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In this work, we propose an algorithmic approach to improve mixed-integer models that are originally

formulated as convex Generalized Disjunctive Programs (GDP). The algorithm seeks to obtain an improved

continuous relaxation of the MILP/MINLP reformulation of the GDP, while limiting the growth in the

problem size. There are three main stages that form the basis of the algorithm. The first one is a pre-solve,

consequence of the logic nature of GDP, which allows us to reduce the problem size, find good relaxation

bounds and identify properties that help us determine where to apply a basic step. The second stage is the

iterative application of basic steps, selecting where to apply them, and monitoring the improvement of the

formulation. Finally, we use a hybrid reformulation of GDP that seeks to exploit both of the advantages

attributed to the two common GDP-to-MILP/MINLP transformations, the Big-M and Hull reformulation.

We illustrate the application of this algorithm with several examples. The results show the improvement in

the problem formulations by generating models with improved relaxed solutions and relatively small growth

in the number of continuous variables and constraints. The algorithm generally leads to reduction in the

solution times.
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1. Introduction

Mixed-integer linear and mixed-integer nonlinear programming models (MILP/MINLP)

arise in different areas, such as process design(Duran and Grossmann 1986, Floudas 1995,

Turkay and Grossmann 1996), layout problems(Sawaya 2006), financial modeling and elec-

trical power management(Stubbs and Mehrotra 1999). MILP/MINLP models can be for-

mulated in different ways, and therefore efficiency of the algorithms to solve these problems
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strongly depends on the size of the corresponding formulation and tightness of its contin-

uous relaxation.

Generalized Disjunctive Programming (GDP) is an alternative higher-level represen-

tation of these problems(Raman and Grossmann 1994) that involves not only algebraic

equations, but also disjunctions and logic propositions in terms of Boolean and contin-

uous variables. This approach facilitates the development of the models by making the

formulation process more systematic. Although there are some special techniques to solve

this type of problems, such as Disjunctive Branch and Bound(Lee and Grossmann 2005)

and Logic Based Outer Approximation(Turkay and Grossmann 1996), GDPs are normally

reformulated as MILP/MINLP(Nemhauser and Wolsey 1988, Lee and Grossmann 2000)

to exploit the developments in these solvers.

Some of the methods to solve convex MINLP problems include branch and bound(Dakin

1965, Gupta and Ravindran 1985), branch and cut(Stubbs and Mehrotra 1999), generalized

Benders decomposition(Geoffrion 1972), outer approximation(Duran and Grossmann 1986,

Abhishek et al. 2010), LP/NLP based branch and bound(Quesada and Grossmann 1992)

and extended cutting planes(Westerlund and Pettersson 1995). A comprehensive review of

MINLP techniques is given by Grossmann(Grossmann 2002), and of MILP methods and

progress is given by Bixby et al.(Bixby et al. 2000, Bixby and Rothberg 2007).

The reformulation of GDP models to MILP/MINLP problems is typically done by using

either the Big-M (BM) or the Hull-Reformulation (HR), where the former generates a

smaller MILP/MINLP, while the latter generates a tighter one(Grossmann and Lee 2003,

Vecchietti et al. 2003).

In this work, we make use of the logic structure of a GDP. Instead of directly reformu-

lating it as an MILP/MINLP, we apply a pre-analysis, a logic operation called basic step,

and a hybrid reformulation. This logic manipulation allows us to obtain an improved for-

mulation in comparison to the one obtained by a traditional reformulation. The resulting

model can be solved by a GDP or an MILP/MINLP algorithm. Figure 1 outlines the main

idea of this work. We should note that the proposed pre-analysis has some similarities to

the MILP ”fixing variables” pre-solve technique(Savelsbergh 1994, Achterberg 2004, Lodi

2010, Mahajan 2010), but applied in the GDP space for convex nonlinear GDP models.

This paper is organized as follows. Section 2 provides an overview of GDP and relevant

concepts in disjunctive programming, providing a theoretical background for the algorithm.
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Figure 1 Different modeling approaches

Section 3 first presents the proposed algorithm, and second describes in detail each step of

the method. Section 4 provides an example of the application of the algorithm. Section 5

presents the statistics, results and performance of different test examples.

2. Background

In order to improve problem formulations, we rely on two main tools. The first one is

Generalized Disjunctive Programming, which is a higher level representation for MINLP.

The second one is a logic operation called basic step that allows the generation of tighter

formulations. In this section we provide the background for these two concepts.

2.1. Generalized Disjunctive Programming (GDP)

Generalized Disjunctive Programming(Raman and Grossmann 1994, Grossmann and Ruiz

2012) allows the systematic modeling of optimization problems by using algebraic equa-

tions, disjunctions and logic propositions. GDP can be considered an extension to the

well-known theory of disjunctive programming developed by Balas(Balas 1979).
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2.1.1. GDP formulation. The general GDP formulation can be represented as follows:

min z = f(x)

s.t. g(x)≤ 0

∨
i∈Dk

 Yki

rki(x)≤ 0

 k ∈K

Y
i∈Dk

Yki k ∈K

Ω(Y ) = True

xlo ≤ x≤ xup

x∈Rn

Yki ∈ {True,False} k ∈K, i∈Dk

(GDP)

As shown in (GDP), the objective is a function of the continuous variables x. The global

constraints g(x) must hold true regardless of the discrete decisions. Each of the disjunctions

k ∈K contains disjunctive terms i ∈Dk that are linked together by an OR operator (∨).

For each disjunctive term in each disjunction, a Boolean variable Yki is assigned with a

corresponding set of inequalities rki(x) ≤ 0. Only one term in each disjunction can be

selected Y
i∈Dk

Yki. When a disjunctive term is active (Yki = True), then the corresponding

inequalities are enforced. When it is not active (Yki = False), the constraints are ignored.

Ω(Y ) = True represents the logic relations between the Boolean variables. In the particular

case when f(x), g(x) and rki(x) are convex the problem becomes a convex GDP.

2.1.2. MINLP reformulation of GDP. In order to take full advantage of existing

solvers(Grossmann 2002), GDP problems are normally reformulated as MILP/MINLP by

using either the Big-M(Nemhauser and Wolsey 1988) (BM) or Hull Reformulation(Lee and

Grossmann 2000) (HR). (BM) generates a smaller MILP/MINLP, while (HR) generates a

tighter one at the expense of larger number of variables and constraints(Grossmann and

Lee 2003, Vecchietti et al. 2003). The (BM) reformulation is given as follows:
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min z = f(x)

s.t. g(x)≤ 0

rki(x)≤Mki(1− yki) k ∈K, i∈Dk∑
i∈Dk

yki = 1 k ∈K

Hy≥ h

xlo ≤ x≤ xup

x∈Rn

yki ∈ {0,1} k ∈K, i∈Dk

(BM)

In (BM) the Boolean variables Yki are transformed to binary variables yki with a one-to-

one correspondence (i.e. Yki = True is equivalent to yki = 1, while Yki = False is equivalent

to yki = 0). The transformation of logic relations (Ω(Y ) = True) to integer linear con-

straints (Hy≥ h) can be easily obtained(Clocksin and Mellish 1981, Williams 1985, Biegler

et al. 1997, Grossmann and Trespalacios 2013). The equation
∑
i∈Dk

yki = 1 guarantees that

only one disjunctive term is selected per disjunction. For a selected term (yki = 1) the

corresponding constraints rki(x)≤ 0 are enforced. For a term not selected (yki = 0) and a

large enough Mki the corresponding constraint rki(x)≤Mki becomes redundant.

The (HR) formulation is given as follows:

min z = f(x)

s.t. g(x)≤ 0

x=
∑
i∈Dk

νki k ∈K

ykirki(ν
ki/yki)≤ 0 k ∈K, i∈Dk∑

i∈Dk

yki = 1 k ∈K

Hy≥ h

xloyki ≤ νki ≤ xupyki k ∈K, i∈Dk

x∈Rn

yki ∈ {0,1} k ∈K, i∈Dk

(HR)

In (HR), the Boolean variables Yki are also transformed into binary variables yki, and

the logic relations (Ω(Y ) = True) into integer linear constraints (Hy ≥ h). Here, the con-
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tinuous variables x are disaggregated into variables νki, i ∈ Dk (x =
∑
i∈Dk

νki) for each of

the disjunctions k ∈K. The constraints in each term i ∈ Dk of a disjunction k ∈K are

represented by the perspective function ykirki(ν
ki/yki). The constraint xloyki ≤ νki ≤ xupyki

enforces that if a disjunction is selected (yki = 1), then its corresponding variables have

to lie within the limits of x (xlo ≤ νki ≤ xup), and they have to satisfy their corresponding

constraints (rki(ν
ki)≤ 0). If it is not selected (yki = 0), then its variables νki = 0, and their

corresponding constraints are trivially satisfied (0≤ 0). Note that when the constraints in

the disjunction are linear (Akix≤ aki), then ykirki(ν
ki/yki)≤ 0 becomes Akiνki ≤ akiyki. For

the nonlinear case, to avoid singularities, the following approximation can be used for the

perspective function(Sawaya 2006):

ykirki(ν
ki/yki)≈ ((1− ε)yki + ε)rki

(
νki

(1− ε)yki + ε

)
− εrki(0)(1− yki) (APP)

where ε is a small finite number (e.g. 10−5). This approximation yields an exact value

at yki = 0 and yki = 1, and it is convex if rki is convex. In some cases, particularly for

linear constraints, algebraic manipulation of the problem allows the elimination of some

disaggregated variables, reducing the size of the problem(Raman and Grossmann 1994).

An example of GDP reformulation can be found in the on-line supplement.

It is clear that formulation (HR) involves more variables and constraints than (BM),

but it provides a tighter relaxation(Grossmann and Lee 2003, Vecchietti et al. 2003). The

(HR) reformulation represents the intersection of the convex hulls of each disjunction,

and it is consistent with the MINLP representations of disjunctive convex sets previously

characterized(Ceria and Soares 1999, Stubbs and Mehrotra 1999).

Figure 2 illustrates, for both reformulations, the projection over x1 and x2 of the feasible

region defined by two disjunctions. The first disjunction represents the selection of rectangle

A1 or rectangle A2, and the second one the selection of circle B1 or circle B2. The dashed

region defines the feasible region, and the shaded area represents the continuous relaxation

of the (BM) and (HR). It is clear that the (HR) has a tighter relaxation than the (BM).

It is important to note that even though the (HR) is the intersection of the convex hulls

of the individual disjunctions, this in general does not mean that it is the convex hull of

the feasible region as can be seen in Figure 2. In order to further improve the tightness of

the (HR) we will make use of the logic operation called basic step.
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Figure 2 Illustration of (BM) and (HR) reformulations

2.2. Basic Steps

Basic step is a logic operation that allows the tightening in the formulation of disjunctive

programming. It is important to review some of the basic definitions in disjunctive convex

programming before describing this operation.

2.2.1. Disjunctive convex sets and equivalent forms. Disjunctive convex program-

ming can be defined as the optimization over a disjunctive convex set. A disjunctive set can

be described as the union (∪) and intersection (∩) of a collection of inequalities. Consider

the following definitions(Balas 1985, Ruiz and Grossmann 2012):

Convex inequality (Half space in linear case): C = {x∈Rn|Φ(x)≤ 0}, where Φ(x) : Rn→

R1 is a convex function.

Convex set (Polyhedron in linear case): P = ∩
m∈M

Cm

Elementary disjunctive set : H = ∪
m∈M

Cm

Disjunction: Sk = ∪
i∈Dk

Pi = ∪
i∈Dk

∩
m∈Mi

Cm

A disjunction such that Sk = Pi for some i ∈DK is called improper disjunction (note

that if Dk is a singleton then Sk is improper); otherwise it is called a proper disjunction.

Any disjunctive convex set can be expressed in many logically equivalent forms. There

are three forms of particular interest:

Regular form (Intersection of disjunctions): F = ∩
k∈K

Sk

Conjunctive normal form (CNF): F = ∩
k∈K

Hk

Disjunctive normal form (DNF): F = S = ∪
i∈D

Pi
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CNF and DNF are the two extremes of a disjunctive set in regular form. Note that

any GDP is in regular form(Ruiz and Grossmann 2012), where the global constraints are

improper disjunctions.

2.2.2. Hierarchy of relaxations and basic steps. A basic step is a logic operation that

brings any disjunctive set in regular form closer to its DNF. Theorem 2.1, which is stated

and proved for the linear case(Balas 1985) , and extended for the general nonlinear convex

case(Ruiz and Grossmann 2012), defines a basic step.

Theorem 2.1. Let F be a disjunctive set in regular form. Then F can be brought to

DNF by |K|−1 recursive applications of the following basic step which preserves regularity:

For some k, l ∈K, bring Sk ∩Sl to DNF by replacing it with:

Skl = Sk ∩Sl =
⋃

i∈Dk,j∈Dl

(Pi ∩Pj)

Any convex GDP can be proved to be equivalent to a disjunctive convex program(Ruiz

and Grossmann 2012), so it is possible to use the rich theory behind disjunctive program-

ming (including basic steps) to convex GDP. In particular, there are two main consequences

of the basic steps(Balas 1985, Ruiz and Grossmann 2012): a) The continuous relaxation of

the (HR) of a disjunctive set after a basic step is at least as tight, and generally tighter,

than the one of the previous formulation; b) The (HR) of the DNF is the convex hull of

the disjunctive convex set.

The first results indicates that we can obtain formulations with tighter continuous relax-

ations through basic steps. However, the problem grows exponentially in the number of

constraints with the application of basic steps. It is therefore important to consider the

tradeoff of tightening the problem formulation versus growing the problem size. An impor-

tant consequence of the second result is that if the objective function is linear, then the

optimal value to the relaxed (HR) of the DNF is the same as the optimal value to the

original GDP.

Proper basic steps generate exponential growth in disjunctive terms, which leads to an

exponential growth in the number of binary variables. However, Balas(Balas 1985) shows

that we can obtain an equivalent formulation by including additional constraints, and

representing the new terms with continuous variables between 0 and 1.

Figure 3 illustrates tightness of relaxation of the (HR) before and after the application

of a basic step. The illustration shows a feasible region described by two disjunctions with
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Figure 3 Illustration of (HR) (a) before, and (b) after the application of a basic step

two disjunctive terms each, that is ([A1] ∨ [A2]) ∧ ([B1] ∨ [B2]). Figure 3.b shows that,

after a basic step, the two disjunctions are intersected to form a new single disjunction

([A1] ∧ [B1]) ∨ ([A2] ∧ [B2]). Thus, the basic step not only improves the tightness of the

relaxation, but that it brings the problem into DNF. The (HR) of the DNF, as expressed

earlier, describes the convex hull of the feasible region. This can also be seen in 3.b. Finally,

it is important to note that some of the resulting terms after the application of a basic

step might become infeasible. In this example, since A1 and B2, and A2 and B1 do not

intersect, the corresponding new terms are not feasible.

Therefore, the application of a basic step has the tradeoff of improving the tightness

of the formulation but increasing the problem size. There has been some work to identify

when it is convenient or not to apply a basic step(Balas 1985, Sawaya and Grossmann

2012, Ruiz and Grossmann 2012). Previous work provides some guidelines and case by

case selection of basic steps; however, the exponential growth of the formulation is a major

issue. In this paper we propose an algorithmic approach for selecting which basic steps to

apply, while combining a pre-processing and a hybrid reformulation that allow us to keep

the problem formulation relatively small.

3. Algorithm to improve GDP formulations

In order to improve GDP formulations, we iteratively apply basic steps. In this section we

first describe the algorithm, and afterwards we explain in detail each of its steps. Figure 4

provides an outline of the algorithm, where the main idea is to first perform a preanalysis

for pre-solving, then repeatedly apply basic steps over one single disjunction, and finally

use the (HR) in that disjunction and (BM) in all the remaining ones.
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Figure 4 Outline of algorithm

3.1. Algorithm

For the description of the algorithm, we will define the global constraints as individual

inequalities, such that g(x)≤ 0 is represented with ge(x)≤ 0, e∈E.

Step 1. Initialize z∗, GDP ∗ and zlo from pre-solve. Set iter= 1.

Goal. Use pre-solve to initialize the algorithm; improving (GDP), finding better bounds,

and providing a value that characterizes each disjunction.

Step 2. Select disjunction k∗ ∈K. Set k̂1 = k∗; K̂ = {k̂1}; D̂k1 =Dk∗.

Goal. Select the first disjunction to which basic steps will be applied, and set this dis-

junction as the “key disjunction”.

Step 3. Set iter = iter+ 1. Select k∗ ∈K\K̂. Set k̂iter = k∗; K̂ = {k̂1, ..., k̂iter}; D̂kiter =

Dk∗ ; D̂= {D̂k1, ..., D̂kiter}.

Goal. Select the next disjunction, and apply a basic step between this disjunction and

the “key disjunction”. Set the resulting disjunction of this basic step as “key disjunction”.

Step 4 (Optional). For all î = (̂i1, ..., îiter) ∈ D̂, such that: (GDP ∗)
⋂

k̂s∈K̂
s=1,...,iter

(yk̂s îs = 1)

becomes infeasible, set î∈ INEASiter.

Goal. Identify which terms in the “key disjunction” are infeasible.

Step 5. Select global equations to which apply a basic step Ê ∈E.

Step 6. Solve the continuous relaxation of (GDPH).
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min z = f(x)

s.t. ge(x)≤ 0 e∈E\Ê

rki(x)≤Mki(1− yki) k ∈K\K̂, i∈Dk

x=
∑
î∈D̂

ν î

ŷîge(ν
î/ŷî)≤ 0 e∈ Ê, î∈ D̂

ŷĩsrk̂si(ν
ĩs/ŷĩs)≤ 0 s= 1, ..., iter, i∈ D̂ks, ĩs ∈ D̃si

yk̂si =
∑
î∈D̂
îs=i

ŷî s= 1, ..., iter, i∈ D̂ks

xloŷî ≤ ν
î ≤ xupŷî î∈ D̂∑

i∈Dk

yki = 1 k ∈K∑
î

ŷî = 1

Hy≥ h

ŷî = 0 î∈ INEASiter

zlo ≤ z

xlo ≤ x≤ xup

x∈Rn

yki ∈ {0,1} k ∈K, i∈Dk

0≤ ŷî ≤ 1 î /∈ INEASiter

(GDPH)

Step 7. If relaxed (GDPH)> z∗, set z∗ = relaxation(GDPH), GDP ∗ =GDPH. If the

relaxation has not improved after a specified maximum number of iterations, or the GDPH

problem size is greater than a specified limit, solve GDP ∗. Else, go back to step 3.

(GDPH) is a hybrid reformulation in which the objective function f(x) is the same as in

the original formulation. The global constraints that were not selected for the application of

a basic step (e∈E\Ê) remain unchanged. The disjunctions that were not selected to apply

basic steps are reformulated using (BM) (rki(x)≤Mki(1−yki)). The disjunctions that were

intersected with basic steps now form a single disjunction, which we will denote “key dis-

junction”, and that contains all terms î∈ D̂. The corresponding variable to this new terms

is ŷî. Note that |D̂|= |D̂k1| ∗ ... ∗ |D̂kiter |, which indicates an exponential growth of the dis-

junction with the number of iterations. The “key disjunction” is reformulated using (HR).
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The equation x=
∑̂
i∈D̂

ν î relates the continuous variables x, to the disaggregated variables in

all terms ν î. The constraint ŷîge(ν
î/ŷî) is the (HR) reformulation of the global constraints

that were intersected with the “key disjunction” e ∈ Ê. Note that these constraints are

present in all terms of the “key disjunction” (̂i ∈ D̂). Equation ŷĩsrk̂si(ν
ĩs/ŷĩs) is the (HR)

reformulation of all the constraints in the terms of the disjunctions to which basic steps

where applied. Each term of the “key disjunction” contains iter sets of constraints, each

one related to one of the disjunctions k̂s ∈ K̂. The original set of constraints in a certain

term i of a selected disjunction k̂s will be present in all terms î of the “key disjunction”, as

long as its corresponding element îs is equal to i (̃is ∈ D̃si, where D̃si = {D̂k1, ..., i, ..., D̂kiter}
and i is the sth element of D̃si). D̃si is a map that assigns the constraints in the original

disjunctive terms rk̂si to the terms î in the “key disjunction”. Equation yk̂si =
∑̂
i∈D̂
îs=i

ŷî relates

the original binary variables yki to the new variables ŷî, and it allows the new variables ŷî

to be continuous while enforcing them to always take a {0,1} value(Balas 1985, Ruiz and

Grossmann 2012).

It is should be noted that the algorithm applies basic steps, which are valid logic oper-

ations for GDP. Also, the hybrid reformulation is a valid MILP/MINLP representation of

the problem, since the (BM) and (HR) are valid reformulations for individual disjunctions.

Therefore, the algorithm provides a valid MILP/MINLP representation of the original

GDP.

Section 4 provides an illustration of each of the steps in the algorithm. The remaining

of this section describes each of the steps of the algorithm with detail.

3.2. Step 1: Pre-solve

The pre-solve has three purposes: eliminate infeasible terms, find better bounds, and pro-

vide a value that will characterize each disjunction. This pre-solve can be performed due to

the logic nature of GDP formulations. The pre-solve can be regarded as a strong branching

over every disjunction, and only in the root node.

The pre-solve procedure is as follows:

0. Set k= 1 and i= 1

1. Set Yki = True and, as consequence, Yki′ = False for all i′ 6= i, i′ ∈Dk

2. Formulate MILP/MINLP by using the (HR) formulation of the remaining disjunctions

k′ 6= k, k′ ∈ K (note that, since Yki = True, the constraints associated with Yki will be
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enforced as global constraints, while the ones associated with Yki′ , i
′ 6= i, i′ ∈ Dk will be

removed from the formulation).

3. Solve the continuous relaxation of this problem to optimality, and define zki as the

solution of this problem.

4. Repeat this for every k ∈K and i∈Dk.

Definition 3.1. For a minimization problem, we define the characteristic value of a

disjunction k as follows:

charvk =min{zki},∀i∈Dk

It is possible to reduce the problem size and find better bounds of the problem considering

the following remarks:

Remark 3.2. charvk is a lower bound of z.

Proof. Solving the (HR) reformulation of the original GDP, and relaxing all integrality

constraints except the ones corresponding to the disjunction k also yields charvk (i.e.

charvk is the value of the solution of a relaxation of (GDP)) �.

Remark 3.3. If zki is infeasible for a disjunctive term k ∈K, i∈Dk, then Yki = False

in the original formulation.

Proof. From the definition, zki is a continuous relaxation of the problem with Yki = True.

If this relaxation is infeasible, then that particular disjunctive term can not be selected

(i.e. Yki = False) �.

As consequence of Remark 3.3, the terms and constraints associated to a k ∈K, i ∈Dk

term such that zki is infeasible can be removed form the original (GDP) formulation.

Remark 3.4. If zki is infeasible for all i ∈ Dk for any k ∈ K, then the problem is

infeasible.

Proof. If for any disjunction k ∈K, all its disjunctive terms i ∈Dk are infeasible, then

there is no alternative in that disjunction that will make the problem feasible, and therefore,

the problem is infeasible �.

Remark 3.5. A lower bound to the problem zlo that is at least as large as the continuous

relaxation of the original (GDP) can be obtained with as follows:

zlo =max
k∈K
{charvk}

Proof. Trivially follows from 3.2 �.

It is important to note that this process requires the evaluation of
∑
k∈K
|Dk| LP/NLP

problems. Although this preprocessing might be expensive for only eliminating terms and
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finding good bounds for the problem, the characteristic value of the disjunctions has a

major role in the algorithm as will be described in section 3.3. Additionally, since most

of the structure of the problem does not change while evaluating every term, it might be

possible to solve the many LP/NLP problems in a more efficient manner. This issue is not

addressed in this paper. The resulting (GDP ) after eliminating infeasible terms is set as

(GDP ∗), and its continuous relaxation z∗.

3.2.1. Illustration of pre-solve. In order to illustrate the pre-solve procedure, consider

the formulation shown in (1).

min z = x1 +x2

s.t. Y11

x2 ≥ 8 +x1

x2 = 12−x1

∨


Y12

x1 ≤ 5

x2 ≥ 6

x2 ≤ x1 + 5

∨


Y13

x1 ≥ 9

x2 ≤ 5

x2 ≥ x1− 8


 Y21

4≤ x1 ≤ 7

7≤ x2 ≤ 8

∨
 Y22

7≤ x1 ≤ 11

2≤ x2 ≤ 4


Y11 YY12 YY13

Y21 YY22

x1, x2 ∈R1

Y11, Y12, Y13, Y21, Y22 ∈ {True,False}

(1)

Problem (1) has an optimal solution of z = 11, in which Y12 = True and Y21 = True. The

(BM) provides a relaxation of zBM = 3, and the (HR) a relaxation of zHR = 9.16. Following

the pre-solve procedure described in 3.2, we first set Y11 = True,Y12 = False,Y13 = False,

and then perform the (HR) reformulation of the remaining of the problem. Relaxing the

integrality constraints, this yields the LP shown in (2).
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min z = x1 +x2

s.t. x2 ≥ 8 +x1

x2 = 12−x1
x1 = (x1)21 + (x1)22

x2 = (x2)21 + (x2)22

4 ∗ y21 ≤ (x1)21 ≤ 7 ∗ y21
7 ∗ y21 ≤ (x2)21 ≤ 8 ∗ y21
7 ∗ y22 ≤ (x1)22 ≤ 11 ∗ y22
2 ∗ y22 ≤ (x2)22 ≤ 4 ∗ y22
y21 + y22 = 1

x1, x2 ∈R1

0≤ y21, y22 ≤ 1

(2)

Problem (2) is infeasible. Performing the same calculation for Y12 = True yields a z12 =

10.6. Repeating this for the remaining disjunctive terms we obtain z13 = 11, z21 = 11,

z21 = 9.25. With these values, we assign the characteristic values for each disjunction:

charv1 =min{z11, z12, z13}=min{infeas,10.6,11}= 10.6

charv2 =min{z21, z22}=min{11,9.25}= 9.25

With these two characteristic values, it is possible to set the new lower bound: zlo =

max{charv1, charv2}= 10.6. Also, since z11 = infeas, the term associated with Y11 can be

eliminated from the original (GDP) formulation. Therefore, problem (1) after the pre-solve

becomes (3).
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min z = x1 +x2

s.t.
Y12

x1 ≤ 5

x2 ≥ 6

x2 ≤ x1 + 5

∨


Y13

x1 ≥ 9

x2 ≤ 5

x2 ≥ x1− 8


 Y21

4≤ x1 ≤ 7

7≤ x2 ≤ 8

∨
 Y22

7≤ x1 ≤ 11

2≤ x2 ≤ 4


Y11 YY12 YY13

Y21 YY22

x1, x2 ∈R1

Y11, Y12, Y13, Y21, Y22 ∈ {True,False}

(3)

It is clear that (3) is a smaller problem than the original problem (1), and a new lower

bound of zlo = 10.6 has been found. Note that the solution to the problem is z = 11, and

the (HR) of (1) provides a lower bound of zHR = 9.16, so the new lower bound zlo = 10.6

is stronger.

3.3. Step 2, 3: Selection of k∗

The algorithm selects over which disjunctions to apply basic steps (k∗). As described

by Balas(Balas 1985) there are heuristics to estimate which basic step will generate the

best improvement on a formulation. Furthermore, even if the best first basic step were

selected, this does not necessarily imply that after a sequence of basic steps this first one

is the best choice. Sawaya and Grossmann(Sawaya and Grossmann 2012) and Ruiz and

Grossmann(Ruiz and Grossmann 2012) propose some heuristics as to when to apply basic

steps. For the algorithm proposed in this paper, we consider three main factors for the

selection of these disjunctions:

1) A consequence of basic steps described in Balas’ work(Balas 1985): A basic step

between two disjunctions that do not share variables in common will not improve the

tightness of the formulation.

2) The number of terms in the new disjunction increases exponentially with the number

of terms of the selected disjunctions (|D̂|= |D̂k1 | ∗ ...∗ |D̂kiter |). Since the algorithm applies
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basic steps iteratively over the same disjunction, it is desired to keep the problem size as

small as possible.

3) The characteristic value of the disjunctions, obtained in the first step of the algo-

rithm, provides a heuristic on the “tightness” associated which each disjunction. Therefore,

disjunctions with higher characteristic values are preferred.

There are several heuristics that can be used for the selection of k∗. In our experience,

the best performance was achieved by applying many basic steps with small growth in size.

Therefore, the heuristic we found to work the best was to select disjunctions with fewest

terms that share variables in common with many other disjunctions (preferably also small

ones). This evaluation is done as follows:

0. Initialize W k = 0,∀k ∈K. Set m= 1, n= 2.

1. If disjunction m shares a variable in common with disjunction n, then Wm =Wm +

1
(|Dm|)∗(|Dn|) ; W

n =W n + 1
(|Dm|)∗(|Dn|) .

2. Set n= n+ 1. If n≤ |K| go back to 1, else go to 3.

3. Set m=m+ 1. If m≤ |K| − 1 set n=m+ 1 and go back to 1, else go to 4.

4. Select the disjunction k∗ with largest W k value. If there is a tie, choose the disjunction

with the highest characteristic value.

Note that this algorithm gives priority to the number of basic steps that can be applied

to a certain disjunction, giving more weight to the basic steps with smaller increase in

number of disjunctive terms. If there is a tie with this parameter, it selects the one with

highest charvk.

The method for the selection of k∗ in step 3 is almost the same as the one for the selection

of k∗ in step 2. The difference is that a basic step will be applied between this disjunction k∗

and “key disjunction”. Therefore, if a disjunction m does not share a variable in common

with any k̂s ∈ K̂ then Wm = 0.

3.4. Step 4: Analyze and eliminate resulting disjunctive terms

As shown in Section 3.1, the basic steps will be applied iteratively over the same disjunc-

tion. This means that the number of terms of such a disjunction will grow exponentially

after each basic step. Eliminating terms after each basic step helps to maintain small for-

mulations. However, there are two things to consider: first is that this step can become

computationally expensive as the algorithm iterates, and second is that eliminating terms
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has less impact after each iteration. There are two methods that the algorithm uses to

eliminate infeasible terms.

First, the terms that result from intersecting a term that was infeasible in the previous

iteration, will be infeasible. Second, in order to eliminate resulting disjunctive terms, one

LP/NLP is solved for each term in the new disjunction, similarly to the pre-solve. In

the initial iterations, |D̂| is small, so the “key disjunction” has a small number of terms.

Furthermore, every term that is eliminated reduces the exponential growth of the problem

size in the subsequent iterations. As the algorithm iterates and |D̂| becomes larger, the

number of LP/NLP evaluation increases, each LP/NLP becomes more expensive, and there

will not be many more basic steps, so its impact is limited. For these reasons, step 4 is

only applied to the initial iterations, but dropped as the algorithm progresses.

In addition to this, a third method that identifies infeasibility implied by the logic

expressions when two of the disjunctive terms are intersected can be used. Such cases are

computationally cheap, but there are not necessarily many terms that can be eliminated

in this way. Tools such as constraint programming can further improve the performance

of this method(Hooker 2002). This third method is not addressed in this paper.

3.5. Step 5

In step 5 an improper basic step is applied between the “key disjunction” and the global

constraints. Using the same concepts described in 3.3, the improper basic step is only

applied with the global constraints that share at least one variable in common with any

k̂s ∈ K̂.

3.6. Step 6: Hybrid reformulation of (GDP)

In 2.1.2 the MILP/MINLP reformulation of the (GDP) is described through either (BM) or

(HR). The reformulation, however, needs not to be strictly one of these; some disjunctions

can be reformulated through (BM) while others (HR). The advantage of doing this is that,

if the correct disjunctions are selected for the different reformulations, we can obtain a tight

relaxation but with a smaller problem size than (HR). Note that in the hybrid reformulation

the smallest possible MILP/MINLP is the complete (BM), while the tightest continuous

relaxation is achieved through the (HR). Any hybrid lies between the two formulations,

both in size of problem and tightness of continuous relaxation.

For the algorithm, we apply convex hull to the “key disjunction” (i.e. we formulate it

using (HR)) since the tightness improvement of the basic steps does not hold true for the
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Figure 5 Illustration of (BM), (HR) and Hybrid reformulation

(BM). The rest of the disjunctions are formulated through (BM), considering that the

tightness improvement comes from the basic steps applied in disjunctions k̂s ∈ K̂.

Figure 5 illustrates the idea of the hybrid reformulation. In the (BM) reformulation the

problem size is small, but the continuous relaxation (represented by the shaded region)

provides a solution ZBM that is far from the optimal solution Z∗. The (HR) provides a

tighter continuous relaxation, and therefore the solution to the relaxation ZHR is closer

to the optimal solution. As expected, the problem size is considerably larger than (BM).

Lastly, in the hybrid reformulation the continuous relaxation is not as tight as the (HR).

However, its relaxation provides the same optimal solution as the relaxation of the (HR)

ZHY =ZHR. This hybrid reformulation is larger than the (BM), but not as large as (HR).

3.7. Step 7: Rule for iterating

Many different rules can be applied to decide whether or not the algorithm keeps iterating.

The most intuitive rules are size of the problem and value of continuous relaxation, since

these are the two properties we are trying to improve. The last formulation that was

considered to improve the GDP (GDP ∗), is the one that is then solved as an MILP/MINLP.

It is also important to note that, in order to identify if the relaxation is improving or not,

we check the relaxation of (GDPH) and (GDP ∗) without using the lower bound found in

the pre-solve zlo. This lower bound is added in the last iteration, when (GDP ∗) is solved

as an MILP/MINLP
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4. Illustration of algorithm

In this section we provide an illustration of the algorithm with a simple example. Consider

the linear (GDP) in (4) that corresponds to a strip packing problem (see the on-line

supplement):

min lt

s.t. lt≥ x1 + 6

lt≥ x2 + 5

lt≥ x3 + 4

lt≥ x4 + 3[
Y11

x1 + 6≤ x2

]
∨

[
Y12

x2 + 5≤ x1

]
∨

[
Y13

h1− 6≥ h2

]
∨

[
Y14

h2− 7≥ h1

]
[

Y21

x1 + 6≤ x3

]
∨

[
Y22

x3 + 4≤ x1

]
∨

[
Y23

h1− 6≥ h3

]
∨

[
Y24

h3− 5≥ h1

]
[

Y31

x1 + 6≤ x4

]
∨

[
Y32

x4 + 3≤ x1

]
∨

[
Y33

h1− 6≥ h4

]
∨

[
Y34

h4− 3≥ h1

]
[

Y41

x2 + 5≤ x3

]
∨

[
Y42

x3 + 4≤ x2

]
∨

[
Y43

h2− 7≥ h3

]
∨

[
Y44

h3− 5≥ h2

]
[

Y51

x2 + 5≤ x4

]
∨

[
Y52

x4 + 3≤ x2

]
∨

[
Y53

h2− 7≥ h4

]
∨

[
Y54

h4− 3≥ h2

]
[

Y61

x3 + 4≤ x4

]
∨

[
Y62

x4 + 3≤ x3

]
∨

[
Y63

h3− 5≥ h4

]
∨

[
Y64

h4− 3≥ h3

]
Yk1 YYk2 YYk3 YYk4 k= 1, ...,6

0≤ x1 ≤ 12; 0≤ x2 ≤ 13; 0≤ x3 ≤ 14; 0≤ x4 ≤ 15

6≤ h1 ≤ 10; 7≤ h2 ≤ 10; 5≤ h3 ≤ 10; 3≤ h4 ≤ 10

xj, hj ∈R1 j = 1,2,3,4

Yki ∈ {True,False} k= 1, ...,6, i= 1,2,3,4

(4)

This problem has an optimal solution of lt = 15, in which Y12, Y21, Y32, Y41, Y53, Y63 =

True. The continuous relaxation of its (BM) reformulation has a value of zBM = 6.0, and

the (HR) provides a relaxation of zHR = 8.3.

Step 1. After applying the pre-solve as described in 3.2, the terms {13,14,23,24,43,44}
are found to be infeasible, so they are removed from the original (GDP) formulation.

GDP ∗ is then (4) without terms {13,14,23,24,43,44}. Also, the characteristic values of
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Table 1 Weight parameter calculation for the disjunctions

Accumulated weight

m n common vars? W 1 W 2 W 3 W 4 W 5 W 6

1 2 yes 0.25 0.25 0 0 0 0

1 3 yes 0.375 0.25 0.125 0 0 0

1 4 yes 0.625 0.25 0.125 0.25 0 0

1 5 yes 0.75 0.25 0.125 0.25 0.125 0

1 6 no 0.75 0.25 0.125 0.25 0.125 0

2 3 yes 0.75 0.375 0.125 0.25 0.125 0

2 4 yes 0.75 0.625 0.25 0.5 0.125 0

2 5 no 0.75 0.625 0.25 0.5 0.125 0

2 6 yes 0.75 0.75 0.25 0.5 0.125 0.125

3 4 no 0.75 0.75 0.25 0.5 0.125 0.125

3 5 yes 0.75 0.75 0.3125 0.5 0.1875 0.125

3 6 yes 0.75 0.75 0.375 0.5 0.1875 0.1875

4 5 yes 0.75 0.75 0.375 0.625 0.3125 0.1875

4 6 yes 0.75 0.75 0.375 0.75 0.3125 0.3125

5 6 yes 0.75 0.75 0.375 0.75 0.375 0.375

the disjunctions k= 1, ...,6 are, respectively: charvk = (11,10,8.3,9.6,8.3,8.3). A new lower

bound zlo is also found, since max(charvk) = 11, which is larger than the relaxation of the

(HR) z∗ = 8.3. Set iter= 1.

Step 2. The selection of k∗ is performed by assigning a weight to each disjunction

as described in 3.3. In this case W = (0.75,0.75,0.38,0.75,0.38,0.38). Table 1 shows the

iterations to obtain W , following the procedure described in section 3.3. Disjunctions 1, 2

and 4 have the same weight, but the first disjunction has the highest charvk. Therefore,

disjunction 1 is chosen as k∗. k̂1 = 1; K̂ = {1}; D̂1 = {1,2}.

Step 3. iter = 2. To find new k∗, weighting factors W k for k 6= 1 are also assigned

W = (1,0.5,1,0.5,0). Disjunction 2 and 4 have the same W k, but since charv2 > charv4,

disjunction 2 is selected as k∗. Also note that W 6 = 0 since disjunction 6 and disjunction

1 do not share variables in common.

Set k̂2 = 2; K̂ = {1,2}; D̂2 = {1,2}; D̂= {(1,1), (1,2), (2,1), (2,2)}.
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For this step, it is possible to represent the “key disjunction” as follows:

 Ŷ1,1

x1 + 6≤ x2
x1 + 6≤ x3

∨
 Ŷ1,2

x1 + 6≤ x2
x3 + 4≤ x1

∨
 Ŷ2,1

x2 + 5≤ x1
x1 + 6≤ x3

∨
 Ŷ2,2

x2 + 5≤ x1
x3 + 4≤ x1

 (5)

The additional constraints that are added so that the new disjunctive variables ŷî can

be continuous are shown in (6):

y11 = ŷ1,1 + ŷ1,2

y12 = ŷ2,1 + ŷ2,2

y21 = ŷ1,1 + ŷ2,1

y22 = ŷ1,2 + ŷ2,2

y11, y12, y21, y22 ∈ {0,1}

0≤ ŷ1,1, ŷ1,2, ŷ2,1, ŷ2,2 ≤ 1

(6)

Step 4. All the resulting terms in disjunction (5) are feasible, so INFEAS2 = ∅.

Step 5. Select global equations to which apply a basic step Ê ∈E. In the example, the

first three global constraints share a variable in common with the “key disjunction”. It is

possible to represent the resulting disjunction after the application of the improper basic

step as shown in (7).



Ŷ1,1

lt≥ x1 + 6

lt≥ x2 + 5

lt≥ x3 + 4

x1 + 6≤ x2
x1 + 6≤ x3


∨



Ŷ1,2

lt≥ x1 + 6

lt≥ x2 + 5

lt≥ x3 + 4

x1 + 6≤ x2
x3 + 4≤ x1


∨



Ŷ2,1

lt≥ x1 + 6

lt≥ x2 + 5

lt≥ x3 + 4

x2 + 5≤ x1
x1 + 6≤ x3


∨



Ŷ2,2

lt≥ x1 + 6

lt≥ x2 + 5

lt≥ x3 + 4

x2 + 5≤ x1
x3 + 4≤ x1


(7)

Step 6. The hybrid reformulation of this example is performed by applying (HR) to the

“key disjunction” and (BM) in the remaining disjunctions. This MILP can be found in the

on-line supplement, formulation (4H).

Step 7. The relaxed solution of (4H) is 11. Since relaxed (4H)> 8.3, set z∗ = 11,

GDP ∗=(4H). Note that, as explained in section 3.7, the lower bound found in the pre-solve

(zlo = 11) is not used to evaluate the improvement in the formulation. This lower bound

will be added only in the last iteration when (GDP ) is solved as MILP/MINLP.
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Since it improved, the algorithm proceeds to the next iteration.

In the next iteration, a basic step between the “key disjunction” and disjunction 4 is

applied. The resulting disjunction is illustrated in (8).

Ŷ1,1,1

lt≥ x1 + 6

lt≥ x2 + 5

lt≥ x3 + 4

x1 + 6≤ x2
x1 + 6≤ x3
x2 + 5≤ x3


∨



Ŷ1,1,2

lt≥ x1 + 6

lt≥ x2 + 5

lt≥ x3 + 4

x1 + 6≤ x2
x1 + 6≤ x3
x3 + 4≤ x2


∨



Ŷ1,2,1

lt≥ x1 + 6

lt≥ x2 + 5

lt≥ x3 + 4

x1 + 6≤ x2
x3 + 4≤ x1
x2 + 5≤ x3


∨



Ŷ1,2,2

lt≥ x1 + 6

lt≥ x2 + 5

lt≥ x3 + 4

x1 + 6≤ x2
x3 + 4≤ x1
x3 + 4≤ x2


∨

∨



Ŷ2,1,1

lt≥ x1 + 6

lt≥ x2 + 5

lt≥ x3 + 4

x2 + 5≤ x1
x1 + 6≤ x3
x2 + 5≤ x3


∨



Ŷ2,1,2

lt≥ x1 + 6

lt≥ x2 + 5

lt≥ x3 + 4

x2 + 5≤ x1
x1 + 6≤ x3
x3 + 4≤ x2


∨



Ŷ2,2,1

lt≥ x1 + 6

lt≥ x2 + 5

lt≥ x3 + 4

x2 + 5≤ x1
x3 + 4≤ x1
x2 + 5≤ x3


∨



Ŷ2,2,2

lt≥ x1 + 6

lt≥ x2 + 5

lt≥ x3 + 4

x2 + 5≤ x1
x3 + 4≤ x1
x3 + 4≤ x2



(8)

In this case, the term associated with Ŷ1,2,1 and Ŷ2,1,2 are infeasible, so INFEAS2 =

{(1,2,1), (2,1,2)}.
Also, additional constraints need to be added in the MILP reformulation to avoid the

increase in binary variables, as described in earlier. These constraints (after setting ŷ1,2,1 =

ŷ2,1,2 = 0;) are shown in (9).

y11 = ŷ1,1,1 + ŷ1,1,2 + ŷ1,2,2

y12 = ŷ2,1,1 + ŷ2,2,1 + ŷ2,2,2

y21 = ŷ1,1,1 + ŷ1,1,2 + ŷ2,1,1

y22 = ŷ1,2,2 + ŷ2,2,1 + ŷ2,2,2

y41 = ŷ1,1,1 + ŷ2,1,1 + ŷ2,2,1

y42 = ŷ1,1,2 + ŷ1,2,2 + ŷ2,2,2

y11, y12, y21, y22, y41, y42 ∈ {0,1}

0≤ ŷ1,1,1, ŷ1,1,2, ŷ1,2,2, ŷ2,1,1, ŷ2,2,1, ŷ2,2,2 ≤ 1

(9)

The continuous relaxation of the hybrid MILP reformulation of this iteration is

ziter=2 = 15. Since it improved, the algorithm proceeds to another iteration.
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The third iteration involves a basic step between the “key disjunction” and disjunction

5. This results in a disjunction with 32 terms, of which 8 of them are infeasible (the 8

terms that result from intersecting terms {(1,2,1), (2,1,2)} with the 4 terms of disjunction

5). This (GDPH) also has a relaxation of ziter=3 = 15. Since there is no improvement, the

formulation obtained in iteration 2 is selected as GDP ∗ and solved as MILP. Note that the

continuous relaxation of this formulation provides a lower bound that has the same value

as the optimal solution of the problem ziter=2 = z∗ = 15. However, the values for yki are not

integer, so the MILP solver requires to evaluate some nodes to find the integer solution.

5. Results

In this section we present the computational results of applying the algorithm described in

section 3 to different instances of the examples that can be found in the on-line supplement.

The algorithm uses the heuristics for selecting k∗ described in 3.3. There are many rules

that could be set for deciding if the algorithm moves to the next iteration or not. In this

study the rule that was used is as follows. If the continuous relaxation does not improve

after 3 iterations, or the number of constraints is more than double than the original,

or the number of disjunctive terms in Dk is larger than half of the number of original

total disjunctive terms, then proceed to solve GDP ∗; else keep iterating. Note that a

formulation can in fact more than double its size, but that can occur only in the last

iteration. Afterwards the algorithm proceeds to the next step.

Thirty six instances were solved. The instances were generated by defining problem size

and randomly generating the parameters of the problems (e.g. in Stpck the number of

rectangles was set, but width and length of the rectangles was randomly generated). The ε

has a value of 10−4, and the Big M parameter was estimated using the most basic solution

for the given data (e.g. in the strip packing problem the most basic solution is to pack

one rectangle after the other, though is not the optimal). The only exception are Batch

instances, where the ”optimal” Big M parameter was used, and which can be found in the

CMU-IBM MINLP library(CMU and IBM 2013).

The instances are solved using branch and bound methods, Gurobi 5.5 for the linear

GDP problems and SBB for the convex GDP with CONOPT as the NLP solver. Cuts

and presolve were deactivated in Gurobi for all linear instances. The algorithm and models

were implemented in GAMS(Brooke et al. 1998) and solved in an Intel(R) Core(TM) i7

CPU 2.93 GHz and 4 GB of RAM.
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Figure 6 Percentage of problems solved vs. time for the test instances

We first present and discuss the general performance of the algorithm shown in Figures

6, 7 and 8. We then discuss some characteristics of the different instances presented in

Figures 9 and 10. Finally, we describe the behaviour of the algorithm in Figure 11.

Figure 6 shows the percentage of problems solved vs. time for the (BM), (HR) and the

algorithm. The time for the algorithm includes the preprocessing, the steps for improving

the formulation, and the solution to the MINLP. The figure shows that the algorithm

performs in general better than the (BM) and (HR) reformulations. In the smaller instances

this is not true, and one of the main reasons for this is that the algorithm is programmed

with a high level language (GAMS). Thus, if the algorithm is implemented in a lower lever

programming language its performance is expected to improve. Other improvements to the

algorithm, such as the ones mentioned earlier in the paper (taking advantage of problem

structure to reduce presolving time, using constraint programming and logic concepts to

eliminate infeasible terms, and improving heuristics for iterating rule and selection of basic

steps) might further improve the algorithm’s performance.

Figure 7 shows the number of nodes that where evaluated to find and prove optimality

(within 0.1 % gap) for the 17 instances in which the three formulations did so. As expected

the (HR) requires fewer nodes than the (BM) to achieve optimality. The algorithm needs

fewer number of nodes than the (BM), but more than the (HR) in these 17 instances.

Figure 8 shows the percentage of problems vs. number of constraints. The figure shows

that the number of constraints in the (BM) is in general smaller than (HR) and the

formulation obtained through the algorithm. The MILP/MINLP obtained with the algo-

rithm has fewer constraints than the (HR). It is important to note that for most problems

the continuous relaxation improved after applying the algorithm, as shown in Figure 9.
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Figure 7 Number of nodes evaluated to achieve optimum, for the 17 instances where the three formulations did

so. Excludes S-Pck12 for comparison purposes, in order to avoid plotting over 16 nodes

Figure 8 Number of constraints for the different formulations

Therefore, having not much larger or even smaller problem sizes represents an important

improvement in the problem formulation.

Figure 9 shows the continuous relaxation, the number of constraints, and the number

of variables for the different instances, comparing the (BM) and (HR) formulations of the

original problem with the formulation obtained with the proposed algorithm. It can be

seen that on 28 of the 36 instances the relaxation improves after applying the algorithm,

in the other 8 is has the same value as the (HR). In few cases, such as C-Lay-3-2 (where

the solution is 41,573, the (BM) and (HR) relaxations are 0, and the relaxation after the

algorithm is 2,200), the improvement in the relaxation is small. In most of the cases the

gap improves around 20%-40%, for example C-Lay-5-2 where the solution is 11,472, the

(BM) and (HR) relaxations are 0 and the relaxation after the algorithm is 4,203. In the

extreme case of Process-8, the algorithm provides a relaxation of 1,098, which is actually
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Figure 9 Relaxation, number of constraints and variables for the (BM), (HR) and algorithm formulations

the optimal value of the objective function, (HR) provides a good relaxation of 1,079, but

still with some gap, while (BM) provides a very poor relaxation of 0.

The algorithm produces the largest number of variables and constraints in 11 out of the

36 instances, and the size of these problems is not much larger than that of the (HR).

The (HR) produces the largest formulations in the rest of the instances. The number of

binary variables in (HR) and (BM) is the same as expected. However, there are fewer

binary variables in some of the formulations derived from the algorithm. In these cases,

the algorithm is able to eliminate some disjunctive terms during the first pre-solving step,

so that the binary variables associated with these terms are removed from the formulation.

Figure 10 shows solution time, optimality gap and number of nodes evaluated in the

branch and bound tree. Note that the proposed algorithm requires fewest number of nodes

in 18 out of the 30 instances in which the number of nodes can be compared. The perfor-

mance is measured as solution time, or gap in the cases where the models did not find and

prove the optimal solution after two hours. The algorithm performs the best in 15 of the
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36 instances, and worst in 12 instances. However, the algorithm performs relatively close

to the best performer in all instances, except in Batch151208. For the Batch problems the

(HR) formulation performs the best. The (BM) and (HR) perform similarly in the first two

instances. The third one is the only instance in all test problems in which the algorithm

does much worse than the (BM) and (HR). In the last two instances of the Batch problems

the algorithm performs much better than the (BM). For the C-Lay problems the (BM)

generally performs the best in the smaller instances (C-Lay-3-2 to C-Lay-5-4). In the larger

instances the algorithm performs better than the (BM) and (HR). In Dice and DiceH the

algorithm performs the best, while the (HR) performs the worst. For the F-Lay problem

the (BM) performs the best, while the (HR) performs the worst. For Process (HR) is the

best formulation, and the algorithm the worst, but note that the time to solve is very fast,

so the presolve and rest of the algorithm takes much more time than actually solving the

MINLP. For the S-Pck problems the (BM) performs the best, then the algorithm, and the

(HR) the worst. Note that in C-Lay-6-2, C-Lay-6-3, and the larger instances of Dice and

DiceH the (BM) and (HR) reformulations do not solve to optimality within two hours while

the algorithm does. It is also important to note that in the examples related to process

design (Process and Batch) the (HR) performs much better than the (BM), while in the

packing (C-Lay, F-Lay and S-Pck) and Dice the (BM) is much better than the (HR).

Figure 11 shows the behaviour of the algorithm. The first three columns show the time

that the algorithm spends in applying the pre-solve, performing the iterative basic steps

over the “key disjunction”, and how much time the solver takes to solve the resulting

MILP/MINLP. The next two columns show how many iterations the algorithm performed,

and what was the criteria to stop iterating. From this column it can be seen that in most of

the instances the criteria to stop iterating is the resulting problem size, while only in a few

is the lack of improvement in the relaxation after three iterations. The last two columns

show the number of proper and improper basic steps. It is interesting to note that, in

general, few proper basic steps are applied, but many improper ones are. The improvement

in the relaxation with few proper basic steps, but many improper ones, is consistent with

the suggestions from previous work (Balas 1985, Ruiz and Grossmann 2012).

6. Conclusion

In this paper, we have proposed an automated algorithm that improves the relaxation

of GDP formulations compared to the common (BM) and (HR) reformulations. We have
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Figure 10 Solution time, optimality gap and B&B nodes for the (BM), (HR) and algorithm formulations

developed a pre-solve procedure that reduces problem formulations, generates stronger

bounds, and provides a value that helps in the selection of disjunctions to which basic

steps should be applied. We have presented an iterative procedure in which basic steps

are applied over the same disjunction in order to improve the continuous relaxation of

the problem. In this step of the algorithm, we have also proposed some heuristics on the

selection of these disjunctions. We show that a hybrid reformulation can provide some of

the advantages of both (BM) and (HR), and that the selection of disjunctions reformulated

through (BM) or (HR) is simple and clear for the proposed algorithm. Finally, we have

applied the proposed method to improve the formulation of different numerical examples of

Generalized Disjunctive Programs. These results show that the algorithm provides better

formulations, in the sense that they yield strong lower bounds without an excessive increase

in problem size. Furthermore, solution times for large instances are reduced by using the

algorithm. Finally, even though the algorithm shows promising results, further research in

the selection of key and secondary disjunctions, as well as improvements in the presolve
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Figure 11 Behaviour of the algorithm for each instance

and infeasible term detection, is needed to achieve faster performance. Furthermore, in

problems with a large number of disjunctive terms the pre-solve may not be a good option.

For these cases different rules for the selection of disjunctions would have to be derived.
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