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Abstract

This paper presents the simultaneous solution of the optimal sequencing and

optimal dynamic transitions of two multigrade polymerization CSTRs. The si-

multaneous formulation results in a Mixed-Integer Dynamic Optimization (MIDO)

problem. The profiles of the state variables during dynamic transitions are dis-

cretized using orthogonal collocation on finite elements, transforming the MIDO

problem into a Mixed-Integer Non Linear Problem. The objective of this formula-

tion is to maximize the profit of the manufacturing operation, considering polymer

sales, inventory cost and transition cost. The transition cost term is determined by

the duration of the transition stages and the manipulated variable profile during

transitions. The two industrial reaction systems are used to analyze the optimal so-

lution and compare it to other solutions obtained using different methods. Finally

a sensitivity analysis is carried out to describe the impact of changes in certain

problem parameters.
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1 Introduction

The importance of industrial production scheduling and control is broadly recognized.

Works on the subject are numerous, focusing on batch as well as continuous production

facilities. There has been a recent interest in addressing simultaneous scheduling and

control problems [1], [2], [3], [4]. Because scheduling and control (SC) problems have

strong interactions it looks reasonable to consider them in a simultaneous and integrated

framework.

However, until recent, scheduling and control problems were approached indepen-

dently. As a matter of fact, scheduling problems commonly assume constant transition

times and almost any aspect related to process dynamics. On the other hand, process

control problems normally assume fixed production sequences. The close relationship

between scheduling and control problems and the importance of a simultaneous solution

is currently recognized [1],[2],[3]. Moreover, a recent publication [4] concluded that not

including process dynamics in scheduling problem formulations can lead to suboptimal

solutions.

An important area of application for a simultaneous scheduling and control approach

is the polymer industry. It is now common for polymerization plants to operate in a con-

tinuous manner while several product grades are produced using the same equipment. In

this context grades are understood as products made from the same polymer but that ex-

hibit different end use properties such as brightness, color, mechanical strength [5]. These

end use properties of grades are dependent on molecular weight distribution and monomer

conversion, which in turn are determined by operating conditions [6]. Transitions times

in grade polymerization systems can be long, resulting in considerable amount of off-spec

product which clearly impacts the profitability of plant operation. As such, the choice of

transitions to be made during a production sequence is an important aspect to consider

when determining a production schedule for polymerization plants. The rigorous inclusion

of process dynamics for optimal grade transitions in a scheduling formulation, as proposed

in this work, results in a Mixed Integer Dynamic Optimization (MIDO) formulation.
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Nystrom et.al. [3] recently addressed scheduling and grade transition for polymerization

systems. The authors proposed a solution strategy for solving MIDO problems based on

a decomposition scheme by Barton and Allgor [7]. The MIDO formulation is decomposed

in a primal problem containing the dynamic part and a master problem containing the

scheduling formulation. Results of this study include a successful treatment of grade tran-

sitions during production scheduling for a polymerization plant. However, it should be

noted that their strategy is highly application specific. Another approach for addressing

the integrated scheduling and control problem has been proposed by Prata et.al. [8].

The dynamic optimization (control) problem is solved using single and multiple shooting

methods instead of simultaneous dynamic optimization (SDO) used here. In [8] there is

no inventory cost included in the objective function. Instead, the total amount of raw

material consumed during the total production schedule is accounted for. Also due to

confidentiality reasons the mathematical model of the polymerization process is not avail-

able. Therefore, the extent and degree of nonlinearities cannot be known with accuracy.

In our previous work [9] we considered an iterative scheme for simultaneous scheduling

and control in which transition times were approximated manually at each iteration. In

contrast in this paper we consider explicitly the transition times as part of the mathe-

matical formulation, thereby eliminating the need for the approximate iterative scheme.

The MIDO formulation is applied to polymerization reactors which approximate real life

applications as opposed to the simpler cases used in previous works to test our former

iterative formulation [9].

In the present work a simultaneous cyclic scheduling and optimal control approach is

proposed and studied in two polymerization systems. The resulting problem is cast as a

Mixed-Integer Dynamic Optimization (MIDO) problem that involves integer variables for

sequencing decisions and continuous variables for production and transition times, cycle

duration and inventory levels. The solution methodology used in this work [9], consists in

transforming the MIDO problem into a MINLP. This method involves the transformation
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of the ordinary differential equations that describe the dynamic model into a set of al-

gebraic equations through the use of orthogonal collocation equations [10]. The problem

can then be solved using any known MINLP techniques such as the Outer-Approximation

method [11],[12]. This paper emphasizes the analysis of the optimal solutions. One main

concern addressed in the following pages is the influence of transition times and profiles

on the optimal solution. Both, transition times and profile, are consequences of process

dynamics, so their influence on the solution reflects the importance of including rigorous

dynamics on the scheduling problems.

2 Problem definition

In polymerization plants a certain number of polymer grades are specified in terms of

their conversion and/or molecular weight distribution (MWD). These grades are to be

formed using a single CSTR operating isothermally. Each grade is obtained from the

same raw material but using different operating conditions. Since the reactor operates

continuously, the switch from a certain grade to another involves a dynamic transition,

which is carried out by manipulating the monomer feed flow rate or the initiator feed

flow rate. The transition is accomplished once the conversion and/or MWD are within a

certain tolerance of their desired steady state value.

In terms of the scheduling problem, lower bounds for the demands rates are specified

for all different polymer grades. In order to satisfy these demands, all grades must be

manufactured once during a production cycle whose cyclic time is to be determined. The

manufacturing operation involves inventory holding costs and transition costs. Inventory

holding costs, raw material costs and product prices of each grade are known, as well as

steady state and upper and lower bounds for all variable.

Given the above stated problem the objective of the present work is to find the optimal

manufacturing cycle in order to meet all demands for the grades while maximizing profit.

The optimal cycle is described by the following decision variables. (1) Grade manufac-

turing sequence. The sequencing of grades will influence the transitions to be carried
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out. (2) Optimal transition times. Transition costs are functions of transition times and

manipulated variable profiles. The duration of those transitions must be calculated so

that the switch from one grade to another is carried successfully while minimizing costs.

Transition times also influence overall cycle time. (3) Optimal dynamic transitions. The

behavior of the manipulated variables during grade transition must be defined in order

to minimize transition costs. (4) Optimal cycle duration. The cycle time, which dictates

the inventory requirements, must be calculated as to maximize hourly profits. (5) The

length of the production runs must be such that the demands are satisfied, while profit

is maximized through the production of a profitable grade mix.

Certain assumptions are made in order to obtain the optimal solution: (a) Demand,

inventory costs and raw material costs are deterministic parameters, (b) All polymer

produced is sold. There is no upper bound on production, (c) All grades are produced

only once during the production cycle, (d) Once a grade has been produced it is stored and

depleted until the end of the cycle, (e) Profit is defined as product sales minus inventory

holding costs minus transition costs divided by total cycle time (hourly profits). All other

costs are not taken into account, (f) Transition cost is defined as the cost of the raw

material spent during transition when no useful end product is being manufactured.

3 Scheduling and Control MIDO Formulation

As mentioned before, the manufacturing operation relevant to this work is carried out in

production cycles. As shown in Figure 1(a) the cyclic time is divided into a series of slots.

Within each slot two operations are carried out: (a) the production period during which

a given product is manufactured around steady-state conditions and (b) the transition

period during which dynamic transitions between two products take place. According to

this description, Figure 1(b) depicts a typical dynamic operating response curve within

each slot. At the beginning of each slot, material of a given product is manufactured

until the demand imposed on such product is met. During this period both the system

states x and the manipulated variables u remain constant. Afterwards, the CSTR process
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conditions are changed (by modifying the manipulated variables u) until new desired

process operating conditions (as represented by the system states x) are reached leading

to the manufacture of a new product. In this work we assume that only one product can

be produced in a slot and that each product is produced only once within each production

wheel. Also, we assume that once a production wheel is completed, new identical cycles

are executed indefinitely.

The indices, decision variables and system parameters used in the SSC MIDO problem

formulation are as follows:

1. Indices

Products i, p = 1, . . . Np

Slots k = 1, . . . Ns

Finite elements f = 1, . . . Nfe

Collocation points c, l = 1, . . . Ncp

System states n = 1, . . . Nx

Manipulated variables m = 1, . . . Nu
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2. Decision variables

yik Binary variable to denote if product i is assigned to slot k

pk Processing time at slot k

tek Final time at slot k

tsk Start time at slot k

Gi Production rate

Tc Cyclic time [h]

xn
fck N-th system state in finite element f and collocation point c of slot k

um
fck M-th manipulated variable in finite element f and

collocation point c of slot k

Wi Amount produced of each product [kg]

θik Processing time of product i in slot k

θt
k Transition time at slot k

Θi Total processing time of product i

xn
o,fk n-th state value at the beginning of the finite element f of slot k

x̄n
k Desired value of the n-th state at the end of slot k

ūm
k Desired value of the m-th manipulated variable at the end of slot k

xn
in,k n-th state value at the beginning of slot k

un
in,k m-th manipulated variable value at the beginning of slot k

Xfck Conversion in finite element f and collocation point c of slot k

MWDfck Molecular Weight Distribution in finite element f

and collocation point c of slot k

3. Parameters

Np Number of products

Ns Number of slots

Nfe Number of finite elements

Ncp Number of collocation points

Nx Number of system states

Nu Number of manipulated variables
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Di Demand rate [kg/h]

Cp
i Price of products [$/kg]

Cs
i Cost of inventory [$/kg-hr]

Cr Cost of raw material [$/lt of feed solution]

CI Cost of initiator [$/lt of feed solution]

hfk Length of finite element f in slot k

Ωcc Matrix of Radau quadrature weights

x̄n
k Desired value of the n-th system state at slot k

ūm
k Desired value of the m-th manipulated variable at slot k

θmax Upper bound on processing time

ttip Estimated value of the transition time between product i and p

xn
ss,i n-th state steady value of product i

um
ss,i m-th manipulated variable value of product i

F o
i Feed stream volumetric flow rate at steady state for grade i

MWmonomer Monomer molecular weight [kg/kmol]

Xss,i Desired conversion degree of grade i

MWDss,i Desired molecular weight distribution of grade i

xn
min, x

n
max Minimum and maximum value of the state xn

um
min, u

m
max Minimum and maximum value of the manipulated variable um

ẋn
tol Maximum absolute value for state derivatives at the end of dynamic transition

xn
tol Maximum absolute deviation from desired final value, allowable for state

variable xn at the end of dynamic transition

uf
cont Maximum absolute change for um between finite elements

uc
cont Maximum absolute change for um between collocation points

γc Roots of the Lagrange orthogonal polynomial

In order to clarify the SSC MIDO problem formulation, it has been divided into two

parts. The first one deals with the scheduling part and the second one with the dynamic

optimization part.
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• Objective function.

max

{
Np∑
i=1

Cp
i Wi/Tc

Tc

−
Np∑
i=1

Cs
i (Gi −Wi/Tc)θi

2

−



Ns∑

k=1

Nf e∑

f=1

hfckθ
t
kQ

m
max

Ncp∑
c=1

um
fckγc


 Cr

Tc

−
Ns∑

k=1

QI
maxu

Iθt
k

CI

Tc



 (1)

The total process profit is given by the amount and cost of the manufactured products

minus the sum of the inventory costs and the product transition costs. The first term of the

objective function represents product sales. The second term states that inventory costs

are calculated from the amount to be stored of each grade, and the time this production

must be hold (from midpoint through the production stage until the end of the cycle).

The third and fourth terms refer to transition costs in terms of wasted, offspec material

during transitions. The offspec material is calculated as the amount of raw material and

initiator fed into the reactor for all the duration of the transition. Since monomer flow

rate is a manipulated variable, the term
∑Ncp

c=1 um
fckγc represents a weighted average of

the manipulated variable for each finite element. This type of transition cost forces the

transition to be done as economically as possible, which usually derives in fast transitions

in order to waste the least amount of raw material.

1. Scheduling part.

a) Product assignment

Ns∑

k=1

yik = 1, ∀i (2a)

Np∑
i=1

yik = 1, ∀k (2b)

Equation 2a states that, within each production wheel, any product can only

be manufactured once, while constraint 2b implies that only one product is
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manufactured at each slot. Due to this constraint, the number of products and

slots turns out to be the same.

b) Amounts manufactured

Wi > DiTc, ∀i (3a)

Wi = GiΘi, ∀i (3b)

Gi = F o
i Cm0MWmonomer, ∀i (3c)

Equation 3a states that the total amount manufactured of each product i must

be equal or greater than the specified demand rate times the duration of the

production wheel, while Equation 3b indicates that the amount manufactured

of product i is computed as the product of the production rate (Gi) times

the time used (Θi) for manufacturing such product. The production rate is

computed from Equation 3c as a simple relationship between the feed stream

flowrate (F o
i ), the feed stream composition (Cm0), and monomer molecular

weight (MWmonomer) .

c) Processing times

θik 6 θmaxyik, ∀i, k (4a)

Θi =
Ns∑

k=1

θik, ∀i (4b)

pk =

Np∑
i=1

θik, ∀k (4c)

The constraint given by Equation 4a sets an upper bound on the time used for

manufacturing product i at slot k. Equation 4b is the time used for manufac-

turing product i, while Equation 4c defines the duration time at slot k.
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e) Timing relations

tek = tsk + pk + θt
k, ∀k (5a)

tsk = tek−1, ∀k 6= 1 (5b)

tek 6 Tc, ∀k (5c)

tfck = (f − 1)
θt

k

Nfe

+
θt

k

Nfe

γc, ∀f, c, k (5d)

Equation 5a is used for computing the time at the end of each slot as the sum of

the slot start time plus the processing time and the transition time. Equation

5b states that the start time of all the slots, different than the first one, is

just the end time of the previous slot. Equation 5c is used to force that the

end time at each slot be less than the production wheel cyclic time. Finally,

Equation 5d is used to obtain the time value inside each finite element and for

each internal collocation point.

2. Dynamic Optimization part.

To address the optimal control part, the simultaneous approach [10] for solving dy-

namic optimization problems was used. In this approach the dynamic mathematical

model representing system behavior is discretized using the method of orthogonal

collocation on finite elements [13],[14]. According to this procedure, a given slot k

is divided into a number of finite elements. Within each finite element an adequate

number of internal collocation points is selected as depicted in Figure 2. Using

several finite elements is useful to represent dynamic profiles with non-smooth vari-

ations. Thereby, the set of ordinary differential equations comprising the system

model, is approximated at each collocation point leading to a set of nonlinear equa-

tions that must be satisfied.
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a) Dynamic mathematical model discretization

xn
fck = xn

o,fk + θt
khfk

Ncp∑

l=1

Ωlcẋ
n
flk, ∀n, f, c, k (6)

The constraints given by Equations 6 are used to compute the value of the

system states at each one of the discretized points (xn
fck) by using the monomial

basis representation. xn
o,fk is the n-th system state at the beginning of each

element, Ωlc is the collocation matrix and ẋn
fck is the first order derivative of the

n-th state. Notice that when working with the first element, xn
o,1k represents

the specified initial value of the n-th state. Also notice that in the present

formulation the length of all finite elements is the same and computed as

hfk =
1

Nfe

(7)

b) Continuity constraint between finite elements

xn
o,fk = xn

o,f−1,k + θt
khf−1,k

Ncp∑

l=1

Ωl,Ncpẋ
n
f−1,l,k, ∀n, f > 2, k (8)

In the simultaneous approach for dynamic optimization problems, the states

must be continuous when crossing from one given finite element to the next

one. We use Equations 8 to force continuous state profiles on all the elements

at the beginning of each element (xn
o,fk) and they are computed in terms of the

same monomial basis used before for defining the value of the system states.

c) Model behavior at each collocation point

ẋn
fck = fn(x1

fck, . . . , x
n
fck, u

1
fck, . . . u

m
fck), ∀n, f, c, k (9)

Equations 9 are used for computing the value of the first order derivatives of the

systems at finite element f of collocation point c in slot k. Those equations
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simply represent the right hand sides of the dynamic model. Because our

scheduling and control formulation is system independent, we have used the

notation fn to represent the right hand side of the n-th ordinary differential

equation describing any desired dynamic system.

d) Initial and final controlled and manipulated variable values at each slot:

xn
in,k =

Np∑
i=1

xn
ss,iyi,k, ∀n, k (10)

x̄n
k =

Np∑
i=1

xn
ss,iyi,k+1, ∀n, k 6= Ns (11)

x̄n
k =

Np∑
i=1

xn
ss,iyi,1, ∀n, k = Ns (12)

um
in,k =

Np∑
i=1

um
ss,iyi,k, ∀m, k (13)

ūm
k =

Np∑
i=1

um
ss,iyi,k+1, ∀m, k 6= Ns − 1 (14)

ūm
k =

Np∑
i=1

um
ss,iyi,1, ∀m, k = Ns (15)

xn
Nfe,Ncp,k = x̄n

k , ∀n, k (16)

um
1,1,k = um

in,k, ∀m, k (17)

um
Nfe,Ncp,k = ūm

in,k, ∀m, k (18)

xn
o,1,k = xn

in,k, ∀n, k (19)

xn
tol,k > xn

Nfe,Nc,k − x̄n
k , ∀n, k (20)

−xn
tol,k 6 xn

Nfe,Nc,k − x̄n
k , ∀n, k (21)

Equations 10 define the values of the state variables at the beginning of each

slot k (xn
in,k). The desired value of each state at the end of the same slot k (x̄n

k)

is computed in Equations 11-12. It should be stressed that the state values at

the beginning and end of each slot k are given by the corresponding steady-

state values (xn
ss,i) calculated a priori. xn

ss,i simply stands for the steady-state
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value of the manufacturing product i. They can be easily obtained from open-

loop steady-state simulation of the processing system. Similarly, Equations

13-15 define the values of the manipulated variables at the beginning of each

slot k (um
in,k) and at the end of the slot k (ūm

k ). Equations 16 enforce the system

states to take the desired state values at each slot k. A similar situation occurs

with the values of the manipulated variables. Equations 17 fix the values at

the first finite element and first collocation point of each slot k (um
1,1,k) as the

value that such variable takes at the beginning of the same slot k. Equations

18 determine the values of the manipulated variables at the last finite element

and last collocation point of slot k (um
Nfe,Ncp,k) as the desired steady-state value

of the same variable at slot k (ūm
k ). Equations 19 determine the values of the

system states at the beginning of each slot (xn
o,1,k). Finally, equations 20 and

21 set the allowable deviation from desired state variable values at the end of

every dynamic transition.

e) Lower and upper bounds on the decision variables

xn
min 6 xn

fck 6 xn
max, ∀n, f, c, k (22a)

um
min 6 um

fck 6 um
max, ∀m, f, c, k (22b)

Equations 22a-22b simply constrain the values of both the system states and

manipulated variables to lie within acceptable lower and upper bounds.

15



f) Smooth transition constraints

um
f,c,k − um

f,c−1,k 6 uc
cont, ∀m, k, c 6= 1 (23)

um
f,c,k − um

f,c−1,k > −uc
cont, ∀m, k, f, c 6= 1 (24)

um
f,1,k − um

f−1,Nfe,k 6 uf
cont, ∀m, k, f 6= 1 (25)

um
f,1,k − um

f−1,Nfe,k > −uf
cont, ∀m, k, f 6= 1 (26)

um
1,1,k − um

in,k 6 uf
cont, ∀k (27)

um
1,1,k − um

in,k > −uf
cont, ∀k (28)

ẋNfe,Ncp,k > −ẋtol,k, ∀n, k (29)

ẋNfe,Ncp,k 6 ẋtol,k, ∀n, k (30)

Equations 8 are used to ensure continuity between adjacent finite elements.

However no equation up to this point forces a smooth profile for the manipu-

lated variable. Equations 23- 28 force the change between adjacent collocation

points and finite elements to be within a certain acceptable range. Equations

29 and 30 are used to make sure that at the end of the dynamic transition the

system is at, or very close to, steady state conditions.

4 Case Studies

In order to analyze the performance of the simultaneous scheduling and control formu-

lation presented in this paper, it was tested on two polymerization processes. In the

following section these processes are described and the results of the scheduling and con-

trol problem are discussed. The models used are intended to resemble industrial processes,

but they are still simplified versions of complex models used in industrial applications.
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4.1 Case 1: High Impact Polystyrene (HIPS)

4.1.1 Process description

The isothermal free radical bulk polymerization of styrene was carried out in a CSTR.

The single CSTR model has been used in previous works [15, 16, 6] to describe this

process. In the following example the model is cast in dimensionless form by diving each

state variable and manipulated variable by its maximum values. Design information and

scaling values are given in Table 1.

dx1

dt
=

Qimaxx1oui −Qmaxx1uf

V
− kdx1 (31)

dx2

dt
= Qmaxuf

x2o − x2

V
− kpx2

(
µr

maxx6 + µ0
bmaxx7

)
(32)

dx3

dt
= Qmaxuf

x3o − x3

V
− x3(kI2Crmaxx4 + kfsµ

0
rmaxx6 + kfbµ

0
bmaxx7) (33)

dx4

dt
= 2fa

kdCimaxx1

Crmax

− x4(kI1Cmmaxx2 + kI2Cbmaxx3) (34)

dx5

dt
=

Cbmaxx3

Cbrmax

(kI2Crmaxx4 + kfb(µ
0
rmaxx6 + µ0

bmaxx7))− x5(kI3Cmmaxx2 + kt

(µ0
rmaxx6 + µ0

bmaxx7 + Cbmaxx5)) (35)

dx6

dt
=

2kI0(Cmmaxx2)
2 + kI1Crmaxx4Cmmaxx2 + Cmmaxx2kfsµ

0
rmaxx6µ

0
bmaxx7

µ0
rmax

− (kpCmmaxx2 + kt(µ
0
rmaxx6 + µ0

bmaxx7 + Cbrmaxx5) + kfsCmmaxx2

+ kfbCbmaxx3)x6 + kpCmmaxx2x6 (36)

dx7

dt
=

kI3CbrmaxCmmaxx5x2

µ0
bmax

− (kpCmmaxx2 + kt(µ
0
rmaxx6 + µ0

bmaxx7 + Cbrmaxx5)

+ kfsCmmaxx2kfbCbmaxx3)x7 + kpCmmaxx2x7 (37)

(38)

where

xi = (Value of state i ) / (Max expected value of state i)

ui = (Value of initiator flow ) / (Max expected value of initiator flow)

uf = (Value of feed stream flow ) / (Max expected value of feed stream flow)

Five different HIPS grades (A,B,C,D,E) were defined as desired products for the
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production cycle, corresponding to 15, 25, 35, 40 and 45 percent monomer conversion.

Due to gel effect, normally higher conversions are not obtained in a single reactor. Instead,

a sequence of CSTRs is used for that purpose. Monomer flow rate (Qm) was chosen as

the manipulated variable during grade transitions. Detailed grade information is shown

in Table 2.

As described in previous sections, the simultaneous scheduling and control formulation

yields a MIDO problem, which is transformed into a MINLP using the SDO technique

with 20 finite elements and three collocation points. The problem is solved in GAMS

using DICOPT, a MINLP solver that uses the outer approximation algorithm [11],[12].

The formulation consists of 6666 constraints, 6267 continuous variables and 25 discrete

variables. The solution took 7640 s of cpu time using an IBM Laptop 1.6 GHz processor

and 256 MB RAM. Results of the optimal production cycle, E → A → B → C → D with

objective $1456/hr and length of cycle time 32.3h, are shown in Figure 3 and Table 3.

In the following section the key drivers for the optimal solution are first discussed,

in a second part a dynamic analysis of the transitions is included, and in a third part a

comparison versus a sequential solution method is carried out. Finally, the present for-

mulation will be compared with an earlier MIDO version for simultaneous scheduling and

control proposed by our research group [9]. In the sequential solution optimal dynamic

profiles for every possible transition are calculated in a first step and introduced as fixed

parameters for the scheduling problem.

Optimal solution analysis

In order to understand the drivers for maximum profit, the optimal and five other

feasible solutions (as found by DICOPT/CONOPT3) were analyzed . The main variable

level and some arbitrary indicators used mainly for comparison among solutions are re-

ported in Table 4 and Figure 4. The following key observations can be made. (a) Since
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product D is one of the most profitable products (second highest price, low inventory

costs), the optimizer allocates the largest portion of time to the production of this grade,

while just satisfying the demand for all other grades. (b) Transition times affect the re-

sults of each feasible solution in two ways. First, by affecting total cycle time and second

by affecting transition costs. In general lower transition times relate to lower transition

time to total cycle time ratio and lower transition costs. (c) Determining total cycle time

involves a trade-off between transition and inventory costs. If the total cycle time is short,

the inventory costs are low but transition times take up a considerable proportion of the

total cycle duration. On the other hand, in the longer cycle times the ratio of transition

times to cycle time is low, and productivity of the cycle is high at the expense of incurring

in high inventory costs. The magnitude and proportion of costs in the present example

is such that a short cycle time with low inventory costs is preferred over a long cycle.

Therefore, minimizing transition times becomes very important to avoid the high ratio of

transition times to total cycle time.

Dynamic analysis

Dynamic behavior during each grade transition dictates both transition times and transi-

tion costs. Each transition has different dynamic behavior, and it is the objective of this

section to understand the influence of this behavior on the selection of the optimal schedule

for cyclic production. In order to carry out this analysis, the system was linearized around

each steady state, and all possible grade transitions were characterized by a transfer func-

tion. Time constants were then calculated. Since they were found to be proportional to

total transition time this last indicator will be used for analysis. Dominant eigenvalues

for each linearized steady state are given in Table 5. The real part of all the eigenvalues is

negative and their magnitude decreases as grade conversion increases. This makes sense

since lower grade conversions are achieved by higher feed stream flow rates, which in turn

results in faster dynamic behavior around lower conversion steady states. Initially, the
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optimal schedule features an E to A product transition. This can be explained as the

coupling of the slowest operating region (around grade E) with a faster one (around grade

A). This allows all other transitions to be made between grades of adjacent monomer

conversion (A to B, B to C and so on). This kind of transitions take the least amount

of effort since the magnitude of the change in the manipulated variable value is minimized.

From the previous paragraph it is unclear why the optimal schedule corresponds to

transitions from lower conversion grades (as in A to B) and not from higher conversion to

lower conversion (as in B to A) since both type of transitions demand the same magni-

tude of change in the feed stream flow rate. However, the dynamic behavior between the

two type of transitions can be expected to be very different. To understand this result,

two extra calculations were performed. From dynamic optimization, transition costs and

transition times were calculated. Cycles for minimum transition costs and minimum tran-

sition times were then calculated using a reduced MILP model with GAMS/CPLEX. The

optimal sequence for minimum transition times was E → A → B → C → D, while the

optimal sequence for minimum transition costs was D → C → B → A → E. Note that

the minimum transition time sequence chooses mostly transitions from lower conversion

grades to higher conversion grades, while minimum transition cost schedule chooses tran-

sitions from higher to lower conversion grades. Another important observation is that the

sequence of minimum transition times schedule is exactly the same one as in the schedule

chosen for the simultaneous scheduling and control formulation.

Summarizing, reducing total transition times seem to be the main criterion for choos-

ing an optimal sequence. Furthermore, in order to achieve low transition times in the

particular system being analyzed, transitions must be made between adjacent grades go-

ing from low to high conversion states (A to B, B to C, etc.).

To test the above objective, a modification was performed on the operating param-

eters of the HIPS polymerization system that consisted in decreasing the reactor vol-
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ume from 6000 to 2500 L, and increasing the initiator flow rate in order to obtain the

same grades as in the original system. The optimal grade transition schedule is given by

E → A → B → C → D, the same sequence as the optimal schedule. Comparing the

eigenvalues from Table 5, one could expect the overall dynamics to be faster than the one

corresponding to the original system. Given this difference, the optimal schedule for the

simultaneous scheduling and control problem is exactly the same as in the original case,

and once again, it corresponds to the minimum transition time sequence. Differences in

the dynamic transitions for the optimal cycle between the original and modified systems

can be compared in Figure 5. Because the modified reactor features a smaller residence

time, transition between grades are faster.

Given the same prices and costs, the profit is $1910/hr for the 2500 L reactor vs.

$1456/hr for the 6000 L reactor, while the cycle time changes from 32.3 hr to 33 hr Since

the sequence is the same, the improvement can be attributed solely to faster dynamics

for the modified system.

Comparison vs. sequential solution

We compare the performance of our simultaneous SC formulation compared to a tra-

ditional sequential approach. In the sequential approach the SC problems is solved in

two parts. The first step consists in calculating all possible transitions between grades as

purely dynamic optimization problems, while in the second step this information is used

for posing and solving a scheduling problem.

The objective function used for the dynamic optimizations in step 1 of the sequential

solution is as follows:

min{Ttrans Qmmax Crm

∑Nfe
i=1 hi(umi,1 0.15 + umi,2 0.50 + umi,1 0.35) + Ttrans Qi Cri}

The aim of this objective function is to minimize the transition cost, which is a com-
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bination of the transition time and the feed streams flow rate during the transition. Nu-

merical Results for the sequential solution are found in Table 6; the reader can compare

this data with Table 3. A comparison between sales, inventory costs and transition costs

is found in Table 7. It is evident that the simultaneous solution produces a better solution

than the corresponding one from the sequential approach ($1456/hr vs. $1416/hr). The

main difference between both approaches is attributed to longer transition times for E

to A transition in the sequential approach (proof on this later). To better understand

the difference in dynamic transition profiles for E to A transition as determined for the

sequential and simultaneous solutions is shown in Figure 6. All other profiles are identical

and therefore are not shown. The profile obtained by the simultaneous formulation starts

with a more aggressive behavior for the manipulated variable, which in the end allows a

shorter transition time, and surprisingly a cheaper transition. Also, in the simultaneous

approach the transition time becomes more important since it is involved in other terms

in the objective function, which pushes for a faster transition that in turn ends up also

being cheaper.

Finally in order to demonstrate that the differences between the simultaneous and se-

quential results are originated by the longer transition times and higher transitions costs

of the E to A transition the following procedure was performed. The transition costs and

times obtained by pure dynamic optimization for the transition E to A in the first step

of the sequential method were exchanged for the values obtained for the same transition

in the simultaneous solution. With these new values the second step in the sequential

approach (purely scheduling part) was solved again. The new results are found in Table

8. The performance of the sequential solution is almost as good as the simultaneous so-

lution. This proves that the difference between the original sequential solution and the

simultaneous solution was indeed originated by the different dynamic transitions for the

E to A transition.
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Comparsion vs. iterative (previous) formulation

Earlier versions of the simultaneous scheduling and control formulation proposed by

our research group [9] are similar to the one proposed in this work. The main differences

are: (1) Inventory costs and transition costs terms in the objective function are different,

(2) Transition times are calculated differently. In the present work they are calculated

directly by the solver, whereas in the previous formulation they had to be fed as fixed

parameters estimated from pure dynamic optimization data, and then fine tuned through

an iterative process, (3) The earlier formulation fixes transition times as mentioned above.

For the optimizer to be able to determine which transition time parameter to use, two

extra binary variables are required. These variables will be detailed later.

The first two differences described above require some extra constraints for the present

formulation. Since transition times are to be determined by the solver, desired state vari-

able values are within a product quality band given by equation 21 rather than punctual

desired value as in the previous formulation. If a tolerable range is not provided then

carrying out the transition would take an unreasonably long time. On the other hand,

since the square difference of the manipulated variable is not included in the objective

function of the present formulation, constraints 25 to 30 are required in the present work.

The following objective function corresponds to the previous formulation [9] applied

to the HIPS polymerization system described in this section.

max





Np∑
i=1

Cp
i Wi

Tc

−
Np∑
i=1

Cs
i (Gi −Wi/Tc)θi

2
−

Ns∑

k=1

Nfe∑

f=1

hfk

Ncp∑
c=1

CrtfckΩc,Ncp

Tc

(
(x1

fck − x̄1
k)

2

+ . . . + (xn
fck − x̄n

k)2 + (u1
fck − ū1
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The reader can compare this equation with equation 1. Not only is the inventory costs

term expressed differently but the transition cost term is defined in a completely different

way. Transition costs in equation 39 are expressed as the sum of the square differences of
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every state and the manipulated variable in each discretization point versus the desired

value at the end of the transition. The advantage of using this kind of transition term is

that smooth transitions are achieved. However, although there is a factor used to convert

this sum into money, mathematically converting a square difference of states into money

is not very intuitive and its applicability could be questioned.

The extra binary variables required are defined and justified in the following paragraph:

y
′
i,1 = yi,Ns , ∀i (40)

zipk > y
′
pk + yik − 1, ∀i, p, k (41)

Equation 40 defines backward binary variable (y
′
ik) meaning that such variable for

product i in slot k takes the value assigned to the same binary variable in equation 2a

and 2b but one slot backwards k− 1. At the first slot, Equation 40 defines the backward

binary variable as the value of the same variable at the last slot. This type of assignment

reflects our assumption of cyclic production wheel. The variable y
′
ik will be used later to

determine the sequence of product transitions. The constraint given in Equation 41 is

used for defining the binary production transition variable zipk. If such variable is equal

to 1 then a dynamic transition will occur from product i to product p within slot k, zipk

will be zero otherwise.

Results for the iterative formulation are found in Table 9 and Figure 7. From a

computation demand point of view, the Iterative method features 6121 equations, 6372

continuous variables, 50 binary variables. The solution of this formulation took 11190

cpu s on a 1.6 Ghz processor, while the Direct method features 6666 equations, 6242

continuous variables, 25 binary variables and required 7640 cpu s on the same processor.

Finally, it should be said that the direct formulation requires extra constraints (20 to

30) and the addition of transition times as decision variables increases the non convexity
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of the problem. However, these conditions were found not to be of any significance

in terms of computational effort. In fact, the decrease in number of binary variables

allowed for an overall faster solution for the direct method. On the other hand the direct

formulation is considered to be more realistic and represents an important improvement

towards achieving industrial applicability.

4.2 Case 2: Methyl-Methacrylate Polymerization (MMA)

A second case study corresponding to the Methyl-Methacrylate Polymerization system is

included in the following section. Once the process is described a discussion regarding

the optimal solution characteristics, similar to the one performed in the HIPS case study,

is carried out. Since the mathematical formulation used is identical to that used in the

HIPS example, no comparison versus sequential and iterative procedures is included for

this example. At the end of this section a sensitivity analysis is performed in order to

understand the effect of changes in process parameters on the optimal solution.

4.2.1 Process description

In the following section the bulk free-radical polymerization of Methyl-Methacrylate in

an isothermal CSTR is described. The system has already been presented by Congalidis

et al. [17] and used by Mahadevan et al. [18] to address grade transition problems from a

control point of view. The mathematical model was cast in dimensionless form by dividing

each state and flow rates of monomer and initiator by their maximum expected values.
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(Q̂iĈix2in
Q̄i − Q̄mQ̂mĈix2) (43)
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Table 10 information regarding steady-state design and reactor scaling is presented.

For testing our simultaneous scheduling and control formulation four polymer grades

(A,B, C, D) were defined which correspond to molecular weight distributions of 15000,

25000, 35000 and 45000. The initiator flow rate (Qi) was selected as the manipulated

variable to achieve grade transition. Table 11 contains the steady-state values of the

states and the manipulated variable leading to the manufacture of each one of the A,B,C

and D grades. Also shown in Table 11 are the demand rates and costs of each grade.

Once again the resulting MINLP problem was solved using DICOPT/GAMS. The

problem consisted of 3325 constraints, 3042 continuous variables and 16 binary variables.

Table 12 and figure 8 show the results of solving the scheduling and control problem. The

solution took 70 CPU s using a 1.6 GHz processor.

In this section an optimal solution analysis, similar to the one performed for the HIPS

case study, is carried out. The findings of the previous case study will be compared against

those derived from the optimal solution analysis in the MMA system. Also, a sensitivity

analysis including changes in inventory costs, raw material costs, grade quality tolerance,

and demand is performed and analyzed.

Optimal solution analysis
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The optimal solution found is compared against four other feasible solutions found by

DICOPT, using CONOPT3 as the NLP solver. The same indicators used to compare

the different solutions in the HIPS example are used for the MMA case study. These

indicators are found in Table 13. A graphical comparison among the different solutions

is found in Figure 9.

In the MMA case study the optimal solution and the first three suboptimal solutions

have very similar results. However, the optimal solution has a slightly better performance

according to the chosen performance indicators. This fact indicates that the measures

chosen to evaluate the performance of a particular solution are effective not only for the

HIPS problem but also for the present case study.

Note that product D has the highest selling price, and although it has a slightly higher

inventory cost than product C (next in selling price) it is the most profitable grade to

sell. This is reflected by the fact that the optimizer allocates the longest production time

to this grade, resulting in the highest production of all four grades. Just as in the HIPS

case study, demand for all other grades is just satisfied while production for grade D

exceeds its demand (recall that it is assumed that there is no upper bound on product

consumption). Once again the best solution is the one that has the highest ratio of D

production as well as production to demand ratio for this grade (see Table 13). In this

example transition time is also a key driver for the optimal solution. The best solution is

the one with the shortest transition time and the lowest ratio of transition time to total

cycle time. This makes sense since the lowest the portion of cycle time devoted to tran-

sitions, the highest the available time for profitable production becomes. It is interesting

to see that transition costs are actually higher in the optimal solution than in the next

best solution. This stresses the fact found in the MMA example that transition times

are more important for a profitable operation than transition costs (see transition times

and transition costs in Figure 9 and Table 13). Perhaps the only difference in optimal

solution behavior between the HIPS and the MMA case studies is the fact that the MMA

optimal solution has a slightly longer cycle duration than solution b in the MMA sys-
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tem. In the HIPS system shorter cycle times were associated with better operation of the

system. Notice, however, that the optimal solution does have shorter cycle times than

the other suboptimal solutions except for solution b. The fact that case b operates in a

slightly shorter cycle is also reflected in lower inventory costs for this suboptimal solution

when compared to the optimal solution. This is explained by the fact that the difference

in cycle duration and inventory costs between the two solutions is very small, and it is

out weighted by the fact that the optimal solution performs better in terms of transition

durations (see Table 13 and inventory costs in Figure 9). If one thing is to be emphasized

by this second example in addition to what was found in the HIPS case study, it is the

importance of minimizing transition duration, and total transition time to cycle duration

ratio.

Sensitivity analysis

The sensitivity analysis referred to in this section consists in the modification of certain

fixed problem parameters. Namely, these parameters are inventory costs, raw material

costs, tolerance for actual states values versus desired state values at the end of dynamic

transitions as expressed in Eqns. 20 and 21, and hourly demand for grade A. The per-

centage of change in these parameters and the resulting optimal solutions are summarized

in Table 14.

Case I. When inventory costs are increased, profit is decreased as expected. The

decrease is not proportional to the increase in inventory cost since the amount of polymer

produced has to be changed by the optimizer attempting to minimize costs. An over

production of grade D when compared against its demand is still present, but it is lower

than in the base case. When less polymer is produced the sales term is also affected.

The overall effect is seen in the resulting hourly profit. A decrease in cycle duration

also occurs, as expected when dealing with higher inventory holding costs. On the other

hand, decreased inventory costs cause an expected increase in profit. This is caused by
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cheaper holding costs allowing for longer cycles, more production and therefore more over

production of grade D. Hence, the increase in profit is caused by the decrease in costs

itself and by an increase in hourly sales.

Case II. Raw material costs for monomer and initiator were simultaneously modified.

This change has interesting effects. The case where raw material costs were decreased is

the only case where a different optimal sequence was obtained. Changing this sequence

impacts the transition times. This occurs because lower transition costs allow for longer

transition times, while still increasing the hourly profit when compared against the original

case. This fact seems to run against what has been found previously in this paper where

minimizing transition times was a driver for the optimal solution. This indicates that

there is a limit on conditions where all the analysis performed before are valid.

Case III. Modifying the allowed tolerances is equivalent to modifying the duration

of transitions. When a tolerance is increased (therefore relaxing the dynamic end point

constraints), less time is required for grade transitions, and the opposite is true when

tolerances are decreased. Notice that costs were not modified in both cases, and the profit

still changes. The 50% changes correspond to increasing and decreasing the original 2%

tolerance by 1%. Although this change is not large, it is still affects cycle duration and

cycle productivity, if productivity is understood as the proportion of the cycle devoted

to actually producing the desired polymer grades. The effect seen when tolerances are

modified further points out the important role that transitions duration and dynamic

behavior of the system play in determining an optimal solution.

Case IV. Changes in the demand for any grade are of particular interest since actual

manufacturing operations are always subject to this kind of uncertain behavior. Grade

A was chosen because it is the less profitable grade. When the demand is increased, a

longer cycle time has to be dedicated to producing this grade (the model used sets grade

demand as a lower bound on production). Increasing the portion of the cycle devoted

to less profitable grades necessarily decreases profit, since other grades have to be hold

during the production of this less profitable product. The optimal sequence is still the

29



same which means that product D, with the highest production of all is produced before

grade A. Because production of grade A takes longer, all D grade has to be hold for

a longer amount of time, increasing inventory costs. The optimizer, however, does not

change the total cycle duration too much, but actually produces less grade D so less

production has to be stored. This negatively affects profit since grade D has the highest

selling price. The opposite effect can be observed when the demand of grade A is lowered.

4.3 Conclusions

In this work a MINLP formulation was used to simultaneously solve the scheduling and

control problems in polymerization reactors during a cyclic manufacturing operation. Pro-

cess dynamics, in the form of differential equations that were transformed into algebraic

equations via a discretization method, were explicitly included in the formulation. Such

a formulation was able to calculate the optimal transition duration and profiles, and from

this information a transition cost term was computed in the objective function. The dy-

namic optimization was performed using the SDO method which allows for transitions

between unstable operating conditions. Results do not depend on any controller set up

since they all correspond to open loop solutions.

Two case studies related to the polymerization industry were included. From these studies

it was concluded that the formulation worked for applications close to those expected in

real life. From the discussion of those cases it was concluded that transition duration is

decisive for the optimal profit achieved, therefore justifying the need to include rigorous

dynamics in the simultaneous problem. The superiority of the presented formulation vs.

the sequential approach was evident in one of the examples.

A potential extension of this work is the application of the formulation presented to mod-

els used to simulate real life operations. Taking the examples in this work as a starting

point, the optimization of polymerization operations in non-isothermal mode, and per-

haps, using a more representative reactor model will be a next step. Since computational

effort invested in solving the case studies was significant, a decomposition approach ex-
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Table 1: Design Information and Scaling Values
V 6000 Reactor volume [L]
Qi 1.5x103 Initiator flow rate [L/s]
Cm0 8.63 Monomer feed stream concentration [mol/s]
Cb0 1.05 Butadiene feed stream concentration [L/s]
CI0 0.98 Initiator feed stream concentration [L/s]
T 377.5 Reactor temperature [K]
kd 7.28x10−4 Initiation reaction constant [1/s]
kI0 1.59x10−11 Initiation reaction constant [L/mol-s]
kI1 8.04x102 Initiation reaction constant[L/mol-s]
kI2 1.61x102 Initiation reaction constant[L/mol-s]
kI3 8.04x102 Initiation reaction constant[L/mol-s]
kp 8.04x102 Propagation reaction constant [L/mol-s]
kfs 2.99x10−1 Monomer transfer reaction constant [L/mol-s]
Cmmax 7.31 Maximum value of monomer concentration [mol/l]
CImax 3x10−4 Maximum value of initiator concentration [mol/l]
Cbmax 1.05 Maximum value of butadiene concentration [mol/l]
Crmax 6.29x10−11 Maximum value of radical concentration [mol/l]
Cbrmax 4.97x10−12 Maximum value of butadiene radical concentration [mol/l]
µ0

rmax 8.66x10−8 Maximum value of zero radical death moment
µ0

bmax 4.41x10−9 Maximum value of zero butadiene radical death moment
QImax 1.5x10−3 Maximum value of initiator flow rate [l/s]
Qmmax 1.14 Maximum value of feed stream flow rate [l/s]

ploiting the nature of the simultaneous problem is desirable. Such an approach might also

facilitate the representation of scheduling models beyond the cyclic one presented here.

Table 2: HIPS Grade Design Information. Demand rate is in [kg/hr], inventory cost is in
[$/kg-hr], monomer and initiator costs are in [$/lt of feed stream] and prices are in [$/kg]

Grade Q[l/s] Conv. Demand (kg/hr) Inv. Cost Monomer Cost Initiator Cost Price
A 1.14 15 50 0.15 1 10 3.2
B 0.75 25 60 0.20 1 10 4.3
C 0.56 35 65 0.15 1 10 4.5
D 0.60 40 70 0.10 1 10 5.0
E 0.53 45 60 0.25 1 10 5.5
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Table 3: Simultaneous scheduling and control results for grade transition in a HIPS
polymerization CSTR. The optimal cyclic sequence is E → A → B → C → D. The
objective function value is $ 1456/hr and 32.3 h of total cycle time.

Product Process T [h] production [kg] Trans T [h] T start[h] T end [h]
E 2.48 1937 1.34 0 3.83
A 2.87 1614 1.15 3.83 7.85
B 3.17 1937 1.11 7.85 12.14
C 3.10 2099 0.58 12.14 15.82
D 15.81 11370 0.67 15.82 32.29

Table 4: Performance indicators for HIPS CSTR optimal and other suboptimal feasible
solutions

Solution sequence Profit Tc [h] Transtime
CycT ime

wD

wall

wA,B,C,E

demand
wD

demand

Optimal E → A → B → C → D 1456 32.3 0.15 0.60 1.0 5.0
Sol.B D → A → B → C → E 1352 33.0 0.16 0.59 1.0 4.9
Sol.C E → B → A → C → D 1221 36.2 0.17 0.59 1.0 4.8
Sol.D A → B → C → D → E 1155 37.2 0.18 0.59 1.0 4.7
Sol.E E → A → C → B → D 1101 38.1 0.19 0.58 1.0 4.7
Sol.F B → A → E → C → D 1045 39.0 0.20 0.58 1.0 4.6

Table 5: Dominant eigenvalues for linearized steady states corresponding to different grade
operating conditions for the base case (V = 6000 L) and the modified case (V = 2500 L).

Dominant Eigenvalue Dominant Eigenvalue
Grade (Base case) (Modified case)

A -1.59x10−4 -3.92x10−4

B -1.02x10−4 -2.55x10−4

C -7.97x10−5 -2.10x10−4

D -7.30x10−5 -1.88x10−4

E -6.96x10−5 -1.78x10−4

Table 6: Sequential scheduling and control results for grade transition in a HIPS poly-
merization CSTR. The objective function value is $ 1416 and 33 h of total cycle time.

Product Process T [h] production [kg] Trans T [h] T start[h] T end [h]
C 3.16 2141 0.58 0 3.75
D 16.03 11530 0.67 3.75 20.44
E 2.54 1977 1.54 20.44 24.52
A 2.93 1647 1.14 24.52 28.60
B 3.23 1977 1.11 28.60 32.95
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Table 7: Comparison between simultaneous and sequential solutions

Method Sales [$/hr] inv. costs [$/hr] trans. costs [$/hr] Profit [$/hr]
Simultaneous 2634.70 941.00 404.68 1455.55
Sequential 2801.24 959.99 414.19 1416.33

Table 8: Comparison between simultaneous and modified sequential solutions

Method Sales [$/hr] inv. costs [$/hr] trans. costs [$/hr] Profit [$/hr]
Simultaneous 2634.70 941.00 404.68 1455.55
Sequential 2801.38 940.79 405.17 1454.86

Table 9: Simultaneous scheduling and control results for grade transition in a HIPS
polymerization CSTR. The objective function value is $ 906/hr and 40 h of total cycle
time.

Product Process T [h] production [kg] Trans T [h] T start[h] T end [h]
A 3.57 2008 3 0 6.57
D 10.67 7686 3 6.57 20.26
C 3.86 2610 3 20.26 27.11
E 3.10 2409 3 27.11 33.21
B 3.92 2409 3 33.21 40.15

Table 10: Steady-state design and scaling information.

Qm 1 Monomer feed stream [m3/h]

V 0.1 Reactor volume [m3]

Ciin 8 Feed stream initiator concentration [kmol/m3]

Mm 100.12 Monomer molecular weight [kg/kmol]

Cmin
6 Feed stream monomer concentration [kmol/m3]

f ∗ 0.58 Initiator efficiency

ktc 1.3281x1010 Termination by coupling rate constant [m3/(kmol-h)]

ktd 1.093x1011 Termination by disproportion rate constant [m3/(kmol-h)]

ki 1.0255x10−1 Initiation rate constant [1/h]

kp 2.4952x106 Propagation rate constant [m3/(kmol-h)]

kfm 2.4522x103 Chain transfer to monomer rate constant [m3/(kmol-h)]

Ĉm 5.7768 Maximum value of monomer concentration [kmol/m3]

Ĉi 0.41534 Maximum value of initiator concentration [kmol/m3]

D̂0 5.4794x10−3 Maximum value of zeroth moment

D̂1 82.219 Maximum value of first moment

Q̂i 0.05245 Maximum value of initiator flow rate [m3/h]

Q̂m 1 Maximum value of monomer flow rate [m3/h]
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Table 11: Grade design information. The demand rate is in [kg/h] the price in [$/kg], the
inventory cost in [$/kg-h] and the raw material costs are in [$/m3 of feedstream].

Grade Qi [m3/hr] MWD Demand (kg/hr) Inv. Cost Mono. Cost Init. Cost Price

A 0.05245 15000 0.8 1 10 500 100

B 0.01673 25000 0.7 1.2 10 500 120

C 0.006863 35000 1 1.2 10 500 130

D 0.003114 45000 0.8 1.5 10 500 150

Table 12: Simultaneous scheduling and control results for grade transition in a MMA
polymerization CSTR. The objective function value is $ 66/hr and 172 h of total cycle
time.

Product Process T [h] production [kg] Trans T [h] T start[h] T end [h]
D 56.46 282.30 5.73 0 62.19
A 34.43 137.73 4.62 62.19 101.24
B 24.10 120.51 2.23 101.24 127.58
C 43.04 172.16 1.56 127.57 172.16

Table 13: Performance indicators for MMA optimal and other feasible solutions

Solution sequence Profit Tc [h] Transtime
CycT ime

wD

wall

wA,B,C

demand
wD

demand

Optimal D → A → B → C 66.0 172.2 0.08 0.40 1.0 2.05
Sol.b D → C → B → A 65.6 160.0 0.09 0.39 1.0 1.99
Sol.c A → B → C → D 65.1 160.0 0.09 0.39 1.0 1.98
Sol.d D → B → A → C 64.8 160.0 0.09 0.39 1.0 1.97
Sol.e D → A → C → B 63.2 160.0 0.10 0.38 1.0 1.91

Table 14: Changes in values of fixed parameters and their effects on the optimal solution
for the MMA case study. xtol is the product quality band width.

Case Parameter change Opt. Sequence Profit [$/hr] Cyc. time [hrs] Trans. time [hrs]
Base None D → A → B → C 66.0 172.2 14.13
Ia +50% Inv. Cost. D → A → B → C 60.0 140.1 14.13
Ib -50% Inv. Cost. D → A → B → C 85.9 244.3 14.13
IIa +20% Raw M. Cost. D → A → B → C 61.9 182.3 14.13
IIb -20% Raw M. Cost. B → A → C → D 70.4 161.4 14.63
IIIa +50% xtol D → A → B → C 62.6 180.7 15.16
IIIb -50% xtol D → A → B → C 68.1 170.0 13.46
IVa +20% Demand A D → A → B → C 62.4 171.7 14.13
IVb -20% Demand A D → A → B → C 69.9 173.5 14.13
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Figure 1: (a) The cyclic time is divided into slots and within each slot a steady-state
production period is followed by a transition period. (b) Within each slot the system
states x and the manipulated variables u remain constant. However during the transition
period the manipulated variables change and so does the system states.
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Figure 2: Simultaneous discretization approach for dealing with dynamic optimization
problems. Each slot k is divided into Nfe finite elements. Within each finite element f a
set of Ncp collocation points c is selected.
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Figure 3: Monomer conversion (a) and feed stream flow rate (Qm) (b) profiles during
production cycle. Note: Conversion during production stages in figure (a) is kept within
upper and lower quality bounds
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Figure 4: Costs and Profit balance of different solutions for the HIPS case study
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Figure 5: Conversion (a) and monomer feed stream flow rate (b) profiles of chosen grade
transition in original (reactor volume = 6000 lts). Conversion (c) and monomer feed
stream flow rate (d) profiles of chosen grade transition in modified systems (reactor volume
= 2500 lts).
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Figure 6: Conversion (a) and Monomer feed stream flow rate (b) profiles of slot 1 transition
for simultaneous and sequential solutions
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Figure 7: Monomer conversion (a) and feed stream flow rate (Qm) (b) profiles during
production cycle for iterative solution.
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Figure 8: Molecular weight distribution (a) and feed stream flow rate (Qm) (b) profiles
during production cycle. Note: MWD during production stages in figure (a) is kept within
upper and lower quality bounds
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