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In this work, we propose a cutting plane algorithm to improve optimization models that are originally formu-

lated as convex Generalized Disjunctive Programs (GDP). GDPs are traditionally reformulated as MINLPs

using either the Big-M (BM) or the hull-reformulation (HR). The former yields a smaller MILP/MINLP

while the later a tighter one. The (HR) reformulation can be further strengthened, by using the concept

of basic step from disjunctive programming. The proposed algorithm uses the strengthened formulation to

derive cuts for the Big-M formulation, generating a stronger formulation with small growth in problem size.

We test the algorithm with several instances. The results show that the algorithm improves GDP convex

models, in the sense of providing formulations with stronger continuous relaxations than the (BM) with

few additional constraints. In general, the algorithm also leads to a reduction in the solution time of the

problems.
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1. Introduction

The modeling of many real-world application requires use of mixed-integer nonlinear

programming. In particular, convex MINLP problems seek to minimize a convex objec-

tive function over a feasible region that is convex when the integrality variables are

relaxed as continuous. Process design(Duran and Grossmann 1986, Floudas 1995), layout

problems(Sawaya 2006), financial modeling and electrical power management(Stubbs and

Mehrotra 1999) are a few of the areas where convex MINLP has been successfully applied.

There are, however, different ways of formulating MINLP models. The performance of the

MINLP methods strongly depends on the size of the problem formulation and tightness of

its continuous relaxation.
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Methods to solve convex MINLP problems include branch and bound and branch

and cut(Dakin 1965, Gupta and Ravindran 1985, Stubbs and Mehrotra 1999), outer-

approximation(Duran and Grossmann 1986, Fletcher and Leyffer 1994, Abhishek et al.

2010), generalized Benders decomposition(Geoffrion 1972), LP/NLP based branch and

bound(Quesada and Grossmann 1992) and extended cutting planes(Westerlund and Pet-

tersson 1995). For a comprehensive review of MINLP we refer the reader to the work by

Belotti et al.(Belotti et al. 2013), and to the review article by Bonami et al.(Bonami et al.

2012) for convex MINLP.

An alternative way to represent MINLP problems is Generalized Disjunctive Program-

ming (GDP)(Raman and Grossmann 1994). GDP involves not only algebraic equations,

but also disjunctions and logic propositions. This higher level representation, which is of

special importance in engineering(Trespalacios and Grossmann 2014b), allows us to exploit

the logic structure of the problem to obtain better formulations.

Generalized Disjunctive Programming (GDP) is an alternative higher-level represen-

tation of these problems(Raman and Grossmann 1994) that involves not only algebraic

equations, but also disjunctions and logic propositions in terms of Boolean and continuous

variables. The modeling of problems through GDP allows a systematic approach for the

formulation process(Grossmann and Trespalacios 2013). Special techniques to solve GDP

problems include the disjunctive branch and bound(Lee and Grossmann 2005) and the logic

based outer-approximation(Turkay and Grossmann 1996). However, GDPs are normally

reformulated as MILP/MINLP(Nemhauser and Wolsey 1988, Lee and Grossmann 2000) to

exploit the developments in these solvers(Grossmann 2002, Trespalacios and Grossmann

2014c). Big-M (BM) and Hull-Reformulation (HR) are the traditional MINLP reformula-

tions of GDP. The former generates a smaller MILP/MINLP, while the latter generates a

tighter one(Grossmann and Lee 2003, Vecchietti et al. 2003).

In addition to the BM and HR reformulations, it is possible to obtain formulations that

are even stronger than the traditional HR. These stronger formulations are obtained by

using the HR reformulation after applying a logic operation called basic step(Balas 1985).

Basic steps can be applied sequentially to generate a hierarchy of relaxations, where the

limiting case is given by the convex hull of the original GDP problem. The application of

basic steps has proven to improve the tightness in linear GDP formulations(Sawaya and

Grossmann 2012), and in general convex GDP formulations(Ruiz and Grossmann 2012).
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The drawback in the application of this operation is the exponential growth of continuous

variables and number of constraints. Recent work proposed a hybrid MINLP reformulation

to exploit both the strength of the relaxation of the HR after basic steps, and the small

problem size of the BM(Trespalacios and Grossmann 2014a).

In this work, we follow a different approach to exploit the advantages of having small but

weak formulations (BM), and strong but larger formulations (HR after the application of

some basic steps). In order to do this, we propose a cutting plane algorithm for convex GDP

problems. The algorithm iteratively derives valid inequalities (or cutting planes) for the BM

reformulations. These inequalities cut-off sections of the feasible region of the continuous

relaxation of the BM, but they do not cut-off any valid region of the stronger formulation.

Once the cuts stop having a relevant impact in the improvement of the relaxation, the final

MINLP is generated by using the BM of the GDP and including all the generated cuts. This

MINLP is then solved using traditional methods. In the proposed algorithm, the cutting

plane methodology is used before a branch and bound method is applied. Therefore, it can

be considered as a pre-processing of the problem in the GDP space. Figure 1 illustrates the

proposed framework. It is important to note that, within the context of disjunctive branch

and bound, these cuts could be derived at any node. The addition of this cuts would in

fact yield a disjunctive branch and cut algorithm. However, the disjunctive branch and cut

algorithm is out of the scope of this paper, and it is subject of future research.

This paper is organized as follows. Section 2 provides a high-level description of relevant

concepts in GDP. Section 3 presents the proposed algorithm, which is illustrated in detailed

with an example in Section 4. Section 5 presents convex GDP examples that were solved

to test the algorithm. Section 6 presents the statistics, results and performance of different

test examples.

2. Background

In this section we present the general form of GDP, and its (BM) and (HR) reformula-

tions. We then present an overview on the logic operation called basic step. For a more

comprehensive description of the topics we refer the reader to previous work that reviews

generalized disjunctive programming(Grossmann and Trespalacios 2013).
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Figure 1 Different modeling approaches

2.1. Generalized disjunctive programming

The general GDP formulation is represented as follows:

min z = f(x)

s.t. g(x)≤ 0

∨
i∈Dk

 Yki

rki(x)≤ 0

 k ∈K

Y
i∈Dk

Yki k ∈K

Ω(Y ) = True

xlo ≤ x≤ xup

x∈Rn

Yki ∈ {True,False} k ∈K, i∈Dk

(GDP)

The objective function f(x) in (GDP) depends only on the continuous variables x.

The global constraints g(x) must hold true. (GDP) contains k ∈ K disjunctions. Each

disjunction, in turn, contains i ∈ Dk disjunctive terms. Each of this terms is associated

with a Boolean variable Yki and a set of constraints rki(x)≤ 0. The disjunctive terms in

a disjunction are linked together by an OR operator (∨). In each disjunction, only one

disjunctive term can be selected Y
i∈Dk

Yki. The constraints associated to a selected (or active)

term (Yki = True) are enforced. The constraints associated to a disjunctive term that is

not active (Yki = False) are ignored. The logic relations among the disjunctive terms is

represented by Ω(Y ) = True. In this work, we consider the particular case in which f(x),

g(x) and rki(x) are convex. In such a case, the problem is called a convex GDP.
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GDP problems are normally reformulated as MILP/MINLP by using either the Big-

M(Nemhauser and Wolsey 1988) (BM) or Hull Reformulation(Lee and Grossmann 2000)

(HR). The (BM) reformulation is as follows:

min z = f(x)

s.t. g(x)≤ 0

rki(x)≤Mki(1− yki) k ∈K, i∈Dk∑
i∈Dk

yki = 1 k ∈K

Hy≥ h

xlo ≤ x≤ xup

x∈Rn

yki ∈ {0,1} k ∈K, i∈Dk

(BM)

The (HR) formulation is given as follows:

min z = f(x)

s.t. g(x)≤ 0

x=
∑
i∈Dk

νki k ∈K

ykirki(ν
ki/yki)≤ 0 k ∈K, i∈Dk∑

i∈Dk

yki = 1 k ∈K

Hy≥ h

xloyki ≤ νki ≤ xupyki k ∈K, i∈Dk

x∈Rn

yki ∈ {0,1} k ∈K, i∈Dk

(HR)

In both reformulations, the Boolean variables Yki are transformed into binary variables

yki with a one-to-one correspondence (Yki = True is equivalent to yki = 1, while Yki = False

is equivalent to yki = 0). The logic constraints (Ω(Y ) = True) can be transformed to linear

constraints (Hy≥ h) using well-known methods(Clocksin and Mellish 1981, Williams 1985,

Biegler et al. 1997). As previously described, only one disjunctive term in each disjunction

can be selected (
∑
i∈Dk

yki = 1).

The (BM) and (HR) differ in the representation of the set of equations inside the dis-

junctive terms. For the (BM), the constraints associated with a selected term (yki = 1)
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are enforced (rki(x) ≤ 0). For a term not selected (yki = 0) and a large enough Mki, the

corresponding constraints become redundant (rki(x)≤Mki).

In (HR), the continuous variables x are disaggregated. One additional continuous vari-

able is created for each disjunctive term in each disjunction νki, i∈Dk. When a disjunctive

term is selected (yki = 1), the variable corresponding to that term has to lie within the

bounds of the original variable (xlo ≤ νki ≤ xup). When it is not selected, the disaggregated

variable takes a value of 0. The original continuous variables have the same value as the

disaggregated variables that correspond to a selected term (x =
∑
i∈Dk

νki) in each of the

disjunctions k ∈K. The constraints associated to a disjunctive term are represented by the

perspective function ykirki(ν
ki/yki). When a term is selected, these constraints are enforced

on the disaggregated variable (rki(ν
ki)≤ 0). The constraints for a non-selected disjunctive

term are trivially satisfied (0≤ 0). Note that when the constraints corresponding to a dis-

junctive term are linear (Akix≤ aki), then ykirki(ν
ki/yki)≤ 0 becomes Akiνki ≤ akiyki(Balas

1985). In order to avoid singularities in the nonlinear case, the following approximation

can be used for the perspective function(Sawaya 2006):

ykirki(ν
ki/yki)≈ ((1− ε)yki + ε)rki

(
νki

(1− ε)yki + ε

)
− εrki(0)(1− yki) (APP)

where ε is a small finite number (e.g. 10−4). (APP) is exact at yki = 0 and yki = 1, and it

is convex if rki is convex.

It is important to note that (HR) involves more variables and constraints than (BM).

However, (HR) provides a stronger formulation(Grossmann and Lee 2003, Vecchietti et al.

2003). The (HR) reformulation represents the intersection of the convex hulls of each

disjunction. This representation of convex hulls of disjunctions, using the perspective func-

tion, has been previously presented for convex MINLP(Ceria and Soares 1999, Stubbs and

Mehrotra 1999).

2.2. Basic steps

Consider the following definitions from disjunctive convex programming:

Convex inequality : C = {x∈Rn|Φ(x)≤ 0}, where Φ(x) : Rn→R1 is a convex function.

Convex set : P = ∩
m∈M

Cm

Elementary disjunctive set : H = ∪
m∈M

Cm

Disjunction: Sk = ∪
i∈Dk

Pi = ∪
i∈Dk

∩
m∈Mi

Cm
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A disjunction such that Sk = Pi for some i∈DK is called improper disjunction, otherwise

it is called a proper disjunction. Note that if Dk is a singleton then Sk is improper.

There are alternative forms to represent disjunctive convex sets. In particular:

Regular form: F = ∩
k∈K

Sk

Disjunctive normal form (DNF): F = S = ∪
i∈D

Pi

A basic step is the intersection between two disjunctions to form a new disjunction.

Basic steps bring a disjunctive set in regular form closer to its DNF. The definition of basic

step is as follows(Balas 1985, Ruiz and Grossmann 2012):

Theorem 2.1. Let F be a disjunctive set in regular form. Then F can be brought to

DNF by |K|−1 recursive applications of the following basic step which preserves regularity.

For some k, l ∈K, bring Sk∩Sl to DNF by replacing it with: Skl = Sk∩Sl =
⋃

i∈Dk,j∈Dl

(Pi∩Pj)

Any convex GDP is equivalent to a disjunctive convex program(Ruiz and Grossmann

2012). Therefore, it is possible to use the concept of basic step to strengthen GDP for-

mulations. In particular, there are two main consequences of the basic steps for GDP

problems(Sawaya and Grossmann 2012, Ruiz and Grossmann 2012): a) The continuous

relaxation of the (HR) of a disjunctive set after a basic step is at least as tight as the

one before the basic step; and b) The (HR) of the DNF describes the convex hull of the

problem

The results indicate that we can improve the strength of the continuous relaxation of the

(HR) by applying basic steps. Furthermore, in the extreme case in which we intersect all

of the disjunctions and all of the global constraints into a single disjunction, we obtain the

convex hull of the problem. The drawback in the application of basic steps is the growth

of the problem size, which is exponential when applying proper basic steps.

The application of proper basic steps not only increases the problem size, but also results

in an exponential growth of disjunctive terms. As described in Section 2.1, each disjunctive

term is associated with a binary variable in any GDP reformulation. Therefore, the growth

of disjunctive terms implies an exponential increase in the number of binary variables.

However, it is possible to avoid the exponential growth in binary variables by using the

following theorem(Balas 1985):

Theorem 2.2. Consider MILP/MINLP representation of two disjunctions k, l ∈ K,

whose disjunctive terms are represented by the 0-1 variables yki, ylj, i ∈ Dk, j ∈ Dl. If a

basic step is applied between disjunction k and disjunction l, the variables representing the
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Figure 2 (a) Illustration of (BM), (b) (HR), and (c) (HR) after the application of a basic step.

disjunctive terms of the resulting disjunction ŷij ∈ {0,1} can be equivalently represented

by:

yki =
∑
j∈Dl

ŷij i∈Dk

ylj =
∑
i∈Dk

ŷij j ∈Dl∑
i∈Dk,j∈Dl

ŷij = 1∑
i∈Dk

yki = 1∑
j∈Dl

ylj = 1

0≤ ŷij ≤ 1

yki, ylj ∈ {0,1} i∈Dk, j ∈Dl

Proof. The proof follows from Theorem 4.4 of Balas(Balas 1985) �.

Theorem 2.2 relates the new terms after a basic step to those before the basic step. Only

the variables associated to the original disjunctive terms are required to be binary, while

the ones related to the new terms can be continuous between 0 and 1.

Figure 2 illustrates tightness of relaxation of the (BM), (HR), and (HR) after the appli-

cation of a basic step. Figure 2 presents the feasible region described by two disjunctions

with two disjunctive terms each, that is ([A1]∨ [A2])∧ ([B1]∨ [B2]). Figure 2.a shows the

continuous relaxation of the (BM) reformulation projected into x1 and x2. Figure 2.b

shows the continuous relaxation of the (HR) reformulation projected into x1 and x2. It is

easy to see from the figure that the continuous relaxation of the (HR) has a tighter feasible

region. Figure 2.c shows that the feasible region is even tighter after the application of a

basic step.

The key element in the application of basic steps is the trade-off between the problem

size and the tightness improvement. There has been some work that identifies heuristics
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to decide when to apply basic steps(Balas 1985, Sawaya and Grossmann 2012, Ruiz and

Grossmann 2012). Some recent work tries to use a hybrid (BM)-(HR) reformulation to

avoid the exponential growth in problem size(Trespalacios and Grossmann 2014a). This

work presents an alternative method, in which the strength of the (HR) after basic steps

is captured through cutting planes. Section 3 describes how this procedure is performed.

3. Cutting plane algorithm to improve GDP formulations

A method for using the strong extended reformulation, obtained through the application

of basic steps, is to derive cutting planes for the (BM) reformulation(Stubbs and Mehrotra

1999, Vecchietti et al. 2003, Sawaya and Grossmann 2005). The main idea of the cutting

planes method is to solve the continuous relaxation of the (BM) of the convex GDP, and

use the strong formulation of the (HR) after basic steps to derive cutting planes. The

cutting planes are determined by solving a separation problem (NLP), in which the feasible

solution corresponds to the continuous relaxation of the (HR) formulation after a sequence

of basic steps.

Without loss of generality, any convex GDP can be formulated as follows:

min xn

s.t. g(x)≤ 0

∨
i∈Dk

 Yki

rki(x)≤ 0

 k ∈K

Y
i∈Dk

Yki k ∈K

Ω(Y ) = True

xlo ≤ x≤ xup

x∈Rn

Yki ∈ {True,False} k ∈K, i∈Dk

(1)

where, g(x) and rki(x) are convex functions.

Let (F-HR) be the feasible region of the continuous relaxation of the (HR) reformulation,

and (P-HR) the projection of (F-HR) to the original space. Let (R-BM) be the continuous

relaxation of the (BM) reformulation of (1). Let (F-BM) be the feasible region and zBM =

(xBM , yBM) the optimal solution of (R-BM). Also, it is possible to define the feasible region

of the continuous relaxation (HR) of the GDP after application of basic steps with the

following constraints:
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ge(x)≤ 0 E\Ẽ (2a)

x=
∑
i∈Dk

νki k ∈K\K̃ (2b)

ykirki(ν
ki/yki)≤ 0 k ∈K\K̃, i∈Dk (2c)∑

i∈Dk

yki = 1 k ∈K (2d)

Hy≥ h (2e)

xloyki ≤ νki ≤ xupyki k ∈K\K̃, i∈Dk (2f)

0≤ yki ≤ 1 k ∈K, i∈Dk (2g)

x=
∑
î∈Dk̂

ν k̂î k̂ ∈ K̂ (2h)

ŷk̂îge(ν
k̂î/ŷk̂î)≤ 0 k̂ ∈ K̂, î∈Dk̂, e∈ Êk̂ (2i)

ŷk̂îrki(ν
k̂î/ŷk̂î)≤ 0 k̂ ∈ K̂, î∈Dk̂, ki∈ K̂I k̂î (2j)∑

î∈Dk̂

ŷk̂î = 1 k̂ ∈ K̂ (2k)

xloŷk̂î ≤ ν
k̂î ≤ xupŷk̂î k̂ ∈ K̂, î∈Dk̂ (2l)

0≤ ŷk̂î ≤ 1 k̂ ∈ K̂, î∈Dk̂ (2m)

yki =
∑

k̂∈K̂,̂i∈Dk̂

ki∈K̂I k̂î

ŷk̂î k ∈ K̃, i∈Dk (2n)

The feasible region (SEP) is defined by constraints (2a) - (2n). (2a) - (2g) is the relaxed

(HR) of the global constraints and disjunctions to which no basic steps where applied

(K\K̃ and E\Ẽ). (2h) - (2m) is the relaxed (HR) of the global constraints and disjunctions

in which basic steps were applied. In these constraints k̂ ∈ K̂ are the resulting disjunctions

after applying basic steps (that we denote “key disjunctions”), and î ∈ Dk̂ their corre-

sponding disjunctive terms. The set Êk̂ maps the intersection of global constraints e ∈E
with the new disjunctions k̂ ∈ K̂. Note that a global constraint, which corresponds to an

improper disjunction, can be intersected with more than one disjunction. Intersecting a

global constraint with multiple disjunctions might provide further tightening of the relax-

ation in some cases. The set K̂I k̂î maps the original disjunctive terms ki, k ∈K, i ∈Dk to

the resulting disjunctive terms after the application of basic steps k̂ ∈ K̂, î ∈Dk̂. Finally,

constraint (2n) relates the original binary variables yki to the resulting ones ŷk̂î as described

in Theorem 2.2.
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Let (P-SEP) be the projection of (SEP) over the original space: (P-SEP)= Projx(SEP).

The following propositions allows us to derive valid cutting planes for the (BM) reformu-

lation:

Proposition 3.1. (P-SEP) ⊆ (F-BM)

Proof. For GDP (P-HR) ⊆ (F-BM) (Grossmann and Lee 2003). Also, after applying

basic steps (P-SEP) ⊆ (P-HR)(Balas 1985, Ruiz and Grossmann 2012) �.

Proposition 3.2. (SEP) and (P-SEP) are convex regions.

Proof. 1) The original functions g(x) and rki(x) are convex. (SEP) contains either the

original functions or the perspective function of the original functions. The perspective

function is an operation that preserves convexity, therefore, (SEP) is convex. 2) (P-SEP)

is convex, since it is the projection of a convex region, and projection preserves convexity

�.

Let z = (x, y). In order to derive a separating hyperplane that cuts off a point zBM ,

consider the two following separation problems:

min φ(z) = ||z− zBM ||

s.t. (z, ν, ŷ)∈ (SEP )
(3)

and,

min φ(z) = ||z− zBM ||

s.t. z ∈ (P -SEP )
(4)

(SEP) is convex, and (P-SEP) ⊆ (F-BM). Therefore, following propositions hold

true(Sawaya 2006):

Proposition 3.3. Let (zsep, νsep, ŷsep) be an optimal solution of (3). Then zsep is an

optimal solution of (4).

Proposition 3.4. Let zBM be the optimal solution of the continuous relaxation of the

(BM) reformulation of (1), and zsep an optimal solution of (3). If zBM /∈ (P -SEP ), then ∃

ξ such that ξT (z− zsep)≥ 0 is a valid linear inequality in zsep that cuts off zBM , and such

ξ is a subgradient of φ(x) at zsep.

Proposition 3.5. Let (SEP) ⊂ S, where S is a convex set. If φ : S→R is differentiable

over its entire domain, then the collection of subgradients of φ at zsep is the singleton set

∂φ≡ {ξsep|ξsep =∇φ(zsep)}.
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Figure 3 Outline of Algorithm 2

Proposition 3.6. Let (SEP) ⊂ S, where S is a convex set. If φ : S→ R is defined as

φ(z) = ||z − zBM ||22, then the collection of subgradients of φ at zsep is the singleton set

∂φ≡ {ξsep|ξsep = 2(zsep− zBM)}.
With these propositions, it is possible to derive cuts for (BM) using the (HR) reformula-

tion after basic steps. The outline of the algorithm is shown in Figure 3. Figure 4 illustrates

the algorithm in a simple example with three disjunctions, each one with two terms. There

are several decisions and heuristics in the algorithm that have to be considered:

a) Number of cuts: A predetermined number of cuts can be established. The optimal

value of the objective function in (3) can also be used as an indicator of the performance

of the cuts.

b) The number of new resulting disjunctions, or “key disjunctions” has to be decided at

each iteration.

c) The number of basic steps to apply in each “key disjunction” at each iteration.

d) Heuristics to select which disjunctions to intersect in each “key disjunction” at each

iteration.

e) Selection of which global constraints to intersect with each disjunction. Includes gen-

eration of “redundant” constraints (i.e. intersecting a global constraint with more than one

disjunction) at each iteration.

f) Selection of the norm in (3). In particular, the norm-2 squared is convenient for

nonlinear convex GDP, but norm-1 or the infinity-norm might be computationally more

convenient for linear GDP, since (3) then becomes linear.

In particular for b) - e), only a few heuristics have been developed to select intersec-

tion of disjunctions(Balas 1985, Sawaya and Grossmann 2012, Ruiz and Grossmann 2012,

Trespalacios and Grossmann 2014a). Important improvements in the algorithm could be
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Figure 4 (a) Solution of the relaxation of the (BM) formulation. (b) Solution of (3). (c) Cutting plane ξ(z −

zsep)≥ 0. (d) Addition of cutting plane to (BM) formulation

achieved by using better heuristics. The development of these heuristics are out of the

scope of this work.

It is important to note that in the proposed algorithm, the derived cutting planes are

stronger than the ones proposed by Vecchietti et al(Vecchietti et al. 2003). These authors

use the (HR) formulation to derive cuts for the (BM). In this work, the cuts are generated

using the (HR) after the application of basic steps, so the separation problem (SEP) has

a tighter feasible region.

4. Illustration of algorithm

To illustrate the algorithm, consider the simple convex GDP analytical example (5):
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min l

s.t. l≥ x1

l≥ x2

l≥ x3

l≥ x4[
Y11

x21/50−x2 + 2≤ 0

]
∨

[
Y12

−x1 +x22/80 + 4≤ 0

]
[

Y21

x21/60−x3 ≤ 0

]
∨

[
Y22

−x1 +x23/60 + 5≤ 0

]
[

Y31

x21/60−x4 ≤ 0

]
∨

[
Y32

−x1 +x24/70 + 6≤ 0

]
[

Y41

x22/60−x3 ≤ 0

]
∨

[
Y42

−x2 +x23/90 + 4≤ 0

]
[

Y51

x22/70−x4 + 9≤ 0

]
∨

[
Y52

−x2 +x24/50 + 7≤ 0

]
[

Y61

x23/90−x4 + 6≤ 0

]
∨

[
Y62

−x3 +x24/80 + 3≤ 0

]
Yi1 YYi2 i= 1, ...,6

3≤ x1 ≤ 100; 0≤ x2 ≤ 100; 3≤ x3 ≤ 100; 0≤ x4 ≤ 100

Yi1, Yi2 ∈ {True,False} i= 1, ...,6

x1, x2, x3, x4 ∈R

(5)

The optimal solution of the continuous relaxation of the (BM) of this problem is 3, and

of the (HR) is 3.94. The optimal solution of this problem is 7. Note that if the (BM) of

this problem is solved with SBB from GAMS(Brooke et al. 1998) it takes 18 nodes to find

and prove the optimal solution. Consider the feasible region described in (6):
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 Y11

l≥ x1
x21/50−x2 + 2≤ 0

∨
 Y12

l≥ x1
−x1 +x22/80 + 4≤ 0


[

Y21

x21/60−x3 ≤ 0

]
∨

[
Y22

−x1 +x23/60 + 5≤ 0

]
[

Y31

x21/60−x4 ≤ 0

]
∨

[
Y32

−x1 +x24/70 + 6≤ 0

]
[

Y41

x22/60−x3 ≤ 0

]
∨

[
Y42

−x2 +x23/90 + 4≤ 0

]


Ŷ11

l≥ x2
l≥ x3
l≥ x4

x22/70−x4 + 9≤ 0

x23/90−x4 + 6≤ 0


∨



Ŷ12

l≥ x2
l≥ x3
l≥ x4

x22/70−x4 + 9≤ 0

−x3 +x24/80 + 3≤ 0


∨



Ŷ13

l≥ x2
l≥ x3
l≥ x4

−x2 +x24/50 + 7≤ 0

x23/90−x4 + 6≤ 0


∨



Ŷ14

l≥ x2
l≥ x3
l≥ x4

−x2 +x24/50 + 7≤ 0

−x3 +x24/80 + 3≤ 0


Yi1 YYi2i= 1, ...,4

Ŷ12 Y Ŷ12 Y Ŷ13 Y Ŷ14

3≤ x1 ≤ 100; 0≤ x2 ≤ 100; 3≤ x3 ≤ 100; 0≤ x4 ≤ 100

Yi1, Yi2 ∈ {True,False}i= 1, ...,4

Ŷ12, Ŷ12, Ŷ13, Ŷ14 ∈ {True,False}

x1, x2, x3, x4 ∈R
(6)

Note that (6) represents the feasible region of (5) after the following basic steps: the first

global constraint is intersected with the first disjunction, a basic step is performed with

disjunctions 5 and 6; the remaining global constraints are intersected with the disjunction

that resulted from the basic step between disjunction 5 and 6.

Also, the constraints that relate the original variables y to the new variables ŷ, described

in Theorem 2.2, are presented in (7).
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y51 = ŷ11 + ŷ12

y52 = ŷ13 + ŷ14

y61 = ŷ11 + ŷ13

y62 = ŷ12 + ŷ14

(7)

Let z = [l, x1, x2, x3, x3, y11, y12, y21, y22, y31, y32, y41, y42, y51, y52, y61, y62]
T

Step 1.

The relaxation of the (BM) reformulation of (5) is solved. The following solution is

obtained:

zBM = [3,3,0,3,0,0.001,0.999,0.002,0.998,0.003,0.997,0.004,0.996,0.007,0.993,0,1]T

Step 2.

The separation problem is solved by minimizing Φ(z) = ||z− zBM ||22:

Φ(z) = (l − 3)2 + (x1 − 3)2 + (x2 − 0)2 + (x3 − 3)2 + (x4 − 0)2 + (y11 − 0.001)2 + (y21 −

0.999)2 + (y21 − 0.002)2 + (y22 − 0.998)2 + (y31 − 0.003)2 + (y32 − 0.997)2 + (y41 − 0.004)2 +

(y42− 0.996)2 + (y51− 0.007)2 + (y52− 0.993)2 + (y61− 0)2 + (y62− 1)2

Subject to the continuous relaxation of the (HR) of (6) and to (7). The solution of this

separation problem is: zSEP = [7.5,3,5.2,3,2.3,1,0,1,0,1,0,1,0,0.3,0.7,0.3,0.7]T .

Cut generation.

Since Φ(z) = ||z− zBM ||22, then ξsep = 2(zsep− zBM)}:

ξsep = [9,0,10.4,0,4.7,2,−2,2,−2,2,−2,2,−2,0.5,−0.5,0.5,−0.5].

The following cut is then added to (BM):

9(l − 7.5) + 0(x1 − 3) + 10.4(x2 − 5.2) + 0(x3 − 3) + 4.7(x4 − 2.3) + 2(y11 − 1)− 2y21 +

2(y21 − 1)− 2y22 + 2(y31 − 1)− 2y32 + 2(y41 − 1)− 2y42 + 0.5(y51 − 0.3)− 0.5(y52 − 0.7) +

0.5(y61− 0.3)− 0.5(y62− 0.7)≥ 0

The continuous relaxation of the (BM) with this additional cut is 6.01.

Iteration.

This procedure can be repeated with the solution of the (BM) relaxation after adding the

cut. With a second cut the continuous relaxation becomes 6.79, and with a third iteration

it becomes 6.96. Solving the MINLP by doing a (BM) reformulation and adding the three

cuts just described, takes SBB 5 nodes (in contrast to solving the (BM) reformulation

without the cuts, which requires 18 nodes).
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5. Convex GDP examples

The algorithm was tested with 19 instances of four problems: constrained layout, farm

layout, and two types of process flowsheets.

5.1. Constrained Layout (C-Lay)

In the constrained layout problem there is a set of rectangles that have to be packed inside

a set of fixed circles. The objective function is to minimize the distance in x and y axis,

with a cost associated to every pair of rectangles. Figure 5 illustrates the constrained layout

problem. It can be formulated as the following convex GDP(Sawaya 2006):

min Z =
∑
i

∑
j

cij(delxij + delyij)

s.t. delxij ≥ xi−xj i, j ∈N, i < j

delxij ≥ xj −xi i, j ∈N, i < j

delyij ≥ yi− yj i, j ∈N, i < j

delyij ≥ yj − yi i, j ∈N, i < j[
Y 1
ij

xi +Li/2≤ xj −Lj/2

]
∨

[
Y 2
ij

xj +Lj/2≤ xi−Li/2

]

∨

[
Y 3
ij

yi +Hi/2≤ yj −Hj/2

]
∨

[
Y 4
ij

yj +Hj/2≤ yi−Hi/2

]
i, j ∈N, i < j

∨
t∈T



Wit

(xi +Li/2−xct)2 + (yi +Hi/2− yct)2 ≤ r2t
(xi +Li/2−xct)2 + (yi−Hi/2− yct)2 ≤ r2t
(xi−Li/2−xct)2 + (yi +Hi/2− yct)2 ≤ r2t
(xi−Li/2−xct)2 + (yi−Hi/2− yct)2 ≤ r2t


i∈N

Y 1
ij YY

2
ij YY

3
ij YY

4
ij i, j ∈N, i < j

Y
t∈T

Wit i∈N

0≤ xi ≤ xupi i∈N

0≤ yi ≤ yupi i∈N

Y 1
ij , Y

2
ij , Y

3
ij , Y

4
ij ∈ {True,False} i, j ∈N, i < j

Wit ∈ {True,False} i∈N, t∈ T

(8)

In formulation (8) xi and yi represent the coordinates of the centre of the rectangles

i ∈N . delxij and delyij represent the distance between two rectangles i, j ∈N, i < j, and



Author: Article Short Title
18 Article submitted to INFORMS Journal on Computing; manuscript no.

Figure 5 Illustration of constrained layout problem

cij is the cost associated with these. The first disjunctions ensures that there is no overlap

by expressing the possible relative position between rectangles i and j. The second set of

disjunctions ensure that every rectangle i is inside one of the t ∈ T circles. For a circle t,

its coordinates (xct,yct) and its radius rt are given.

5.2. Farm Layout (F-Lay)

In the farm layout problem, the objective is to determine the width and length of a number

of rectangles with fixed area in order to minimize the total perimeter. Figure 6 illustrates

this problem, which can be formulated as the following convex GDP(Sawaya 2006):

min Z = 2(Length+Width)

s.t. Length≥ xi +Li i∈N

Width≥ yi +Wi i∈N

Ai/Wi−Li ≤ 0 i∈N[
Y 1
ij

xi +Li ≤ xj

]
∨

[
Y 2
ij

xj +Lj ≤ xi

]
∨

[
Y 3
ij

yi +Wi ≤ yj

]
∨

[
Y 4
ij

yj +Wj ≤ yi

]
i, j ∈N, i < j

Y 1
ij YY

2
ij YY

3
ij YY

4
ij i, j ∈N, i < j

0≤Length≤Lengthup; 0≤Width≤Widthup

Llo
i ≤Li ≤Lup

i ; W lo
i ≤Wi ≤Lup

i i∈N

0≤ xi ≤Lengthup−Llo
i ; 0≤ yi ≤Widthup−Llo

i i∈N

Y 1
ij , Y

2
ij , Y

3
ij , Y

4
ij ∈ {True,False} i, j ∈N, i < j

(9)

In formulation (9) the variables xi and yi represent the coordinates of lower-left corner

of each rectangle i ∈N , while Li and Wi represent their corresponding length and width.
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Figure 6 Illustration of farm layout problem

Length and Width represent the length and width of the total area. Ai is the given area

for each rectangle. There is one disjunction for each pair of rectangles. Each term in the

disjunction represents the possible relative position between the two rectangles: rectangle

i is either to the left, or to the right, or below, or above rectangle j, respectively.

5.3. Process Network type 1 (Proc-1)

This problem seeks to maximize the profit of selling a set of products, taking into account

the cost of raw materials and equipment. In this example the model that describes the per-

formance is simplified to single input-output relations that give rise to a convex GDP(Ruiz

and Grossmann 2012). The GDP problem formulation is as follows:

min Z =
∑
i∈I

ci +
∑
j∈J

pjxj +α

s.t.
∑
j∈J

rjnxj ≤ 0 ∀n∈N

∨
i∈Dk


Yki∑

j∈Ji

dkij(e
xj/tkij − 1)−

∑
j∈Ji

skijxj ≤ 0

ci = γki

 k ∈K

Ω(Y ) = True

ci, xj ≥ 0

Yi ∈ {True,False}

(10)

In (10) there are k ∈K processes that need to be installed. For each process, only one

of the alternative units i ∈Dk must be selected. ci is the cost associated to each process.

xj represents each of the flows j ∈ J , and pj the profit or cost associated to each one.
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The global constraints represent the mass balance in each of the n ∈N nodes, where rjn

is the coefficient of the mass balance for flow j. If a unit is selected (Yki = True) then

the corresponding mass balance has to be satisfied, and the cost of the unit ci takes the

value associated to that equipment γi. Finally Ω(Y ) = True represents the topology of the

superstructure. Note that for a some processes one of the alternatives might be to select no

units. In such cases one of the terms i∈Dk will have ci = 0, and xj = 0 ∀j ∈ J i constraints

associated with it.

5.4. Process Network type 2 (Proc-2)

This problem is similar to (Proc-1). The main difference is that in this case more than one

alternative can be selected for each process. The formulation is presented in (11).

min Z =
∑
i∈I

ci +
∑
j∈J

pjxj +α

s.t.
∑
j∈J

rjnxj ≤ 0 ∀n∈N
Yi∑

j∈Ji

dij(e
xj/tij − 1)−

∑
j∈Ji

sijxj ≤ 0

ci = γi

∨
 ¬Yi

xj = 0 ∀j ∈ J i

ci = 0

 i∈ I

Ω(Y ) = True

ci, xj ≥ 0

Yi ∈ {True,False}

(11)

6. Results

In this section we present the computational results of applying the algorithm described

in section 3 to different problems. The algorithm applies basic steps in a “key disjunc-

tion” following the heuristics presented by Trespalacios and Grossmann (Trespalacios and

Grossmann 2014a), as long as the “key disjunction” contains less than 10 disjunctive terms

(before the basic step). Four different strategies where tested for the number of “key dis-

junctions”. In strategy K0 no proper basic steps where applied. In K1 there is only one

“key disjunction”. In K5 five “key disjunctions” were generated. In KK there are as many

key disjunctions as the instance allows. Two strategies where tested for the basic steps

with the global constraints. Strategy I1, where all global constraints are intersected once

with a disjunction (as long as they share variables in common, “key disjunctions” where
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preferred over regular ones). In strategy I2 all global constraints are intersected with all of

the disjunctions with which they share variables in common. For this work, the selection

of disjunctions and basic steps does not change after each iteration, but in general it is

possible to do so. Finally, the algorithm was tested by generating 1, 2, 3, 5, 7 and 10 cuts.

Nineteen nonlinear convex instances were solved for the problems presented in section

5. The instances were generated by defining problem size and structure, and randomly

generating the parameters of the problems. The ε has a value of 10−4, and the Big M

parameter was determined using by estimating a basic feasible solution of the problem.

The problem size and solution of this instances is presented in Table 1. The instances are

solved using SBB. The algorithm and models were implemented in GAMS 24.2(Brooke

et al. 1998) and solved in an Intel(R) Core(TM) i7 CPU 2.93 GHz and 4 GB of RAM.

This section first presents three plots on the general performance of the algorithm. It

then provides in-depth tables with the statistics and computational results of the different

problems and strategies.

Figure 7 shows the percentage of problems solved vs. time for the (BM), (HR) and

the algorithm, using the strategy K5− I1, and using 3 cuts. The time for the algorithm

includes the time to generate the cuts and time to solve the MINLP. The figure shows that

the algorithm, using strategy K5− I1 and 3 cuts, performs considerably better than the

direct (BM) and (HR) reformulations.

Figure 8 shows the relaxation gap for the (BM), (HR) and the algorithm for the different

strategies and different numbers of cuts. It is important to note that after one single cut,

the formulation presents a stronger relaxation than the (HR). This is an important result,

considering that the new formulation has the same number of variables than the (BM), and

just an additional constraint. It can also be seen that after the first cut, there is a small

improvement in the relaxation. In terms of strategies, intersecting global constraints with

every disjunction with which they share variables provides the best continuous relaxation.

Note that this strategy involves generating redundant constraints. With this strategy I2,

and using the proposed heuristics, the number and strategy for proper basic steps has

small impact in the continuous relaxation(strategies K0− I2,K1− I2,K5− I2,KK − I2).

However, when the global constraints are intersected only once, the use of proper basic steps

helps to improve the continuous relaxation (e.g. strategy K0− I1 has a weaker continuous
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Table 1 Number of constraints and variables for the test problems

(BM) (HR)

Instance Solution Binary Cont. vars. # constraints Cont. vars. # constraints

C-Lay-4-2 8,469 32 22 93 134 349

C-Lay-4-3 9,746 36 22 109 142 381

C-Lay-4-4 7,923 40 22 125 150 413

C-Lay-4-5 8,781 0 66 141 202 445

C-Lay-5-2 11,472 50 32 138 212 548

C-Lay-5-3 20,799 55 32 158 222 569

C-Lay-5-4 10,876 60 32 178 232 608

C-Lay-5-5 9,223 65 32 198 242 668

F-Lay-04 20 24 20 45 212 381

F-Lay-05-a 68 40 24 68 349 633

F-Lay-05-b 63 40 24 68 349 633

F-Lay-05-c 57.5 40 24 68 349 633

Proc-1-21 17.2 21 21 56 84 137

Proc-1-31 12.2 41 36 102 159 255

Proc-1-36 12.1 46 36 112 174 280

Proc-1-48 12.1 61 45 149 228 371

Proc-2-21 17 42 27 125 169 341

Proc-2-31 12.3 82 46 235 336 675

Proc-2-36 12.1 92 46 260 376 760

relaxation than strategy K1− I1). It is important to note that different heuristics in the

application of basic steps will impact this behavior.

Figure 9 shows the accumulated solution time to solve all instances, using different

strategies, with different number of cuts. The maximum time allowed was 7,200 seconds.

The figure shows that the solution time decreases with the first 3 cuts or so, but it starts

increasing after that. This behaviour is expected, since the first cuts reduce the solution

time of the MINLP considerably. However, as the number of cuts increases, the solution

time of the MINLP does not improve much, and the time to generate the cuts becomes

relatively more expensive. It is interesting to note that, even though the relaxation after
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Figure 7 Percentage of problems solved vs. time

Figure 8 Average relaxation gap vs. number of cuts for different strategies in the algorithm

the first cut does not change much, generating around 3 cuts seems to be the best strategy

for the tested problems. As expected, in the strategies that generate large problem sizes

(K5− I2 and KK− I2) the time to generate cuts is expensive, so the solution times after

3 cuts increases considerable.
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Figure 9 Accumulated solution time vs. number of cuts for different strategies in the algorithm

Table 2 summarizes the performance of the (BM), (HR), and of the algorithm for strategy

K5−I1 with three cuts. It is easy to see that the relaxation of the MINLP after adding the

cutting planes is stronger than the (HR) in most cases. The algorithm has the strongest

continuous relaxation in 13 of the 19 instances, while the (HR) is the strongest in 2. Note

that in the 2 instances in which (HR) is stronger, the value relaxation of the problem after

the cutting planes is very close to that of the (HR). On the C-lay problems, the algorithm

provides a value of the continuous relaxation much stronger than either the (BM) or the

(HR). In terms of solution times, the algorithm is the fastest in 14 of the 19 instances, the

(HR) in 4, and the (BM) in 1. Except in Proc-1-21, in all other instances in which the

algorithm is not the fastest it is the second fastest. It is also important to notice that the

algorithm solves all of the problems in less than 1,325 seconds, while the (BM) and (HR)

cannot solve all of the problems within the two-hour limit.

Table 3 presents the separation problem size for the different strategies, compared to the

(BM) reformulation. It is easy to see that, in general, strategy I2 generates a much larger

problems than strategy I1. The difference in size lies in the generation of the redundant

global constraints that are intersected with every single disjunction. In most cases, K1

is twice the size of K0, while k5 is thrice its size. It is important to note that in some
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Table 2 Performance of the algorithm for strategy K5− I1 and 3 cuts

Continuous relaxation Solution time (s)

Algorithm

Instance Solution (BM) (HR) Algo. (BM) (HR) cut-gen MINLP Total

C-Lay-4-2 8,469 0 0 2,877 24 34 8.3 9.6 18

C-Lay-4-3 9,746 0 0 2,774 74 31 16.8 7.2 24

C-Lay-4-4 7,923 0 0 2,788 312 548 25.6 36.7 62

C-Lay-4-5 8,781 0 0 3,384 318 727 35.6 39.9 76

C-Lay-5-2 11,472 0 0 5,187 383 574 20.8 48.3 69

C-Lay-5-3 20,799 0 0 4,826 2,696 2,498 27.4 27 54

C-Lay-5-4 10,876 0 0 4,417 2,075 5,175 34.2 306 340

C-Lay-5-5 9,223 0 0 3,680 6,477 > 7,200 59.5 429 488

F-Lay-04 20 0 11.9 15.2 27 48 22.6 21.8 44

F-Lay-05-a 68 0 39.8 51.7 2,019 6,617 70.1 1,255 1,325

F-Lay-05-b 63 0 35.3 45.3 1,247 5,660 53.7 1,138 1,192

F-Lay-05-c 57.5 0 31.6 42.5 1,642 6,000 73.4 1,156 1,229

Proc-1-21 17.2 0 15.7 15.6 24 4.7 20.9 20.3 41

Proc-1-31 12.2 0 12.2 12.2 840 1 31.6 1.3 33

Proc-1-36 12.1 0 12.1 12.1 2,414 5 62.2 1.1 63

Proc-1-48 12.1 0 12.1 12 > 7,200 10 44.9 13.4 58

Proc-2-21 17 0 0.3 0.3 76 71 3.9 48.3 52

Proc-2-31 12.3 0 0.2 0.2 1,030 616 5.4 240.4 246

Proc-2-36 12.1 0 0.1 0.2 2,770 3,791 5.2 369.1 374

instances strategy K5 and KK provide the same separation problem. This happens when

strategy K5 applies all of the possible basic steps.

7. Conclusion

In this paper, we have proposed a cutting plane algorithm that improves the relaxation

of the (BM) reformulation of convex GDP formulation. The cutting planes for the (BM)

are derived through a separation problem. The separation problem minimizes the distance

between the optimal solution of the continuous relaxation of the (BM), and a point that
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Table 3 Ratios of problem size of (SEP) compared to (BM)

Ratio of number of constraints Ratio of number of variables

Strategy I1 Strategy I2 Strategy I1 Strategy I2

Instance K0 K1 K5 KK K0 K1 K5 KK K0 K1 K5 KK K0 K1 K5 KK

C-Lay-4-2 6.1 12 18 18 18 23 34 34 12 23 33 33 29 37 55 55

C-Lay-4-3 5.5 11 17 17 16 21 34 34 13 23 35 35 32 40 64 64

C-Lay-4-4 5.1 9.9 16 16 16 19 36 36 14 24 39 39 35 43 76 76

C-Lay-4-5 4.8 9 17 17 15 18 39 39 4.7 8.2 14 14 12 15 31 31

C-Lay-5-2 6.7 13 18 19 25 30 46 49 14 24 32 34 40 49 73 78

C-Lay-5-3 6 12 16 18 23 28 44 51 14 25 35 38 43 52 83 95

C-Lay-5-4 5.6 11 15 17 22 26 44 53 15 25 37 42 46 55 92 110

C-Lay-5-5 5.4 9.9 15 17 21 25 44 55 16 26 39 46 49 58 101 125

F-Lay-04 12 21 33 33 17 26 43 43 15 25 40 40 18 27 46 46

F-Lay-05-a 12 18 33 33 18 24 48 48 20 28 52 52 25 32 63 63

F-Lay-05-b 12 18 33 33 18 24 48 48 20 28 52 52 25 32 63 63

F-Lay-05-c 12 18 33 33 18 24 48 48 20 28 52 52 25 32 63 63

Proc-1-21 5.4 10 13 13 12 15 19 19 11 20 25 25 22 29 37 37

Proc-1-31 5.7 9.6 17 17 20 23 39 39 12 22 35 35 42 49 88 88

Proc-1-36 5.6 9.1 19 19 20 22 48 48 13 23 43 43 47 54 119 119

Proc-1-48 5.6 9 13 18 25 27 36 51 14 23 33 42 62 69 94 135

Proc-2-21 4.3 4.6 10 11 13 13 19 19 12 14 27 29 35 35 53 55

Proc-2-31 3.8 4.1 6.5 10 20 20 23 28 13 14 21 30 66 66 81 103

Proc-2-36 3.8 4.1 6.2 9.4 21 21 23 27 14 15 22 31 74 74 89 112

lies within a tighter continuous region. The tighter continuous region is still valid for the

original GDP. We have proposed the use of basic steps in order to obtain the tighter

region of the separation problem. This region is obtained by performing basic steps on the

original GDP, and then applying the (HR) reformulation. The continuous relaxation of

this region is as tight, and generally much tighter, that the continuous relaxation of the

(BM). We have presented the results of applying this algorithm to several test problem,

using different suggested strategies. The algorithm improves the relaxation of the (BM)
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in all cases. Also, the algorithm solves the test problems faster than the (HR) and (BM)

direct reformulations in most cases.
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