}'). Equations 19 determine the values of the
system states at the beginning of each slot (xglk,) Finally, equations 20 and
21 set the allowable deviation from desired state variable values at the end of

every dynamic transition.

e) Lower and upper bounds on the decision variables

Tomin & Thop < Ty, YN, fr 00k (22a)
Upin < Uy < Uy, VM, [0k (22b)

Equations 22a-22b simply constrain the values of both the system states and

manipulated variables to lie within acceptable lower and upper bounds.
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f) Smooth transition constraints

Uik = Ufe1 S Ugonsy VK, c# 1 (23)
Uik = Ufe 1 = —Ueon VLK, fie# 1 (24)
UPLE = U ek S Uy Yk f A1 (25)
ULk = U ek P —UWony YLK # 1 (26)
uTl,k - Uz,k < uZonta vk (27)
uTl,k - U:Zk 2 _u(]:comh Vk (28)
INfeNeph = —Ttolks YN,k (29)
TNfeNepk < Trolk, VN, k (30)

Equations 8 are used to ensure continuity between adjacent finite elements.
However no equation up to this point forces a smooth profile for the manipu-
lated variable. Equations 23- 28 force the change between adjacent collocation
points and finite elements to be within a certain acceptable range. Equations
29 and 30 are used to make sure that at the end of the dynamic transition the

system is at, or very close to, steady state conditions.

4 Case Studies

In order to analyze the performance of the simultaneous scheduling and control formu-
lation presented in this paper, it was tested on two polymerization processes. In the
following section these processes are described and the results of the scheduling and con-
trol problem are discussed. The models used are intended to resemble industrial processes,

but they are still simplified versions of complex models used in industrial applications.
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4.1 Case 1: High Impact Polystyrene (HIPS)

4.1.1 Process description

The isothermal free radical bulk polymerization of styrene was carried out in a CSTR.

The single CSTR model has been used in previous works [15, 16, 6] to describe this

process. In the following example the model is cast in dimensionless form by diving each

state variable and manipulated variable by its maximum values. Design information and

scaling values are given in Table 1.

dy

dt

dIL‘Q

dt
d[L‘g

dt

d{E4

dt
dl’5

dt

dl’ﬁ

dt

dIL"y
dt

Qimaxxloui - Qma:v5(7luf

— kqx 31

- o @1
Too — X r

Qmaxuf% - kpr (:uma:va + :U’gmaxx7) (32)
T30 — T

Qmawuf% B x3(k[20rmax$4 + kfslugma:pr + kfbugmawx7> (33)

k Cimazx
2fa% - x4(kllcmmarm2 + kI2Cbmax$3) (34)
C maxzl
Cb, 2 (k12Cymaz®s + kfb(ufmawxa + ui’mmm)) — 5(k13Chman®a + ki
brmax
(:ugrnacc',lj(3 + :ugma:ca:7 + Cbmaxxf))) (35)
2k10<cmmarx2)2 + k]lcrmaxx40mmaxx2 + Cmmamekfsﬂgmazx6ﬂgmaxx7

0
Hrmaz

- (kpcmmasz + kt (ugmaxx6 + Mgmaxﬂw + Cbrmaxxi')) + k'fscmma:er

+ kfbcbmazx?))xﬁ + kpcmmazxeG (36)
k Ormazommazx X
i) ,LLO 2 - (kpCmmafDxQ + kt(:ugmaxxﬁ + Ngmamx7 + Cb?’mafbx5>
bmax
+ kfscmmaxx2kfbcbmamx3)x7 + kpcmmamx2x7 (37)

(38)

(Value of state i ) / (Max expected value of state )
(Value of initiator flow ) / (Max expected value of initiator flow)

(Value of feed stream flow ) / (Max expected value of feed stream flow)

Five different HIPS grades (A, B,C, D, E) were defined as desired products for the
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production cycle, corresponding to 15, 25, 35, 40 and 45 percent monomer conversion.
Due to gel effect, normally higher conversions are not obtained in a single reactor. Instead,
a sequence of CSTRs is used for that purpose. Monomer flow rate (Q),,) was chosen as

the manipulated variable during grade transitions. Detailed grade information is shown

in Table 2.

As described in previous sections, the simultaneous scheduling and control formulation
yields a MIDO problem, which is transformed into a MINLP using the SDO technique
with 20 finite elements and three collocation points. The problem is solved in GAMS
using DICOPT, a MINLP solver that uses the outer approximation algorithm [11],[12].
The formulation consists of 6666 constraints, 6267 continuous variables and 25 discrete
variables. The solution took 7640 s of cpu time using an IBM Laptop 1.6 GHz processor
and 256 MB RAM. Results of the optimal production cycle, E — A — B — C' — D with
objective $1456/hr and length of cycle time 32.3h, are shown in Figure 3 and Table 3.

In the following section the key drivers for the optimal solution are first discussed,
in a second part a dynamic analysis of the transitions is included, and in a third part a
comparison versus a sequential solution method is carried out. Finally, the present for-
mulation will be compared with an earlier MIDO version for simultaneous scheduling and
control proposed by our research group [9]. In the sequential solution optimal dynamic
profiles for every possible transition are calculated in a first step and introduced as fixed

parameters for the scheduling problem.

Optimal solution analysis

In order to understand the drivers for maximum profit, the optimal and five other
feasible solutions (as found by DICOPT/CONOPT3) were analyzed . The main variable

level and some arbitrary indicators used mainly for comparison among solutions are re-

ported in Table 4 and Figure 4. The following key observations can be made. (a) Since
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product D is one of the most profitable products (second highest price, low inventory
costs), the optimizer allocates the largest portion of time to the production of this grade,
while just satisfying the demand for all other grades. (b) Transition times affect the re-
sults of each feasible solution in two ways. First, by affecting total cycle time and second
by affecting transition costs. In general lower transition times relate to lower transition
time to total cycle time ratio and lower transition costs. (¢) Determining total cycle time
involves a trade-off between transition and inventory costs. If the total cycle time is short,
the inventory costs are low but transition times take up a considerable proportion of the
total cycle duration. On the other hand, in the longer cycle times the ratio of transition
times to cycle time is low, and productivity of the cycle is high at the expense of incurring
in high inventory costs. The magnitude and proportion of costs in the present example
is such that a short cycle time with low inventory costs is preferred over a long cycle.
Therefore, minimizing transition times becomes very important to avoid the high ratio of

transition times to total cycle time.

Dynamic analysis

Dynamic behavior during each grade transition dictates both transition times and transi-
tion costs. Each transition has different dynamic behavior, and it is the objective of this
section to understand the influence of this behavior on the selection of the optimal schedule
for cyclic production. In order to carry out this analysis, the system was linearized around
each steady state, and all possible grade transitions were characterized by a transfer func-
tion. Time constants were then calculated. Since they were found to be proportional to
total transition time this last indicator will be used for analysis. Dominant eigenvalues
for each linearized steady state are given in Table 5. The real part of all the eigenvalues is
negative and their magnitude decreases as grade conversion increases. This makes sense
since lower grade conversions are achieved by higher feed stream flow rates, which in turn

results in faster dynamic behavior around lower conversion steady states. Initially, the
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optimal schedule features an E to A product transition. This can be explained as the
coupling of the slowest operating region (around grade ) with a faster one (around grade
A). This allows all other transitions to be made between grades of adjacent monomer
conversion (A to B, B to C and so on). This kind of transitions take the least amount

of effort since the magnitude of the change in the manipulated variable value is minimized.

From the previous paragraph it is unclear why the optimal schedule corresponds to
transitions from lower conversion grades (as in A to B) and not from higher conversion to
lower conversion (as in B to A) since both type of transitions demand the same magni-
tude of change in the feed stream flow rate. However, the dynamic behavior between the
two type of transitions can be expected to be very different. To understand this result,
two extra calculations were performed. From dynamic optimization, transition costs and
transition times were calculated. Cycles for minimum transition costs and minimum tran-
sition times were then calculated using a reduced MILP model with GAMS/CPLEX. The
optimal sequence for minimum transition times was £ — A — B — C' — D, while the
optimal sequence for minimum transition costs was D — C — B — A — E. Note that
the minimum transition time sequence chooses mostly transitions from lower conversion
grades to higher conversion grades, while minimum transition cost schedule chooses tran-
sitions from higher to lower conversion grades. Another important observation is that the
sequence of minimum transition times schedule is exactly the same one as in the schedule

chosen for the simultaneous scheduling and control formulation.

Summarizing, reducing total transition times seem to be the main criterion for choos-
ing an optimal sequence. Furthermore, in order to achieve low transition times in the
particular system being analyzed, transitions must be made between adjacent grades go-
ing from low to high conversion states (A to B, B to C, etc.).

To test the above objective, a modification was performed on the operating param-

eters of the HIPS polymerization system that consisted in decreasing the reactor vol-

20



ume from 6000 to 2500 L, and increasing the initiator flow rate in order to obtain the
same grades as in the original system. The optimal grade transition schedule is given by
E — A — B — C — D, the same sequence as the optimal schedule. Comparing the
eigenvalues from Table 5, one could expect the overall dynamics to be faster than the one
corresponding to the original system. Given this difference, the optimal schedule for the
simultaneous scheduling and control problem is exactly the same as in the original case,
and once again, it corresponds to the minimum transition time sequence. Differences in
the dynamic transitions for the optimal cycle between the original and modified systems
can be compared in Figure 5. Because the modified reactor features a smaller residence
time, transition between grades are faster.

Given the same prices and costs, the profit is $1910/hr for the 2500 L reactor vs.
$1456/hr for the 6000 L reactor, while the cycle time changes from 32.3 hr to 33 hr Since
the sequence is the same, the improvement can be attributed solely to faster dynamics

for the modified system.

Comparison vs. sequential solution

We compare the performance of our simultaneous SC formulation compared to a tra-
ditional sequential approach. In the sequential approach the SC problems is solved in
two parts. The first step consists in calculating all possible transitions between grades as
purely dynamic optimization problems, while in the second step this information is used
for posing and solving a scheduling problem.

The objective function used for the dynamic optimizations in step 1 of the sequential

solution is as follows:

min{ Thyrans Qumaz CTm Son hi(umi 1 0.15 + umy 5 0.50 + um; 1 0.35) 4 Thrans Qi Cri}

The aim of this objective function is to minimize the transition cost, which is a com-
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bination of the transition time and the feed streams flow rate during the transition. Nu-
merical Results for the sequential solution are found in Table 6; the reader can compare
this data with Table 3. A comparison between sales, inventory costs and transition costs
is found in Table 7. It is evident that the simultaneous solution produces a better solution
than the corresponding one from the sequential approach ($1456/hr vs. $1416/hr). The
main difference between both approaches is attributed to longer transition times for E
to A transition in the sequential approach (proof on this later). To better understand
the difference in dynamic transition profiles for E to A transition as determined for the
sequential and simultaneous solutions is shown in Figure 6. All other profiles are identical
and therefore are not shown. The profile obtained by the simultaneous formulation starts
with a more aggressive behavior for the manipulated variable, which in the end allows a
shorter transition time, and surprisingly a cheaper transition. Also, in the simultaneous
approach the transition time becomes more important since it is involved in other terms
in the objective function, which pushes for a faster transition that in turn ends up also

being cheaper.

Finally in order to demonstrate that the differences between the simultaneous and se-
quential results are originated by the longer transition times and higher transitions costs
of the F to A transition the following procedure was performed. The transition costs and
times obtained by pure dynamic optimization for the transition £ to A in the first step
of the sequential method were exchanged for the values obtained for the same transition
in the simultaneous solution. With these new values the second step in the sequential
approach (purely scheduling part) was solved again. The new results are found in Table
8. The performance of the sequential solution is almost as good as the simultaneous so-
lution. This proves that the difference between the original sequential solution and the
simultaneous solution was indeed originated by the different dynamic transitions for the

F to A transition.
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Comparsion vs. iterative (previous) formulation

Earlier versions of the simultaneous scheduling and control formulation proposed by
our research group [9] are similar to the one proposed in this work. The main differences
are: (1) Inventory costs and transition costs terms in the objective function are different,
(2) Transition times are calculated differently. In the present work they are calculated
directly by the solver, whereas in the previous formulation they had to be fed as fixed
parameters estimated from pure dynamic optimization data, and then fine tuned through
an iterative process, (3) The earlier formulation fixes transition times as mentioned above.
For the optimizer to be able to determine which transition time parameter to use, two
extra binary variables are required. These variables will be detailed later.

The first two differences described above require some extra constraints for the present
formulation. Since transition times are to be determined by the solver, desired state vari-
able values are within a product quality band given by equation 21 rather than punctual
desired value as in the previous formulation. If a tolerable range is not provided then
carrying out the transition would take an unreasonably long time. On the other hand,
since the square difference of the manipulated variable is not included in the objective
function of the present formulation, constraints 25 to 30 are required in the present work.

The following objective function corresponds to the previous formulation [9] applied

to the HIPS polymerization system described in this section.

N Ny Nfe Ncp
C*'W; (G — W/Tc cr tfcch Nep
SR SRt S Yo >t e
=1 =1 k=1 f=1 c=1
+ooo (2 — xZ)Z"’(ufck ﬂiz)2+---+(ufck—ﬂ?)2)} (39)

The reader can compare this equation with equation 1. Not only is the inventory costs
term expressed differently but the transition cost term is defined in a completely different

way. Transition costs in equation 39 are expressed as the sum of the square differences of
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every state and the manipulated variable in each discretization point versus the desired
value at the end of the transition. The advantage of using this kind of transition term is
that smooth transitions are achieved. However, although there is a factor used to convert
this sum into money, mathematically converting a square difference of states into money

is not very intuitive and its applicability could be questioned.

The extra binary variables required are defined and justified in the following paragraph:

Vit = Vi, Vi (40)

Equation 40 defines backward binary variable (y;k) meaning that such variable for
product ¢ in slot k£ takes the value assigned to the same binary variable in equation 2a
and 2b but one slot backwards k& — 1. At the first slot, Equation 40 defines the backward
binary variable as the value of the same variable at the last slot. This type of assignment
reflects our assumption of cyclic production wheel. The variable y;, will be used later to
determine the sequence of product transitions. The constraint given in Equation 41 is
used for defining the binary production transition variable z;. If such variable is equal
to 1 then a dynamic transition will occur from product ¢ to product p within slot &, 2

will be zero otherwise.

Results for the iterative formulation are found in Table 9 and Figure 7. From a
computation demand point of view, the Iterative method features 6121 equations, 6372
continuous variables, 50 binary variables. The solution of this formulation took 11190
cpu s on a 1.6 Ghz processor, while the Direct method features 6666 equations, 6242
continuous variables, 25 binary variables and required 7640 cpu s on the same processor.

Finally, it should be said that the direct formulation requires extra constraints (20 to

30) and the addition of transition times as decision variables increases the non convexity
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of the problem. However, these conditions were found not to be of any significance
in terms of computational effort. In fact, the decrease in number of binary variables
allowed for an overall faster solution for the direct method. On the other hand the direct
formulation is considered to be more realistic and represents an important improvement

towards achieving industrial applicability.

4.2 Case 2: Methyl-Methacrylate Polymerization (MMA)

A second case study corresponding to the Methyl-Methacrylate Polymerization system is
included in the following section. Once the process is described a discussion regarding
the optimal solution characteristics, similar to the one performed in the HIPS case study,
is carried out. Since the mathematical formulation used is identical to that used in the
HIPS example, no comparison versus sequential and iterative procedures is included for
this example. At the end of this section a sensitivity analysis is performed in order to

understand the effect of changes in process parameters on the optimal solution.

4.2.1 Process description

In the following section the bulk free-radical polymerization of Methyl-Methacrylate in
an isothermal CSTR is described. The system has already been presented by Congalidis
et al. [17] and used by Mahadevan et al. [18] to address grade transition problems from a
control point of view. The mathematical model was cast in dimensionless form by dividing

each state and flow rates of monomer and initiator by their maximum expected values.

25



d'rl V 2f*]€zéll’2 =
S ok k)i | T2 Qi — 42
dt Qm( P + f )xl ktd + ktc + Q (xlzn xl) ( )

de‘g V/{}Z 1 Aoa — — A ~
- = T ~— = (WibiT2,, i — @mEm Gy 4
dt Qm T + chl (Q C JIQMQ Q Q C .TQ) ( 3)
d Skye 4 kra) | 2f*k:C ke pmC [2fk;C; _

x3 _ V<O Ei tc:f— td) f zszQ + ‘/AfmAC’mx1 f zszQ i me?) (44)
dt QmDO ktd + ktc QmDO ktd + ktc

dzy VM (ky 4 km)Con | 2FkiCizg -
— = — — Qm4; 45
i 0. D, T Ko + Ko Qmry ( )

—Cm . —Ci ... _ Do ,. _ Di _ Cmip _CinH _Qm H _ Qi
Cm7x2 = 3 L3 D07$4 fh?xlm G y L2, e an Qm’QZ 0:° In

Table 10 information regarding steady-state design and reactor scaling is presented.

where x;

For testing our simultaneous scheduling and control formulation four polymer grades
(A, B,C, D) were defined which correspond to molecular weight distributions of 15000,
25000, 35000 and 45000. The initiator flow rate (Q);) was selected as the manipulated
variable to achieve grade transition. Table 11 contains the steady-state values of the
states and the manipulated variable leading to the manufacture of each one of the A, B, C'
and D grades. Also shown in Table 11 are the demand rates and costs of each grade.

Once again the resulting MINLP problem was solved using DICOPT/GAMS. The
problem consisted of 3325 constraints, 3042 continuous variables and 16 binary variables.
Table 12 and figure 8 show the results of solving the scheduling and control problem. The
solution took 70 CPU s using a 1.6 GHz processor.

In this section an optimal solution analysis, similar to the one performed for the HIPS
case study, is carried out. The findings of the previous case study will be compared against
those derived from the optimal solution analysis in the MMA system. Also, a sensitivity
analysis including changes in inventory costs, raw material costs, grade quality tolerance,

and demand is performed and analyzed.

Optimal solution analysis
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The optimal solution found is compared against four other feasible solutions found by
DICOPT, using CONOPT3 as the NLP solver. The same indicators used to compare
the different solutions in the HIPS example are used for the MMA case study. These
indicators are found in Table 13. A graphical comparison among the different solutions
is found in Figure 9.

In the MMA case study the optimal solution and the first three suboptimal solutions
have very similar results. However, the optimal solution has a slightly better performance
according to the chosen performance indicators. This fact indicates that the measures
chosen to evaluate the performance of a particular solution are effective not only for the
HIPS problem but also for the present case study.

Note that product D has the highest selling price, and although it has a slightly higher
inventory cost than product C' (next in selling price) it is the most profitable grade to
sell. This is reflected by the fact that the optimizer allocates the longest production time
to this grade, resulting in the highest production of all four grades. Just as in the HIPS
case study, demand for all other grades is just satisfied while production for grade D
exceeds its demand (recall that it is assumed that there is no upper bound on product
consumption). Once again the best solution is the one that has the highest ratio of D
production as well as production to demand ratio for this grade (see Table 13). In this
example transition time is also a key driver for the optimal solution. The best solution is
the one with the shortest transition time and the lowest ratio of transition time to total
cycle time. This makes sense since the lowest the portion of cycle time devoted to tran-
sitions, the highest the available time for profitable production becomes. It is interesting
to see that transition costs are actually higher in the optimal solution than in the next
best solution. This stresses the fact found in the MMA example that transition times
are more important for a profitable operation than transition costs (see transition times
and transition costs in Figure 9 and Table 13). Perhaps the only difference in optimal
solution behavior between the HIPS and the MMA case studies is the fact that the MMA

optimal solution has a slightly longer cycle duration than solution b in the MMA sys-
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tem. In the HIPS system shorter cycle times were associated with better operation of the
system. Notice, however, that the optimal solution does have shorter cycle times than
the other suboptimal solutions except for solution b. The fact that case b operates in a
slightly shorter cycle is also reflected in lower inventory costs for this suboptimal solution
when compared to the optimal solution. This is explained by the fact that the difference
in cycle duration and inventory costs between the two solutions is very small, and it is
out weighted by the fact that the optimal solution performs better in terms of transition
durations (see Table 13 and inventory costs in Figure 9). If one thing is to be emphasized
by this second example in addition to what was found in the HIPS case study, it is the
importance of minimizing transition duration, and total transition time to cycle duration

ratio.

Sensitivity analysis

The sensitivity analysis referred to in this section consists in the modification of certain
fixed problem parameters. Namely, these parameters are inventory costs, raw material
costs, tolerance for actual states values versus desired state values at the end of dynamic
transitions as expressed in Eqns. 20 and 21, and hourly demand for grade A. The per-
centage of change in these parameters and the resulting optimal solutions are summarized
in Table 14.

Case I. When inventory costs are increased, profit is decreased as expected. The
decrease is not proportional to the increase in inventory cost since the amount of polymer
produced has to be changed by the optimizer attempting to minimize costs. An over
production of grade D when compared against its demand is still present, but it is lower
than in the base case. When less polymer is produced the sales term is also affected.
The overall effect is seen in the resulting hourly profit. A decrease in cycle duration
also occurs, as expected when dealing with higher inventory holding costs. On the other

hand, decreased inventory costs cause an expected increase in profit. This is caused by
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cheaper holding costs allowing for longer cycles, more production and therefore more over
production of grade D. Hence, the increase in profit is caused by the decrease in costs
itself and by an increase in hourly sales.

Case II. Raw material costs for monomer and initiator were simultaneously modified.
This change has interesting effects. The case where raw material costs were decreased is
the only case where a different optimal sequence was obtained. Changing this sequence
impacts the transition times. This occurs because lower transition costs allow for longer
transition times, while still increasing the hourly profit when compared against the original
case. This fact seems to run against what has been found previously in this paper where
minimizing transition times was a driver for the optimal solution. This indicates that
there is a limit on conditions where all the analysis performed before are valid.

Case III. Modifying the allowed tolerances is equivalent to modifying the duration
of transitions. When a tolerance is increased (therefore relaxing the dynamic end point
constraints), less time is required for grade transitions, and the opposite is true when
tolerances are decreased. Notice that costs were not modified in both cases, and the profit
still changes. The 50% changes correspond to increasing and decreasing the original 2%
tolerance by 1%. Although this change is not large, it is still affects cycle duration and
cycle productivity, if productivity is understood as the proportion of the cycle devoted
to actually producing the desired polymer grades. The effect seen when tolerances are
modified further points out the important role that transitions duration and dynamic
behavior of the system play in determining an optimal solution.

Case IV. Changes in the demand for any grade are of particular interest since actual
manufacturing operations are always subject to this kind of uncertain behavior. Grade
A was chosen because it is the less profitable grade. When the demand is increased, a
longer cycle time has to be dedicated to producing this grade (the model used sets grade
demand as a lower bound on production). Increasing the portion of the cycle devoted
to less profitable grades necessarily decreases profit, since other grades have to be hold

during the production of this less profitable product. The optimal sequence is still the
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same which means that product D, with the highest production of all is produced before
grade A. Because production of grade A takes longer, all D grade has to be hold for
a longer amount of time, increasing inventory costs. The optimizer, however, does not
change the total cycle duration too much, but actually produces less grade D so less
production has to be stored. This negatively affects profit since grade D has the highest

selling price. The opposite effect can be observed when the demand of grade A is lowered.

4.3 Conclusions

In this work a MINLP formulation was used to simultaneously solve the scheduling and
control problems in polymerization reactors during a cyclic manufacturing operation. Pro-
cess dynamics, in the form of differential equations that were transformed into algebraic
equations via a discretization method, were explicitly included in the formulation. Such
a formulation was able to calculate the optimal transition duration and profiles, and from
this information a transition cost term was computed in the objective function. The dy-
namic optimization was performed using the SDO method which allows for transitions
between unstable operating conditions. Results do not depend on any controller set up
since they all correspond to open loop solutions.

Two case studies related to the polymerization industry were included. From these studies
it was concluded that the formulation worked for applications close to those expected in
real life. From the discussion of those cases it was concluded that transition duration is
decisive for the optimal profit achieved, therefore justifying the need to include rigorous
dynamics in the simultaneous problem. The superiority of the presented formulation vs.
the sequential approach was evident in one of the examples.

A potential extension of this work is the application of the formulation presented to mod-
els used to simulate real life operations. Taking the examples in this work as a starting
point, the optimization of polymerization operations in non-isothermal mode, and per-
haps, using a more representative reactor model will be a next step. Since computational

effort invested in solving the case studies was significant, a decomposition approach ex-
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Table 1: Design Information and Scaling Values

ks
Cmmar

Clmax

Cbmaw
C’rmax
Cbrmax
0
Hrmaa

0
Hbmaz

leax
Qmmax

6000
1.5x103
8.63

1.05

0.98

377.5
7.28x1074
1.59x10~ 1
8.04x10?
1.61x102
8.04x10?
8.04x10?
2.99x10~1
7.31
3x1074
1.05
6.29x10~ 1
4.97x10~12
8.66x1078
4.41x107°
1.5x1073
1.14

Reactor volume [L]

Initiator flow rate [L/s]

Monomer feed stream concentration [mol/s]
Butadiene feed stream concentration [L/s]
Initiator feed stream concentration [L/s]

Reactor temperature [K]

Initiation reaction constant [1/s]

Initiation reaction constant [L/mol-s]|

Initiation reaction constant|L/mol-s]|

Initiation reaction constant|L/mol-s]|

Initiation reaction constant|L/mol-s]|

Propagation reaction constant [L/mol-s]

Monomer transfer reaction constant [L./mol-s]
Maximum value of monomer concentration [mol/l]
Maximum value of initiator concentration [mol/l]
Maximum value of butadiene concentration [mol/l]
Maximum value of radical concentration [mol/]]
Maximum value of butadiene radical concentration [mol/l]
Maximum value of zero radical death moment
Maximum value of zero butadiene radical death moment
Maximum value of initiator flow rate [1/s]
Maximum value of feed stream flow rate [1/s]

ploiting the nature of the simultaneous problem is desirable. Such an approach might also

facilitate the representation of scheduling models beyond the cyclic one presented here.

Table 2: HIPS Grade Design Information. Demand rate is in [kg/hr], inventory cost is in
[$/kg-hr|, monomer and initiator costs are in [$/1t of feed stream] and prices are in [$/kg]

Grade | Q[l/s] | Conv. | Demand (kg/hr) | Inv. Cost | Monomer Cost | Initiator Cost | Price
A 1.14 15 50 0.15 1 10 3.2
B 0.75 25 60 0.20 1 10 4.3
C 0.56 35 65 0.15 1 10 4.5
D 0.60 40 70 0.10 1 10 5.0
E 0.53 45 60 0.25 1 10 9.5
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Table 3: Simultaneous scheduling and control results for grade transition in a HIPS
polymerization CSTR. The optimal cyclic sequence is ¥ — A — B — C — D. The
objective function value is $ 1456/hr and 32.3 h of total cycle time.

Product | Process T [h] | production [kg] | Trans T [h] | T start[h] | T end [h]
E 2.48 1937 1.34 0 3.83
A 2.87 1614 1.15 3.83 7.85
B 3.17 1937 1.11 7.85 12.14
C 3.10 2099 0.58 12.14 15.82
D 15.81 11370 0.67 15.82 32.29

Table 4: Performance indicators for HIPS CSTR optimal and other suboptimal feasible

solutions

Solution sequence Profit | Tc [h] | Tgaisine | b, | Z000 [ b

Optimal | E - A— B —C — D | 1456 | 32.3 0.15 0.60 1.0 5.0
SolB |D—-A—-B—-C—FE| 1352 | 33.0 0.16 0.59 1.0 4.9
Sol.C F—-B—-A—-C—D]| 1221 36.2 0.17 0.59 1.0 4.8
SolD | A—-B—-C—D—FE | 1155 | 37.2 0.18 0.59 1.0 4.7
SolE |F—-A—-C—B—D| 1101 | 38.1 0.19 0.58 1.0 4.7
Sol.F B—-A—F—-C—D]| 1045 | 39.0 0.20 0.58 1.0 4.6

Table 5: Dominant eigenvalues for linearized steady states corresponding to different grade
operating conditions for the base case (V' = 6000 L) and the modified case (V' = 2500 L).

Dominant Eigenvalue | Dominant Eigenvalue
Grade (Base case) (Modified case)
A -1.59x10~* -3.92x10~*
B -1.02x10~* -2.55x10~*
C -7.97x107° -2.10x107*
D -7.30x107° -1.88x1074
E -6.96x107° -1.78x1074

Table 6: Sequential scheduling and control results for grade transition in a HIPS poly-
merization CSTR. The objective function value is $ 1416 and 33 h of total cycle time.

Product | Process T [h] | production [kg] | Trans T [h] | T start[h] | T end [h]
C 3.16 2141 0.58 0 3.75
D 16.03 11530 0.67 3.75 20.44
E 2.54 1977 1.54 20.44 24.52
A 2.93 1647 1.14 24.52 28.60
B 3.23 1977 1.11 28.60 32.95
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Table 7: Comparison between simultaneous and sequential solutions

Method Sales [$/hr] | inv. costs [$/hr] | trans. costs [$/hr] | Profit [$/hr]
Simultaneous 2634.70 941.00 404.68 1455.55
Sequential 2801.24 959.99 414.19 1416.33

Table 8: Comparison between simultaneous and modified sequential solutions

Method Sales [$/hr] | inv. costs [$/hr] | trans. costs [$/hr] | Profit [$/hr]
Simultaneous 2634.70 941.00 404.68 1455.55
Sequential 2801.38 940.79 405.17 1454.86

Table 9: Simultaneous scheduling and control results for grade transition in a HIPS
polymerization CSTR. The objective function value is $ 906/hr and 40 h of total cycle

time.
Product | Process T [h] | production [kg] | Trans T [h] | T start[h] | T end [h]

A 3.57 2008 3 0 6.57

D 10.67 7686 3 6.57 20.26

C 3.86 2610 3 20.26 27.11

E 3.10 2409 3 27.11 33.21

B 3.92 2409 3 33.21 40.15

Table 10: Steady-state design and scaling information.

Qm 1 Monomer feed stream [m?/h]
\% 0.1 Reactor volume [m?]
Ci,, 8 Feed stream initiator concentration [kmol/m?]
M., 100.12 Monomer molecular weight [kg/kmol]
Crin 6 Feed stream monomer concentration [kmol/m?|
I 0.58 Initiator efficiency
Ky 1.3281x10' Termination by coupling rate constant [m?/(kmol-h)]
kta 1.093x10" Termination by disproportion rate constant [m?/(kmol-h)]
k; 1.0255x10~* Initiation rate constant [1/h]
k, 2.4952x10° Propagation rate constant [m?3/(kmol-h)]
kfm 2.4522x103 Chain transfer to monomer rate constant [m?3/(kmol-h)]
Chn 5.7768 Maximum value of monomer concentration [kmol/m?
C 0.41534 Maximum value of initiator concentration [kmol/m?]
Dy 5.4794x1073 Maximum value of zeroth moment
ﬁl 82.219 Maximum value of first moment
Qs 0.05245 Maximum value of initiator flow rate [m?/h]
Qm 1 Maximum value of monomer flow rate [m?/h]
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Table 11: Grade design information. The demand rate is in [kg/h] the price in [$/kg], the
inventory cost in [$/kg-h] and the raw material costs are in [$/m? of feedstream].

Grade @Q; [m3/hr] MWD  Demand (kg/hr) Inv. Cost Mono. Cost Init. Cost  Price
A 0.05245 15000 0.8 1 10 500 100
B 0.01673 25000 0.7 1.2 10 500 120
C 0.006863 35000 1 1.2 10 500 130
D 0.003114 45000 0.8 1.5 10 500 150

Table 12: Simultaneous scheduling and control results for grade transition in a MMA
polymerization CSTR. The objective function value is $ 66/hr and 172 h of total cycle

time.
Product | Process T [h] | production [kg] | Trans T [h] | T start[h] | T end [h]
D 56.46 282.30 2.73 0 62.19
A 34.43 137.73 4.62 62.19 101.24
B 24.10 120.51 2.23 101.24 127.58
C 43.04 172.16 1.56 127.57 172.16

Table 13: Performance indicators for MMA optimal and other feasible solutions

Solution sequence Profit | Tc [h] % l TG | D

Optimal | D - A— B —C | 66.0 172.2 0.08 0.40 1.0 2.05
Sol.b D—-C—-B—A| 656 160.0 0.09 0.39 1.0 1.99
Sol.c A—-B—-(C—D| 651 160.0 0.09 0.39 1.0 1.98
Sol.d D—-B—-A—-=(C| 648 160.0 0.09 0.39 1.0 1.97
Sol.e D—-A—-C—B| 632 160.0 0.10 0.38 1.0 1.91

Table 14: Changes in values of fixed parameters and their effects on the optimal solution
for the MMA case study. x;, is the product quality band width.

Case | Parameter change Opt. Sequence | Profit [$/hr] | Cyc. time [hrs] | Trans. time |hrs]|
Base | None D—-A—-DB—-C 66.0 172.2 14.13

Ia | +50% Inv. Cost. D—-A—-B—-C 60.0 140.1 14.13

Ib | -50% Inv. Cost. D—A—B—C 85.9 244.3 14.13

ITa | 420% Raw M. Cost. | D - A— B — C 61.9 182.3 14.13

Ib | -20% Raw M. Cost. | B—A—C — D 70.4 161.4 14.63

[ITa | +50% x40 D—-A—-B—-C 62.6 180.7 15.16

IIIb | -50% 40 D—-A—-B—C 68.1 170.0 13.46

IVa | 420% Demand A D—-A—-B—-C 62.4 171.7 14.13

IVb | -20% Demand A D—-A—-B-C 69.9 173.5 14.13
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Transition period

Slot 1 Slot 2 Slot Ns

Production period

Transition period Production period

Dynamic system behaviour

(b) Time

Figure 1: (a) The cyclic time is divided into slots and within each slot a steady-state
production period is followed by a transition period. (b) Within each slot the system
states z and the manipulated variables u remain constant. However during the transition
period the manipulated variables change and so does the system states.
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Figure 2: Simultaneous discretization approach for dealing with dynamic optimization
problems. Each slot k is divided into Ny, finite elements. Within each finite element f a
set of N, collocation points c is selected.
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Figure 3: Monomer conversion (a) and feed stream flow rate (@Qm) (b) profiles during
production cycle. Note: Conversion during production stages in figure (a) is kept within
upper and lower quality bounds
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Figure 4: Costs and Profit balance of different solutions for the HIPS case study
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Figure 5: Conversion (a) and monomer feed stream flow rate (b) profiles of chosen grade
transition in original (reactor volume = 6000 lts). Conversion (c¢) and monomer feed
stream flow rate (d) profiles of chosen grade transition in modified systems (reactor volume
= 2500 1ts).
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for simultaneous and sequential solutions
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Figure 7: Monomer conversion (a) and feed stream flow rate (Q,,) (b) profiles during
production cycle for iterative solution.

41



4+ Grade D §
3.5
g 3r
[a)
=
= o5t
2 -
15
Grade A
l 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160
Time [hrs]
(a)
0.05} —"/ -
Grade A
0.045f b
w
=
= 0.04} b
(]
©
z 0.035f b
o
e 0.03f ' b
®
g
% 0.025} i
® Grade B
&L 0.02} :
S
£ 0.015f 1
= Grade C
0.01f 1
Grade D
0.005 SRR R SRR ﬁ
O 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160
Time [hrs]
(b)

Figure 8: Molecular weight distribution (a) and feed stream flow rate (gm) (b) profiles
during production cycle. Note: MWD during production stages in figure (a) is kept within
upper and lower quality bounds
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