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2 Juan J. Torres et al.

1 Introduction

In the modeling and optimization of real-world problems, there is usually a
level of uncertainty associated with the input parameters and their future
outcomes. Stochastic Programming (SP) models have been widely studied to
solve optimization problems under uncertainty over the past decades [5, 31].
SP is acknowledged for providing superior results than the corresponding de-
terministic model with nominal values for the uncertain parameters, which can
lead to suboptimal or infeasible solutions. SP applications in process systems
engineering include manufacturing networks and supply chain optimization
[17, 37], production scheduling [63], synthesis of process networks [57].

Two-stage stochastic programming is a commonly applied framework for
cases where parameter uncertainties are decision-independent (exogenous un-
certainties). In stochastic models, uncertain parameters are explicitly repre-
sented by a set of scenarios. Each scenario corresponds to one possible re-
alization of the uncertain parameters according to a discretized probability
distribution. The goal of such schemes is to optimize the expected value of the
objective function over the full set of scenarios, subject to the implementation
of common decisions at the beginning of the planning horizon.

Stochastic programs are often difficult to solve due to their large size
and complexity that grows with the number of scenarios. To overcome those
problems, decomposition algorithms such as Benders decomposition [59], La-
grangean decomposition [19], and Progressive Hedging [50], have been devel-
oped to solve linear programming (LP) and mixed-integer linear programming
(MILP) stochastic problems. Moreover, several modeling systems and opti-
mization platforms have included extensions for an adequate algebraic repre-
sentation of stochastic problems, as offered by major software vendors such as
GAMS, LINDO, XpressMP, AIMMS, and Maximal.

In recent years, diverse commercial and open-source applications have been
developed specifically to represent and solve multistage SP problems. Some of
them include capabilities to read and build stochastic MPS (SMPS) files, the
standard exchange format for SP applications. However, despite advances in
the field and proven benefits, SP has not been widely used in industrial appli-
cations. In this paper, we review the current state-of-art of available methods
and software for the solution of two-stage stochastic programming problems
and evaluate their performance, using large-scale test libraries in SMPS for-
mat.

The remainder of this paper is organized as follows. In Section 2, we explain
the mathematical formulation of (mixed-integer) linear stochastic problems.
Section 3 describes the classical L-shaped algorithm. Section 4 summarizes en-
hancement strategies to improve the performance of Benders decomposition.
Section 5 describes scenario decomposition methods and algorithmic modifica-
tions. In section 6, we present the software packages for Benders decomposition
and show some computational results. In section 7, we describe algorithmic
innovations in software packages for dual decomposition and show some com-
putational results. Finally, in Section 8 we summarize our conclusions.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Title Suppressed Due to Excessive Length 3

2 Problem Statement

We consider a two-stage stochastic mixed-integer linear problem (P) in the
following form:

(P ) min
x,y

TC = cTx+
∑
ω∈Ω

τωd
T
ωyω (1a)

s.t. Ax ≤ b (1b)

x ∈ X, X =
{
x : xi ∈ {0, 1} ∀i ∈ I1, xi ≥ 0 ∀i ∈ I\I1

}
(1c)

Wωyω ≤ hω − Tωx ∀ω ∈ Ω (1d)

yω ∈ Y ∀ω ∈ Ω (1e)

where x denotes the ‘here and now’ decisions, taken at the beginning of the
planning horizon before the uncertainties unfold, and Ω is the set of scenarios.
Vector yω represents the recourse or corrective actions (wait and see), applied
after the realization of the uncertainty. Matrix A ∈ Rm1×n1 and vector b ∈
Rm1 represent the first-stage constraints. Matrices Tω and Wω, and vector
hω ∈ Rm2 , represent the second-stage problem. Matrices Tω ∈ Rm2×n1 and
Wω ∈ Rm2×n2 are called technological and recourse matrices, respectively. Let
I = {1, 2, · · · , n1} be the index set of all first-stage variables. Set I1 ⊆ I is the
subset of indices for binary first-stage variables. Let J = {1, 2, · · · , n2} be the
index set of all second-stage variables. If the second-stage variables are mixed-
integer, Y =

{
y : yj ∈ {0, 1},∀j ∈ J1, yj ≥ 0 ∀j ∈ J\J1

}
, where set J1 ⊆ J

is the subset of indices for binary second-stage variables. If all the second-
stage variables are continuous, set J1 = ∅ and Y =

{
y : yj ≥ 0 ∀j ∈ J

}
. The

objective function (TC) minimizes the total expected cost with the scenario
probability τω, and the cost vectors c and dω. Equation (1) is often referred
to as the deterministic equivalent, or extensive form of the SP.

Formulation (P) can be rewritten in an equivalent form (PNAC) with
nonanticipativity constraints (NACs), where the first-stage variables are no
longer shared, and each scenario represents an instance of a deterministic
problem with a specific realization outcome [9, 52].

(PNAC) min
xω,yω

TC =
∑
ω∈Ω

τω(cTxω + dTωyω) (2a)

s.t.
∑
ω∈Ω

Hωxω = 0 (2b)

(xω, yω) ∈ Gω ∀ω ∈ Ω (2c)

In equation (2c) , Gω represents the feasible region for scenario ω, which is
defined by constraints (1b)-(1e). Nonanticipativity constraints (2b) are added
to ensure that the first-stage decisions are the same across all scenarios. Nonan-
ticipativity constraints are represented by suitable sequence of matrices Hω ∈
Rn1·(|Ω|−1)×n1 . One example of such constraints is the following:

xω = xω−1 ∀ω = 2, 3, ..., |Ω| (3)
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4 Juan J. Torres et al.

Given the mathematical structure of the deterministic equivalent formu-
lations (P) and (PNAC), (mixed-integer) linear stochastic problems can be
solved using decomposition methods derived from duality theory [38]. Such
methods split the deterministic equivalent into a master problem and a se-
ries of smaller subproblems to decentralize the overall computational burden.
Decomposition methodologies are classified in two groups: (i) time-stage or
vertical decomposition which includes Benders decomposition and variants,
and, (ii) scenario-based or horizontal decomposition. In the following section
3, we provide a tutorial overview of Benders decomposition. In section 4, we
also provide a tutorial review of scenario decomposition methods, including
the dual decomposition algorithm and the progressive hedging algorithm.

3 L-shaped Algorithm / Benders Decomposition

If the second stage variables are all continuous (i.e, Y =
{
y : yj ≥ 0 ∀j ∈ J

}
),

problem (P) can be solved with Benders decomposition. Benders decomposi-
tion (BD) was originally developed in 1962 by Benders [4] to solve large-scale
mixed integer linear problems (MILP) with complicating variables. This con-
cept has been extended to solve a broader range of optimization problems
[18], including multistage, bilevel, and nonlinear programming. When applied
to stochastic problems, it is commonly referred to as the L-shaped algorithm
[59].

The L-shaped algorithm partitions the deterministic formulation (P) into
multiple problems according to the time structure of the stochastic model:
(i) a master problem (MP) that contains all the first-stage constraints and
variables, which can be mixed-integer; and, (ii) a collection of subproblems
that include corrective future actions for the given first-stage solution. The
master problem (MP) is derived from the projection of (P) on variables x:

(MP ) min
x

TC = cTx+Q(x) (4a)

s.t. Ax ≤ b (4b)

x ∈ X (4c)

where Q(x) =
∑
ω∈Ω τωθω(x) is defined as the recourse function (or expected

second-stage value function); and θω(x) is defined by the primal second-stage
program for scenario ω, (BSPpω):

(BSPpω) θω(x) = min
yω

dTωyω (5a)

s.t Wωyω ≤ hω − Tωx (5b)

yω ≥ 0 (5c)

Recourse functions θω(x) and Q(x) are convex, differentiable, and piece-
wise linear, characteristics that are exploited in the BD method [5]. These
conditions do not hold when integer variables are included in the second-stage
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program. For the case of integer recourse, a logic-based Benders framework
[28], second-stage convexification techniques [16, 56, 67], specialized branch-
and-bound schemes [3, 48] or dual decomposition methods [52] may be applied
to solve large stochastic problems. In this section, we only focus on Benders
decomposition for SP with continuous second-stage variables.

Formulation (BSPpω) is a linear program for any given feasible value of
x. By the strong duality theorem, the second-stage program is equivalent to
its dual (BSPdω), if (BSPpω) is feasible and bounded. Vector πs represents
the Lagrangean multipliers associated with the second-stage constraints given
by Eq.(5b):

(BSPdω) θω(x) = max
πω

(hω − Tωx)Tπω (6a)

s.t. WT
ω πω ≤ dω (6b)

πω ≥ 0 (6c)

BD introduces a set of piece-wise linear approximations of the recourse
function in the problem MP, known as optimality cuts, which are built from
dual solutions of the second-stage program. It is important to highlight that
the dual feasible region does not depend on the value of x. Thus, the exact rep-
resentation of the expected cost consists of the computation of all the extreme
points of problems (BSPdω).

However, the second-stage program may not be feasible for some values
of x. BD enforces second-stage constraints (5b) by adding feasibility cuts,
which are valid inequalities that exclude infeasible first-stage solutions from
the MP. Subproblem feasibility is evaluated by solving the following recourse
reformulation for scenario ω:

Vω(x) = min
yω,v+,v−

eT v+ + eT v− (7a)

s.t. Wωyω + v+ − v− ≤ hω − Tωx (7b)

v+ ≥ 0 v− ≥ 0, yω ≥ 0 (7c)

where e ∈ Rm2 is a vector with all-1 entries, and v+ ∈ Rm2 and v− ∈ Rm2 are
the positive and negative slack of constraints (5b), respectively. The objective
function Vω(x) measures the amount by which these constraints are violated;
thus, if Vω(x) equals zero, it implies that the original subproblem (5) is feasible.
To derive feasibility cuts in terms of x, BD considers the dual of problem (7)
to generate an expression equivalent to Eq (7a). The optimal solution µ ∈ Rm2

of the dual feasibility problem (8) corresponds to one of the extreme rays (or
directions) of the recourse subproblem (6):

Vω(x) = max
µ

(hω − Tωx)Tµ (8a)

s.t. WT
ω µ ≤ 0 (8b)

−e ≤ µ ≤ e (8c)
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6 Juan J. Torres et al.

The master problem (4) is linearized by: (i) substituting functionQ(x) with the
weighted sum of the future cost estimation (6a), and (ii) applying feasibility
cuts as needed. This reformulation is referred to as the multi-cut Benders
master problem (BMP):

(BMP ) TCd = min
x,θω

cTx+
∑
ω∈Ω

τωθω (9a)

s.t. Ax ≤ b, x ∈ X (9b)

(hj − Tjx)T µ̄j ≤ 0 ∀j ∈ E (9c)

(hω − Tωx)T π̄kω ≤ θω ∀ω ∈ Ω, k ∈ K (9d)

where variables θω ∈ R|Ω| represent the outer linearization of the second-stage
cost θω(x). Parameters π̄kω and µ̄j represent the extreme points and rays from
the dual form of the recourse program (BSPdω), which are stored in sets
E and K, respectively. Constraints (9c) and (9d) denote the feasibility and
optimality cuts, j ∈ E and k ∈ K respectively. Matrices hj and Tj correspond
to the matrices hω and Tω for the scenario where a feasibility cut can be found.

The complete enumeration of the extreme points and rays of the dual
second-stage program is impractical, if not impossible. Instead, the L-shaped
algorithm relaxes the MP by initially considering a subset of the optimality
and feasibility cuts. Iteratively, BD solves the relaxed problem to generate a
candidate solution for the first-stage variables (x̄) and then solves the collection
of scenarios subproblems at fixed x̄ to generate a new group of optimality or
feasibility cuts. This process is repeated until the optimal solution is found
[48].

The optimal solution of the relaxed Benders Master Problem provides a
valid lower estimation (TCd) of the optimal total cost TC. On the other hand,
the solution of the second-stage programs (BSPdω) at feasible x̄ yields an up-
per bound of the original objective function (TCp), given by Eq. (10). The so-
lution procedure terminates when the difference between the bounds is closed,
as implied by Eq. (11). Algorithm 1 summarizes the procedure.

TCp(x̄) = cT x̄+
∑
ω∈Ω

τωθω(x̄) (10)

TCd ≤ TC ≤ TCp (11)

The L-Shapped method is summarized in Algorithm (1). It is initialized
with a guess of the first-stage solution xo and considers two stopping criteria:
(i) is the optimality tolerance ε that limits the relative gap between the dual
(zLB) and primal (zUB) bounds of the objective function (TC), and (ii) is the
maximum number of allowed iterations (kmax).
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Algorithm 1: Multi-cut Benders Decomposition

1 Set k ←− 0, zLB ←− −∞, zUB ←−∞, xk ←− xo and ε > 0
2 while k < kmax do
3 SOLVE (6) to obtain θω(xk) and πkω for given xk for all ω ∈ Ω
4 if all subproblems (6) are feasible then
5 ADD new optimality cuts (9d) corresponding to πkω for all ω ∈ Ω
6 compute TCp from θ(xk) and xk

7 if TCp < zUB then
8 zUB ←− TCp (upper bound)

9 x∗ ←− xk

10 else
11 SOLVE (8) to obtain µ for given xj and infeasible scenario j ∈ Ω
12 ADD new feasibility cut (9c) corresponding to µ

13 SOLVE (9) to obtain (xk+1, θk+1
ω ) and TCd

14 if zLB < TCd then
15 zLB ←− TCd (lower bound)

16 if (zUB − zLB)/
(

max(|zUB |, |zLB |) + 1e− 10
)
< ε then

17 break

18 Set k ←− k + 1

19 return optimal solution x∗ and zLB

4 Benders Decomposition Enhancement Strategies

The application of BD often leads to slow convergence, long computational
times, and excessive use of memory resources, particularly for the case when
the MILP master problem has poor LP relaxation [20, 41, 45]. Major BD dis-
advantages include: time-consuming iterations, poor feasibility and optimal-
ity cuts, ineffective initial iterations; primal solutions that behave erratically,
slow convergence at the end of the algorithm (tailing-off effect), and upper
bounds that remain stuck in successive iterations due to second-stage degen-
eracy [48, 60].

Various strategies have been proposed to accelerate the convergence of the
standard BD method. Enhancement strategies are mainly split into two cate-
gories: reducing the cost of each iteration or reducing the number of iterations
[48, 65].

4.1 Reducing the Cost of Each Iteration

Cheaper iterations are achieved by reducing the time spent solving the MP
and subproblems. The MP is often the most time-consuming part of the BD
algorithm (more than 90% of the execution time), especially in the case of
mixed-integer problems [41]. The overall process can be accelerated by relaxing
the integrality of the MP in most of the iterations, to rapidly compute a large
number of cuts [42]. A variation of this method has been proposed by Geoffrion
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8 Juan J. Torres et al.

and Graves [20], in which the MP is solved to a non-zero optimality gap. The
integrality gap is continuously reduced to ensure global convergence.

Alternatively, the MP might be solved via (meta) heuristics [10, 49], which
provide good approximate solutions in short time; however, it is still required
to solve the MP to optimality to guarantee convergence. The application of
heuristics or the LP relaxation of the MP often yields worse bounds and lack
of controllability, reducing the ability of BD to generate the necessary cuts
[27].

Similarly, suboptimal solutions of the dual subproblems yield valid cuts,
known as Inexact Cuts. Algorithm convergence can still be guaranteed under
the conditions described by Zakeri et al. [64]. Additional subproblem acceler-
ation schemes comprise synchronous parallelization and re-optimization. The
latter exploits structural similarities between scenarios to solve the subprob-
lems in fewer solver iterations.

4.2 Reducing the Number of Iterations

The number of iterations of the L-shaped algorithm is closely related to the
tightness of the LP relaxation of the first-stage problem, as well as the strength
of the optimality and feasibility cuts [41]. Better candidates are computed
from improvements in the MP problem, especially, in the strengthening of the
representation of the recourse functions. Tighter formulations can be obtained
by adding multiple cuts per iteration (multi-cut reformulation [6]); , as well as
through the use of heuristics to eliminate inactive cuts and to select the fittest
dual variables to be inserted in the MP (size management techniques).

Complementary strategies have been developed to generate cuts that are
more efficient. One alternative is the reformulation of the subproblems to select
non-dominant dual solutions from the set of optimal multipliers, known as
Pareto-optimal cuts [41]. Recently, [55] proposed a methodology to compute
bundles of covering cuts, designed to involve most of the first-stage variables
and to carry as much information as possible.

Alternative methods tighten the MP to alleviate some of the drawbacks
of BD: cross-decomposition, for instance, avoids the generation of low-quality
solutions, while quadratic stabilization methods provide a solution for the
tailing-off effect. Cross-decomposition [58] combines and alternates between
iterations of BD and Lagrangean decomposition, to provide an additional valid
lower bound of the objective function and a set of feasible deterministic so-
lutions (xω, yω) ∈ Gω, which are used to compute Lagrangean-based cuts to
strengthen the MP.

Quadratic methods have been proposed to stabilize BD, aiming to improve
the quality of the initial iterations and reduce the oscillation that occurs when
the algorithm is close to the optimal solution [65]. These methods encourage
the generation of first-stage candidates close to stability centers (the current
best solution) while reducing the original objective function value. Popular
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variants include Regularized Decomposition [52, 53], the Trust-Region method
[39] and Level Decomposition [36, 66], which are summarized below:

– Regularized Decomposition (also known as Proximal Bundle Method)

xk+1 = arg min
x,θω

{cTx+
∑
ω∈Ω

τωθω +
1

2tk
‖x− x̂k‖22 s.t. (x, θω) ∈ Vk} (12)

– Trust-Region Method

xk+1 = arg min
x,θω

{cTx+
∑
ω∈Ω

τωθω s.t. ‖x−x̂k‖22 ≤ Rk, (x, θω) ∈ Vk} (13)

– Level Decomposition Method

xk+1 = arg min
x,θω

{‖x−x̂k‖22 s.t. cTx+
∑
ω∈Ω

τωθω ≤ Lk, (x, θω) ∈ Vk} (14)

where tk, Rk and Lk are real-valued, iteration-dependent parameters that
balance the minimization of the relaxed MP and the distance to the stability
center x̂k. Vk represents the feasible region of the Benders master problem at
each iteration, which is defined by the optimality (9d) and feasibility cuts (9c),
as well by the first-stage constraints (9b). Stabilization methods were initially
introduced for BD with no integer variables; nonetheless, recent improvements
have adapted the method to mixed-integer problems [65].

5 Scenario Decomposition Methods

Scenario decomposition is a popular approach to solve two-stage SP formula-
tions with mixed-integer recourse, i.e., Y =

{
y : yj ∈ {0, 1},∀j ∈ J1, yj ≥

0 ∀j ∈ J\J1
}

in (PNAC). In contrast to the BD algorithm, scenario decom-
position methods dualize the non-anticipativity constraints (NACs) to obtain
lower bounds of the original formulation. Scenario-based decomposition ad-
dresses the computational difficulties associated with the solution of large
stochastic problems by considering each scenario independently and solving
the set of subproblems in parallel. Moreover, feasible solutions to the original
problem (P) can be obtained by heuristics based on the optimal solutions of
the subproblems. In this section, we describe the dual decomposition (DD)
algorithm and the progressive hedging (PH) algorithm.

5.1 Dual Decomposition (DD) Method

The dual decomposition algorithm proposed by Carøe and Schultz [9] applies
the Lagrangean relaxation to problem (2) and uses a branch-and-bound proce-
dure to restore the non-anticipativity conditions. The Lagrangean relaxation
of the NACs results in the following dual function:

D(λ) = min
x,y

∑
ω∈Ω

Lω(xω, yω, λω) (15a)
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10 Juan J. Torres et al.

s.t. (xω, yω) ∈ Gω ∀ω ∈ Ω (15b)

where
Lω(xω, yω, λω) = τω(cTxω + dTωyω) + λTωHωxω (16)

In the equation (15a), vector λ ∈ Rn1×(|Ω|−1) represents the dual multipliers
associated with the NACs (2b). λω ∈ Rn1 represents the Lagrangean multipli-
ers for the NACs associated with scenario ω, as given by Eq. (3). Given the
independence of the variables and constraints in each scenario, function D can
be split into separate subproblems Dω(λω):

D(λ) =
∑
ω∈Ω

Dω(λω) (17a)

Dω(λω) = {min
xω,yω

Lω(xω, yω, λω) s.t. (xω, yω) ∈ Gω} (17b)

According to the weak duality theorem, the relaxation (17) is always less
than or equal to the optimal objective value of problem (2). The best lower
bound of (PNAC) is computed by solving the following maximization problem,
referred to as the Lagrangean dual problem:

ZLD = max
λ

D(λ) (18)

The Lagrangean dual is a concave non-smooth program and can be solved
by subgradient methods, cutting-plane methods, or column generation meth-
ods. The details of these methods can be found in Guignard [22]. We illustrate
the dual search approaches by describing the standard cutting-plane algorithm.

5.1.1 Cutting-Plane Method

The cutting-plane algorithm solves the Lagrangean problem iteratively by im-
plementing outer approximation on (18) and solving the Lagrangean subprob-
lems (17b) to improve the formulation of the relaxed dual function (RZLD) in
equation (19a). The outer approximation is given by the Lagrangean master
problem (LMP):

(LMP ) RZLD = max
λω,φω

∑
ω∈Ω

φω (19a)

s.t. φω ≤ D̄k
ω(λkω) + (Hωx

k
ω)T (λω − λkω) ∀k ∈ K,ω ∈ Ω (19b)

where parameters for iteration k and scenario ω, xkω and D̄k
ω(λkω) represent

the previous solution of subproblem (17b), and parameter λkω represents the
vector of previously considered dual multipliers. The dual search is outlined
in Algorithm (2).

Cutting-plane methods present similar drawbacks to the BD algorithm,
such as slow convergence and strong oscillations of the dual variables. Vari-
ous alternatives have been proposed to accelerate this technique, including the
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Algorithm 2: Cutting-plane dual search

1 Set k ←− 0, zLB ←− −∞ and λ0 ←− 0
2 repeat
3 SOLVE (17b) to obtain (xkω , y

k
ω) and Dω(λkω) for given λkω for each ω ∈ Ω

4 set zLB ←− max{zLB , D(λk)}
5 ADD new optimality cut (19b) from xkω and Dω(λkω)

6 SOLVE (19) to obtain λk+1 and RZLD
7 set k ←− k + 1

8 until |D(λk)−RZLD|/|D(λk) + 1e− 10| < ε;

9 return xkω , λ
k, D(λk)

bundle method and the volume algorithm [22]. Additional strategies consider
the suboptimal solution of the master problem, using an interior-point method
(IPM) in combination with Benders-like cuts to tighten the Lagrangean sub-
problems (17b) and exclude infeasible first-stage solutions (see [33, 45]). Other
methodologies such as cross-decomposition, exchange information with BD to
compute additional cuts derived from feasible first-stage candidates [44].

5.1.2 Branch-and-Bound Method

The DD algorithm proposed by Carøe and Schultz [9] uses the bound ZLD as
bounding the criterion to discard nodes from the first-stage search domain. Al-
gorithm 3 summarizes the branch-and-bound procedure. The set P denotes the
group of active problems and TCi the lower bound associated with program
Pi ∈ P. Commonly, the Lagrangean dual problem yields first-stage solutions
that differ in value from one scenario to another. For those instances, a candi-
date x̂ is estimated by applying a rounding heuristic on the average solution∑
ω∈Ω τωx

i
ω. Note that Algorithm 3 can be applied not only to problems with

mixed-binary variables but to problems with general mixed-integer variables as
well. The branching steps assume that the integer variables can be nonbinary.

5.2 Progressive Hedging (PH) Algorithm

The Progressive Hedging (PH) algorithm [50] is a popular approximation for
solving multi-stage stochastic programs. Although it was initially proposed for
convex stochastic problems, it has been successfully applied as a heuristic to
solve mixed-integer stochastic programs [40, 61].

To find a solution of problem (2), PH aggregates a new set of variables x̂
(also known as a first-stage policy) that replaces the NACs (2b). Then, it solves
the reformulated program (20) using a specialized variant of the alternating
direction method of multipliers (ADMM) [11, 14]:

min
xω,yω,x̂

TC =
∑
ω∈Ω

(cTxω + dTωyω) (20a)
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12 Juan J. Torres et al.

Algorithm 3: DD Branch and Bound method

1 Set NAC ←− false, zUB ,←−∞, P = {PNAC}
2 while |P| > 0 do

/* Lower bounding procedure */

3 Select problem Pi from P and SOLVE (18) to get the lower bound ZiLD and xiω
4 Eliminte problem Pi from P
5 if ZiLD = −∞ (infeasibility of a subproblem) or ZiLD ≥ zUB then
6 go to line 2

7 else if
∑
ω∈Ω Hωx

i
ω = 0 then

8 x̂i ←− xij for any j ∈ Ω
9 NAC ←− true

10 else
11 NAC ←− false

12 perform rounding heuristic to obtain x̂i

/* Upper bounding procedure */

13 Compute TCip from x̂i using equation (10)

14 if TCip < zUB then
15 zUB ←− TCip
16 x∗ ←− x̂i

17 eliminate from P all the problems Pj with ZjLD ≥ zUB
18 else
19 go to line 2

/* Branching procedure */

20 if not NAC then
21 Select a component x(k) of x and add two new problems to P by adding

constraints:
22 xω,(k) ≤ x̂i(k) − δ and xω,(k) ≥ x̂i(k) + δ for all ω in Ω (if x(k) is

continuous)
23 xω,(k) ≤ bx̂i(k)c and xω,(k) ≥ dx̂i(k)e for all ω in Ω (if x(k) is integer)

24 return Optimal solution x∗ and zUB

s.t. (xω, yω) ∈ Gω, xω = x̂, ∀ω ∈ Ω, x̂ ∈ X (20b)

Related to dual decomposition, PH relaxes the non-anticipativity restric-
tions on the first-stage. The augmented Lagrangean relaxation Lρ of con-
straints xω = x̂, ∀ω ∈ Ω yields a lower bound D(λ) of the original deterministic
formulation (20). The best lower bound is estimated by solving the following
problem:

TC ≥ max
λ
{D(λ) s.t.

∑
ω∈Ω

τωλω = 0} (21a)

where

D(λ) = min
x,x̂,y

Lρ(x, x̂, y, λ) s.t. (xω, yω) ∈ Gω ∀ω ∈ Ω, x̂ ∈ X (21b)

Lρ(x, y, x̂, λ) =
∑
ω∈Ω

τωLω(xω, yω, x̂, λω) (21c)
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Lω(xω, yω, x̂, λω) = cTxω + dTωyω + λT (xω − x̂) + ρ/2‖x− x̂‖22 (21d)

and ρ > 0 is a penalty parameter. Constraints
∑
ω∈Ω τωλω = 0 are required

to make Lρ bounded from below. To mitigate the computational difficulties of
minimizing the augmented Lagrangean dual function (21b), PH decomposes
the problem by scenarios. To achieve the complete separability of subproblems,
Rockafellar and Wets [50] propose to fix the first-stage policy temporarily, and
repeatedly solve the program (22) to update the multipliers and the value of
x̂:

min
xω,yω

{cTxω + dTωyω + λTxω + ρ/2‖xω − x̂‖22} (22)

Algorithm (4) summarizes the procedure to solve the dual problem (21).

Algorithm 4: Two-Stage Progressive Hedging Algorithm

1 set k ←− 0, λ0 = 0

2 SOLVE (x1ω , y
1
ω) = arg minxω,yω{c

T xω + dTωyω s.t (xω , yω) ∈ Gω} for all ω in Ω

3 repeat
4 set k ←− k + 1

5 set x̂k ←−
∑
ω∈Ω τωx

k
ω

6 set λkω ←− λ
k−1
ω + ρ(xk−1

ω − x̂k−1)

7 SOLVE (22) for every ω ∈ Ω to compute xk+1
ω

8 until k > kmax or
√∑

ω∈Ω τω(xk+1
ω − x̂)2 < ε;

9 return x̂k, xk+1
ω , yk+1

ω

The termination of the algorithm is achieved when the first-stage policy
is non-ancipative. In the case of convex instances, x̂k−→∞ is equivalent to the
optimal solution of the deterministic formulation (2) and the convergence is
guaranteed. These conditions do not hold for mixed-integer programs; how-
ever, a high-quality solution and upper bound can be computed from a non-
convergent value of {x̂k}k=kmax

and TCp(x̂
k)k=kmax

, respectively [61].

Recent investigations have focused on the improvement and acceleration
of PH. Various studies identify the penalty term as a critical factor in the
quality of the solution and the convergence rate: larger values of ρ can ac-
celerate the convergence but can lead to suboptimal solutions. On the other
hand, lower values can improve the quality of the solutions and lower bounds,
although with a very slow convergence rate [15]. Numerous alternatives have
been developed to circumvent those problems, from per-component and cost-
proportional heuristics [61], to the dynamic update of the penalty parameter
[21, 66].

A limitation in applying PH to stochastic mixed-integer programs is the
lack of a lower bound to assess the quality of the computed solution. This
disadvantage can be alleviated by estimating a valid lower bound from the non-
convergent set of Lagrangean weights λk [15], or by combining the Frank-Wolfe
and PH methods [7]. These methodologies establish relationship between dual
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14 Juan J. Torres et al.

decomposition and progressive hedging, which has motivated the development
of hybrid solution strategies (see [23]).

6 Software packages for Benders Decomposition

In this section, we review two software packages, GAMS - DECIS [8, 29] and
FORTSP [12]m for Benders Decomposition. Both packages are benchmarked
with 20 instances from the Random [30] and SAPHIR [35] test collections,
which are some of the largest instances found in the literature. All of the test
problems are available in the SMPS format; however, specific modifications
need to be done in order to make the format compatible with DECIS. The
computational experiments are performed on a Linux machine with a 2.67
GHz Intel Xeon CPU, 128 GB of RAM, and a limit of 3 hours of walltime.

The Random collection consists of 15 instances artificially generated with
the test problem generator GENSLP [32]. The instances are grouped into 3 sets
of problems (rand0, rand1, rand2), each one of them having 5 instances with
2000, 4000, 6000, 8000 and 10000 scenarios. None of the instances represent
a real-world problem; nonetheless, they have been successfully used to assess
the performance of stochastic solvers (see [68]). All problems in this collection
present uncertainty only in the right-hand side (RHS) coefficients hω.

The SAPHIR collection consists of 5 instances of the optimization of a gas-
purchase portfolio, considering the cost of purchase, as well as underground
storage capacities and transportation, under uncertain demand conditions [34].
In this family of problems, the random elements are located in both the RHS
and constraint matrices Wω and Tω.

The sizes of all of the test problems are shown in Table 1. The size is
expressed as the number of constraints (Rows) and variables (Cols) in the first
stage and the second stage per scenario. None of the test instances consider
integer variables in the first-stage.

Table 1 Sizes of SLP instances tested

Name Scenarios

First Stage Second Stage

Rows Cols Rows Cols

rand0 2000, 4000, 6000, 8000, 10000 50 100 25 50
rand1 2000, 4000, 6000, 8000, 10000 100 200 50 100
rand2 2000, 4000, 6000, 8000, 10000 150 300 75 150
saphir 50, 100, 200, 500, 1000 32 53 8678 3924

6.1 FortSP: a stochasting programing solver

FortSP is a solver for the solution of linear and mixed-integer linear stochas-
tic programs. It accepts input in the SMPS format, or through a separate
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SAMPL translator (an AMPL extension for stochastic programming). In ad-
dition, FortSP can be used as a library with an application programming in-
terface (API) in C. FortSP enables the user to solve stochastic two-stage linear
programs with 4 variants of Benders decomposition, and provides 3 different
solution approximations for mixed-integer instances.

6.1.1 Algorithmic Innovations in FortSP

The innovations in FortSP for two-stage linear and mixed-integer linear stochas-
tic programs are described by Ellison et al. [12]. FortSP incorporates 5 meth-
ods to solve two-stage stochastic linear programs: (i) solving the deterministic
equivalent via the interior-point method (IMP), (ii) Benders decomposition
with aggregated cuts (see problem (23)), (iii) Regularized decomposition [51]
(see problem (12)), (iv) Benders decomposition with regularization of the ex-
pected recourse by the level method [36] (see problem (14)), and (v) the Trust
region (regularization) method [39] (see problem (13)).

To solve mixed-integer instances, FortSP uses the deterministic equivalent
with both implicit and explicit representations for the NACs. In addition, it
incorporates a specialized L-shaped algorithm based on branch-and-cut for
instances with mixed-integer variables in the first-stage and continuous and
complete recourse. This method might be accelerated with the Variable Neigh-
borhood Decomposition Search heuristic (VNDS) [25].

All of the Benders variants in FortSP are formulated in the aggregated form
shown in Eq (23). Disagregated formulations (i.e, problem (9)) store larger
information in the master problem, which yields a reduction in the number of
iterations. However, this is done at the expense of larger master problems. As
a rule of thumb, the disaggregated approach is expected to be more effective
when the number of scenarios |Ω| is not significantly larger than the number
of constraints m1 of the first-stage program [5].

(BMP ) TCd = min
x,v

cTx+ v (23a)

s.t. Ax ≤ b, x ∈ X, v ∈ R (23b)

(hj − Tjx)T µ̄j ≤ 0 ∀j ∈ E (23c)∑
ω∈Ω

τω(hω − Tωx)Tπkω ≤ v ∀k ∈ K (23d)

6.1.2 Computational results for FortSP

We use FortSP to solve the Random [30] and SAPHIR [35] test instances.
The number of iterations and walltime for different solution methodologies
are shown in Table 2, where IPM stands for Interior-Point Method, RD for
Regularized Decomposition, and, TR for Trust Region. The CPLEX (12.5.1)
linear and quadratic solver is used to solve the set of master problem and
subproblems. For decomposition methodologies, a stopping optimality gap of
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1× 10−5 is used. FortSP automatically selects the methodology used to solve
the set of master problem and recourse instances, from primal and dual sim-
plex, as well as an interior-point method. In addition, FortSP considers the
warm-start of linear programs.

From Table 2, one can observe that solving the deterministic equivalent
via IPM is an effective alternative, outperforming BD in most of the instances
considered; nonetheless, it fails to solve the larger instances in the Saphir set.
Regularized Decomposition and the Trust Region method perform better than
BD in the Saphir set, effectively decreasing the number of iterations and the
solution time. However, RD fails on the whole set of RAND test problems.
Decomposition with the Level Method presents the best performance on both
of the benchmark sets, yielding computational times close to the interior-point
method and effectively reducing the number iterations of the standard BD
method.

Table 2 Computational results for FortSP

Instances Scenarios

IPM Benders Level RD TR

Iter Time Iter Time Iter Time Iter Time Iter Time

rand0

2000 128 38.21 80 10.57 44 7.53 - - 103 13.56
4000 46 26.18 69 20.02 32 11.50 - - 84 24.60
6000 57 46.30 108 41.10 51 21.53 - - 136 51.36
8000 64 66.28 127 65.34 50 34.00 - - 159 81.33

10000 80 95.32 230 153.99 71 53.39 - - 311 207.46

rand1

2000 37 34.74 391 237.40 74 52.86 - - 502 307.87
4000 46 79.92 502 528.99 59 69.90 - - 624 655.29
6000 47 116.40 385 576.33 58 94.25 - - 484 728.86
8000 50 160.58 453 818.78 65 126.08 - - 611 1126.22

10000 51 414.21 430 1064.25 52 526.53 - - 558 1388.47

rand2

2000 36 63.78 886 1643.40 65 133.59 - - 1239 2415.88
4000 40 140.56 414 1355.37 42 152.27 - - 573 1936.61
6000 48 245.89 514 3067.92 52 318.58 - - 675 4172.58
8000 51 329.10 454 3036.40 44 310.44 - - 681 4638.54

10000 51 418.11 686 6774.75 52 528.81 - - 988 9733.37

Saphir

50 - - 127 527.06 39 215.72 22 82.30 33 77.18
100 - - 122 768.42 44 503.87 29 216.37 34 97.01
200 - - - - - - 30 163.66 19 84.15
500 326 555.35 122 847.17 42 426.28 29 231.10 25 85.62

1000 - - 138 1153.40 51 655.66 29 259.29 86 289.53

6.2 DECIS: A system for solving large-scale stochastic programs

DECIS is a software platform for the solution of large-scale two-stage stochastic
programs. It accepts problems in SMPS format. To use DECIS in GAMS, the
user needs to formulate the deterministic problem and time distribution of
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the constraints and variables in the GAMS interface, which automatically
constructs the core and tim files. The uncertain components and realization
probabilities are set from an external stochastic file (.sto extension in SMPS
format), which is written by the user. Recent developments in GAMS allow to
use the Extended Mathematical Programming (EMP) framework to define a
stochastic program for DECIS, as well as set the optimization of two additional
risk measures: Value at Risk (VaR) and Conditional Value at Risk (CVaR).

6.2.1 Algorithmic innovations in DECIS

DECIS incorporates multiple alternatives to solve linear two-stage stochastic
programs, including: (i) Benders decomposition with aggregated cuts, and,
(ii) a regularized decomposition variant. The latter uses MINOS to solve the
quadratic master problem (12), and requires the user to select a proper con-
stant penalty parameter (tk > 0). The overall algorithm performance and
convergence are strongly affected by the value of tk.

When the number of realizations is large, DECIS can employ advanced
Monte Carlo sampling techniques to compute good approximate solutions.
Instead of considering the whole set of possible outcomes to estimate the ex-
pected cost, DECIS uses an independent sample drawn from the distribution
of random parameters. In addition to crude Monte Carlo sampling, DECIS in-
corporates importance sampling and control variates, variance reduction tech-
niques which enhance the estimation of the expected cost. In addition, DECIS
computes a confidence interval in which the optimal objective function value
lies.

6.2.2 Computational results for DECIS

We use DECIS to solve the RANDOM and SAPHIR test instances. The num-
ber of iterations and walltime for different solution methodologies are shown
in Table 3. Two initialization strategies are tested on Benders Decomposition:
(U) where the initial first-stage candidate solution is 0, and (EV+U) where
BD is employed to solve the EV (expected value) problem. The EV optimal
solution is then used as a starting point for the stochastic instance. Iter-EV
and Iter-U stand for the number of iterations required to solve the EV and
stochastic problem, respectively. A stopping optimality gap of 1 × 10−5 is
considered. DECIS-CPLEX (12.7.0) uses primal simplex in both the MP and
subproblems in Benders decomposition. DECIS-MINOS (5.6) is used in the
quadratic MP and linear subproblems in Regularized decomposition.

To exemplify the effects of the constant penalty term on the performance
of regularized decomposition, two ρ values, 1 and 10, are tested. From Table 3,
it can be observed that regularized decomposition may significantly reduce the
number of iterations, and thus the solution time of the overall decomposition
algorithm. In addition, stronger penalization might increase the number of
iterations as it restricts the movement of first-stage candidate to be close to
the best incumbent solution. Furthermore, this methodology might present
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numerical issues such as bad scaling in the master problem, which makes the
algorithm stop without closing the optimality gap. For instance, regularized
decomposition fails to solve the whole set of SAPHIR problems.

Using the (EV+U) initialization can accelerate the convergence of Benders
Decomposition. In 14 of 17 instances where BD converged, (EV+U) had fewer
iterations than the (U) strategy, as well as less solution time. The reduction
of the iteration number alleviates the time spent computing an appropriate
starting point.

Table 3 Computational results for DECIS

Instances Scenarios

Benders (U) Benders (EV+U) RD - 1 (U) RD - 10 (U)

Iter Time Iter-EV Iter-U Time Iter Time Iter Time

rand0

2000 82 29.72 31 77 27.98 50 13.17 72 18.30
4000 71 53.77 35 58 48.49 42 22.11 58 30.16
6000 105 112.36 47 106 120.96 58 40.6 85 58.83
8000 121 170.25 38 111 155.61 59 54.23 102 91.64

10000 229 410.76 40 213 389.04 110 133.2 135 163.31

rand1

2000 391 459.29 91 384 448.74 120 264.43 255 551.64
4000 488 1051.82 87 487 1031.35 117 448.65 296 1175.35
6000 396 1269.56 118 363 1158.85 100 533.02 146 781.95
8000 443 1763.46 100 436 1688.43 106 679.39 153 1004.85

10000 449 2356.12 115 437 2353.02 113 983.68 193 1736.57

rand2

2000 885 3213.08 125 870 3225.03 142 1147.62 265 2620.33
4000 411 2784.49 136 405 2786.91 93 1696.08 212 3879.52
6000 496 5470.71 165 520 5764.87 132 4196.52 223 6981.10
8000 457 6151.33 173 459 6277.49 97 3631.94 140 5224.19

10000 - - - - - - - - -

Saphir

50 167 362.21 163 80 317.21 - - - -
100 151 568.44 151 83 539.73 - - - -
200 - - - - - - - - -
500 138 1357.83 109 73 917.47 - - - -

1000 - - - - - - - - -

6.2.3 Computational results for FortSP in comparison with DECIS

From the results in the previous subsections, it can be observed that the al-
gorithms implemented in FortSP (Table 2) outperforms the decomposition
implementations in GAMS - DECIS (Table 3) in terms of solution time. The
strength of FortSP resides in the use of multiple strategies that can acceler-
ates the convergence of standard BD algorithm and regularization solved with
MINOS. In fact we observed that the best FortSP methodology is at least
37.3% faster than the best algorithmic implementation evaluated with DECIS
for each test problem (see Figure 1). In the instances in which none of the
DECIS solvers converge, the solution time is noted as 3 hours of walltime.
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Fig. 1 Maximum relative improvement of the solution time by using FortSP’s solvers over
DECIS’s solvers.

As expected, the performance of the BD algorithm in both FortSP and
DECIS behaves similarly, having a difference of less than 10 iterations in each
test instance. Both implementations use BD with aggregated cuts but differ in
the initialization procedure. However, the BD algorithm is on average 2 times
faster in the FortSP’s implementation than DECIS’s implementation.

In this particular set of instances, the most time-consuming part of the
algorithm is the cumulative solution of scenario subproblems, as can be ob-
served in Figures 2 and 3, which is explained by the large number of scenario
subproblems. This difference is especially pronounced in the Saphir group,
where the recourse problem is larger than the first-stage program, in terms of
constraints and variables. In most of the test instances, DECIS with initializa-
tion in the EV solution is the methodology that spends more time solving the
master problem, as it uses BD to get a proper starting point. Following the
general trend, FortSP is faster in the solution of both the master problem and
the subproblems separately, indicating that differences in the implementation
play an important role in the performance of the decomposition strategies.
Warm-starting and automatic selection of the linear solver might contribute
to the acceleration of the convergence of BD in FortSP.

7 Software packages for scenario decomposition

In this section, we review two software packages, PySP [61, 62] and DSP
[33], for scenario decomposition. The two software packages are benchmarked
based on the problems in SIPLIB [2], including the SSLP [47], SSLPR [46],
and DCAP [1] test problems.

The SSLP test set consists of 12 two-stage stochastic mixed-integer pro-
grams arising in stochastic server location problems (SSLPs). The base deter-
ministic server location problem considers building servers in some potential
locations to serve clients in given locations. The stochastic version of the server
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Fig. 2 Cumulative solution time of masters problem in BD, where * means the algorithm
fails to solve the instance in 10800 CPU seconds

Fig. 3 Cumulative solution time of scenario instances in BD, where * means the algorithm
fails to solve the instance in 10800 CPU seconds

location problem considers different realizations of client locations. Each sce-
nario represents a set of potential clients that do materialize. The decisions in
SSLP are all binary variables. In the first stage, we decide whether a server
is located at each given location. The second stage (recourse) actions decide
whether any given client is served by any given server. SSLPR (stochastic
server location problem with random recourse) is an extension of SSLP. While
SSLP assumes fixed demands for the clients, SSLPR considers the demands of
the clients as uncertain parameters.

DCAP consists of 12 two-stage stochastic integer programs arising in dy-
namic capacity acquisition and allocation applications. The deterministic model
considers a capacity expansion schedule over T time periods. In each time pe-
riod, the amount of capacity expansion for each resource needs to be decided.
There is a fixed and a variable cost for each capacity expansion. In each time
period, each task must be assigned to one of the existing resources, which is
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represented by binary variables that decide whether a given task is assigned
to a given resource. Since there are multiple periods, the stochastic version
of this problem should in principle be formulated as a multi-stage stochastic
program, which is difficult to solve. Ahmed and Garcia [1] propose to approx-
imate the multi-stage problem with a two-stage stochastic program in which
the first-stage decisions are the capacity expansions. The second-stage deci-
sions are the assignment decisions. The uncertainties include the processing
requirement for each task and the cost of processing each task.

The sizes of all the test problems are shown in Table 4. The names of the
SSLP and SSLPR instances are expressed in the form sslp(rf) m n, where m
is the number of potential server locations, and n is the number of potential
clients. Each instance is tested with a different number of scenarios. The size
is expressed as the number of constraints (Rows), variables (Cols), and integer
variables (Ints) in the first stage and the second stage per scenario. Note
that the SSLP problems have pure binary first-stage variables and the DCAP
problems have mixed-binary first-stage variables. This difference affects the
PH algorithm, which will be discussed in detail later.

All of the test problems are available in the SMPS format; however, we
implement an interpreter to make the format compatible with PySP. All of
the tests were run on a server with an Intel Xeon CPU (24 cores) at 2.67
GHz and 128 GB of RAM. The whole set of instances is solved in synchronous
parallel manner to reduce the time of each iteration.

Table 4 The sizes of the problems tested

Name Scenarios

First Stage Second Stage

Rows Cols Ints Rows Cols Ints

sslp 5 25 50, 100 1 5 5 30 130 125
sslp 10 50 50, 100, 500, 1000 1 10 10 60 510 500
sslp 15 45 5,10,15 1 15 15 60 690 675
sslprf 5 25 100 1 5 5 30 130 125
sslprf 5 50 100 1 10 10 60 510 500
dcap 233 200, 300, 500 6 12 6 15 27 27
dcap 243 200, 300, 500 6 12 6 18 36 36
dcap 332 200, 300, 500 6 12 6 12 24 24
dcap 342 200, 300, 500 6 12 6 14 32 32

7.1 PySP: Pyomo Stochastic Programming

PySP is a software package implemented in the Python programming language
using Pyomo [26] as the optimization modeling framework. PySP enables the
user to solve stochastic programs with a specialized Progressive Hedging algo-
rithm for stochastic mixed-integer programs. In order to use PySP, the user
only needs to write a deterministic base model and define the scenario tree
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structure in Pyomo. With these inputs, PySP is able to apply the Progressive
Hedging algorithm as an effective heuristic for obtaining feasible solutions to
multi-stage stochastic programs.

7.1.1 Algorithmic Innovations in PySP

The innovations in PySP for multi-stage mixed-integer stochastic programs
are described by Watson and Woodruff [61]. Here, we briefly paraphrase those
innovations. First, instead of keeping a fixed ρ value for all first-stage decisions
in Algorithm 4, the authors propose several variable-dependent ρ strategies.
Cost proportional (CP) strategy sets ρ(i) to be proportional to the cost param-
eter c(i), i.e., ρ(i) = αc(i), where α is a constant multiplier for all first-stage
variables i. The other variable-dependent ρ strategy is denoted by SEP in [61],
where the ρ(i) for integer variables is calculated by,

ρ(i) :=
c(i)

(xmax − xmin + 1)

After PH iteration 0, for each variable x, xmax = maxω∈Ω x
0
ω and xmin =

minω∈Ω x
0
ω. For continuous variables, the ρ(i) is calculated with

ρ(i) :=
c(i)

max
((∑

ω∈Ω τω|x0ω − x̂0|
)
, 1
)

where x̂0 is the weighted average of x0ω, i.e., x̂0 =
∑
ω∈Ω τωx

0
ω.

The authors also propose some heuristics for accelerating convergence. One
heuristic is called “variable fixing”. The values of some of the first stage de-
cisions xω,i are fixed after they stay at a given value zi for a few iterations
for all scenarios. In order to apply this heuristic, the authors introduce a
lag parameter µ. At a given PH iteration k, the value of xkω,i will be fixed

to zi for all subsequent iterations l > k, if x
(k)
ω,i = zi for all ω ∈ Ω and

m ∈ {k−µ|Ω|, · · · , k}, such that m ≥ µ|Ω|. Additionally, the authors propose
another more aggressive variable fixing heuristic called “variable slamming”
where the xkω will be fixed if they are “sufficiently converged”, i.e., there can be
some discrepancies for xkω across all scenarios. In order to decide when variable
slamming should be applied, the authors propose several termination criteria
based on the deviations of the first stage variables.

In solving stochastic mixed-integer programs with PH, cyclic behavior can
be found in some instances. In order to detect the cyclic behavior, the authors
propose a strategy based on the values of the uω vectors, i.e., the weights
associated with the first stage decision variable xω. The authors propose a
simple hashing scheme. Let hash value h(i) =

∑
ω∈Ω zωuω,i, where zω is an

integer hash weight for each scenario ω ∈ Ω when PH is initialized. If equal
hash weights are detected, they are interpreted as evidence for potential cycle.
Variable xi can be fixed if cyclic behaviors are found.
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The heuristics, including variable fixing and slamming, cyclic behavior de-
tection, are denoted as WW (Watson-Woodruff) heuristics in the software
distribution of PySP.

7.1.2 Computational results for PySP

We use PySP (Pyomo 5.0.0) to solve the SSLP, SSLPR, and DCAP problems.
Each subproblem is solved with the CPLEX (12.7.0) quadratic solver. We use
the cost-proportional (CP) heuristic to set the values of ρ(i). The multipliers
α in the CP heuristic are set to 0.1, 0.3, 0.5, and 1.0, respectively. Note that
the main results shown in this section are not using WW-heuristics, i.e., we
do not use the variable fixing and slamming, or cycle-detection heuristics.
We will make a comparison of PySP with WW-heuristics and PySP without
WW-heuristics at the end of this section.

The number of iterations and the walltime for different multipliers are
shown in Figures 4 and 5, respectively. If the PH algorithm reaches iteration
limit, there is an “(i)” label at the top of the column. If the PH algorithm
reaches the time limit, there is a “(t)” label on top of the column. From Figures
4 and 5, one can observe that setting the α value to 0.1 makes PH take the
largest number of iterations and largest amount of wall time to converge in
most of the instances, which may be due to the small step size. On the other
hand, setting α to the largest value, i.e., 1.0, takes fewer iterations and less
walltime than using other α values in most instances. However, it runs out of
the iteration limit in two of the instances. Overall, setting α to 0.3 seems to be
a robust choice because cp-0.3 always converges within a reasonable walltime
and number of iterations. The details of the SSLP and SSLPR results are
shown in Tables 6 and 7 in Appendix 1.

We also apply PySP to solve DCAP instances. We observe that for all the
DCAP instances, PySP is unable to converge within 300 iterations. The details
of the results are shown in Table 8 in Appendix 2 where the walltime the upper
bound for those instances are reported. We will compare the upper bound
obtained by PySP with those obtained by DSP in the next subsection. From
this experiment, we can see that it is more difficult for PySP to solve problems
with mixed-binary first stage variables than problems with pure binary first
stage variables because it is more difficult for the continuous variables to satisfy
the NACs.

Scenario bundling [13, 24, 54] is a technique that has been used in dual
decomposition algorithms. The main idea is to dualize only “some” of the non-
anticipativity constraints, rather than dualizing all of them. In other words,
the individual scenario subproblems are bundled into larger subproblems in
which the NACs are preserved. Ryan et al. [54] use PH with scenario bundling
to solve stochastic unit commitment problems. The authors show that with
the use of scenario bundling, PH can obtain solutions with better optimality
gap. In order to test the effectiveness of scenario bundling, we test several
instances from the SSLP and DCAP libraries. The computational results are
shown in Table 5. For each instance, we try a different number of bundles.
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Fig. 4 Number of iterations for PH to solve SSLP instances using different cost proportional
multipliers

Fig. 5 Walltime for PH to solve SSLP instances using different cost proportional multipliers

For the SSLP instances, PH with a different number of bundles can obtain the
same upper bound. However, the number of bundles has a significant impact on
the computational time. For example, for SSLP 10 50 with 1000 scenarios, PH
with 50 bundles can reduce the walltime of the original PH with 1000 bundles
to 3%. Also, it only takes PH with 50 bundles one iteration to converge. For
DCAP problems, PH does not converge within 300 iterations for most cases
even with scenario bundling. However, PH is able to obtain better feasible
solutions with scenario bundling (see UB in Table 5).

Finally, we evaluate how the use of WW-heuristics can affect the perfor-
mance of PySP on the SSLP and SSLPR libraries. The results on DCAP
library are omitted here since PySP does not converge for DCAP instances.
The solution time improvements by using WW-heuristic for each SSLP and
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Table 5 Computational results for PySP with scenario bundling

Instances Scenarios Bundles Iterations Time UB

SSLP 5 25

50
10 4 3.73 -121.60
50 24 17.59 -121.60

100
10 2 3.99 -127.37
50 7 10.03 -127.37

SSLP 10 50

50
10 4 30.55 -364.64
50 68 254.15 -364.64

100

10 2 83.67 -354.19
50 49 263.59 -354.19
100 95 540.21 -354.19

500

10 1 476.13 -349.13
50 2 162.54 -349.14
500 174 4322.45 -349.14

1000

10 1 7137.61 -351.71
50 1 313.07 -351.71

1000 180 9984.56 -351.71

DCAP233

200

10 >300 342.97 1854.36
50 >300 232.21 1861.63
200 >300 456.18 2206.68

300

10 147 >10800 -
50 >300 317.28 1679.80
300 >300 1515.27 2498.12

500

10 >300 634.60 1749.87
50 >300 400.59 1858.98
500 >300 1494.13 1893.83

Fig. 6 Solution time improvement by using WW-heuristics for SSLP and SSLPR instances

SSLPR instances are shown in Figure 6. Note that there are three cases where
the improvements are omitted in the figure: case (1): neither PH nor PH with
WW-heuristics can converge in 300 iterations; case (2): only PH-WW fails to
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converge in 300 iterations; and case (3): both PH and PH-WW exceed the
time limit of 3 hours (10800 CPU seconds). Using WW-heuristic gives signifi-
cant improvements for small cost-proportional multipliers, i.e., 0.1 and 0.3. As
we have described in Table 4, PH with small multipliers usually takes more
iterations to converge. Therefore, the WW-heuristics can accelerate conver-
gence for those instances more effectively. However, there also a few instances
where PH can converge, but PH with WW-heuristics cannot converge, which
are denoted by case (2) in Figure 6.

7.2 DSP: Decompositions for Structured Programming

DSP [33] is an open-source software package implemented in C++ that pro-
vides different types of dual decomposition algorithms to solve stochastic
mixed-integer programs (SMIPs). DSP can take SMPS files, and JuMP models
as input via a Julia package Dsp.jl.

7.2.1 Algorithmic innovations in DSP

From the description of the dual decomposition algorithm in section 5, one
can observe that the lower bounds of the dual decomposition algorithm are
affected by the way the Lagrangean multipliers are updated. One advantage
of DSP is that the authors have different dual-search methods implemented
including the subgradient method, the cutting plane method, and a novel
interior-point cutting-plane method for the Lagrangean master problem. The
authors observe that if the simplex algorithm is used, the solutions to the
Lagrangean master problem can oscillate significantly, especially when the
Lagrangean dual function is not well approximated. Therefore, the authors
propose to solve the Lagrangean master problem suboptimally using an interior
point method, which follows from the work of Mitchell [43].

The authors also propose some tightening inequalities that are valid for
the Lagrangean subproblems. These valid inequalities, including feasibility and
optimality cuts, are obtained from Benders subproblems where the integrality
constraints are relaxed. Computational results show that the Benders-like cuts
can be effective in practice.

7.2.2 Computational results for DSP in comparison with PySP

We test the dual decomposition algorithm on the SSLP, SSLPR, and DCAP
libraries. Each subproblem is solved with the CPLEX (12.7.0) mixed-integer
linear solver. The interior point method proposed by the authors [33] is used
to solve the Lagrangean master problem, which is solved with the CPLEX as
well. Benders-like cuts are not used because the implementation of Benders
cuts in DSP only works with SCIP. In Figure 7 and 8, we evaluate the best
feasible solution (the upper bound) obtained by PySP, and the upper and lower
bound obtained by DSP. For each instance, we include three different gaps.
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Fig. 7 Comparison of optimality gaps from PySP, DSP, and literature for SSLP and SSLPR
library - Instances with only binary in the first-stage.

Fig. 8 Comparison of the optimality gaps from PySP, DSP, and literature for DCAP library
- Instances with mixed-integer variables in the first-stage.

The upper and lower bound from literature [2] are used to evaluate the bounds
from PySP and DSP. Note that the bounds from literature are close to the
global optimality of each instance. The first column for each instance in both
Figures 7 and 8 is the gap between the upper bound from PySP (PySPub) and
the lower bound from literature (Literaturelb). The second column represents
the gap between the upper bound from DSP (DSPub) and the lower bound
from literature (Literaturelb). The third column represents the gap between
the upper bound from literature (Literatureub) and the lower bound from
DSP (DSPlb).

For the SSLP and SSLPR instances shown in Figure 7, although PySP
can converge within the time and iteration limit, the best feasible solution
obtained from PySP (PySPub) may not be optimal. There are about 1% gaps
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for some of the SSLP instances (see the first column of each instance in Figure
7). DSP can solve more instances to optimality than PySP (see the second
column of each instance in Figure 7). The lower bounds obtained by DSP are
also quite tight, usually less than 0.01% (see the third column of each instance
in Figure 7). Note that the literature values for SSLPRF5 50 100(1), SSL-
PRF5 50 100(2), and SSLPRF5 50 100(3) do not match the values from our
experiment. Therefore, we try to solve the deterministic equivalent of these in-
stances to obtain bounds. The literature bounds of SSLPRF5 50 100(3) come
from solving the deterministic equivalent. The gaps of SSLPRF5 50 100(1)
and SSLPRF5 50 100(2) are omitted since the corresponding deterministic
equivalent cannot be solved within 3 hours.

For the DCAP instances where we have mixed-integer first-stage variables,
the best feasible solutions from PySP (PySPub) and DSP (DSPub) are quite
far from optimality. The gaps of the first two columns are around 10%. On the
other hand, the lower bounds obtained from DSP (DSPlb) are tight. The gaps
between (Literatureub) and (DSPlb) are around 0.1%. Therefore, in order to
improve the relative optimality gap of DSP, the focus should be on designing
more advanced heuristics to obtain better feasible solutions.

8 Conclusion

We have presented a summary of the state-of-the-art methodologies for the
solution of two-stage linear stochastic problems. First, we introduced the
mathematical formulation of such programs and highlighted features in their
structure which enable the development of decomposition algorithms. These
methodologies are classified in two groups: time-dependent decomposition and
scenario-based decomposition.

For two-stage stochastic programs with continuous recourse, we have sum-
marized Benders Decomposition, which partitions the problem according to
its time structure. BD may present computational problems, which can be al-
leviated by reducing the cost of each iteration, and/or decreasing the number
of iterations. We benchmarked standard BD and three quadratic stabilization
variants in two separate software packages, DECIS and FortSP. Our results
show that these methodologies are effective in reducing the solution time and
overall number of iterations; however, they might fail to converge due to nu-
merical problems. Specifically, we showed that Regularized Decomposition re-
lies on the quality of the penalty term if it is not updated at each iteration.
In addition, we found that differences in the initialization and implementation
can affect the performance of BD.

Scenario decomposition methodologies are popular alternatives in the case
of (mixed) integer recourse. The progressive Hedging Algorithm and Dual De-
composition relax the nonanticipatity restrictions and provide the user with
valid bounds. Our numerical results show that the performance of PH is
strongly affected by the constant penalty multiplier. Furthermore, its per-
formance and the quality of the approximate solution may be enhanced by
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grouping the scenarios in large bundles (or scenario sets). We also have tested
the dual decomposition algorithm with the DSP package. The computational
results show that DSP is able to provide tight lower bound on the instances
that we have tested. However, the optimality gaps can be as large as 10%, rel-
ative to the upper bound from literature. Therefore, for those tested instances,
future effort should be focused on developing more advanced heuristics to im-
prove the best feasible solution.
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9 Appendix 1: Computational results for PySP

Table 6 Computational results for PySP on SSLP

Instances Scenarios cp multiplier Iterations Time UB

SSLP 5 25

50

cp 0.1 24 17.59 -121.60
cp 0.3 11 8.16 -121.60
cp 0.5 13 8.53 -121.60
cp 1.0 12 7.80 -121.60

100

cp 0.1 19 27.38 -127.37
cp 0.3 11 15.27 -127.37
cp 0.5 18 21.26 -127.37
cp 1.0 >300 303.53 -125.59

SSLP 10 50

50

cp 0.1 68 254.15 -364.64
cp 0.3 22 71.57 -364.64
cp 0.5 15 49.19 -364.64
cp 1.0 13 41.91 -364.64

100

cp 0.1 95 540.21 -354.19
cp 0.3 31 149.33 -354.19
cp 0.5 19 88.54 -354.19
cp 1.0 12 57.98 -354.19

500

cp 0.1 174 4322.45 -349.14
cp 0.3 61 1265.18 -349.14
cp 0.5 35 688.90 -349.14
cp 1.0 19 379.64 -349.14

1000

cp 0.1 180 9984.56 -351.71
cp 0.3 59 2849.90 -357.71
cp 0.5 35 1604.27 -357.71
cp 1.0 18 845.16 -351.71

SSLP 15 45

5

cp 0.1 9 12.48 -262.40
cp 0.3 4 5.85 -261.20
cp 0.5 >300 197.35 -261.20
cp 1.0 10 9.65 -261.20

10

cp 0.1 155 485.38 -260.50
cp 0.3 55 108.15 -260.50
cp 0.5 33 58.23 -259.30
cp 1.0 >300 463.63 -259.30

15

cp 0.1 186 1416.21 -253.60
cp 0.3 74 286.78 -253.60
cp 0.5 38 126.79 -253.60
cp 1.0 22 65.08 -253.20
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Table 7 Computational results for PySP on SSLPR

Instances cp multiplier Iterations Time UB

SSLPRF 5 25 100 1

cp 0.1 33 722.61 -74005.84
cp 0.3 20 461.1 -74005.84
cp 0.5 19 427.04 -74005.84
cp 1.0 16 315.67 -74005.84

SSLPRF 5 25 100 2

cp 0.1 28 852.75 -72671.95
cp 0.3 18 517.33 -72671.95
cp 0.5 15 436.16 -72671.95
cp 1.0 21 539.61 -72671.95

SSLPRF 5 25 100 3

cp 0.1 34 735.9 -75664.19
cp 0.3 21 412.91 -75664.19
cp 0.5 20 397.01 -75664.19
cp 1.0 18 348.75 -75664.19

SSLPRF 5 50 100 1

cp 0.1 59 2457.66 138900.12
cp 0.3 20 814.04 138900.12
cp 0.5 12 429.35 138900.12
cp 1.0 6 200.07 138900.12

SSLPRF 5 50 100 2

cp 0.1 94 >10800 -
cp 0.3 95 7382.14 245424.96
cp 0.5 114 4315.02 245424.96
cp 1.0 75 3008.51 500144.07

SSLPRF 5 50 100 3

cp 0.1 88 >10800 -
cp 0.3 83 6984.09 258578.79
cp 0.5 50 3887.54 258578.79
cp 1.0 24 1727.73 258578.79
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Table 8 Computational results for PySP on DCAP

Instances Scenarios cp multiplier Iterations Time UB

DCAP 233

200

cp 0.1 >300 456.18 2206.7
cp 0.3 >300 457.5 2431.8
cp 0.5 >300 458.23 1966.1
cp 1.0 >300 455.88 1952.6

300

cp 0.1 >300 734.23 1862.0
cp 0.3 >300 726.59 1943.3
cp 0.5 >300 726.77 1831.6
cp 1.0 >300 741.17 1815.4

500

cp 0.1 >300 1515.27 2498.1
cp 0.3 >300 1492.59 2000.0
cp 0.5 >300 1467.64 1939.2
cp 1.0 >300 1494.13 1893.8

DCAP 243

200

cp 0.1 >300 481.96 2465.9
cp 0.3 >300 478.34 2454.2
cp 0.5 >300 481.51 2369.3
cp 1.0 >300 466.95 2383.2

300

cp 0.1 >300 792.01 2825.8
cp 0.3 >300 756.17 2802.8
cp 0.5 >300 710.44 2755.0
cp 1.0 >300 776.97 2743.1

500

cp 0.1 >300 1690.74 2196.0
cp 0.3 >300 1622.8 2235.2
cp 0.5 >300 1674.76 2216.7
cp 1.0 >300 1536.42 2323.3

DCAP 332

200

cp 0.1 >300 456.58 1362.7
cp 0.3 >300 427.65 1529.1
cp 0.5 >300 450.88 1278.0
cp 1.0 >300 460.35 1171.0

300

cp 0.1 >300 714.83 1332.1
cp 0.3 >300 698.52 1948.9
cp 0.5 >300 709.21 1904.4
cp 1.0 >300 706.75 1766.3

500

cp 0.1 >300 1464.11 1768.6
cp 0.3 >300 1451.73 1822.8
cp 0.5 >300 1473.66 1846.6
cp 1.0 >300 1452.64 1861.6

DCAP 342

200

cp 0.1 >300 449.9 1993.4
cp 0.3 >300 476.77 1990.4
cp 0.5 >300 445.11 1870.6
cp 1.0 >300 470.82 1830.8

300

cp 0.1 >300 722.6 2260.3
cp 0.3 >300 739.94 2371.1
cp 0.5 >300 690.76 2497.7
cp 1.0 >300 702.23 2255.9

500

cp 0.1 >300 1582.9 2198.1
cp 0.3 >300 1604.98 2317.5
cp 0.5 >300 1555.9 2290.6
cp 1.0 >300 1593.41 2097.5
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Table 9 Computational results for DSP on SSLP

Instances Scenarios Iterations Time LB UB Gap [%]

SSLP 5 25
50 16 3.86 -121.60 -121.60 0.00
100 17 6.00 -127.37 -125.59 1.42

SSLP 10 50

50 57 204.63 -364.64 -357.98 1.86
100 44 213.95 -354.19 -341.33 3.77
500 69 2439.58 -349.14 -344.02 1.49
1000 60 2960.55 -351.71 -336.23 4.60

SSLP 15 45

5 15 14.14 -262.40 -261.20 0.46
10 41 152.25 -260.50 -260.50 0.00
15 44 207.39 -253.60 -253.60 0.00

Table 10 Computational results for DSP on SSLPR

Instances Iterations Time LB UB Gap [%]

SSLPRF 5 25 100 1 36 1239.55 -74005.84 -74005.84 0.00
SSLPRF 5 25 100 2 38 1783.89 -72671.95 -72671.95 0.00
SSLPRF 5 25 100 3 40 1541.41 -75664.19 -75664.19 0.00
SSLPRF 5 50 100 1 88 6776.87 138900.12 138900.12 0.00
SSLPRF 5 50 100 2 57 9357.49 163943.96 245427.14 33.20
SSLPRF 5 50 100 3 85 >10800 189569.71 254469.62 25.50

Table 11 Computational results for DSP on DCAP

Instances Scenarios Iterations Time LB UB Gap [%]

DCAP 233

200 59 17.65 1833.40 2053.77 10.73
300 69 35.45 1642.73 1812.89 9.39
500 60 29.57 1735.09 2257.81 23.15

DCAP 243

200 54 17.81 2321.17 2447.75 5.17
300 50 23.62 2556.68 2600.56 1.69
500 62 58.24 2165.48 2481.84 12.75

DCAP 332

200 59 16.25 1059.09 1337.71 20.83
300 79 39.58 1250.91 1431.11 12.59
500 66 55.94 1587.07 1802.24 11.94

DCAP 342

200 52 14.32 1618.07 1804.57 10.34
300 46 21.19 2065.42 2252.33 8.30
500 56 51.59 1902.98 2059.87 7.62
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