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Abstract

Energy recovery is a process strategy seeking to improve process efficiency through

the capture, recycle and deployment of normally neglected low energy content

sources or streams. By proper optimal process design, such low-temperature en-

ergy sources can be a feasible and economical manner of approaching the energy

recovery issue. In particular, when Rankine cycles with mixtures as working fluids

are used, the amount of energy recovery can be improved. The formulation and

systematic solution of this problem has shown better results when all the variables

of the Rankine cycle and the compositions of the working fluid are considered simul-

taneously. Another interesting approach is the implementation of multiple cycles

coupled together. In this work we propose a nonlinear optimization formulation of

two general multistage approaches for the Rankine cycle with mixtures: the cascade

and series configurations. As main decision variables, we have considered the heat

source conditions and the mixture components. Then, the resulting optimization

problem is solved in a deterministic approach as a nonlinear program. The results

shown that for some cases the multistage configurations are useful but limited in

terms of cost in comparison to the single stage cycle.
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1 Introduction

The generation of energy with low-environmental cost technologies is an important matter

that has been continuously assessed over the years. One particular appealing idea is

conversion of low-temperature heat to power by means of an Organic Rankine Cycle

(ORC) [1, 2]. The performance of the ORC can be improved by several strategies, like

modifications of the cycle configuration, pure and mixture working fluids selection and

design. Linke et al. [3] performed an in depth review of the state of the art systematic

methods for the ORC design.

Recent approaches on the selection and design of the working fluid, either pure or mix-

ture include the following works. Mavrou et al. [4] investigated the selection of working

fluid mixtures through sensitivity analysis; their framework enabled them to identify the

operating parameters whose variation impacted the ORC performance the most, and the

mixture which has the best performance under variable conditions. Braimakis et al. [5] in-

vestigated several pure fluids and binary mixtures with both sub-critical and supercritical

operations. They found that the supercritical ORC with low critical temperature fluids

and moderate to high heat source temperatures displays an increase of exergetic efficiency.

Lampe et al. [6] created a framework for the simultaneous selection of the working fluid

and process optimization through a continuous molecular targeting approach. They were

able to identify the best performing fluids from a large database. Lecompte et al. [7]

presented an overview of the ORC architectures.

A relevant work on the simultaneous mixture and operating conditions selection by

means of nonlinear optimization was previously presented [8]. In this work a nonlinear

model was developed and solved for a set of case studies. It was found that optimal

mixtures only require a few components; forcing additional species into the mixture does

not improve the efficiency of the cycle.

As part of the cycle configuration approaches, the multistage concept has been devel-

3



oped by various authors with a number of configurations. The basic idea is to consider

several pieces of equipment, so more power is generated or a less costly scheme is obtained.

In this regard, Kosmadakis et al. [9] carried out an economic assessment of a two-stage

Solar Organic Rankine Cycle that drives an desalinization unit. The evaluated cycle in

this paper is in a cascade configuration, and showed a better efficiency and lower specific

cost than a single-stage. Morisaki et al. [10] introduced a formula for the calculation

of the maximum power of a multistage heat engine (which is the basic idea of the series

configuration in this work). They found that the multi-stage configuration doubled the

power in comparison to the single-stage, although the efficiency is constant regardless

the number of stages. Yun et al. [11] evaluated an experimental ORC with multiple

expanders that works in parallel. They found the multiple expander design is better

than the basic-ORC when they are subject to large variations in the amounts of waste

heat produced. Li et al. [12] evaluated the performance of two configurations of ORCs

where the heat source is segmented into two temperature ranges. They found that the

series configuration has better performance than the parallel cycle. Stijepovic et al. [13]

developed a mathematical model based on the exergy composite curves for the analysis

of ORCs with a multi-pressure configuration. Then, they implemented an optimization

strategy that determined the number of pressure loops and operating parameters.

The potential of simultaneous multiple Rankine cycles is generally recognized, al-

though there are many different configurations, it is necessary to develop a generic scheme

of multistage ORCs and to draw a conclusion on the improvements.

Additionally, the design of the working fluid mixtures for this kind of configurations

has not been addressed. It is possible to implement an individual mixture for each stage,

and have stages absorbing heat in various ways. With this, it is also possible to compare

the cost implications of these configurations and draw a conclusion on their potential.

Therefore, in this work we propose the extension of ORCs with mixtures to multistage

configurations, all developed with an equation oriented approach, meaning that every

4



aspect from thermodynamics to cost constraints are included and solved simultaneously

in a nonlinear optimization model. To our best knowledge, such a problem has not been

considered in the open research literature.

2 Problem Definition

The appropriate selection of the operating conditions and mixture composition is a way

of increasing the efficiency of the power generation of the Rankine Cycle (RC) with low-

temperature heat sources. But even in the most efficient RC, heat rejection is considerable

and unavoidable. Because we are still far from the upper limit imposed by the thermo-

dynamics, it is reasonable to assume that by absorbing more heat by means of a more

complex scheme, the efficiency of the cycle would be better than that achieved by the

simple RC.

A natural way of trying to absorb more heat than in a single RC would be using a

second cycle at the same time. How the second RC should be coupled with the heat

source is a more complicated issue if we consider that there is no unique way of doing

this. A single RC takes heat from the heat source (HS) in the vaporizer (Figure 1). We

could partition the HS stream and send the resulting streams to an individual RC (in this

case two HS streams two RCs). If we recognize that the HS heat content could also be

partitioned, then every part of the heat could be used in a RC. This is the idea of the

series-connected RC (Figure 2). The main difference between these two processes is that

the first one is a physical split of the HS stream, while the second is an energy split.

If we try to find the optimal operating conditions from the above stated configurations,

we would find that only the second one (i.e. the Series RC) matters, because if we set-

up a molar basis model the solution of the first one would be two identical cycles (or

the single cycle solution). Also, the second problem would be the determination of the

optimal operating conditions and the composition of the working fluid mixtures for each
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Figure 1: The Rankine Cycle
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Figure 2: Two-stage Series flow diagram
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cycle simultaneously.

Other possible configuration revolves around the fact that every individual RC has to

reject heat. A second cycle can take the rejected heat from the first cycle and then to

generate power from it. This succession ends in the rejection of heat to the sink by the

second cycle and is the basic idea of the Cascade configuration is shown in Figure 3.

Heat source (HS)

Heat Sink (CS)

s=1

s=2

Figure 3: Two-stage Cascade flow diagram

Every consecutive cycle in the Cascade configuration would have to absorb a smaller

amount of heat, and possibly minimize the heat rejection. The two configurations of

multiple RCs can be further generalized as shown by the Figures 4 and 5, where a large

number of cycles can be implemented.

Naturally we can expect some impact on the efficiency of the overall cycle. But it is

also important to consider the economic implications in terms of what these configurations

do to the price that we have to pay for the electricity produced. This is why the sizing

of the equipment becomes a necessity. With all this information comprised into a model,
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Figure 4: The series configuration, a heat flow from Source (HS) to Rankine cycles (RC)
and to the Heat Sinks (CS).

we can make decisions on the mixtures that are used as working fluids, and the operating

conditions at which the cycle is carried out.

Assuming that several sources of low-temperature heat are available, and that maxi-

mum heat recovery (trough power generation) is desired, then, there are two key elements

that we can exploit to achieve this goal: (a) a set of multistage series/cascade Rankine

cycles with variable pressures, temperatures, flows, etc.; and (b) a working fluid that is

mixture of a set of predefined components suitable for the low-temperature application

with variable composition.

The problem to be addressed in this work can be stated as follows: “For a given low-

temperature heat source the problem consists in simultaneously obtaining the optimal

mixture composition of the working fluid from some predefined components, and the

optimal operating conditions of a set of series or cascade coupled Rankine cycles such

that to maximum energy recovery or minimum electricity cost are achieved”.
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Figure 5: The cascade scheme. Heat flow from Heat Source (HS) through Rankine cycles
(RC) to the Heat Sink (CS)
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3 Optimization Formulation

3.1 Sets

The sets required for the algebraic formulation of the problem are defined as follows:

• The Available chemical species i, j ∈ I

• The stage s ∈ STG = {1, 2, .., SL}; if the cycle is single stage then STG = {1}.

• The UNIFAC functional group k,m, n ∈M related to the activity coefficients.

• The phase f ∈ F = { Liquid(L),Vapor(V) }, for calculations that are for a particular

phase.

• The equilibrium or two phase point π ∈ Π = {Bubl,1,2,3,..,Dew} (1,2,3, are internal

points between bubble and dew point).

• The pressure level p ∈ L = { High,Low }, which relates to its location in the cycle.

• The subcool o ∈ O={Sub,SubS} and superheat (nonisentropic,isentropic) o ∈ O ={Over,OverS}

; O ∪ O = O. Which imply variables that are not at equilibrium and are exclusive

for single phase.

Moreover, it should be noted that there are two main groups of variables, the off-

superheat/subcool and the on-superheat/subcool (denoted with the index o).

The optimization algebraic models are summarized in Figure 7. The equations are

distributed in four main groups: (1) the equation of state group Zs which contains infor-

mation related to the compressibility factors; (2) the activity coefficients Gs which contain

the core of the UNIFAC method of activity coefficients; (3) the equilibrium and property

set Bd which contains the enthalpy, entropy, fugacity and equilibrium relationships; and

(4) the ϕs constraints that are comprised of the isentropic, nonisentropic, heat and work
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Figure 6: Graphic representation of some of the sets.

equations. It should be remarked that in Figure 7, U s stands for single and series ex-

clusive constraints, and U
C

s for the multistage cascade constraints. Note that for Figure

7-(b) there are disjunctive terms which involve the temperature matching equations ts

3.2 Objective functions Ω

(1) The maximization of the first law efficiency (ηI)

max
T ,P ,z,X

ηI (1)

where T stands for the temperatures Tsπp and TSsop, P is the pressure Psp, z the

compositions zis, and X is the rest of variables of the model (e.g. molar flows,

thermodynamic properties, etc). The aim of this objective function consists in

calculating the operating conditions such that the cycle featuring the largest energy

output to heat input ratio(first law efficiency) is designed.
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Ω
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s ∈ STG

(b)

Figure 7: Model for the mixture-ORC (a) Single stage (U s = U
1

s, s = 1), and multi-stage

series (U s = U
S

s , s ∈ STG). (b) Cascade multi-stage
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(2) The minimization of the cost per annual MWh (C̃)

min
T ,P ,z,X

C̃ (2)

This objective function is the ratio between the updated base cost of the cycle plus

the overall utilities over its whole lifespan, and the electricity produced in a year (see

eq. 184). The aim of using this objective function is to design a cycle whose cost

is justified through its energy production. In other words, it implies that whatever

cycle is obtained, it would be the one what has the less costly power generation

accounting for the operation and fixed cost of the cycle itself.

3.3 Constraints

(1) Equations of state Zs

(
T s,P s, zs

)
= 0

A large part of the algebraic model is used to describe the thermodynamics of the cycle

by means of equations of state (EOS). The EOS are used in two main forms: for pure

components and for mixtures. The thermodynamic behavior of the pure components was

described with the Soave-Redlich-Kwong equation of state (SRK) [14]. For mixtures,

the Predictive-SRK equation of state (PSRK) [15] was used. This last equation is an

extension of the SRK equation for a mixture, with the activity coefficients as part of a

mixing rule.

Regarding the notation used in this work, some variables are exclusive of pure com-

ponents like the temperature functions (fT )isπp or αisπp, while others are only related to

the mixture like α̂sπp or αisπp. Additionally, the notation of the equation definitions are

simplified. The equations in the form: “variablesindexes =expression” are always defined

over: “indexes∈Set” (e.g. Eq. 3 with i ∈ I, s ∈ STG, π ∈ Π, p ∈ L), except when is

explicitly stated in the equation (e.g. i ∈ I, s ∈ STG, π ∈ Π, p ∈ L).
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The temperature function variables from the SRK EOS for pure at equilibrium, refer-

ence and superheat temperatures are as follows:

(fT )isπp =
[
1 + cω,i

(
1− (Tsπp/Tci)

0.5)]2 (3)

(fRT )isp =
[
1 + cω,i

(
1− (TRFisp/Tci)

0.5)]2 (4)

(fST )isop =
[
1 + cω,i

(
1− (TSsop/Tci)

0.5)]2 (5)

where Tsπp,TRFisp, and TSsop are the equilibrium, reference and superheat temperatures.

cω,i are the acentric parameters and Tci are the critical temperatures. The variables for

the EOS polynomial are given by the following equations:

αisπp =
0.42748RgTc2i (fT )isπp

PcibiTsπp
(6)

aRisp =
0.42748RgTc2i (fRT )isp

PcibiTRFisp
(7)

aSisop =
0.42748RgTc2i (fST )isop

PcibiTSsop
(8)

βsat
isπp =

biP
sat
isπp

RgTsπp
(9)

bRisp =
biPsp

RgTRFisp
(10)

where P sat
isπp is the saturation pressure, Rg is the gas constant, Pci is the critical pressure

and bi is a pure component parameter. The corresponding mixture variables are the

following:

b̂sπp =
∑
i∈I

xisV πpbi (11)

β̂sπp =
b̂sπpPsp
RgTsπp

(12)
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b̂Ssop =
b̂s,Dew,pPsp
RgTSsop

(13)

where xisV πp is the equilibrium vapor phase composition and Psp is the cycle pressure.

The PSRK (Predictive-SRK) mixing rule involves the compositions and the Gibbs excess

energy of the mixture GsπV p (and GSsop for superheat) given by the activity coefficients.

α̂sπp = − 1

0.64663

(
GsπV p +

∑
i∈I

xisV πp ln
b̂sπp
bi

)
+
∑
i∈I

xisV πp(αisπp) (14)

âSsop = − 1

0.64663

(
GSsop +

∑
i∈I

zis ln
b̂s,Dew,p

bi

)
+
∑
i∈I

zis(aSisop) (15)

Considering that âSsop is at nonphase-equilibrium conditions, the global composition zis

is then used. Also the molar partial variable is given by,

αisπp =
1

A1

(
ln γisπV p + ln

β̂sπp
βi

+
βisπp

β̂sπp
− 1

)
+ αisπp (16)

where ln γisπV p is the activity coefficient with the composition of the vapor phase and A1 is

a parameter. Next, the constraints that are related to the compressibility factor variable

are cubic polynomials. Each one of these constraints is related to a required state, namely

pure saturation, reference temperature, mixture at equilibrium and nonequilibrium.

(
Zsat
isπp

)3 − (Zsat
isπp

)2
+
[
−βsat

isπp −
(
βsat
isπp

)2
+ αisπpβ

sat
isπp

]
Zsat
isπp − αisπp

(
βsat
isπp

)2
= 0

i ∈ I, s ∈ STG, π ∈ Π, p ∈ L
(17)

(ZRisp)
3 − (ZRisp)

2 +
[
−bRisp − (bRisp)

2 + aRispbRisp

]
ZRisp − aRisp (bRisp)

2 = 0,

i ∈ I, s ∈ STG, p ∈ L
(18)

(
Ẑsπp

)3
−
(
Ẑsπp

)2
+

[
−β̂sπp −

(
β̂sπp

)2
+ α̂sπpβ̂sπp

]
Ẑsπp − α̂sπp

(
β̂sπp

)2
= 0,

s ∈ STG, π ∈ Π, p ∈ L
(19)
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(
ẐSsop

)3
−
(

ẐSsop

)2
+

[
−b̂Ssop −

(
b̂Ssop

)2
+ âSsopb̂Ssop

]
ẐSsop − âSsop

(
b̂Ssop

)2
= 0,

s ∈ STG, o ∈ O, p ∈ L

(20)

where Zsat
isπp,ZRisp, Ẑsπp and ẐSsop are the respective compressibility factors. It should be

noted that because the previous equations are cubic polynomials, more than one root

is expected. Only one is useful for our purposes (i.e. the vapor root). Therefore, we

require a way of discerning which of the roots are we obtaining at the same time that the

problem is being solved. This is problematic; however a simple yet convenient method

for dealing with this issue is by adding the two constraints introduced in [16]. These two

constraints involve the first and second derivatives of the previous equations. Then, the

first derivative constraints are:

3
(
Zsat
isπp

)2 − 2Zsat
isπp +

[
−βsat

isπp −
(
βsat
isπp

)2
+ αisπpβ

sat
isπp

]
≥ 0,

i ∈ I, s ∈ STG, π ∈ Π, p ∈ L
(21)

3
(
Ẑsπp

)2
− 2Ẑsπp +

[
−β̂sπp −

(
β̂sπp

)2
+ α̂sπpβ̂sπp

]
≥ 0,

s ∈ STG, π ∈ Π, p ∈ L
(22)

3 (ZRisp)
2 − 2ZRisp +

[
−bRisp − (bRisp)

2 + aRispbRisp

]
≥ 0,

i ∈ I, s ∈ STG, p ∈ L
(23)

3
(

ẐSsop

)2
− 2ẐSsop +

[
−b̂Ssop −

(
b̂Ssop

)2
+ âSsopb̂Ssop

]
≥ 0,

s ∈ STG, o ∈ O, p ∈ L
(24)

And the second derivative constraints:

6
(
Zsat
isπp

)
− 2 ≥ 0, i ∈ I, s ∈ STG, π ∈ Π, p ∈ L (25)
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6
(
Ẑsπp

)
− 2 ≥ 0, s ∈ STG, π ∈ Π, p ∈ L (26)

6 (ZRisp)− 2 ≥ 0, i ∈ I, s ∈ STG, π ∈ Π, p ∈ L (27)

6
(

ẐSsop

)
− 2 ≥ 0, s ∈ STG, o ∈ O, p ∈ L (28)

These equations collectively will allow us to obtain an appropriate root for the compress-

ibility factor.

(2) Activity Coefficients Gs

(
T s,P s, zs,X

)
= 0

The versatility of the UNIFAC [17] method makes it appropriate for this model, since it

does not require pure component experimental information, just the binary interaction

parameters for each functional group pair in the mixture, and two additional parameter

for each group. The only disadvantage is that it depends on binary interaction parameters

amn.

The following equations are the core of the UNIFAC activity coefficients model.

ln γisπfp = ln γCisπfp + ln γRisπfp (29a)

ln γCisπfp = ln
ri∑

j∈I
rjxjsπfp

+
10

2
qi ln

qi
∑
j∈I

rjxjsπfp

ri
∑
j∈I

qjxjsπfp
+ li −

ri∑
j∈I

rjxjsπfp

∑
j∈I

xjsπfplj (29b)

ln γRisπfp =
∑
k∈M

νik (ln Γksπfp − lGPiksπp) (29c)

lGPiksπp = Qk

1− ln

(∑
m∈M

TPimΨmksπp

)
−
∑
m∈M

TPimΨkmsπp∑
n∈M

TPinΨnmsπp

 (29d)

ln Γksπfp = Qk

1− ln

(∑
m∈M

θmsπfpΨmksπp

)
−
∑
m∈M

θmsπfpΨkmsπp∑
n∈M

θnsπfpΨnmsπp

 (29e)
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θmsπfp =
QmXmsπfp∑

n∈M
QnXnsπfp

(29f)

Ψmnsπp = exp

(
− amn
Tsπp

)
(29g)

Xmsπfp =

∑
i∈I
xisπfpνim∑

i∈I

(
xisπfp

∑
n∈M

νin

) (29h)

The required parameters are:

ri =
∑
k∈M

νikRk (30a)

qi =
∑
k∈M

νikQk (30b)

li =
10

2
(ri − qi)− (ri − 1) (30c)

TPim =
QmXPim∑

n∈M
QnXPin

(30d)

XPim =
νim∑

n∈M
νin

(30e)

where νim is the group frequency, amn [18] is the binary interaction parameter, Rk and

Qk are group parameters. We only display the group for UNIFAC once, but in fact the

equations are required one second time with the temperature TSsop. Also, through this

work, the temperature derivatives of the activity coefficient are required. But they only

involve the temperature dependent variables, namely the equations with Ψmnsπp. We will

not show them but the derivation is straightforward and can be found elsewhere [19].
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(3) Equilibrium and Property constraints Bs

(
T s,P s, zs,X

)
= 0

(a) Equilibrium. The equilibrium constraints consist of equalities involving fugacity

coefficients, K-value and the Rachford-Rice equation. These equations are only defined

for the two-phase region of the cycle, i.e. inside the heat exchangers. First, the fugacity

coefficient constraints are defined for the pure species at saturation pressure and the

mixture at equilibrium temperature [20].

(
ln Φsat

)
isπp

= Zsat
isπp − 1− ln

(
Zsat
isπp − βsat

isπp

)
− αisπp ln

(
Zsat
isπp + βsat

isπp

Zsat
isπp

)
(31)

(
ln Φ̂

)
isπp

=
bi

b̂sπp

(
Ẑsπp − 1

)
− ln

(
Ẑsπp − β̂sπp

)
− αisπp ln

(
Ẑsπp + βsπp

Ẑsπp

)
(32)

The K-value or equilibrium ratio as given here assumes incompressible liquids. Also the

inclusion of the activity coefficient of the liquid phase (ln γisπLp) has to be noted:

Kisπp =
exp (ln γisπLp)P

sat
isπp exp (ln Φsat)isπp

exp
(

ln Φ̂
)
isπp

Psp
(33)

Regarding the Rachford-Rice equation [21] a re-arranged version of the equation was used

because the original form is prone to becoming undefined during the solution process:

∑
i∈I

(
zis

1 + ψπ (Kisπp − 1)

∏
j∈I

(1 + ψπ (Kjsπp − 1))

)
= 0

s ∈ STG, π ∈ Π, p ∈ L

(34)

where ψπ is the vapor phase ratio. With the equilibrium constraints now defined, the last

constraints are the mole fraction of the vapor, liquid and consistency equations. For the

liquid phase:

xisLπp =
zis

(1 + ψπ (Kisπp − 1))
(35)
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whereas for the vapor phase:

xisV πp =
zisKisπp

(1 + ψπ (Kisπp − 1))
(36)

and the summations consistency equations:

∑
i∈I

zis = 1, i ∈ I (37)

∑
i∈I

xisfπp = 1, i ∈ I, s ∈ STG, π ∈ Π, p ∈ L (38)

(b) Property. The property section of the model deals with the constraints for the

vapor pressure, reference temperature, enthalpy and entropy; these last two being the

most important because they allow us to know the thermodynamic states over the cycle

and the overall energy inputs and outputs.

The vapor pressure (or saturation) and the reference temperature are each one given by

the extended Antoine equation [22]:

lnP sat
isπp = C1,i −

C2,i

Tisπp + C3,i

+ C4,iTisπp + C5,i lnTisπp + C6,iT
C7,i

isπp (39)

lnPsp = C1,i −
C2,i

TRFisπp + C3,i

+ C4,iTRFisπp + C5,i ln TRFisπp + C6,iTRF
C7,i

isπp (40)

The first equation gives the saturation pressure P sat
isπp for the equilibrium temperature

Tisπp, whereas the second one gives the reference temperature TRFisπp for the pressure

of the cycle Psp. Moreover, C1,i through C7,i are parameters for the pure species. These

parameters were taken from the Aspen Plus property data [23].

The enthalpy and entropy are established for the liquid and vapor phases through the

residuals (or departures from ideal gas), ideal gas and liquid changes, and the latent heat.

First, the residuals require temperature derivatives of the parameters used in the EOS
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section.

(f ′T )isp = − cω,i
Tci

[
1 + cω,i

(
1− (Ts,Dew,p/Tci)

0.5)](Ts,Dew,p

Tci

)−0.5
(41)

(fR′T )isp = − cω,i
Tci

[
1 + cω,i

(
1− (TRFisp/Tci)

0.5)](TRFisp
Tci

)−0.5
(42)

(fS′T )isop = − cω,i
Tci

[
1 + cω,i

(
1− (TSsop/Tci)

0.5)](TSsop
Tci

)−0.5
(43)

aR′isp = 0.42748 (fR′T )isp (44)

a′isp = 0.42748 (f ′T )isp (45)

aS′isop = 0.42748 (fS′T )isop (46)

The temperature derivatives of the mixture variables are related to the Gibbs excess

energy derivatives G′sp and GS′sop.

â′sp =
G′sp
A1

+

(∑
i∈I

zis
a′isp
bi

R2
gTc2i
Pci

)
+
Rg

A1

∑
i∈I

zis ln

(
b̂s,Dew,p

bi

)
(47)

âS′sop =
GS′sop

A1
+

(∑
i∈I

zis
aS′isop
bi

R2
gTc2i
Pci

)
+
Rg

A1

∑
i∈I

zis ln

(
b̂s,Dew,p

bi

)
(48)

The enthalpy (
(
HR
)
sp
,HRRFisp and (HR)sop) and entropy (

(
SR
)
sp
, SRRFisp and (SR)sop)

residual equations [20] are defined for assessing the phase equilibrium behavior, the ref-

erence state and the superheat states. Enthalpy:

(
HR
)
sp

= −
(
α̂s,Dew,p −

â′sp
Rg

)
ln

Ẑs,Dew,p

Ẑs,Dew,p + β̂s,Dew,p

+ 1− Ẑs,Dew,p (49)

HRRFisp = −

(
aRisp −

aR′ispRgTc2i
Pcibi

)
ln

ZRisp

ZRisp + bRisp

+ 1− ZRisp (50)

(HR)sop = −
(

âSsop −
âS′sop
Rg

)
ln

ẐSsop

ẐSsop + b̂Ssop
+ 1− ẐSsop (51)
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Entropy:

(
SR
)
sp

= − ln
(
Ẑs,Dew,p − β̂s,Dew,p

)
+
â′s,Dew,p

Rg

ln
Ẑs,Dew,p

Ẑs,Dew,p + β̂s,Dew,p

(52)

SRRFisp = − ln (ZRisp − bRisp) +
aR′ispRgTc2i

Pcibi
ln

ZRisp

ZRisp + bRisp

(53)

(SR)sop = − ln
(

ẐSsop − β̂s,Dew,p

)
+

âS′sop
Rg

ln
ẐSsop

ẐSsop + b̂Ssop
(54)

Note that the residuals are given in terms of temperature derivatives of the SRK and

PSRK variables and the compressibility factor. For the definition of the properties we

also need the ideal gas changes. Both use equations with parameters fitted from the

integrated form of an equation used in [8]. This leaves consistently simple equations,

although the accuracy of the predicted change values is reduced. Once again three states

are evaluated, so three equations for each property are required.

Enthalpy:

Hu
(
DHRid

)
isp

=

cpx1i
3

[
(TRFisp)

3 − 298.153
]

+
cpx2i

2

[
(TRFisp)

2 − 298.152
]

+ cpx3i [TRFisp − 298.15]

(55)

Hu
(
∆H id

)
isp

=

cpx1i
3

[
(Ts,Dew,p)

3 − 298.153
]

+
cpx2i

2

[
(Ts,Dew,p)

2 − 298.152
]

+ cpx3i [Ts,Dew,p − 298.15]

(56)

Hu (∆Hs)isop =

cpx1i
3

[
(TSsop)

3 − 298.153
]

+
cpx2i

2

[
(TSsop)

2 − 298.152
]

+ cpx3i [TSsop − 298.15]
(57)
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Entropy:

Su
(
sTRid

)
isp

=

cpx1i
2

[
(TRFisp)

2 − 298.152
]

+ cpx2i [TRFisp − 298.15] + cpx3i [ln (TRFisp)− ln 298.15]

(58)

Su
(
∆Sid

)
isp

=

cpx1i
2

[
(Ts,Dew,p)

2 − 298.152
]

+ cpx2i [Ts,Dew,p − 298.15] + cpx3i [ln (Ts,Dew,p)− ln 298.15]

(59)

Su (∆Ss)isop =

cpx1i
2

[
(TSsop)

2 − 298.152
]

+ cpx2i [TSsop − 298.15] + cpx3i [ln (TSsop)− ln 298.15]
(60)

where the parameters cpx1i through cpx3i are reported in the results section. It has to be

noted that the parameters Hu and Su were also added as scaling factors in all enthalpy

equations. We also implemented this last technique for the liquid property changes. This

time the pure parameters cpl1i to cpl3i were used. Enthalpy:

Hu (∆Hlisp) =

cpl1i
3

[
(Ts,Bubl,p)

3 − TRF3
isp

]
+

cpl2i
2

[
(Ts,Bubl,p)

2 − TRF2
isp

]
+ cpl3i [Ts,Bubl,p − TRFisp]

(61)

Hu (∆HlSisop) =

cpl1i
3

[
(TSsop)

3 − TRF3
isp

]
+

cpl2i
2

[
(TSsop)

2 − TRF2
isp

]
+ cpl3i [TSsop − TRFisp]

(62)
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Entropy:

Su (∆Slisp) =

cpl1i
2

[
(Ts,Bubl,p)

2 − TRF2
isp

]
+ cpl2i [Ts,Bubl,p − TRFisp] + cpl3i [ln (Ts,Bubl,p)− ln TRFisp]

(63)

Su (∆SlSisop) =

cpl1i
2

[
(TSsop)

2 − TRF2
isp

]
+ cpl2i [TSsop − TRFisp] + cpl3i [ln (TSsop)− ln TRFisp]

(64)

Only two states for the liquid phase are needed (i.e. equilibrium and nonequilibrium).

Reference vaporization enthalpy (latent heat) equation through the Watson equation [14]:

(
DhRlv

)
isp

= ∆hBLV
i

(
1− TRFisp/Tci

1− Tbri

)0.375

(65)

Those constraints lead to the definition of the molar properties. In the case of the liquid

phase, start from the formation enthalpy and Gibbs free energy (DHFi and DGFi) of the

pure species at ideal gas state with 298.15 K and 1 atm. Then the changes go from pure

ideal to real gas, pressure correction, condensation at the reference temperature, ideal

liquid solution to real liquid solution, and liquid change to the final temperature (Ts,Bubl,p

or TSsop). All these steps of calculation are embedded in the following 4 equations for the

liquid phase enthalpy and entropy.

Enthalpy:

hsp =
∑
i∈I

zis

[
DHFi

Hu
+
(
DHRid

)
isp
− 8.314

Hu
TRFispHRRFisp −

(
DhRlv

)
isp

+ ∆Hlisp

]
(66)

hSsop =
∑
i∈I

zis

[
DHFi

Hu
+
(
DHRid

)
isp
− 8.314

Hu
TRFispHRRFisp −

(
DhRlv

)
isp

+ ∆HlSisop

]
(67)
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Entropy:

ssp =∑
i∈I

zis

[
DHFi −DGFi

Su · 298.15
+
(
sRid

)
isp
− 8.314

Su

[
ln

(
Psp

1.01325

)
+ SRRFisp

]
− Hu

Su

(
DhRlv

)
isp

TRFisp
+ ∆Slisp

]
(68)

sSsop =∑
i∈I

zis·[
DHFi −DGFi

Su · 298.15
+
(
sRid

)
isp
− 8.314

Su
ln

(
Psp

1.01325

)
+

8.314

Su
SRRFisp −

Hu

Su

(
DhRlv

)
isp

TRFisp
+ ∆SlSisop

]
(69)

The vapor phase properties follow a shorter trajectory, from ideal gas at 298.15 K and 1

atm, ideal gas change, pressure change, and ideal gas mixture to real gas mixture. The

gas enthalpy is given by:

Hsp =
∑
i∈I

zis

[
DHFi

Hu
+
(
∆H id

)
isp

]
−
(
HR
)
sp
Ts,Dew,p

8.314

Hu
(70)

HSsop =
∑
i∈I

zis

[
DHFi

Hu
+ (∆Hs)isop

]
− (HR)sop TSsop

8.314

Hu
(71)

while the gas entropy by,

Ssp =
∑
i∈I

zis

[
DHFi −DGFi

Su · 298.15
+
(
∆Sid

)
isp
− 8.314

Su
ln

(
Psp

1.01325

)]
−
(
SR
)
sp

8.314

Su
(72)

SSsop =
∑
i∈I

zis

[
DHFi −DGFi

Su · 298.15
+ (∆Ss)isop −

8.314

Su
ln

(
Psp

1.01325

)]
− (SR)sop

8.314

Su
(73)

It should be noted that the units of the enthalpy and entropy are relative to the value of

the factors Hu and Su.
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(4) Operation constraints ϕs

(
P s,T s, zs,X

)
≤ 0

These constraints take into account the physical pressure and temperature restrictions of

the model, compression and expansion properties, and mole ratios.

Pressure level constraint:

Ps,High − Ps,Low ≥ 0.1, s ∈ STG (74)

Operation strictly under the critical temperatures (Tci):

Tsπp
Tci
≤ 0.9999, s ∈ STG, π ∈ Π, p ∈ L (75)

TSsop
Tci

≤ 0.9999, s ∈ STG, o ∈ O, p ∈ L (76)

Temperature consistency:

TSs,Over,p − Ts,Dew,p ≥ 0, s ∈ STG, p ∈ L (77)

Ts,Bubl,p − TSs,Sub,p ≥ 0, s ∈ STG, p ∈ L (78)

TSso,High − TSso,Low ≥ 0, s ∈ STG, o ∈ O (79)

Tsπ,High − Tsπ,Low ≥ 0, s ∈ STG, π ∈ Π (80)

Entropy consistency:

SSs,Over,p − Ssp ≥ 0, s ∈ STG, p ∈ L (81)

ssp − sSs,Sub,p ≥ 0, , s ∈ STG, p ∈ L (82)

ss,High − ss,Low ≥ 0, s ∈ STG (83)
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Isentropic turbine:

SSs,OverS,High − SSs,OverS,Low = 0, s ∈ STG (84)

Isentropic pump:

sSs,SubS,High − sSs,SubS,Low = 0, s ∈ STG (85)

Actual turbine enthalpy change:

ηT (HSs,OverS,High − HSs,OverS,Low)− (HSs,Over,High − HSs,Over,Low) = 0, s ∈ STG (86)

Actual pump enthalpy change:

ηP (hSs,Sub,High − hSs,Sub,Low)− (hSs,SubS,High − hSs,SubS,Low) = 0, s ∈ STG (87)

Where ηT , ηP are the isentropic efficiencies. Remaining enthalpies:

hSs,Sub,Low − hSs,SubS,Low = 0, s ∈ STG (88)

HSs,Over,High − HSs,OverS,High = 0, s ∈ STG (89)

Molar Heat transfered:

Qsp = HSs,OverS,p − hSs,SubS,p (90)

Pump and turbine work (positive form):

(WP )s = (hSs,Sub,High − hSs,Sub,Low) (91)

(WT )s = (HSs,Over,High − HSs,Over,Low) (92)
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(5) Single stage U
1

s

(
P s,T s, zs,X

)
≤ 0

In general, the heat source and sink have two fixed temperatures at which they enter

and leave the heat exchangers. The mole flow of the heat source (nW) is also fixed and

all these variables must be known beforehand. The minimum temperature approach is

enforced not only at the inlet and outlet, but also for the internal two-phase points. The

following equations represent these goals. For the heat source inlet (Twmn) and outlet

(Twmx) temperatures:

TS1,Sub,High + 5 ≤ Twmn (93)

TS1,Over,High + 5 ≤ Twmx (94)

Note that the index s: s = 1. Internal two-phase points of the cycle with the heat source

temperature matches (TwHsπ):

T1,π,High + 5 ≤ TwH1,π, π ∈ Π (95)

and their respective counterparts with the heat sink (with TwCmin for inlet and TwCmax

for outlet):

TSs,Sub,Low − 5 ≥ TwCmn, s ∈ STG (96)

TSs,Over,Low − 5 ≥ TwCmx, s ∈ STG (97)

Tsπ,Low − 5 ≥ TwCsπ, s ∈ STG, π ∈ Π (98)

Note that the s index was intentionally left open, but for a single stage is strictly equal

to 1.

The heat balances are defined for both heat source and sink:

nH ·DHHT = n1Q1,High (99)
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Figure 8: Temperature matches.

nCs · 75.3120 (TwCmx− TwCmn) = nsQs,Low, , s ∈ STG (100)

and the internal two phase points of the cycle as well:

n1

(
Hp1,π,High − hS1,Sub,High

)
= nH · dHHS1,π, π ∈ Π (101)

ns
(
Hps,π,Low − hSs,Sub,Low

)
= nCs · 75.3119 (TwCsπ − TwCmn) , s ∈ STG, π ∈ Π (102)

Finally, the constraints representing the enthalpy point at the two phase regions of the

cycle (Hpsπp) and the enthalpy change of the heat source at the temperature matches are:

Hpsπp = hsp + ψπ (Hsp − hsp) (103)
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Hu (dHHSsπ) =
cplW1

3

[
(TwHsπ)3 − Twmn3

]
+

cplW2

2

[
(TwHsπ)2 − Twmn2

]
+cplW3 [TwHsπ − Twmn]

(104)

(6) Multi-Stage Cascade U
C

s

(
P s,T s, zs,X

)
≤ 0

The Cascade configuration involves the successive heat transfer from the heat source

to the first cycle, from the first cycle to second one and so on, until the last cycle is

reached which then rejects the remaining heat to the sink. Modeling the temperature

and enthalpy T −H changes in the heat exchangers between cycles is considerably more

difficult than the usual single-phase heat sink and source exchangers. In the in-between

cycle exchangers, there are two liquid, vapor and two-phase regions and none of the T−H

models are the same for these regions. In addition, a minimum temperature approach

must be enforced so heat transfer can take place (i.e. a minimum temperature approach

must be enforced over the whole enthalpy change). This means that at the solution process

the solver would have to switch from different T −H equations depending on which phase

the minimum temperature approaches are active. One way of solving these issues would

be implementing disjunctions over the T−H equations and defining a number of enthalpy

points for the minimum temperature to be checked. The application of disjunctions is

performed through generalized disjunctive programming (GDP) [24]. The GDP model in

this case includes a new decision: the phase at which each of these temperature approach

occur.

As shown in Figure 9, the selected enthalpy points to be matched were the low pressure

dew point (LPDP) and the high pressure bubble point (HPBP). The selection of these

two points simplifies the whole scheme because it is highly unlikely that each of these two

points would cross more than two regions, i.e. the LPDP match will not occur before the

bubble point of the next cycle at high pressure and neither the HPBP match beyond the

dew point of the previous cycle.
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Figure 9: Cycle profiles inside the heat exchanger and the selected enthalpy points. Note
that this is a case where both temperature matches lie on the two phase region, but it is
not restricted to that case.

We now define the equations that are required only for the cascade multistage config-

uration. First, all of the equations of the single stage heat source and sink matches also

apply here, with only one modification: s = SL in equations (96) through (98), (100),

(102) and (103). Furthermore, the appropriate heat balances in between cycles and the

minimum temperature approach constraints are defined.

Inter-stage heat balance:

nsQs,Low = ns+1Qs+1,High, s|s < SL (105)

Minimum temperature approach at the low pressure region (temperature match ap-

proximations with temperatures defined in Figure 9):

tLs − 5 ≥ Ts+1,Bubl,High, s|s < SL (106)
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Minimum temperature approach at the high pressure region:

tUs+1 + 5 ≤ Ts,Dew,Low, s|s < SL (107)

Finally, only the disjunctive terms that allow to chose which enthalpy model is used

to calculate the matching temperatures inside the heat exchangers are left to be defined.

A disjunction will involve the enthalpy model for a single phase or a 2-phases; this is done

once per enthalpy point for every heat exchanger that is located in between cycles (or

s − 1 heat exchangers). The logic dictates that only one of the two phases available for

each point must be selected. All these statements are included in the following equations:

 Ŷ liq
s

t
L
s (liq) = 0

 ∨
 Ŷ 2P

s

t
L
s (2P) = 0


Ŷ liq
s ∨Ŷ 2P

s

(108)

 Y̌ vap
s

t
U
s (vap) = 0

 ∨
 Y̌ 2P

s

t
U
s (2P) = 0


Y̌ vap
s ∨Y̌ 2P

s

(109)

where the Ys are boolean variables, and the t are the respective set of constraints for phase

match. The last remark on the implementation of these constraints, is that GDP models

can be reformulated into MINLP models by using the big-M (BM) of Hull-Reformulation

(HR) [25]. The Big-M reformulation was chosen since its easier to implement. The

following subsections will display the equations that go inside each disjunctive term.

(a) Disjunction 1: Low pressure; Term 1:Liquid match t
L
s (liq) = 0

If the match is between the liquid phase of the previous cycle, then the enthalpy model

is:
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ns+1 [hs+1,High − hSs+1,Sub,High] =

ns
Hu
·[

cpx1i
3

[
(tLs)

3 − (TSs,Sub,Low)3
]

+
cpx2i

2

[
(tLs)

2 − (TSs,Sub,Low)2
]

+ cpx3i [tLs − (TSs,Sub,Low)]

]
s|s < SL

(110)

the heat balance must be consistent with the liquid phase:

ns+1 [hs+1,High − hSs+1,Sub,High] < ns [hs,Low − hSs,Sub,Low] , s|s < SL (111)

(b) Disjunction 1: Low pressure; Term 2:Two-Phase match t
L
s (2P) = 0

If the match is between the two phase region of the previous cycle, then the enthalpy

model is then approximated by the following constraints:

ns+1 [hs+1,High − hSs+1,Sub,High] = ns [hs,Low + VLs (Hs,Low − hs,Low)− hSs,Sub,Low] , s|s < SL

(112)

where VLs stands for the vapor fraction of the approximation. Then, the temperature is

approximated using the following equation:

tLs − Ts,Bubl,Low = VLs (Ts,Dew,Low − Ts,Bubl,Low) , s ∈ STG (113)

Finally, if the temperature tLs is at the two phase region, the heat balance must be

consistent (and the equality must be in opposite direction with reference to eq. (111)):

ns+1 [hs+1,High − hSs+1,Sub,High] > ns [hs,Low − hSs,Sub,Low] , s|s < SL (114)
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(c) Disjunction 2: High pressure; Term 1:Two-Phase match t
U
s (2P) = 0

If the match is between the two phase region of the previous cycle, then the enthalpy

model is:

ns [hs,Low − hSs,Sub,Low] = ns+1 [hs+1,High + ψu (Hs+1,High − hs+1,High)− hSs+1,Sub,High] , s|s < SL

(115)

tUs − Ts,Bubl,High = ψu (Ts,Dew,High − Ts,Bubl,High) , s ∈ STG (116)

and the corresponding heat balance constraint for the two-phases region:

ns [HSs,Over,Low −Hs,Low] > ns+1 [HSs+1,Over,High −Hs+1,High] , s|s < SL (117)

(d) Disjunction 2: High pressure; Term 2:Vapor match t
U
s (vap) = 0

The match over the vapor region includes all individual variables of the EOS with the

Gsπfp=1 simplification (i.e. no activity coefficients model calculation):

fTuis =
[
1 + cω,i

(
1− (tUs/Tci)

0.5)]2 (118)

auis =
0.42748RgTc2i (fTu)is

Pcibi (tUs)
(119)

bus =
b̂s,Dew,HighPs,High

Rg (tUs)
(120)

âus = − 1

0.64663

(∑
i∈I

zis ln
b̂s,Dew,High

bi

)
+
∑
i∈I

zis (auis) (121)
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(Zus)
3 − (Zus)

2 +
[
−bus − (bus)

2 + âusbus
]

Zus − âus (bus)
2 = 0, s ∈ STG (122)

3 (Zus)
2 − 2 (Zus) +

[
−bus − (bus)

2 + âusbus
]
≥ 0, s ∈ STG (123)

6 (Zus)− 2 ≥ 0, s ∈ STG (124)

fTupis = − cω,i
Tci

[
1 + cω,i

(
1− (tUs/Tci)

0.5)](tUs

Tci

)−0.5
(125)

aupis = 0.42748 (fTupis) (126)

ˆaups =

(∑
i∈I

zis
aupis
bi

R2
gTc2i
Pci

)
+
Rg

A1

∑
i∈I

zis ln

(
b̂s,Dew,High

bi

)
(127)

HRus = −
(

âus −
ˆaups
Rg

)
ln

Zus
Zus + bus

+ 1− Zus (128)

Hu (DHiuis) =
cpx1i

3

[
(tUs)

3 − 298.153
]

+
cpx2i

2

[
(tUs)

2 − 298.152
]

+ cpx3i [tUs − 298.15]

(129)

Hupsp =
∑
i∈I

zis

[
DHFi

Hu
+ (DHiuis)

]
− HRustUs

8.314

Hu
(130)
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Heat balance:

ns (Hs,Low − hSs,Sub,Low) = ns+1

(
Hups+1,p − hSs+1,Sub,High

)
, s|s < SL (131)

and heat consistency:

ns [HSs,Over,Low −Hs,Low] < ns+1 [HSs+1,Over,High −Hs+1,High] , s|s < SL (132)

(7) Multi-Stage Series U
S

s

(
P s,T s, zs,X

)
≤ 0

The series cascade configuration is rather simple in comparison to the single cascade

configuration, since all the cycles absorb and reject heat to a single-phase source or sink.

The series cascade configuration requires a partition of the heat source T−H profile which

will lead to a series of heat balances and minimum temperature approach equations. The

heat source will be partitioned in s − 1 internal temperatures Tks (note that s > 1) as

shown in Figure 10.

The corresponding heat balance of the partitions reads:

nsQs,High = nH ·∆Hes, s ∈ STG (133)

where ∆Hes is the overall enthalpy change of the partition which for the equally spaced

profile is given by DHHT divided by the total number of stages. Each one of these internal

partitions will have its own temperature matches in the two-phase region of each cycle.

For this, equation (103) must be augmented using the following balances:

ns
(
Hps,π,High − hSs,Sub,High

)
= nH · dHHXs,π, s ∈ STG, π ∈ Π (134)
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s=1
s=2

s=sLast
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Heat source
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T

H
Figure 10: Multi-Stage series RC, generalization at high pressure level of the cycle.
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Hu (dHHXsπ) =
cplW1

3

[
(TwHsπ)3 − Tk3

s

]
+

cplW2

2

[
(TwHsπ)2 − Tk2

s

]
+cplW3 [TwHsπ − Tks]

(135)

Hu (dHHXLast,π) =

cplW1

3

[
(TwHLast,π)3 − Twmn3

]
+

cplW2

2

[
(TwHLast,π)2 − Twmn2

]
+ cplW3 [TwHLast,π − Twmn]

(136)

The corresponding constraints of the minimum temperature matches are the following:

TSs,Sub,High + 5 ≤ Tks s|s < SL (137)

TSs+1,Over,High + 5 ≤ Tks s|s < SL (138)

TSSL,Sub,High + 5 ≤ Twmn (139)

TS1,Over,High + 5 ≤ Twmx (140)

Two-phase points.

Tsπ,High + 5 ≤ TwHsπ, s ∈ STG, π ∈ Π (141)

Finally, all the balances and constraints involving the temperature at the heat sink and

low-pressure region of the cycle are the same as in the case of a single stage (i.e. equations

(96) through (98), (100) and (102)).

38



(8) Efficiency

The efficiency for the cascade configuration (and single stage as well) is calculated as

follows:

(ηI) =

∑
s∈STG

ns (WT )s −
∑

s∈STG
ns (WP )s

n1Q1,High

(142)

whereas for the the series cascade configuration reads:

(ηI) =

∑
s∈STG

ns (WT )s −
∑

s∈STG
ns (WP )s∑

s∈STG
nsQs,High

(143)

(9) Sizing and Costing Cs

(
P s,T s, zs,X

)
= 0

The processing cost of the basic modules of the RC was implemented for its inclusion as

part of the objective function. The modules of the RC are: heat exchanger, turbines and

pumps.

The sizing of the heat exchangers depends on the physical configuration, materials of

construction, the overall heat transfer coefficients, temperatures and heat balances. In

this work we adopted a basic approach by fixing the first three terms, and considering the

temperature and heat variables as decision variables. Evidently those assumptions will

result in a kind of shortcut design. However, the results will provide an estimation of the

cost contribution of the heat exchangers.

Tube and shell heat exchangers were selected with split-ring head construction (TEMA

S) using 3/4 in outside diameter × 14 BWG low carbon steel tubes on a 15/16 equilateral

triangular pitch, and one tube-side pass [26]. It should be noted that no pressure drop

along the exchangers and constant overall heat transfer coefficients were assumed. The aim

of the first assumption is to avoid modeling the pressure profile along the heat exchanger

which in turn removes the deployment of differential equations to model such a profile.

Overall heat transfer coefficient were estimated from typical values of film coefficients.

The equations for the sizing of the heat exchangers are the logarithmic mean tem-
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perature differences (LMTD) and areas. Considering that there is more than one stage

configuration, the single stage equations will be presented first. The LMTD equations are

defined for three sections of each exchanger, namely liquid phase, two-phases and vapor

phase (indexes l′, e′ and v′), and two pressure sides, high and low (superscripts H and L):

(
LMTDH

l′

)
s

= [(TwHs,Bubl − Ts,Bubl,High)− (Twmn− TSs,Sub,High)] / ln

(
TwHs,Bubl − Ts,Bubl,High

Twmn− TSs,Sub,High

)
(144)(

LMTDH
e′

)
s

= [(TwHs,Dew − Ts,Dew,High)− (TwHs,Bubl − Ts,Bubl,High)] / ln

(
TwHs,Dew − Ts,Dew,High

TwHs,Bubl − Ts,Bubl,High

)
(145)(

LMTDH
v′

)
s

= [(Twmx− TSs,Over,High)− (TwHs,Dew − Ts,Dew,High)] / ln

(
Twmx− TSs,Over,High

TwHs,Dew − Ts,Dew,High

)
(146)(

LMTDL
l′

)
s

= [(Ts,Bubl,Low − TwCs,Bubl)− (TSs,Sub,Low − TwCmn)] / ln

(
Ts,Bubl,Low − TwCs,Bubl

TSs,Sub,Low − TwCmn

)
(147)(

LMTDL
e′

)
s

= [(Ts,Dew,Low − TwCs,Dew)− (Ts,Bubl,Low − TwCs,Bubl)] / ln

(
Ts,Dew,Low − TwCs,Dew

Ts,Bubl,Low − TwCs,Bubl

)
(148)(

LMTDL
v′

)
s

= [(TSs,Over,Low − TwCmx)− (Ts,Dew,Low − TwCs,Dew)] / ln

(
TSs,Over,Low − TwCmx

Ts,Dew,Low − TwCs,Dew

)
(149)

The area equations are defined for the same sections of the heat exchangers of the

LMTDs.

AHl′ =
nH · dHHS1,Bubl · Hu · 1000(

LMTDH
l′

)
1
· Ul′

(150)

AHe′ =
nH · (dHHS1,Dew − dHHS1,Bubl) · Hu · 1000(

LMTDH
e′

)
1
· Ue′

(151)

AHv′ =
nH · (DHHT− dHHS1,Dew) · Hu · 1000(

LMTDH
v′

)
1
· Uv′

(152)

(
ALl′
)
s

=
nCs · 75.3119 (TwCs,Bubl − TwCmn)(

LMTDL
l′

)
s
· Ul′

(153)
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(
ALe′
)
s

=
nCs · 75.3119 (TwCs,Dew − TwCs,Bubl)(

LMTDL
e′

)
s
· Ue′

(154)

(
ALv′
)
s

=
nCs · 75.3119 (TwCmx− TwCs,Dew)(

LMTDL
v′

)
s
· Uv′

(155)

Where the parameters U are the overall heat transfer coefficients taken from [26] and [27]

tables. Then the updated bare cost of the heat exchangers is given by the summation of

the areas of the three sections for each exchanger and some coefficients for the updated

cost [28]:

BH
CX = F0X ·

(
AHl′ + AHe′ + AHv′

S0X

)αX

(156)

(
BL
CX

)
s

= F0X ·

((
ALl′
)
s

+
(
ALe′
)
s

+
(
ALv′
)
s

S0X

)αX

(157)

where the F0X parameter takes into account the material, pressure and adjust for inflation

factors (or C0·UF·BC(MPF+MF-1) in terms of [28] notation, which they were taken

from). For the cascade multi-stage configuration heat transfer in between cycles in the

intermediate heat exchanger takes place. So, all these exchangers must be sized with the

same kind of equations that were used previously (with the change of s = SL for exchanger

of the heat sink) and the additional LMTDs and areas for the intermediate exchangers:

(
LMTDi

l′

)
s

=

[(Ts−1,Bubl,Low − Ts,Bubl,High)− (TSs−1,Sub,Low − TSs,Sub,High)] / ln

(
Ts−1,Bubl,Low − Ts,Bubl,High

TSs−1,Sub,Low − TSs,Sub,High

)
,

s|s > 1

(158)
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(
LMTDi

e′

)
s

=

[(Ts−1,Dew,Low − Ts,Dew,High)− (Ts−1,Bubl,Low − Ts,Bubl,High)] / ln

(
Ts−1,Dew,Low − Ts,Dew,High

Ts−1,Bubl,Low − Ts,Bubl,High

)
,

s|s > 1

(159)

(
LMTDi

v′

)
s

=

[(TSs−1,Over,Low − TSs,Over,High)− (Ts−1,Dew,Low − Ts,Dew,High)] / ln

(
TSs−1,Over,Low − TSs,Over,High

Ts−1,Dew,Low − Ts,Dew,High

)
,

s|s > 1

(160)

(
Ail′
)
s

=
ns · (hs,High − hSs,Sub,High) · Hu · 1000(

LMTDi
l′

)
s
· U i

l′
(161)

(
Aie′
)
s

= Hu · 1000·
[ns−1 (HSs−1,Over,Low − hSs−1,Sub,Low)− ns (hs,High − hSs,Sub,High)− ns−1 (HSs−1,Over,Low −Hs−1,Low)](

LMTDi
e′

)
s
· U i

e′
,

s|s > 1

(162)

(
Aiv′
)
s

=
ns−1 · (HSs−1,Over,Low −Hs−1,Low) · Hu · 1000(

LMTDi
v′

)
s
· U i

v′
, s|s > 1 (163)

(
Bi
CX

)
s

= F0X ·
(

(Ail′)s + (Aie′)s + (Aiv′)s
S0X

)αX

(164)

The series cascade model requires equation (150) for the stage s = SL, (151) for all s,

(152) for s = 1, (153) to (155) and their respective areas given by equations (153)-(155).

Also the following equations for the rest of the stages:

(
LMTDH

l′

)
s

= [(TwHs,Bubl − Ts,Bubl,High)− (Tks − TSs,Sub,High)] / ln

(
TwHs,Bubl − Ts,Bubl,High

Tks − TSs,Sub,High

)
(165)
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(
LMTDH

v′

)
s

= [(Tks−1 − TSs,Over,High)− (TwHs,Dew − Ts,Dew,High)] / ln

(
Tks−1 − TSs,Over,High

TwHs,Dew − Ts,Dew,High

)
(166)(

AHl′
)
s

=
nH · dHHXs,Bubl · Hu · 1000(

LMTDH
l′

)
s
· Ul′

(167)

(
AHe′
)
s

=
nH (dHHXs,Dew − dHHXs,Bubl) · Hu · 1000(

LMTDH
e′

)
s
· Ue′

(168)

(
AHv′
)
s

=
nH (∆Hes − dHHXs,Dew) · Hu · 1000(

LMTDH
v′

)
s
· Uv′

(169)

(
BH
CX

)
s

= F0X ·

((
AHl′
)
s

+
(
AHe′
)
s

+
(
AHv′
)
s

S0X

)αX

(170)

For the pump and turbine, the costing is done on the basis of the work required and

produced respectively, adjusted by the mechanical efficiency:

(SP )s = 2298.2964 · ns ·
(WP )s
ηMP

· Hu (171)

(ST )s = 1.3410 · ns ·
(WT )s
ηMT

· Hu (172)

(BCP )s = F0P

[
(SP )s
S0P

]αP

(173)

(BCT )s = F0T

[
(ST )s
S0T

]αT

(174)

All these equations account for the fixed costs of the equipment. There are other costs

related to the utilities. We only considered the cost of water for the heat source and

cooling water for the heat sink. Both of these costs are calculated with a variable cost

over an annual basis, so a yearly cost increase is taken into account.

The cost of water for a particular year yr is calculated with the simple yearly ad-

justment of the parameter CSFyr = CSF0 (1 + ir)yr, and the CEPCI which for all the

calculations in this paper assumed the value of 579.8 for October 2014 [29]. The cost for
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water are defined in [30]. For water used as heat source the cost is:

PWWyr = 579.8
[
0.0001 +

(
3.3399× 10−5

)
nH−0.6

]
+ 0.003 · CSFyr (175)

The cost of cooling water for single stage and cascade reads:

PCWyr = 579.8
[
0.0001 + (0.0017) nC−1sLast

]
+ 0.003 · CSFyr (176)

For the series model:

PCWyr = 579.8

0.0001 + (0.0017)

( ∑
s∈STG

nCs

)−1+ 0.003 · CSFyr (177)

The annual cost of regular water and cooling water is given by:

CWWyr =
(
5.6813× 105

)
PWWyr · nH (178)

Cooling cost for the single cascade:

CCWyr =
(
5.6813× 105

)
PCWyr · nCsLast

(179)

and the series model:

CCWyr =
(
5.6813× 105

)
PCWyr ·

∑
s∈STG

nCs (180)

The cost in the objective function consists of three parts: the overall updated module

cost which is a fixed cost, the overall cost of water which varies each year, and the profit

due to annual electricity production.

The overall module cost is the summation of the module costs, where the term (Bi
CX)s
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is only defined for the cascade model (i.e. zero otherwise):

FC =
∑
s∈S

[(
BH
CX

)
s

+
(
Bi
CX

)
s

+
(
BL
CX

)
s

+ (BCP )s + (BCT )s
]

(181)

The cost of water consists of the regular and cooling water annual cost summation. For

this a period of 10 years (yrL = 10) is assumed:

VC =

yrL∑
yr=1

(CCWyr + CWWyr) (182)

The annual electricity produced [MWh] (with an assumed availability of 90 % in each

year):

EG = 0.9 · 3.1536× 104 · Hu ·
∑
s∈STG

ns [(WT )s − (WP )s] (183)

Finally, the yearly cost over the whole 10 years span is defined as follows:

C̃ =
1.35FC + VC

EG
(184)

where a 35 % factor to account for the operations and maintenance cost was used.

4 Results

4.1 Comparison at configurations

In this section the optimal operating parameters and the optimal mixture composition

for a single stage RC (Figure 1), two series-connected RCs (Figure 2) and two cascade-

connected (Figure 3) are obtained. In all three cases, we would like to recover as much as

energy as possible from the low-temperature heat source as measured trough the maxi-

mization of the first law efficiency and the minimization of the annual cost per electricity
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ratio.

In Table 1 some essential operating parameters are shown. These include the process-

ing conditions for the heat source which was assumed is hot water at ambient pressure.

It should be noted that the number of components does not impose any limitation on

the actual model, but it impacts the number of variables required to solve the problem.

Nevertheless, only five components were chosen for the sake of simplicity. The available

components are listed in Table 2. In Table 3 the heat capacity parameters for the model

are displayed. These were fitted from the data used in [8]. The models were implemented

in GAMS [31]; the NLP models (single and series model) were solved using the CONOPT

solver [32] and the disjunctive model (cascade) was solved with the solver for extended

mathematical programming (EMP) [33] using the Big-M reformulation and then solved

via the SBB solver. It is important to note the use of deterministic techniques for the

solution process of this problem. In other words, for all the solutions found in this work,

we are certain of at least of local optimality. This is in contrast to meta-heuristics or

stochastic approaches, where there is no guarantee of optimality. An efficient initializa-

tion of the problem was important because local optimization techniques were used, and

occasionally several local solutions were found. An equimolar mixture with ideal liquid

phase (i.e. all activity coefficients equal to 1) and ideal gas phase turned out to be a

reasonable way to initialize the model. Other initial points were required specifically for

the multi-stage models, in these cases the solution of the single stage model was used as

initial point for each stage of the multi-stage scenario.

Each one of the models was solved for the conditions previously described. The optimal

solutions are displayed in Table 4. It should be noted that the results for a single-stage

system using any objective function led to the same optimal value of the decision variables.

In this regard, the maximization of the first law efficiency provides enough power to

balance the cost of the whole cycle thus the annual cost of electricity (C̃) is reduced to

its minimal value. This is the reason why in Table 4 there is only one column for the
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Table 1: Operating conditions of a single RC.

Parameter Value Units
nH 1 kmol s−1

Twmx 90(363.15) ◦C(K)
Twmn 70(342.15) ◦C(K)

TWCmx 30(303.15) ◦C(K)
TWCmn 20(293.15) ◦C(K)

ηP 0.5 -
ηT 0.8 -
ηMP 0.9 -
ηMT 0.8 -

Table 2: Components for the mixtures of the model.

Number Code Name
1 R-22 Chlorodifluoromethane
2 R-134a 1,1,1,2-Tetrafluoroethane
3 R-152a 1,1-Difluoroethane
4 R-245ca 1,1,2,2,3-Pentafluoropropane
5 R-C318 Octafluorocyclobutane

Table 3: Parameters used for equations 55 through 64

Component cpx1i cpx2i cpx3i cpl1i cpl2i cpl3i

1 -9.96E-05 0.163 17.709 0.002 -0.648 155.312
2 -1.03E-04 0.243 22.179 0.002 -1.051 245.691
3 -5.29E-05 0.188 16.754 0.002 -0.964 218.717
4 -9.57E-05 0.304 34.026 0.002 -0.848 268.177
5 -3.29E-04 0.52 30.535 0.002 -0.447 213.338
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Single Cascade η Cascade C̃ Series η Series C̃

s - 1 2 1 2 1 2 1 2

z1 0.8435 0.0787 0.1032 0.1703 0.034 0 0 0 0
z2 0 0 0.2891 0 0.75 0.6396 0.6885 0.6666 0.7331
z3 0 0.6919 0 0.0971 0 0 0 0 0
z4 0.0348 0.2294 0.1896 0.1306 0.2161 0.2295 0.224 0.2267 0.221
z5 0.1217 0 0.418 0.6021 0 0.1309 0.0876 0.1068 0.0459

PHigh 24.69 17.32 7.89 17.43 15.58 18.67 14.93 18.65 14.85
TSSub,High 303.37 319.87 298.94 315.23 300.77 301.23 300.95 301.42 301.30
TBubl,High 339.67 341.65 314.01 344.16 336.43 347.03 336.61 346.59 335.91
TDew,High 345.00 349.87 322.47 354.03 344.80 354.18 344.41 353.77 343.75

TSOver,High 358.15 358.15 325.50 358.15 350.74 358.15 348.15 358.15 348.15
PLow 9.96 9.93 5.09 16.45 5.92 5.49 5.62 5.58 5.76

TSSub,Low 301.12 318.46 298.60 315.18 299.48 299.64 299.78 299.82 300.14
TBubl,Low 301.12 318.46 298.60 341.57 299.48 299.64 299.78 299.82 300.14
TDew,Low 308.35 328.19 307.80 351.58 310.15 309.56 309.69 309.74 310.04

TSOver,Low 317.21 334.93 314.68 355.74 318.29 317.65 317.06 317.91 317.51

n 0.1000 0.0898 0.0765 0.0832 0.0777 0.0374 0.0388 0.0376 0.0391

nC 2.3890 2.3668 2.3755 1.1695 1.1980 1.1701 1.1995

WT 0.1600 0.1020 0.0793 0.0090 0.1777 0.2175 0.1767 0.2154 0.1725
WP 0.0278 0.0120 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020

η 0.0685 0.0771 0.0737 0.0768 0.0760

C̃ 1.0219 1.3482 1.3132 1.0978 1.0974

Nvar 4750 9517 9592 9501 9600
Neq 5041 10105 10180 10095 10195

CPU 24 177 190 63 86

Tks - - - 353.15 353.15

Ŷ liq
s - False False - -

Ŷ 2P
s - True True - -

Y̌ vap
s - False False - -
Y̌ 2P
s - True True - -

Table 4: Results, PHigh in bar, T and TS in K, C̃ in $ MWh−1, n in kmol s−1, W in
kJ/Hu, CPU in seconds
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single-stage system. The optimal mixture only requires three of the available components

with a large amount of the first component. The pressure and temperature processing

conditions show that the cycle must be run at a pressure slightly larger than 24 bar,

with the super heating profile (TSOver,High− TDew,High) of about 13 K. On the other hand,

the multi-stage models always feature values below the high-pressure level of the single

stage cycle. Moreover, the single-stage configuration features roughly the least expensive

electricity in comparison to other multi-stage configurations, as shown by the value of the

C̃ variable. In Figure 11 the stacked updated bare cost of equipment and overall water

cost is displayed for all the processing configurations. The single stage configuration is

clearly the least expensive since it requires the least number of modules (i.e. one turbine

and pump, two heat exchangers).

Figure 11: Cost distribution for their respective models and efficiencies. 2C-eta:Cascade
with η, 2C-C:Cascade with C̃; 2S-eta:Series with η, 2S-C:Series with C̃. The cost dis-
played are Turbine, Pump; High-P (HHex), Low-P (LHex) and intermediate (iHex) heat
exchangers; overall cooling water (CW) and water for heat source (W)

The multi-stage cascade configuration features cycles with larger efficiencies compared

to similar values for the single-stage configuration. The maximization of the efficiency in
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multi-stage cascade configurations leads to a value about 12 % higher than the correspond-

ing one for the single-stage configuration. However, this consistently raises the equipment

cost, mainly because of the need of an intermediate exchanger (iHex area on Fig. 11) that

is not required in any other configuration.

In this configuration solving the optimization problem using the two objective func-

tions led to different optimal solutions, because the higher cost of equipment is not bal-

anced with the power production in the case of the maximization of the efficiency. So,

using the second objective function leads to a less efficient but more economical design.

However, both optimal values are above the annual cost of the single-stage configuration.

It was also found that the subsequent stages for the multi-stage cascade configuration

require lower pressure, due to the temperature decrease as the stages are introduced.

Moreover, it should be remarked that the stages feature different mixture composition

between them. This is not the case for the multi-stage series configuration where each

stage features the same components with similar composition.

The phase matching variables (Ys’s) show that both objective functions are optimal

when two-phase regions are selected (Ŷ 2P
s and Y̌ 2P

s are true). This suggest that the profiles

are brought closer together without impacting the energy production when the stages are

matched at two phase regions, and since the two profiles are closer, the intermediate heat

exchanger is more expensive as shown in Figure 11. It is clear that the most significant

issue in this kind of configuration is the intermediate phase change heat exchanger, which

increases the overall cost by a significant amount.

In terms of the efficiency of the RC, the multi-stage series configuration shows results

as efficient as those obtained using a multi-stage cascade configuration but with less cost.

In this case both objective functions led to similar results. Hence, as the case of the

single stage, both cost and energy production are almost in balance at the optimal point,

meaning that similar results are obtained by using any of the proposed objective functions.

The results display a decrease in pressure as additional stages are considered mainly
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because the temperature of the heat source also decreases along the stages. However,

the composition and the low pressure level of each stage show roughly the same values,

which may suggest that it is possible to use almost similar mixtures and equipment in

each stage with the exception of the pumps and vaporizers. Nevertheless, the overall cost

of this configuration will always be larger than the cost of the single stage for the same

reasons previously discussed regarding the cascade configuration. The main difference

between these two configurations is that there is no intermediate heat exchanger in the

series configuration. Overall, this will result in a less expensive cycle. It should be noted

that with the inclusion of a new stage in the series configuration, the flows of cooling

water and working fluid were almost halved, because each stage is absorbing a fraction of

what the single-stage configuration does.

4.2 Impact at temperature of heat source

Another important issue is what happens when more than two stages are implemented

in both multi-stage configurations over different temperatures of the heat source. Three

temperatures (90, 100 and 110 ◦C) were tested with the cascade and series multi-stage

configurations with two through five stages and using both objective functions. Addi-

tionally, an ”hybrid” of the two configurations was tested with 2 × 2 cycles (Figure 12).

This last process configuration can be generated through the merging of the inter-stage

equations of the cascade and the heat source equations of the series model, and was chosen

because of its problem size (roughly the same as a 4 stage cascade model). The results

are displayed in Figures 13 and 14 for the cycle efficiency and annual cost, respectively. It

should be pointed out that the cycle efficiency will increase when the temperature is raised

no matter what configuration is used. Moreover, the cost per annual MWh ratio (C̃) will

decrease because there is more power generated. The single-stage configuration was the

most efficient (except for the 90 ◦C case which was commented on previously). It is also
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Figure 12: Cascade-Series 2 × 2 processing configuration

the least expensive model as showed in Figures 13 (a)-(c). In the case of the multi-stage

cascade configuration the behavior can be generalized. The efficiency will decrease and

the cost will rise steadily as new stages are added. One of the reasons for this behavior

is that every new stage also requires a phase change inter-stage heat exchanger which is

expensive and also will restraint the temperatures at which power is generated, because a

minimal temperature difference is required as driving force for the heat exchange process

to occur. In addition, the Ys variables were found to be true, further generalizing the

statements of the two stage-cascade phase match.

Although the multi-stage cascade configuration does not provide better results than

the single-stage configuration, the cycle efficiencies of the two- and single- stages configu-

rations are close as the temperature of the heat source varies. This is not the case for the

cost per MWh ratio (C̃) where there is a consistent gap because of the inter-stage heat

52



exchanger as previously discussed. The results of the series multi-stage configuration are

more regular since there is little variation as new stages are added in consistence with

the two-stage configuration results. The absorbed heat in each stage is a proportional

fraction of what the single-stage model does. Therefore, when a new stage is added the

costs will be balanced and the cost ratio (C̃) will remain almost constant. In comparison

with the single-stage, the multi-stage series configuration is less efficient no matter the

number of stages, except for the 90 ◦C two-stage configuration case. This, in combination

with the cascade results, suggest that the multi-stage configurations feature almost no

improvement when the temperature is raised over the single-stage. Finally, the 2 × 2

hybrid configuration features almost the same level of thermodynamic efficiency (η) with

respect to the tree-stage cascade model, but with lower electricity annual cost. However,

the results are not better than the two-stage configuration or the single-stage process.

In summary, the multi-stage configurations were only effective at only one temper-

ature. For the kind of organic fluids considered in this work, the single-stage model

will be always the best choice. Although, the availability and size of equipment of the

multi-stage configuration could possibly be an advantage over the single-stage process,

especially when the series configuration is adopted, since the efficiency and cost are kept

almost constant with stage inclusion. It also could be possible that in a dynamic environ-

ment, some configuration would be more well-behaved than the others in terms of process

operability. In the case of the cascade configuration, the main difficulty is the inter-stage

heat exchanger, which could be substituted by a direct contact heat transfer scheme, and

thus overcoming the limitations of efficiency and cost. However, from a computational

point of view, this will require a larger number of variables and equations since more

regions of variable composition must be included.
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*

(a) η at 363.15 K (90 ◦C)

*

(b) η at 373.15 K (100 ◦C)

*

(c) η at 383.15 K (110 ◦C)

Figure 13: Efficiency η for the configurations at different temperatures. Single stage,
Sp-e (Series-Cascade efficiency), Sp-c (Series-Cascade C̃), Cascade-e (efficiency), Series-e
(efficiency), Cascade-C (C̃), Series-C (C̃)
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*

(a) C̃ at 363.15 K (90 ◦C)

*

(b) C̃ at 373.15 K (100 ◦C)

*

(c) C̃ at 383.15 K (110 ◦C)

Figure 14: Annual Cost for the configurations at different temperatures.
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5 Conclusions

The heat available at low temperature is a potential source for power through the Rankine

cycle. But because of the difficulties implied by low temperature, the Rankine cycle must

be modified. The modifications currently proposed by various authors have dealt with the

working fluid selection, and the Rankine cycle optimization. In this work we deploy two

multiple coupled cycles: the series and cascade configurations. If all the cycle variables are

selected in a systematic way, an improvement of performance is expected. Additionally, if

we consider the working fluid of a mixture of defined components as a degree of freedom, it

is possible that the simultaneous determination of these variables generates an even better

improvement. All the considerations involving the multi-stage Rankine cycle design with

mixtures as working fluids, were implemented into an algebraic model that was solved for

optimality with deterministic approaches. For this, two objective functions were analyzed

individually. The implementation of the cascade model was found to require complex

constraints that can be formulated through generalized disjunctive programming (GDP).

The results show that the multistage approaches are only useful for the two-stage case

at low temperature in terms of the efficiency. But, they are intrinsically more expensive

than the single stage Rankine cycle because of the necessity of more equipment for every

single situation. As temperature progresses, none of the multistage configurations is better

than the single stage. For the cascade cycle, the phase matching logical variables show

that in the case of cascade configurations, the best match is always at the two phase

region. But the existence of this intermediate heat transfer stage results in the more

costly configuration because this requires an expensive heat exchanger, and as stages are

added the cost raises steadily. The series configuration, although marginally less efficient

than the single stage, turned out to keep almost the same objectives as stages are added.

Although the results favored the single stage approach as the temperature increases, it can

be worth to verify if multistage Rankine cycles display better operability, controllability
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features and to examine how uncertainty affects the results presented in this work. Both

topics will be addressed in future work.
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Nomenclature

Indexes

i, j ∈ I component of the mixture

s ∈ STG stage

SL last stage

k,m, n ∈M functional group

f ∈ F phase

L liquid

V vapor

π ∈ Π equilibrium point

p ∈ L pressure level

o ∈ O subcool point

o ∈ O superheat point

O nonequilibrium points
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Condensed notation of constraints and variables

Zs EOS equations

Gs activity coefficients equations

Bs equilibrium and property equations

ϕs operation constraints

Cs cost equations

U
1

s single stage constraints

U
C

s multi-stage cascade constraints

U
S

s multi-stage series constraints

t
L
s (liq) multi-stage cascade LP liquid match

t
L
s (2P) multi-stage cascade LP 2-phase match

t
U
s (vap) multi-stage cascade HP liquid match

t
U
s (2P) multi-stage cascade HP 2-phase match

P s Pressure

T s Temperatures

zs Compositions

X Operating variables(e.g. molar flows, HX areas, fugacity coefficients, etc)

Variables

Symbol Description Units

(Aie′)s Heat exchanger intermediate two-phase m2

(Ail′)s Heat exchanger intermediate liquid m2

(Aiv′)s Heat exchanger intermediate vapor m2(
ALe′
)
s

Heat exchanger area two-phase LP m2(
ALl′
)
s

Heat exchanger area liquid LP m2(
ALv′
)
s

Heat exchanger area vapor LP m2

AHe′ Heat exchanger area two-phase HP m2
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AHl′ Heat exchanger area liquid HP m2

AHv′ Heat exchanger area vapor HP m2

âSsop Mixture EOS var n-eq. dimensionless

âS′sop Mix. EOS variable temp. derivative n-eq. bar cm3 kmol−1 K−1

aRisp EOS variable Ref. dimensionless

aR′isp EOS variable temp. derivative ref. K−1

aS′isop EOS variable temp. derivative n-eq. K−1

auis EOS variable dimensionless

aupis EOS variable pure K−1

a′isp EOS variable temp. derivative K−1

âus EOS variable dimensionless

â′sp Mix. EOS variable temp. derivative bar cm3 kmol−1 K−1

ˆaups Mixture EOS variable bar cm3 kmol−1 K−1

(BCP )s Updated bare pump cost $

(BCT )s Updated bare turbine cost $

(Bi
CX)s Updated bare heat exchanger cost intermediate $

BH
CX Update bare heat exchanger cost HP $(
BL
CX

)
s

Update bare heat exchanger cost HP $

b̂sπp Mixture EOS variable cm3 kmol−1

bRisp EOS variable Ref. dimensionless

b̂Ssop Mix. EOS variable n-eq. dimensionless

bus EOS variable dimensionless

CWWyr Cost of cooling water $

C̃ Cost per annual MWh $ MWh−1(
DHRid

)
isp

Ideal gas enthalpy change ref. kJ/Hu(
DhRlv

)
isp

Vaporization enthalpy change kJ/Hu
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(fRT )isp EOS temp. Funct. at ref. temp. dimensionless

EG Electricity generated 1 yr basis MWh

(fR′T )isp EOS variable temp. Derivative ref. K−1

(fST )isop EOS temp. Funct. at nonequilibrium temp. dimensionless

(fT )isπp EOS temperature function dimensionless

(f ′T )isp EOS variable temp. Derivative K−1

(fS′T )isop EOS variable temp. Derivative n-eq. K−1

Kisπp Equilibrium ratio dimensionless(
LMTDH

e′

)
s

Log mean temperature difference HP 2-phase K(
LMTDH

l′

)
s

Log mean temperature difference HP liquid K(
LMTDH

v′

)
s

Log mean temperature difference HP vapor K(
LMTDi

e′

)
s

Log mean temperature difference inter. H-ex. 2-phase K(
LMTDi

l′

)
s

Log mean temperature difference inter. H-ex. liquid K(
LMTDi

v′

)
s

Log mean temperature difference inter. H-ex. vapor K(
LMTDL

e′

)
s

Log mean temperature difference LP 2-phase K(
LMTDL

l′

)
s

Log mean temperature difference LP liquid K(
LMTDL

v′

)
s

Log mean temperature difference LP vapor K

dHHSsπ Enthalpy point of heat source kJ/Hu

DHiuis Ideal enthalpy change kJ/Hu

fTuis EOS temperature function dimensionless

fTupis EOS T function pure T. der K −1

FC Overall Updated cost of equipment $

GS′sop Gibbs excess temp. der. bar cm3 kmol−1 K−1

GSsop Gibbs excess dimensionless n-eq. dimensionless

G′sp Gibbs excess temp. der. bar cm3 kmol−1 K−1

GsπV p Gibbs excess dimensionless dimensionless
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Hpsπp Enthalpy point at eq. kJ/Hu(
HR
)
sp

Residual enthalpy dimensionless

HRRFisp Ref. residual enthalpy dimensionless

HRus Residual enthalpy dimensionless

(HR)sop Residual enthalpy n-eq. dimensionless

HSsop Vapor enthalpy n-eq. kJ/Hu

hSsop Liquid enthalpy n-eq. kJ/Hu

hsp Liquid enthalpy kJ/Hu

Hsp Vapor enthalpy kJ/Hu

Hupsp Vapor enthalpy kJ/Hu

lGPiksπp Activity contribution mix. Pure dimensionless

ns Mole flow of working fluid kmol s−1

nCs Mole flow of heat sink kmol s−1

P sat
isπp Saturation Pressure bar

Psp Pressure at level s bar

PWWyr Cost of water (Heat source) $ m-3

Qsp Heat kJ/Hu(
sTRid

)
isp

Ideal gas entropy change ref. kJ K−1 /Su

(SR)sop Residual entropy n-eq. dimensionless(
SR
)
sp

Residual entropy dimensionless(
SR
)
sp

Ref. residual entropy dimensionless

SSsop Liquid entropy kJ K−1 /Su

sSsop Liquid entropy n-eq. kJ K−1 /Su

ssp Liquid entropy kJ K−1 /Su

Ssp Liquid entropy kJ K−1 /Su

(SP )s Pump design value gpm × psi
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(ST )s Turbine design value hp

Tks Intermediate temperature of stage K

tLs Low pressure match K

TRFisp Reference temperature K

TSsop Temperature at nonequilibrium K

tUs High pressure match K

TwCsπ Heat sink temperature at equilibrium K

TwHsπ Heat source temperature at equilibrium K

VLs Vapor fraction low pressure K

VC overall cost of utilities $

Tsπp Temperature at equilibrium K

xisfπp equilibrium composition dimensionless

Xmsπfp functional group mole fraction dimensionless

Ŷ liq
s Boolean variable HP liquid match {true,false}

Ŷ 2P
s Boolean variable HP two phase match {true,false}

Y̌ vap
s Boolean variable LP vapor match {true,false}

Y̌ 2P
s Boolean variable LP two phase match {true,false}

(WP )s Work (positive) pump kJ/Hu

(WT )s Work (positive) turbine kJ/Hu

Zsat
isπp Saturation Comp. Fact. dimensionless

ZRisp Ref. Compressibility Factor dimensionless

Zus Compressibility factor dimensionless

Ẑsπp Mix. Compressibility factor dimensionless

ẐSsop Mix. Compressibility factor n-eq. dimensionless

zis Global composition dimensionless

ηI Efficiency by the 1st law of Thermodynamics dimensionless
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αisπp Mixture EOS variable dimensionless

α̂sπp Mixture EOS variable dimensionless

αisπp Molar part. EOS variable dimensionless

α̂sπp Mixture EOS variable dimensionless

β̂sπp Mixture EOS variable dimensionless

βsat
isπp EOS var at saturation dimensionless(
∆H id

)
isp

Ideal gas enthalpy change kJ/Hu

(∆Hs)isop Ideal gas enthalpy change n-eq. kJ/Hu

∆Hlisp Liquid enthalpy change kJ/Hu

∆HlSisop Liquid enthalpy change n-eq. kJ/Hu

∆Hes Enthalpy change at stage kJ/Hu(
∆Sid

)
isp

Ideal gas entropy change kJ K−1 /Su

(∆Ss)isop Ideal gas entropy change n-eq. kJ K−1 /Su

∆Slisp Liquid entropy change kJ K−1 /Su

∆SlSisop Liquid entropy change n-eq. kJ K−1 /Su

Ψmksπp UNIFAC interaction var. dimensionless

ψu Vapor fraction high pressure dimensionless

θmsπfp functional group area fraction dimensionless

ln γisπfp Activity coefficient natural logarithm dimensionless

ln γCisπfp Activity coefficient combinatorial dimensionless

ln γRisπfp Activity coefficient residual dimensionless

ln Γksπfp Activity contribution mix. dimensionless

(ln Φsat)isπp Saturation fugacity coefficient dimensionless(
ln Φ̂

)
isπp

Mixture fugacity coefficient dimensionless

Parameters
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Symbol Description Units

A1 PSRK parameter (-0.64666) dimensionless

amn UNIFAC binary interaction parameter K

bi EOS parameter (0.008446RgTci/Pci) cm3 kmol−1

cω,i Acentric function (0.48 + 1.574ωi − 0.176ω2
i ) dimensionless

C0T Cost factor turbine $

C0X Heat exchanger cost coefficient $

C0P Cost coefficient pump $

C1,i − C7,i Vapor pressure parameters see Eq. 39 & 40

cpx1i Ideal gas heat capacity parameter kJ K−3

cpx2i Ideal gas heat capacity parameter kJ K−2

cpx3i Ideal gas heat capacity parameter kJ K−1

cpl1i Liquid heat capacity parameter kJ K−3

cpl2i Liquid heat capacity parameter kJ K−2

cpl3i Liquid heat capacity parameter kJ K−1

CEPCI CE plant cost index (579.8) dimensionless

CSF0 Cost of water adjustment parameter $ m−3

CSFyr Cost of water adjustment parameter for year yr $ m−3

DHFi Formation enthalpy change kJ kmol−1

DGFi Formation Gibbs energy change kJ kmol−1 K−1

DHHT Heat source overall enthalpy change (
∫ Twmx
Twmn

CpHdT ) kJ /Hu

F0P Update factor pump $

F0T Update factor turbine $

F0X Update factor HX $

Hu Enthalpy scaling factor (104) dimensionless

lj UNIFAC parameters dimensionless
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nH Heat source mole flow kmol s−1

Pci Critical pressure bar

Qk UNIFAC parameters dimensionless

qi UNIFAC parameters dimensionless

Rg Gas constant bar cm3 kmol−1 K−1

Rk UNIFAC parameters dimensionless

ri UNIFAC parameters dimensionless

Su Entropy factor (103) dimensionless

S0T Cost factor turbine hp

S0X Heat exchanger cost coefficient m2

S0P Cos coefficient pump gpm × psi

Twmn Heat source minimum temperature K

Twmx Heat source maximum temperature K

TwCmn Heat sink minimum temperature K

TwCmx Heat sink maximum temperature K

Tci Critical temperature K

Tbri Normal boiling temperature K

TPim UNIFAC pure molecule fraction area dimensionless

Ul′ Overall heat transfer coef. liquid kW K−1 m−1

Ue′ Overall heat transfer coef. two phase kW K−1 m−1

Uv′ Overall heat transfer coef. vapor kW K−1 m−1

U i
l′ Overall heat transfer coef. intermediate liquid kW K−1 m−1

U i
e′ Overall heat transfer coef. intermediate two phase kW K−1 m−1

U i
v′ Overall heat transfer coef. intermediate vapor kW K−1 m−1

yr year 1,2,...,yrL

XPim UNIFAC mole fraction pure mole. dimensionless
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αP Cost coefficient pump dimensionless

αT Cost factor turbine dimensionless

αX Heat exchanger cost coefficient dimensionless

∆hBLV
i Normal boiling point enthalpy change kJ kmol−1

νim UNIFAC group frequency on mole. i dimensionless

ηMP Mechanical efficiency pump dimensionless

ηMT Mechanical efficiency turbine dimensionless

ηT Turbine efficiency dimensionless

ηP Pump efficiency dimensionless

ψπ Vapor fraction dimensionless
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