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Abstract

In this work, we propose an algorithmic approach to improve mixed-integer models that are originally formulated as

convex Generalized Disjunctive Programs (GDP). The algorithm seeks to obtain an improved continuous relaxation of the

MILP/MINLP reformulation of the GDP, while limiting the growth in the problem size. There are three main stages that form

the basis of the algorithm. The first one is a pre-solve, consequence of the logic nature of GDP, which allows us to reduce

the problem size, find good relaxation bounds and identify properties that help us determine where to apply a basic step. The

second stage is the iterative application of basic steps, selecting where to apply them, and monitoring the improvement of

the formulation. Finally, we use a hybrid reformulation of GDP that seeks to exploit both of the advantages attributed to the

two common GDP-to-MILP/MINLP transformations, the Big-M and Hull reformulation. We illustrate the application of this

algorithm with several examples. The results show the improvement in the problem formulations by generating models with

improved relaxed solutions and relatively small growth in the number of continuous variables and constraints. The algorithm

generally leads to reduction in the solution times.

1 Introduction

Mixed-integer linear and mixed-integer nonlinear programming models (MILP/MINLP) arise in different areas, such as process

design[1][2][3], layout problems[4], financial modeling and electrical power management[5]. MILP/MINLP models can be

formulated in different ways, and therefore efficiency of the algorithms to solve these problems strongly depends on the size of

the corresponding formulation and tightness of its continuous relaxation.

Generalized Disjunctive Programming (GDP) is an alternative higher-level representation of these problems proposed by

Raman and Grossmann[6] that involves not only algebraic equations, but also disjunctions and logic propositions in terms of

Boolean and continuous variables. This approach facilitates the development of the models by making the formulation process

more systematic. Although there are some special techniques to solve this type of problems, such as Disjunctive Branch and

Bound[7] and Logic Based Outer Approximation[2], GDPs are normally reformulated as MILP/MINLP[8][9] to exploit the

developments in these solvers.

Some of the methods to solve convex MINLP problems include branch and bound[10][11], branch and cut[5], gener-

alized Benders’ decomposition[12], outer approximation[1][13], LP/NLP based branch and bound[14] and extended cutting

planes[15]. A comprehensive review of MINLP techniques is given by Grossmann[16], and of MILP methods and progress is

given by Bixby et al[17][18].

The reformulation of GDP models to MILP/MINLP problems is typically done by using either the Big-M (BM) or the

Hull-Reformulation (HR), where the former generates a smaller MILP/MINLP, while the latter generates a tighter one[19][20].

In this work, we make use of the logic structure of a GDP. Instead of directly reformulating it as an MILP/MINLP, we apply
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Figure 1: Different modeling approaches

a pre-analysis, a logic operation called basic step, and a hybrid reformulation. This logic manipulation allows us to obtain an

improved formulation in comparison to the one obtained by a traditional direct transformation. The resulting model can be

solved by a GDP or an MILP/MINLP algorithm. Figure 1 outlines the main idea of this work. We should note the proposed

pre-analysis has some similarities to the MILP ”fixing variables” pre-solve technique[21][22][23][24], but applied in the GDP

space for convex nonlinear GDP models.

This paper is organized as follows. Section 2 provides an overview of GDP and relevant concepts in disjunctive pro-

gramming, providing a theoretical background for the algorithm. Section 3 first presents the proposed algorithm, and second

describes in detail each step of the method. Section 4 provides an example of the application of the algorithm. Section 5

addresses the different examples used to test the algorithm, whose statistics, results and performance are reported in section 6.

2 Background

In order to improve problem formulations, we rely on two main tools. The first one is Generalized Disjunctive Programming,

which is a higher level representation for MINLP. The second one is a logic operation called basic step that allows the generation

of tighter formulations. In this section we provide the background for these two concepts.

2.1 Generalized Disjunctive Programming (GDP)

Generalized Disjunctive Programming[25][6] allows the systematic modeling of optimization problems by using algebraic

equations, disjunctions and logic propositions. GDP can be considered an extension to the well-known theory of disjunctive

programming developed by Balas[26].
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2.1.1 GDP formulation

The general GDP formulation can be represented as follows:

min z = f(x)

s.t. g(x) ≤ 0

∨
i∈Dk

 Yki

rki(x) ≤ 0

 k ∈ K

Y
i∈Dk

Yki k ∈ K

Ω(Y ) = True

xlo ≤ x ≤ xup

x ∈ Rn

Yki ∈ {True, False} k ∈ K, i ∈ Dk

(GDP)

As shown in GDP, the objective is a function of the continuous variables x. The global constraints g(x) must hold true

regardless of the discrete decisions. Each of the disjunctions k ∈ K contains disjunctive terms i ∈ Dk that are linked together

by an OR operator (∨). For each disjunctive term in each disjunction, a Boolean variable Yki is assigned with a corresponding

set of inequalities rki(x) ≤ 0. Only one term in each disjunction can be selected Y
i∈Dk

Yki. When a disjunctive term is active

(Yki = True), then the corresponding inequalities are enforced. When it is not active (Yki = False), the constraints are

ignored. Ω(Y ) = True represents the logic relations between the Boolean variables. In the particular case when f(x), g(x)

and rki(x) are convex the problem becomes a convex GDP.

2.1.2 MINLP reformulation of GDP

In order to take full advantage of existing solvers[16], GDP problems are normally reformulated as MILP/MINLP by using

either the Big-M[9] (BM) or Hull Reformulation[8] (HR). (BM) generates a smaller MILP/MINLP, while (HR) generates a

tighter one at the expense of larger number of variables and constraints[19][20]. The (BM) reformulation is given as follows:

min z = f(x)

s.t. g(x) ≤ 0

rki(x) ≤Mki(1− yki) k ∈ K, i ∈ Dk∑
i∈Dk

yki = 1 k ∈ K

Hy ≥ h

xlo ≤ x ≤ xup

x ∈ Rn

yki ∈ {0, 1} k ∈ K, i ∈ Dk

(BM)

In (BM) the Boolean variables Yki are transformed to binary variables yki with a one-to-one correspondence (i.e. Yki =

True is equivalent to yki = 1, while Yki = False is equivalent to yki = 0). The transformation of logic relations (Ω(Y ) =

True) to integer linear constraints (Hy ≥ h) can be easily obtained[27][28][29]. The equation
∑

i∈Dk

yki = 1 guarantees that

only one disjunctive term is selected per disjunction. For a selected term (yki = 1) the corresponding constraints rki(x) ≤ 0
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are enforced. For a term not selected (yki = 0) and a large enough Mki the corresponding constraint rki(x) ≤ Mki becomes

redundant.

The (HR) formulation is given as follows:

min z = f(x)

s.t. g(x) ≤ 0

x =
∑
i∈Dk

νki k ∈ K

ykirki(ν
ki/yki) ≤ 0 k ∈ K, i ∈ Dk∑

i∈Dk

yki = 1 k ∈ K

Hy ≥ h

xloyki ≤ νki ≤ xupyki k ∈ K, i ∈ Dk

x ∈ Rn

yki ∈ {0, 1} k ∈ K, i ∈ Dk

(HR)

In (HR), the Boolean variables Yki are also transformed into binary variables yki, and the logic relations (Ω(Y ) = True)

into integer linear constraints (Hy ≥ h). Here, the continuous variables x are disaggregated into variables νki, i ∈ Dk

(x =
∑

i∈Dk

νki) for each of the disjunctions k ∈ K. The constraints in each term i ∈ Dk of a disjunction k ∈ K are represented

by the perspective function ykirki(νki/yki). The constraint xloyki ≤ νki ≤ xupyki enforces that if a disjunction is selected

(yki = 1), then its corresponding variables have to lie within the limits of x (xlo ≤ νki ≤ xup), and they have to satisfy their

corresponding constraints (rki(ν
ki) ≤ 0). If it is not selected (yki = 0), then its variables νki = 0, and their corresponding

constraints are trivially satisfied (0 ≤ 0). Note that when the constraints in the disjunction are linear (Akix ≤ aki), then

ykirki(ν
ki/yki) ≤ 0 becomes Akiνki ≤ akiyki. For the nonlinear case, to avoid singularities, the following approximation can

be used for the perspective function[4]:

ykirki(ν
ki/yki) ≈ ((1− ε)yki + ε)rki

(
νki

(1− ε)yki + ε

)
− εrki(0)(1− yki) (APP)

where ε is a small finite number (e.g. 10−5). This approximation yields an exact value at yki = 0 and yki = 1, and it is

convex if rki is convex. In some cases, particularly for linear constraints, algebraic manipulation of the problem allows the

elimination of some disaggregated variables, reducing the size of the problem[6]. An example of GDP reformulation can be

found in Appendix 1.

It is clear that formulation (HR) involves more variables and constraints than (BM), but it provides a tighter relaxation[19][20].

The (HR) reformulation represents the intersection of the convex hulls of each disjunction, and it is consistent with the MINLP

representations of disjunctive convex sets previously characterized[30][5].

Figure 2 illustrates, for both reformulations, the projection over x1 and x2 of the feasible region defined by two disjunctions.

The first disjunction represents the selection of rectangle A1 or rectangle A2, and the second one the selection of circle B1 or

circle B2. The dashed region defines the feasible region, and the shaded area represents the continuous relaxation of the (BM)

and (HR). It is clear that the (HR) has a tighter relaxation than the (BM).

It is important to note that even though the (HR) is the intersection of the convex hulls of the individual disjunctions, this

in general does not mean that it is the convex hull of the feasible region as can be seen in Figure 2. In order to further improve
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Figure 2: Illustration of (BM) and (HR) reformulations

the tightness of the (HR) we will make use of the logic operation called basic step.

2.2 Basic Steps

Basic step is a logic operation that allows the tightening in the formulation of disjunctive programming. It is important to review

some of the basic definitions in disjunctive convex programming before describing this operation.

2.2.1 Disjunctive convex sets and equivalent forms

Disjunctive convex programming can be defined as the optimization over a disjunctive convex set. A disjunctive set can be

described as the union (∪) and intersection (∩) of a collection of inequalities. Consider the following definitions[31][32]:

Convex inequality (Half space in linear case): C = {x ∈ Rn|Φ(x) ≤ 0}, where Φ(x) : Rn → R1 is a convex function.

Convex set (Polyhedron in linear case): P = ∩
m∈M

Cm

Elementary disjunctive set: H = ∪
m∈M

Cm

Disjunction: Sk = ∪
i∈Dk

Pi = ∪
i∈Dk

∩
m∈Mi

Cm

A disjunction such that Sk = Pi for some i ∈ DK is called improper disjunction (note that if Dk is a singleton then Sk is

improper); otherwise it is called a proper disjunction.

Any disjunctive convex set can be expressed in many logically equivalent forms. There are three forms of particular interest:

Regular form (Intersection of disjunctions): F = ∩
k∈K

Sk

Conjunctive normal form (CNF): F = ∩
k∈K

Hk

Disjunctive normal form (DNF): F = S = ∪
i∈D

Pi

CNF and DNF are the two extremes of a disjunctive set in regular form. Note that any GDP is in regular form[32], where

the global constraints are improper disjunctions.
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2.2.2 Hierarchy of relaxations and basic steps

A basic step is a logic operation that brings any disjunctive set in regular form closer to its DNF. Theorem 2.1, which is stated

and proved in Balas[31] for the linear case, and extended by Ruiz and Grossmann[32] for the general nonlinear convex case,

defines a basic step.

Theorem 2.1 Let F be a disjunctive set in regular form. Then F can be brought to DNF by |K| − 1 recursive applications of

the following basic step which preserves regularity:

For some k, l ∈ K, bring Sk ∩ Sl to DNF by replacing it with:

Skl = Sk ∩ Sl =
⋃

i∈Dk,j∈Dl

(Pi ∩ Pj)

Ruiz and Grossmann[32] prove that any convex GDP is equivalent to a disjunctive convex program, so it is possible to

use the rich theory behind disjunctive programming (including basic steps) to convex GDP. In particular, there are two main

consequences of the basic steps[31][32]: a) The continuous relaxation of the (HR) of a disjunctive set after a basic step is at

least as tight, and generally tighter, than the one of the previous formulation; b) The (HR) of the DNF is the convex hull of the

disjunctive convex set.

The first results indicates that we can obtain formulations with tighter continuous relaxations through basic steps. However,

the problem grows exponentially in the number of constraints with the application of basic steps. It is therefore important to

consider the tradeoff of tightening the problem formulation versus growing the problem size. An important consequence of

the second result is that if the objective function is linear, then the solution to the relaxed (HR) of the DNF is the same as

the solution to the original GDP. Note that if the objective function is nonlinear, but it is convex in a minimization problem

(or concave in a maximization problem), then it can be easily transformed into a constraint by adding a single variable in the

objective (i.e. min f(x) is transformed as min α and f(x) ≤ α becomes a constraint). This final remark indicates that in the

extreme case of DNF, it is possible to solve a continuous nonlinear program instead of a mixed-integer one[32].

Proper basic steps generate exponential growth in disjunctive terms. This would lead to an exponential growth in the number

of binary variable if the (BM) or (HR) reformulations were directly performed. However, Balas[31] shows that we can obtain an

equivalent formulation by including additional constraints, and representing the new terms with continuous variables between

0 and 1. These constraints relate the original binary variables to the new continuous ones, as shown in the following Theorem.

Theorem 2.2 Consider MILP/MINLP representation of two disjunctions k, l ∈ K, whose disjunctive terms are represented by

the 0-1 variables yki, ylj , i ∈ Dk, j ∈ Dl. If a basic step is applied between disjunction k and disjunction l, the variables

representing the disjunctive terms of the resulting disjunction ŷij ∈ {0, 1} can be equivalently represented by:

yki =
∑

j∈Dl

ŷij

ylj =
∑

i∈Dk

ŷij∑
i∈Dk,j∈Dl

ŷij = 1∑
i∈Dk

yki = 1∑
j∈Dl

ylj = 1

0 ≤ ŷij ≤ 1

yki, ylj ∈ {0, 1}

Proof. The proof follows from Theorem 4.4 of Balas work[31] �.

6



Figure 3: Illustration of (HR) (a) before, and (b) after the application of a basic step

Theorem 2.2 establishes that by including additional constraints, the number of binary terms remains unchanged after the

application of basic steps.

Figure 3 illustrates tightness of relaxation of the (HR) before and after the application of a basic step. The illustration

shows a feasible region described by two disjunctions with two disjunctive terms each, that is ([A1] ∨ [A2]) ∧ ([B1] ∨ [B2]).

The illustration to the right shows that, after a basic step, the two disjunctions are intersected to form a new single disjunction

([A1] ∧ [B1]) ∨ ([A2] ∧ [B2]). Thus, we illustrate here not only that the basic step improves the tightness of the relaxation, but

that it brings the problem to DNF. The (HR) of the DNF, as expressed earlier, describes the convex hull of the feasible region,

as this can also be seen in the right figure. Finally, it is important to note that some of the resulting terms after the application

of a basic step might become infeasible. In this example, since A1 and B2, and A2 and B1 do not intersect, the corresponding

new terms are not feasible.

Therefore, the application of a basic step has the tradeoff of improving the tightness of the formulation but increasing the

problem size. There has been some work to identify when is convenient or not to apply a basic step[31][33][32]. However,

previous work provides mainly guidelines and case by case selection of disjunctions for basic steps, while the exponential

growth of the formulation is a major issue. In this paper we propose an algorithmic approach on selecting which basic steps to

apply, while combining a pre-processing and a hybrid reformulation that allow us to keep the problem formulation relatively

small.

3 Algorithm to improve GDP formulations

In order to improve GDP formulations, we iteratively apply basic steps. In this section we first describe the algorithm, and

afterwards we explain in detail each of its steps. Figure 4 provides an outline of the algorithm, where the main idea is to first

perform a preanalysis for pre-solving, then repeatedly apply basic steps over one single disjunction, and finally use the (HR) in

that disjunction and (BM) in all the remaining ones.
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Figure 4: Outline of algorithm

3.1 Algorithm

For the description of the algorithm, we will define the global constraints as individual inequalities, such that g(x) ≤ 0 is

represented with ge(x) ≤ 0, e ∈ E.

Step 1. Initialize z∗, GDP ∗ and zlo from pre-solve. Set iter = 1.

Goal. Use pre-solve to initialize the algorithm; improving (GDP), finding better bounds, and providing a value that will

characterize each disjunction.

Step 2. Select disjunction k∗ ∈ K. Set k̂1 = k∗; K̂ = {k̂1}; D̂k1
= Dk∗ .

Goal. Select the first disjunction to which basic steps will be applied, and set this disjunction as the “key disjunction”.

Step 3. Set iter = iter + 1. Select k∗ ∈ K\K̂. Set k̂iter = k∗; K̂ = {k̂1, ..., k̂iter}; D̂kiter
= Dk∗ ; î = {̂i1, ..., îiter}

where îs ∈ D̂ks
for s = 1, ..., iter.

Goal. Select the next disjunction and apply basic step between this disjunction and the “key disjunction”. Set the resulting

disjunction of this basic step as “key disjunction”.

Step 4 (Optional). For all î, such that: (GDP ∗)
⋂

k̂s∈K̂
s=1,...,iter

(yk̂s îs
= 1) becomes infeasible, set î ∈ INEASiter.

Goal. Identify which terms in the “key disjunction” are infeasible.

Step 5. Select global equations to which apply a basic step Ê ∈ E.

Step 6. Solve the continuous relaxation of (GDPH).
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min z = f(x)

s.t. ge(x) ≤ 0 e ∈ E\Ê

rki(x) ≤Mki(1− yki) k ∈ K\K̂, i ∈ Dk

x =
∑
î

ν î

ŷîge(ν
î/ŷî) ≤ 0 e ∈ Ê, ∀î

ŷĩsrk̂si
(ν ĩs/ŷĩs) ≤ 0 s = 1, ..., iter, i ∈ D̂ks

, ∀ĩs, where ĩs = î ∩ (̂is = i)

yk̂si
=
∑
î

îs=i

ŷî s = 1, ..., iter, i ∈ D̂ks

xloŷî ≤ ν
î ≤ xupŷî ∀î∑

i∈Dk

yki = 1 k ∈ K

∑
î

ŷî = 1

Hy ≥ h

ŷî = 0 î ∈ INEASiter

zlo ≤ z

xlo ≤ x ≤ xup

x ∈ Rn

yki ∈ {0, 1} k ∈ K, i ∈ Dk

0 ≤ ŷî ≤ 1 î /∈ INEASiter

(GDPH)

Step 7. If relaxed (GDPH) > z∗, set z∗ = relaxation(GDPH), GDP ∗ = GDPH . If the relaxation has not improved

after a specific maximum number of iterations, or the GDPH problem size is greater than specified limit, solve GDP ∗. Else go

back to step 3.

(GDPH) is a hybrid reformulation in which the objective function f(x) is the same as in the original formulation. The global

constraints that were not selected for the application of a basic step (e ∈ E\Ê) remain unchanged. The disjunctions that were

not selected to apply basic steps are reformulated using (BM) (rki(x) ≤Mki(1− yki)). The disjunctions that were intersected

with basic steps now form a single disjunction, which we will denote “key disjunction”, and that contains all terms î. The

corresponding variable to this new terms is ŷî. Note that |̂i| = |D̂k1
| ∗ ... ∗ |D̂kiter

|, which indicates an exponential growth of

the disjunction with the number of iterations. The “key disjunction” is reformulated using (HR). The equation x =
∑̂
i

ν î relates

the continuous variables x, to the disaggregated variables in all terms ν î. The constraint ŷîge(ν
î/ŷî) is the (HR) reformulation

of the global constraints that were intersected with the “key disjunction” e ∈ Ê. Note that these constraints are present in all

terms of the “key disjunction” (̂i). Equation ŷĩsrk̂si
(ν ĩs/ŷĩs) is the (HR) reformulation of all the constraints in the terms of the

disjunctions to which basic steps where applied. Each term of the “key disjunction” contains iter sets of constraints, each one

related to one of the disjunctions k̂s ∈ K̂. The original set of constraints in a certain term i of a selected disjunction k̂s will be

present in all terms of the “key disjunction” î, as long as its corresponding element îs is equal to i (̃is = î ∩ (̂is = i)). This

allows the constraints in the original disjunctions rk̂si
to be assigned to the disjunctive and the disaggregated variables of the
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new “key disjunction” (ŷĩs , ν
ĩs ). Equation yk̂si

=
∑̂
i

îs=i

ŷî relates the original binary variables yki to the new variables ŷî, and

it allows the new variables ŷî to be continuous while enforcing them to always take a {0, 1} value[32].

Section 4 provides an illustration of each of the steps in the algorithm. The remaining of this section describes each of the

steps of the algorithm with detail.

3.2 Step 1: Pre-solve

The pre-solve has three purposes: eliminate infeasible terms, find better bounds, and provide a value that will characterize each

disjunction. This pre-solve can be performed due to the logic nature of GDP formulations.

The pre-solve procedure is as follows:

0. Set k = 1 and i = 1

1. Set Yki = True and, as consequence, Yki′ = False for all i′ 6= i, i′ ∈ Dk

2. Formulate MILP/MINLP by using the (HR) formulation of the remaining disjunctions k′ 6= k, k′ ∈ K (note that,

since Yki = True, the constraints associated with Yki will be enforced as global constraints, while the ones associated with

Yki′ , i
′ 6= i, i′ ∈ Dk will be removed from the formulation).

3. Solve the continuous relaxation of this problem to optimality, and define zki as the solution of this problem.

4. Repeat this for every k ∈ K and i ∈ Dk.

Definition 3.1 For a minimization problem, we define the characteristic value of a disjunction k as follows:

charvk = min{zki},∀i ∈ Dk

It is possible to reduce the problem size and find better bounds of the problem considering the following remarks:

Remark 3.2 charvk is a lower bound of z.

Proof. Solving the (HR) reformulation of the original GDP, and relaxing all integrality constraints except the ones corre-

sponding to the disjunction k also yields charvk (i.e. charvk is the value of the solution of a relaxation of (GDP)) �.

Remark 3.3 If zki is infeasible for a disjunctive term k ∈ K, i ∈ Dk, then Yki = False in the original formulation.

Proof. From the definition zki is a continuous relaxation of the problem with Yki = True. If this relaxation is infeasible,

then that particular disjunctive term can not be selected (i.e. Yki = False) �.

As consequence of Remark 3.3, the terms and constraints associated to a k ∈ K, i ∈ Dk term such that zki is infeasible

can be removed form the original (GDP) formulation.

Remark 3.4 If zki is infeasible for all i ∈ Dk for any k ∈ K, then the problem is infeasible.

Proof. If for any disjunction k ∈ K, all its disjunctive terms i ∈ Dk are infeasible, then there is no alternative in that

disjunction that will make the problem feasible, and therefore, the problem is infeasible �.

Remark 3.5 A lower bound to the problem zlo that is at least as large as the continuous relaxation of the original (GDP) can

be obtained with as follows:

zlo = max
k∈K
{charvk}
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Proof. Trivially follows from 3.2 �.

It is important to note that this process requires the evaluation of
∑
k∈K
|Dk| LP/NLP problems. Though this preprocess-

ing might be expensive for only eliminating terms and finding good bounds for the problem, the characteristic value of the

disjunctions has a major role in the algorithm as will be described in section 3.3. Additionally, since most of the structure of

the problem does not change while evaluating every term, it might be possible to solve the many LP/NLP problems in a more

efficient manner. This issue is not addressed in this paper.

The resulting (GDP ) after eliminating infeasible terms is set as (GDP ∗), and its continuous relaxation z∗.

3.2.1 Illustration of pre-solve

In order to illustrate the pre-solve procedure, consider the formulation shown in (1).

min z = x1 + x2

s.t.

 Y11

x2 ≥ 8 + x1

x2 = 12− x1

 ∨


Y12

x1 ≤ 5

x2 ≥ 6

x2 ≤ x1 + 5

 ∨


Y13

x1 ≥ 9

x2 ≤ 5

x2 ≥ x1 − 8


 Y21

4 ≤ x1 ≤ 7

7 ≤ x2 ≤ 8

 ∨
 Y22

7 ≤ x1 ≤ 11

2 ≤ x2 ≤ 4


Y11 Y Y12 Y Y13

Y21 Y Y22

x1, x2 ∈ R1

Y11, Y12, Y13, Y21, Y22 ∈ {True, False}

(1)

Problem (1) has an optimal solution of z = 11, in which Y12 = True and Y21 = True. The (BM) provides a relaxation

of zBM = 3, and the (HR) a relaxation of zHR = 9.16. Following the pre-solve procedure described in 3.2, we first set

Y11 = True, Y12 = False, Y13 = False, and then perform the (HR) reformulation of the remaining of the problem. Relaxing

the integrality constraints, this yields the LP shown in (2).
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min z = x1 + x2

s.t. x2 ≥ 8 + x1

x2 = 12− x1

x1 = (x1)21 + (x1)22

x2 = (x2)21 + (x2)22

4 ∗ y21 ≤ (x1)21 ≤ 7 ∗ y21

7 ∗ y21 ≤ (x2)21 ≤ 8 ∗ y21

7 ∗ y22 ≤ (x1)22 ≤ 11 ∗ y22

2 ∗ y22 ≤ (x2)22 ≤ 4 ∗ y22

y21 + y22 = 1

x1, x2 ∈ R1

0 ≤ y21, y22 ≤ 1

(2)

Problem (2) is infeasible. Performing the same calculation for Y12 = True yields a z12 = 10.6. Repeating this for the

remaining disjunctive terms we obtain z13 = 11, z21 = 11, z21 = 9.25. With these values, we assign the characteristic values

for each disjunction:

charv1 = min{z11, z12, z13} = min{infeas, 10.6, 11} = 10.6

charv2 = min{z21, z22} = min{11, 9.25} = 9.25

With these two characteristic values, it is possible to set the new lower bound: zlo = max{charv1, charv2} = 10.6. Also,

since z11 = infeas, the term associated with Y11 can be eliminated from the original (GDP) formulation. Therefore, problem

(1) after the pre-solve becomes (3).

min z = x1 + x2

s.t.
Y12

x1 ≤ 5

x2 ≥ 6

x2 ≤ x1 + 5

 ∨


Y13

x1 ≥ 9

x2 ≤ 5

x2 ≥ x1 − 8


 Y21

4 ≤ x1 ≤ 7

7 ≤ x2 ≤ 8

 ∨
 Y22

7 ≤ x1 ≤ 11

2 ≤ x2 ≤ 4


Y11 Y Y12 Y Y13

Y21 Y Y22

x1, x2 ∈ R1

Y11, Y12, Y13, Y21, Y22 ∈ {True, False}

(3)

It is clear that (3) is a smaller problem than the original problem (1), and a new lower bound of zlo = 10.6 has been found.

Note that the solution to the problem is z = 11, and the (HR) of (1) provides a lower bound of zHR = 9.16, so the new lower

bound zlo = 10.6 is stronger.
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3.3 Step 2, 3: Selection of k∗

The algorithm selects over which disjunctions to apply basic steps (k∗). As described by Balas[31] there are heuristics to

estimate which basic step will generate the best improvement on a formulation. Furthermore, even if the best first basic step

were selected, this does not necessarily imply that after a sequence of basic steps this first one is the best choice. Sawaya

and Grossmann[33] and Ruiz and Grossmann[32] propose some heuristics as to when to apply basic steps. For the algorithm

proposed in this paper, we consider three main factors for the selection of these disjunctions:

1) A consequence of basic steps described in Balas’ work[31]: A basic step between two disjunctions that do not share

variables in common will not improve the tightness of the formulation.

2) The number of terms in the new disjunction increases exponentially with the number of terms of the selected disjunctions

(|̂i| = |D̂k1
| ∗ ... ∗ |D̂kiter

|). Since the algorithm applies basic steps iteratively over the same disjunction, it is desired to keep

the problem size as small as possible.

3) The characteristic value of the disjunctions, obtained in the first step of the algorithm, provides a heuristic on the “tight-

ness” associated which each disjunction. Therefore, disjunctions with higher characteristic values are preferred.

There are several heuristics that can be used for the selection of k∗. In our experience, the best performance was achieved

by applying many basic steps with small growth in size. Therefore, the heuristic we found to work the best was to select

disjunctions with fewest terms that share variables in common with many other disjunctions (preferably also small ones). This

evaluation is done as follows:

0. Initialize W k = 0,∀k ∈ K. Set m = 1, n = 2.

1. If disjunction m shares a variable in common with disjunction n, then Wm = Wm + 1
(|Dm|)∗(|Dn|) ; Wn = Wn +

1
(|Dm|)∗(|Dn|) .

2. Set n = n+ 1. If n ≤ |K| go back to 1, else go to 3.

3. Set m = m+ 1. If m ≤ |K| − 1 set n = 1 and go back to 1, else go to 4.

4. Select the disjunction k∗ with largest W k value. If there is a tie, choose the disjunction with the highest characteristic

value.

Note that this algorithm gives priority to the number of basic steps that can be applied to a certain disjunction, giving more

weight to the basic steps with smaller increase in number of disjunctive terms. If there is a tie with this parameter, it selects the

one with highest charvk.

The method for the selection of k∗ in step 3 is almost the same as the one for the selection of k∗ in step 2. The difference is

that a basic step will be applied between this disjunction k∗ and “key disjunction”. Therefore, if a disjunction m does not share

a variable in common with any k̂s ∈ K̂ then Wm = 0.

3.4 Step 4: Analyze and eliminate resulting disjunctive terms

As shown in Section 3.1, the basic steps will be applied iteratively over the same disjunction. This means that the number

of terms of such a disjunction will grow exponentially after each basic step. Eliminating terms after each basic step helps to

maintain small formulations. However, there are two things to consider: first is that this step can become computationally

expensive as the algorithm iterates, and second is that eliminating terms has less impact after each iteration. There are two

methods that the algorithm uses to eliminate infeasible terms.

First, the terms that result from intersecting a term that was infeasible in the previous iteration, will be infeasible.
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Second, in order to eliminate resulting disjunctive terms, one LP/NLP is solved for each term in the new disjunction,

similarly to the pre-solve. In the initial iterations, î is small, so the “key disjunction” has a small number of terms. Furthermore,

every term that is eliminated reduces the exponential growth of the problem size in the subsequent iterations. As the algorithm

iterates and î becomes larger, the number of LP/NLP evaluation increases, each LP/NLP becomes more expensive, and there

will not be many more basic steps, so its impact is limited. For these reasons, step 4 is only applied to the initial iterations, but

dropped as the algorithm progresses.

In addition to this, a third method that identifies infeasibility implied by the logic expressions when two of the disjunctive

terms are intersected can be used. Such cases are computationally cheap, but there are not necessarily many terms that can be

eliminated in this way. Tools such as constraint programming can further improve the performance of this method[34]. This

third method is not addressed in this paper.

3.5 Step 5

In step 5 an improper basic step is applied between the “key disjunction” and the global constraints. Using the same concepts

described in 3.3, the improper basic step is only applied with the global constraints that share at least one variable in common

with any k̂s ∈ K̂.

3.6 Step 6: Hybrid reformulation of (GDP)

In 2.1.2 the MILP/MINLP reformulation of the (GDP) is described through either (BM) or (HR). The reformulation, however,

needs not to be strictly one of these; some disjunctions can be reformulated through (BM) while others (HR). The advantage of

doing this is that, if the correct disjunctions are selected for the different reformulations, we can obtain a tight relaxation but with

a smaller problem size than (HR). Note that in the hybrid reformulation the smallest possible MILP/MINLP is the complete

(BM), while the tightest continuous relaxation is achieved through the (HR). Any hybrid lies between the two formulations,

both in size of problem and tightness of continuous relaxation.

For the algorithm, we apply convex hull to the “key disjunction” (i.e. we formulate it using (HR)) since the tightness

improvement of the basic steps does not hold true for the (BM). The rest of the disjunctions are formulated through (BM),

considering that the tightness improvement comes from the basic steps applied in disjunctions k̂s ∈ K̂.

Figure 5 illustrates the idea of the hybrid reformulation. In the (BM) reformulation the problem size is small, but the

continuous relaxation (represented by the shaded region) provides a solution ZBM that is far from the optimal solution Z∗. The

(HR) provides a tighter continuous relaxation, therefore the solution to the relaxation ZHR is closer to the optimal solution. As

expected, the problem size is considerably larger than (BM). Lastly, in the hybrid reformulation the continuous relaxation is

not as tight as the (HR). However, its relaxation provides the same optimal solution as the relaxation of the (HR) ZHY = ZHR.

This hybrid reformulation is larger than the (BM), but not as large as (HR).

3.7 Step 7: Rule for iterating

Many different rules can be applied to decide whether or not the algorithm keeps iterating. The most intuitive rules are size of

the problem and value of continuous relaxation, since these are the two properties we are trying to improve. The last formulation

that was considered to improve the GDP (GDP ∗), is the one that is then solved as an MILP/MINLP.
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Figure 5: Illustration of (BM), (HR) and Hybrid reformulation

It is also important to note that, in order to identify if the relaxation is improving or not, we check the relaxation of (GDPH)

and (GDP ∗) without using the lower bound found in the pre-solve zlo. This lower bound is added in the last iteration, when

(GDP ∗) is solved as an MILP/MINLP

4 Illustration of algorithm

In this section we provide an illustration of the algorithm with a simple example. Consider the linear (GDP) in (4) that

corresponds to a strip packing problem (see (10)):
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min lt

s.t. lt ≥ x1 + 6

lt ≥ x2 + 5

lt ≥ x3 + 4

lt ≥ x4 + 3 Y11

x1 + 6 ≤ x2

 ∨
 Y12

x2 + 5 ≤ x1

 ∨
 Y13

h1 − 6 ≥ h2

 ∨
 Y14

h2 − 7 ≥ h1


 Y21

x1 + 6 ≤ x3

 ∨
 Y22

x3 + 4 ≤ x1

 ∨
 Y23

h1 − 6 ≥ h3

 ∨
 Y24

h3 − 5 ≥ h1


 Y31

x1 + 6 ≤ x4

 ∨
 Y32

x4 + 3 ≤ x1

 ∨
 Y33

h1 − 6 ≥ h4

 ∨
 Y34

h4 − 3 ≥ h1


 Y41

x2 + 5 ≤ x3

 ∨
 Y42

x3 + 4 ≤ x2

 ∨
 Y43

h2 − 7 ≥ h3

 ∨
 Y44

h3 − 5 ≥ h2


 Y51

x2 + 5 ≤ x4

 ∨
 Y52

x4 + 3 ≤ x2

 ∨
 Y53

h2 − 7 ≥ h4

 ∨
 Y54

h4 − 3 ≥ h2


 Y61

x3 + 4 ≤ x4

 ∨
 Y62

x4 + 3 ≤ x3

 ∨
 Y63

h3 − 5 ≥ h4

 ∨
 Y64

h4 − 3 ≥ h3


Yk1 Y Yk2 Y Yk3 Y Yk4 k = 1, ..., 6

0 ≤ x1 ≤ 12; 0 ≤ x2 ≤ 13; 0 ≤ x3 ≤ 14; 0 ≤ x4 ≤ 15

6 ≤ h1 ≤ 10; 7 ≤ h2 ≤ 10; 5 ≤ h3 ≤ 10; 3 ≤ h4 ≤ 10

xj , hj ∈ R1 j = 1, 2, 3, 4

Yki ∈ {True, False} k = 1, ..., 6, i = 1, 2, 3, 4

(4)

This problem has an optimal solution of lt = 15, in which Y12, Y21, Y32, Y41, Y53, Y63 = True. The continuous relaxation

of its (BM) reformulation provides has a value of zBM = 6.0, and the (HR) provides a relaxation of zHR = 8.3.

Step 1. After applying the pre-solve as described in 3.2, the terms {13, 14, 23, 24, 43, 44} are found to be infeasible, so

they are removed from the original (GDP) formulation. GDP ∗ is then (4) without terms {13, 14, 23, 24, 43, 44}. Also, the

characteristic values of the disjunctions k = 1, ..., 6 are, respectively: charvk = (11, 10, 8.3, 9.6, 8.3, 8.3). A new lower bound

zlo is also found, since max(charvk) = 11, which is larger than the relaxation of the (HR) z∗ = 8.3. Set iter = 1.

Step 2. The selection of k∗ is performed by assigning a weight to each disjunction as described in 3.3. In this case

W = (0.75, 0.75, 0.38, 0.75, 0.38, 0.38). Table1 shows the iterations to obtainW , following the procedure described in section

3.3. Disjunctions 1, 2 and 4 have the same weighting value, but the first disjunction has the highest charvk. Therefore,

disjunction 1 is chosen as k∗. k̂1 = 1; K̂ = {1}; D̂1 = {1, 2}.

Step 3. iter = 2. To find new k∗, weighting factors W k for k 6= 1 are also assigned W = (1, 0.5, 1, 0.5, 0). Disjunction 2

and 4 have the same W k, but since charv2 > charv4, disjunction 2 is selected as k∗. Also note that W 6 = 0 since disjunction

6 and disjunction 1 do not share variables in common.

Set k̂2 = 2; K̂ = {1, 2}; D̂2 = {1, 2}; î = {(1, 1), (1, 2), (2, 1), (2, 2)}.

For this step, it is possible to represent the “key disjunction” as follows:
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Table 1: Weight parameter calculation for the disjunctions

Accumulated weight
m n common vars? W 1 W 2 W 3 W 4 W 5 W 6

1 2 yes 0.25 0.25 0 0 0 0
1 3 yes 0.375 0.25 0.125 0 0 0
1 4 yes 0.625 0.25 0.125 0.25 0 0
1 5 yes 0.75 0.25 0.125 0.25 0.125 0
1 6 no 0.75 0.25 0.125 0.25 0.125 0
2 3 yes 0.75 0.375 0.125 0.25 0.125 0
2 4 yes 0.75 0.625 0.25 0.5 0.125 0
2 5 no 0.75 0.625 0.25 0.5 0.125 0
2 6 yes 0.75 0.75 0.25 0.5 0.125 0.125
3 4 no 0.75 0.75 0.25 0.5 0.125 0.125
3 5 yes 0.75 0.75 0.3125 0.5 0.1875 0.125
3 6 yes 0.75 0.75 0.375 0.5 0.1875 0.1875
4 5 yes 0.75 0.75 0.375 0.625 0.3125 0.1875
4 6 yes 0.75 0.75 0.375 0.75 0.3125 0.3125
5 6 yes 0.75 0.75 0.375 0.75 0.375 0.375

 Ŷ1,1

x1 + 6 ≤ x2
x1 + 6 ≤ x3

 ∨
 Ŷ1,2

x1 + 6 ≤ x2
x3 + 4 ≤ x1

 ∨
 Ŷ2,1

x2 + 5 ≤ x1
x1 + 6 ≤ x3

 ∨
 Ŷ2,2

x2 + 5 ≤ x1
x3 + 4 ≤ x1

 (5)

From Theorem 2.2, the additional constraints that are added so that the new disjunctive variables ŷî can be continuous are

shown in (6):

y11 = ŷ1,1 + ŷ1,2

y12 = ŷ2,1 + ŷ2,2

y21 = ŷ1,1 + ŷ2,1

y22 = ŷ1,2 + ŷ2,2

y11, y12, y21, y22 ∈ {0, 1}

0 ≤ ŷ1,1, ŷ1,2, ŷ2,1, ŷ2,2 ≤ 1

(6)

Step 4. All the resulting terms in disjunction (5) are feasible, so INFEAS2 = ∅.

Step 5. Select global equations to which apply a basic step Ê ∈ E. In the example, the first three global constraints share

a variable in common with the “key disjunction”. It is possible to represent the resulting disjunction after the application of the

improper basic step as shown in (7).



Ŷ1,1

lt ≥ x1 + 6

lt ≥ x2 + 5

lt ≥ x3 + 4

x1 + 6 ≤ x2
x1 + 6 ≤ x3


∨



Ŷ1,2

lt ≥ x1 + 6

lt ≥ x2 + 5

lt ≥ x3 + 4

x1 + 6 ≤ x2
x3 + 4 ≤ x1


∨



Ŷ2,1

lt ≥ x1 + 6

lt ≥ x2 + 5

lt ≥ x3 + 4

x2 + 5 ≤ x1
x1 + 6 ≤ x3


∨



Ŷ2,2

lt ≥ x1 + 6

lt ≥ x2 + 5

lt ≥ x3 + 4

x2 + 5 ≤ x1
x3 + 4 ≤ x1


(7)

Step 6. The hybrid reformulation of this example is performed by applying (HR) to the “key disjunction” and (BM) in the

remaining disjunctions. This MILP is shown in Appendix 2 in equation (20).

Step 7. The relaxed solution of (20) is 11. Since relaxed (20) > 8.3, set z∗ = 11, GDP ∗=(20). Note that, as explained in
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section 3.7, the lower bound found in the pre-solve (zlo = 11) is not used to evaluate the improvement in the formulation. This

lower bound will be added only in the last iteration when (GDP ) is solved as MILP/MINLP.

Since it improved, the algorithm proceeds to the next iteration.

In the next iteration, a basic step between the “key disjunction” and disjunction 4 is applied. The resulting disjunction is

illustrated in (8).



Ŷ1,1,1

lt ≥ x1 + 6

lt ≥ x2 + 5

lt ≥ x3 + 4

x1 + 6 ≤ x2
x1 + 6 ≤ x3
x2 + 5 ≤ x3


∨



Ŷ1,1,2

lt ≥ x1 + 6

lt ≥ x2 + 5

lt ≥ x3 + 4

x1 + 6 ≤ x2
x1 + 6 ≤ x3
x3 + 4 ≤ x2


∨



Ŷ1,2,1

lt ≥ x1 + 6

lt ≥ x2 + 5

lt ≥ x3 + 4

x1 + 6 ≤ x2
x3 + 4 ≤ x1
x2 + 5 ≤ x3


∨



Ŷ1,2,2

lt ≥ x1 + 6

lt ≥ x2 + 5

lt ≥ x3 + 4

x1 + 6 ≤ x2
x3 + 4 ≤ x1
x3 + 4 ≤ x2


∨

∨



Ŷ2,1,1

lt ≥ x1 + 6

lt ≥ x2 + 5

lt ≥ x3 + 4

x2 + 5 ≤ x1
x1 + 6 ≤ x3
x2 + 5 ≤ x3


∨



Ŷ2,1,2

lt ≥ x1 + 6

lt ≥ x2 + 5

lt ≥ x3 + 4

x2 + 5 ≤ x1
x1 + 6 ≤ x3
x3 + 4 ≤ x2


∨



Ŷ2,2,1

lt ≥ x1 + 6

lt ≥ x2 + 5

lt ≥ x3 + 4

x2 + 5 ≤ x1
x3 + 4 ≤ x1
x2 + 5 ≤ x3


∨



Ŷ2,2,2

lt ≥ x1 + 6

lt ≥ x2 + 5

lt ≥ x3 + 4

x2 + 5 ≤ x1
x3 + 4 ≤ x1
x3 + 4 ≤ x2



(8)

In this case, the term associated with Ŷ1,2,1 and Ŷ2,1,2 are infeasible, so INFEAS2 = {(1, 2, 1), (2, 1, 2)}.

Also, additional constraints need to be added in the MILP reformulation to avoid the increase in binary variables, as

described in earlier. These constraints (after setting ŷ1,2,1 = ŷ2,1,2 = 0;) are shown in (9).

y11 = ŷ1,1,1 + ŷ1,1,2 + ŷ1,2,2

y12 = ŷ2,1,1 + ŷ2,2,1 + ŷ2,2,2

y21 = ŷ1,1,1 + ŷ1,1,2 + ŷ2,1,1

y22 = ŷ1,2,2 + ŷ2,2,1 + ŷ2,2,2

y41 = ŷ1,1,1 + ŷ2,1,1 + ŷ2,2,1

y42 = ŷ1,1,2 + ŷ1,2,2 + ŷ2,2,2

y11, y12, y21, y22, y41, y42 ∈ {0, 1}

0 ≤ ŷ1,1,1, ŷ1,1,2, ŷ1,2,2, ŷ2,1,1, ŷ2,2,1, ŷ2,2,2 ≤ 1

(9)

The continuous relaxation of the hybrid MILP reformulation of this iteration is ziter=2 = 15. Since it improved, the

algorithm proceeds to another iteration.

The third iteration involves a basic step between the “key disjunction” and disjunction 5. This results in a disjunction with 32

terms, of which 8 of them are infeasible (the 8 terms that result from intersecting terms {(1, 2, 1), (2, 1, 2)} with the 4 terms of

disjunction 5). This (GDPH) also has a relaxation of ziter=3 = 15. Since there is no improvement, the formulation obtained

in iteration 2 is selected as GDP ∗ and solved as MILP. Note that the continuous relaxation of this formulation provides a lower

bound that has the same value as the optimal solution of the problem ziter=2 = z∗ = 15. However, the values for yki are not

integer, so the MILP solver requires to evaluate some nodes to find the integer solution.
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Figure 6: Illustration of strip packing problem

5 Examples

The algorithm was tested with 30 instances of five problems: strip packing, process flowsheet, farm layout, constrained layout

and design of a multi-product batch plant. The first problem is a linear GDP, while all the others are convex nonlinear GDP.

This section describes the problems and provides the GDP formulation.

5.1 Strip Packing (S-Pck)

In the strip packing problem a set of rectangles and a strip with fixed width are given. The objective is to pack these rectan-

gles, without rotation and overlap, within the strip minimizing its length. Figure 6 illustrates this problem. The linear GDP

formulation is as follows[33]:

min lt

s.t. lt ≥ xi + Li i ∈ N Y 1
ij

xi + Li ≤ xj

 ∨
 Y 2

ij

xj + Lj ≤ xi

 ∨
 Y 3

ij

yi −Hi ≥ yj

 ∨
 Y 4

ij

yj −Hj ≥ yi

 i, j ∈ N, i < j

Y 1
ij Y Y

2
ij Y Y

3
ij Y Y

4
ij i, j ∈ N, i < j

0 ≤ xi ≤ UB − Li i ∈ N

Hi ≤ yi ≤W i ∈ N

Y 1
ij , Y

2
ij , Y

3
ij , Y

4
ij ∈ {True, False} i, j ∈ N, i < j

(10)

In (10) xi and yi represent the coordinates of the upper-left corner of each of the i ∈ N rectangles. The global constraints

indicate that the total length lt is larger than the xi coordinate of all the rectangles plus their length Li. There is a disjunction

for each pair of rectangles (i.e. if there are three rectangles there will be three disjunctions representing the pairs: (1,2), (1,3)

and (2,3)). Each term in this disjunctions represent the possible relation between two rectangles: rectangle i is either to the left,

to the right, above or below rectangle j. These disjunctions ensure that there is no overlap.

5.2 Design of Nontransitive Dice (Dice)

For the design of nontransitive dice problem a number of dice are given (n ∈ N ), each with the same number of faces (f ∈ F ).

The objective is to design a set of dice that maximizes the probability of dice n beating dice n+ 1, and the last dice (n = |N |)
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beating the first one (n = 1). For simplicity in the cyclic representation and description of the problem, we will consider the

dice |N |+ 1 = 1. Each dice n must have the same probability of beating dice n+ 1[35]. More specifically, there are |F | ∗ |F |

possible outcomes between each pair of dice n and n + 1. The problem seeks to maximize the number of outcomes in which

dice n beats dice n + 1 (or equivalently, minimize the number of outcomes in which dice n + 1 beats dice n). Additionally,

in this problem we enforce that each face in each dice has a different integer value[36][37]. Figure 7 shows an example of 3

nontransitive dice with 6 faces each. In the example the first dice (n = 1) beats the second one (n = 2) in 21 of the 36 possible

outcomes ((9,5); (9,6); (9,7); (9,8); (10,5); (10,6); (10,7); (10,8); (11,5); (11,6); (11,7); (11,8); (12,5); (12,6); (12,7); (12,8);

(14,5); (14,6); (14,7); (14,8); (14,13)). This means that dice n = 1 has has 58.3% (21/36) probability of beating the second

dice. The second one has also 58.3% probability of beating the third dice. Finally, the third dice has also 58.3% probability of

beating the first one. The linear GDP formulation of this problem is shown in (11), and it is formulated as minimization of the

number of outcomes in which dice n + 1 beats dice n (instead of maximizing the number of outcomes in which dice n beats

dice n+ 1).

min lost

s.t. lost =
∑
f∈F

∑
f̂∈F

wlose
n,f,f̂

n ∈ N

xn,f−1 + 1 ≤ xn,f n ∈ N, f ∈ F

 Y win
n,f,f̂

wlose
n,f,f̂

= 0

xn,f ≥ xn+1,f̂ + 1

 ∨
 Y lose

n,f,f̂

wlose
n,f,f̂

= 1

xn,f ≤ xn+1,f̂

 n ∈ N, f ∈ F, f̂ ∈ F

∨
n̂∈N,f̂∈F

 Zn,f,n̂,f̂

xn,f = f̂ + |F |(n̂− 1)

 n ∈ N, f ∈ F

Y win
n,f,f̂

Y Y lose
n,f,f̂

n ∈ N, f ∈ F, f̂ ∈ F

Y
n̂∈N,f̂∈F

Zn,f,n̂,f̂ n ∈ N, f ∈ F

Y
n∈N,f∈F

Zn,f,n̂,f̂ n̂ ∈ N, f̂ ∈ F

0 ≤ xn,f ≤ |N | ∗ |F | n ∈ N, f ∈ F

0 ≤ wlose
|N |,f,f̂ ≤ 1 n ∈ N, f ∈ F, f̂ ∈ F

Y win
n,f,f̂

, Y lose
n,f,f̂

, Zn,f,n̂,f̂ ∈ {True, False} n, n̂ ∈ N, f, f̂ ∈ F

(11)

In (11), variable wlose
n,f,f̂

represents face f of dice n loosing to face f̂ of dice n+1. Variable xn,f represents the integer value

assigned to face f of dice n (though we represent it with a continuous variable, the second disjunction enforces that xn,f is

integer). Problem (11) seeks to minimize the number outcomes in which a dice n loses to dice n+ 1. The first global constraint

ensures that all dice n have the same number of losses to dice n+ 1. The second constraint breaks symmetry by assigning the

numbers of the faces of a dice in increasing order to the face number. The first disjunction defines if a face f of a dice n wins

or looses against a face f̂ of the dice n + 1. The second disjunction enforces that each face in each dice is assigned an integer

number. The first two logic constraints correspond to the disjunctions of the GDP formulation. The third one enforces that each

number is assigned only once.
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Figure 7: Illustration of 3 Nontransitive Dice with 6 faces

5.3 Design of Nontransitive Dice Hybrid GDP-MINLP (DiceH)

Problem “DiceH” is the same problem as “Dice”, but using a hybrid MINLP-GDP formulation. In this hybrid reformulation,

the disjunctions that assign one number to each face of each dice are formulated as (HR). After a couple of algebraic steps, the

number of continuous variables and constraints can be greatly reduced. The hybrid GDP-MINLP formulation is shown in (12).

min lost

s.t. lost =
∑
f∈F

∑
f̂∈F

wlose
n,f,f̂

n ∈ N

xn,f−1 + 1 ≤ xn,f n ∈ N, f ∈ F

xn,f =
∑
n̂∈N

∑
f̂∈F

(f̂ + |F |(n̂− 1)) ∗ zn,f,n̂,f̂ n ∈ N, f ∈ F

∑
n∈N

∑
f∈F

zn,f,n̂,f̂ = 1 n̂ ∈ N, f̂ ∈ F

 Y win
n,f,f̂

wlose
n,f,f̂

= 0

xn,f ≥ xn+1,f̂ + 1

 ∨
 Y lose

n,f,f̂

wlose
n,f,f̂

= 1

xn,f ≤ xn+1,f̂

 n ∈ N, f ∈ F, f̂ ∈ F

Y win
n,f,f̂

Y Y lose
n,f,f̂

n ∈ N, f ∈ F, f̂ ∈ F

0 ≤ xn,f ≤ |N | ∗ |F | n ∈ N, f ∈ F

0 ≤ wlose
|N |,f,f̂ ≤ 1 n ∈ N, f ∈ F, f̂ ∈ F

Y win
n,f,f̂

, Y lose
n,f,f̂

, Zn,f,n̂,f̂ ∈ {True, False} n, n̂ ∈ N, f, f̂ ∈ F

(12)

Problem (12) has two main difference with (11). The first one is that the second disjunction of (11) is formulated as an

MILP constraint, the third global constraint in (12). The second important difference is that the logic constraint that corre-

sponds to the second disjunction in (11) is removed. Note that in (11) there are two logic constraints that involve the Boolean

variables of the second disjunction

(
Y

n̂∈N,f̂∈F
Zn,f,n̂,f̂ and Y

n∈N,f∈F
Zn,f,n̂,f̂

)
, while in (12) only the second one appears(∑

n∈N
∑

f∈F zn,f,n̂,f̂ = 1
)

. This change is valid, because constraint
(∑

n∈N
∑

f∈F zn,f,n̂,f̂ = 1
)

enforces that each num-

ber appear exactly in one face. Since there are |N | ∗ |F | faces and numbers, this constraint also enforces that each face has

exactly one of the different numbers.
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Figure 8: Superstructure illustration of an 8-equipment process network

5.4 Process Network (Process)

The process network problem ”Process” is a classic optimization problem in process design. The model seeks to maximize

the profit of selling a set of products taking into account the cost of raw materials and equipment. Figure 8 illustrates the

superstructure for a process with potentially 8 units. The model that describes the performance of each unit is normally large

and quite complex. In this example, however, the process is simplified to single input-output relations that give rise to a convex

GDP[32]. The GDP problem formulation is as follows:

min Z =
∑
i∈I

ci +
∑
j∈J

pjxj + α

s.t.
∑
j∈J

rjnxj ≤ 0 ∀n ∈ N


Yi∑

j∈Ji

dij(e
xj/tij − 1)−

∑
j∈Ji

sijxj ≤ 0

ci = γi

 ∨

¬Yi
xj = 0 ∀j ∈ J i

ci = 0

 i ∈ I

Ω(Y ) = True

ci, xj ≥ 0

Yi ∈ {True, False}

(13)

In (13) ci is the cost associated to each equipment i ∈ I . xj represents each of the flows j ∈ J , and pj the profit or

cost associated to each one. The global constraints represent the mass balance in each of the n ∈ N nodes, where rjn is the

coefficient of the mass balance for flow j. There is a disjunction for each unit i. If a unit is selected (Yi = True) then the

corresponding mass balance has to be satisfied, and the cost of the unit ci takes the value associated to that equipment γi. If it

is not selected (Yi = False or, equivalently, ¬Yi = True), then all the flows j ∈ J i in and out that equipment become 0, and

the cost ci also becomes 0. Finally Ω(Y ) = True represents the topology of the superstructure.

5.5 Farm Layout (F-Lay)

In the farm layout problem the objective is to determine the width and length of a number of rectangles with fixed area in order

to minimize the total perimeter. Figure 9 illustrates this problem, which can be formulated as the following convex GDP[4]:
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Figure 9: Illustration of farm layout problem

min Z = 2(Length+Width)

s.t. Length ≥ xi + Li i ∈ N

Width ≥ yi +Wi i ∈ N

Ai/Wi − Li ≤ 0 i ∈ N Y 1
ij

xi + Li ≤ xj

 ∨
 Y 2

ij

xj + Lj ≤ xi

 ∨
 Y 3

ij

yi +Wi ≤ yj

 ∨
 Y 4

ij

yj +Wj ≤ yi

 i, j ∈ N, i < j

Y 1
ij Y Y

2
ij Y Y

3
ij Y Y

4
ij i, j ∈ N, i < j

0 ≤ Length ≤ Lengthup; 0 ≤Width ≤Widthup

Llo
i ≤ Li ≤ Lup

i ; W lo
i ≤Wi ≤ Lup

i i ∈ N

0 ≤ xi ≤ Lengthup − Llo
i ; 0 ≤ yi ≤Widthup − Llo

i i ∈ N

Y 1
ij , Y

2
ij , Y

3
ij , Y

4
ij ∈ {True, False} i, j ∈ N, i < j

(14)

In formulation (14) the variables xi and yi represent the coordinates of lower-left corner of each rectangle i ∈ N , while

Li and Wi represent their corresponding length and width. Length and Width represent the length and width of the total

area. Ai is the given area for each rectangle. Similarly to the strip packing problem (10), there is one disjunction for each pair

of rectangles. Each term in the disjunction represents the possible relative position between the two rectangles: rectangle i is

either to the left, or to the right, or below, or above rectangle j, respectively.

5.6 Constrained Layout (C-Lay)

The constrained layout problem is similar to the strip packing problem, but the rectangles in this case have to be packed inside

a set of fixed circles. The objective function is to minimize the distance in x and y axis, with a cost associated to every pair of

rectangles. Figure 10 illustrates the constrained layout problem. It can be formulated as the following convex GDP[4]:
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Figure 10: Illustration of constrained layout problem

min Z =
∑
i

∑
j

cij(delxij + delyij)

s.t. delxij ≥ xi − xj i, j ∈ N, i < j

delxij ≥ xj − xi i, j ∈ N, i < j

delyij ≥ yi − yj i, j ∈ N, i < j

delyij ≥ yj − yi i, j ∈ N, i < j Y 1
ij

xi + Li/2 ≤ xj − Lj/2

 ∨
 Y 2

ij

xj + Lj/2 ≤ xi − Li/2


∨

 Y 3
ij

yi +Hi/2 ≤ yj −Hj/2

 ∨
 Y 4

ij

yj +Hj/2 ≤ yi −Hi/2

 i, j ∈ N, i < j

∨
t∈T



Wit

(xi + Li/2− xct)2 + (yi +Hi/2− yct)2 ≤ r2t
(xi + Li/2− xct)2 + (yi −Hi/2− yct)2 ≤ r2t
(xi − Li/2− xct)2 + (yi +Hi/2− yct)2 ≤ r2t
(xi − Li/2− xct)2 + (yi −Hi/2− yct)2 ≤ r2t


i ∈ N

Y 1
ij Y Y

2
ij Y Y

3
ij Y Y

4
ij i, j ∈ N, i < j

Y
t∈T

Wit i ∈ N

0 ≤ xi ≤ xupi i ∈ N

0 ≤ yi ≤ yupi i ∈ N

Y 1
ij , Y

2
ij , Y

3
ij , Y

4
ij ∈ {True, False} i, j ∈ N, i < j

Wit ∈ {True, False} i ∈ N, t ∈ T

(15)

In formulation (15) xi and yi represent the coordinates of the centre of the rectangles i ∈ N . delxij and delyij represent

the distance between two rectangles i, j ∈ N, i < j, and cij is the cost associated with these. The first disjunctions, similarly

to strip packing and farm layout problems, ensures that there is no overlap by expressing the possible relative position between

rectangles i and j. The second set of disjunctions ensure that every rectangle i is inside one of the t ∈ T circles. For a circle t,

its coordinates (xct,yct) and its radius rt are given.
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5.7 Design of multi-product batch plant (Batch)

This problem seeks to minimize the investment cost in the design of a plant with multiple units in parallel and intermediate

storage tanks [38]. The design involves selecting the number of parallel units, volume of the equipment, and volume and

location of the intermediate storage tanks. This problem can be convexified[39], and the formulation is as follows:

min Z = α1

∑
j

exp(nj +mj + β1vj) + α2

∑
Tj

exp(β2vTj)

s.t. vj ≥ ln(Sij) + bij − nj ∀i, j

ei ≥ ln(Tij)− bij −mj ∀i, j

H ≥
∑
i

(Qiei)

Y Sj

vTj ≥ ln(S∗j ) + bij+1 ∀i
vTj ≥ ln(S∗j ) + bij ∀i
bij − bij+1 ≤ ln(S∗ij) ∀i
bij − bij+1 ≥ − ln(S∗ij) ∀i


∨


¬Y Sj

vTj = 0

bij − bij+1 = 0 ∀i

 ∀j < |J |

 YMj,1

mj = ln(1)

 ∨ ... ∨
 YMj,maxp

mj = ln(maxp)

 ∀j

 Y Nj,1

nj = ln(1)

 ∨ ... ∨
 Y Nj,maxp

nj = ln(maxp)

 ∀j

Y Mj,1 Y ... Y YMj,maxp ∀j

Y Nj,1 Y ... Y Y Nj,maxp ∀j

Y Sj , Y Mj,p, Y Nj,p ∈ {True, False} ∀j, p = 1, ...,maxp

(16)

The nomenclature of this problem is shown in Appendix 3.

6 Results

In this section we present the computational results of applying the algorithm described in section 3 to different instances of the

examples presented in 5. The algorithm uses the heuristics for selecting k∗ described in 3.3. There are many rules that could

be set for deciding if the algorithm moves to the next iteration or not. In this study the rule that was used is as follows. If the

continuous relaxation does not improve after 3 iterations, or the number of constraints is more than double than the original,

or the number of disjunctive terms in Dk is larger than half of the number of original disjunctive terms, then proceed to solve

GDP ∗; else keep iterating. Note that a formulation can in fact more than double its size, but that can occur only in the last

iteration. Afterwards the algorithm proceeds to the next step.

Thirty six instances were solved. The instances were generated by defining problem size and randomly generating the

parameters of the problems (e.g. in Stpck the number of rectangles was set, but width and length of the rectangles was randomly

generated). The ε has a value of 10−4, and the Big M parameter was estimated using the most basic solution for the given data

(e.g. in the strip packing problem the most basic solution is to pack one rectangle after the other, though is not the optimal). The

only exception are Batch instances, where the ”optimal” Big M was used, and which can be found in the CMU-IBM MINLP

library[40].

25



Figure 11: Percentage of problems solved vs. time for the test instances

The instances are solved using branch and bound methods, Gurobi 5.5 for the linear GDP problems and SBB for the convex

GDP. Cuts and presolve were deactivated in Gurobi for all linear instances. The algorithm and models were implemented in

GAMS[41] and solved in an Intel(R) Core(TM) i7 CPU 2.93 GHz and 4 GB of RAM.

We first present and discuss the general performance of the algorithm shown in Figures 11, 12, 13 and 14. We then discuss

in more detail some characteristics of the different instances presented in Tables 2 and 3.

Figure 11 shows the percentage of problems solved vs. time for the (BM), (HR) and the algorithm. The time for the

algorithm includes the preprocessing, the steps for improving the formulation, and the solution to the MINLP. The figure shows

that the algorithm performs in general better than the (BM) and (HR) reformulations. In the smaller instances this is not true,

and one of the main reasons for this is that the algorithm is programmed with a high level language (GAMS). Thus, if the

algorithm is implemented in a lower lever programming language its performance is expected to improve. Other improvements

to the algorithm, such as the ones mentioned earlier in the paper (taking advantage of problem structure to reduce presolving

time, using constraint programming and logic concepts to eliminate infeasible terms, and improving heuristics for iterating rule

and selection of basic steps) might further improve the algorithm’s performance.

Figure 12 shows the number of nodes that where evaluated to find and prove optimality (within 0.1 % gap) for the three

formulations. As expected the (HR) requires fewer nodes than the (BM) to achieve optimality. It is interesting to note that

the algorithm needs fewer number of nodes than the (HR) in the larger instances. One of the possible reasons for this is that

the algorithm provides a better continuous relaxation in all instances as shown in Figure 13. Figure 13 shows the continuous

relaxation gap of the three formulations as percentage of the optimal solution vs. the % of problems that lie in that gap. For

the formulations where the optimal solution was not found, the best solution was used to calculate this percentage. This figure

shows, as expected, that the (HR) in general has a relaxation that is stronger than the (BM). It also shows that the relaxation of

the formulation obtained with the algorithm is stronger than (BM) and (HR).

Figure 14 shows the percentage of problems vs. number of constraints. The figure shows that the number of constraints

in the (BM) is in general smaller than (HR) and the formulation obtained through the algorithm. The MILP/MINLP obtained

with the algorithm has fewer constraints than the (HR). It is important to note that for most problems the continuous relaxation

improved after applying the algorithm. Therefore, having not much larger or even smaller problem sizes represents an important
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Figure 12: Number of nodes evaluated to achieve optimum, for the instances where the three formulations did so. Excludes
S-Pck12 for comparison purposes, in order to avoid plotting over 16 nodes

Figure 13: Relaxation gap for the different formulations
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Figure 14: Number of constraints for the different formulations

improvement in the problem formulation.

Table 2 shows the continuous relaxation, the number of constraints, and the number of variables for the different instances,

comparing the (BM) and (HR) formulations of the original problem with the formulation obtained with the proposed algorithm.

It can be seen from Table 2 that on 28 of the 36 instances the relaxation improves after applying the algorithm, in the other 8 is

has the same value as the (HR). In few cases, such as C-Lay-3-2 (where the solution is 41,573, the (BM) and (HR) relaxations

are 0, and the relaxation after the algorithm is 2,200), the improvement in the relaxation is small. In most of the cases the gap

improves around 30%-50%, for example C-Lay-5-3 where the solution is 10,851, the (BM) and (HR) relaxations are 0 and the

relaxation after the algorithm is 4,268. In the extreme case of Process-8, the algorithm provides a relaxation of 1,098, which

is actually the value of the objective function, (HR) provides a good relaxation of 1,079, but still with some gap, while (BM)

provides a very poor relaxation of 0.

The algorithm produces the largest number of variables and constraints in 10 out of the 36 instances, and the size of these

problems is not much larger than that of the (HR). The (HR) produces the largest formulations in the rest of the instances. The

number of binary variables in (HR) and (BM) is the same as expected. However, there are fewer binary variables in some of

the formulations derived from the algorithm. In these cases, the algorithm is able to eliminate some disjunctive terms during

the first pre-solving step, so that the binary variables associated with these terms are removed from the formulation.

Table 3 shows solution time, optimality gap and number of nodes evaluated in the branch and bound tree. Note that the

proposed algorithm requires fewest number of nodes in 21 out of the 36 instances. The performance is measured as solution

time, or gap in the cases where the models did not find and prove the optimal solution after two hours. The algorithm performs

the best in 17 of the 36 instances, and worst in 10 instances. However, the algorithm performs relatively close to the best

performer in all instances, except in Batch151208. Furthermore, if we just consider the MILP/MINLP obtained with the

algorithm, and not the algorithm processing time, the MILP/MINLP is best in 26 out of the 36 instances, and worst only in 2

instances. For the Batch problems the (HR) formulation performs the best. The (BM) and (HR) perform similarly in the first

two instances. The third one is the only instance in all test problems in which the algorithm does much worse than the (BM)

and (HR). In the last two instances of the Batch problems the algorithm performs much better than the (BM). For the C-Lay

problems the (HR) is the worst formulation in general, except in the smaller instances. (BM) generally performs the best in

28



Table 2: Relaxation, number of constraints and number of variables for the (BM), (HR) and algorithm formulations

Relaxation Number of constraints Number of variables/binary
Instance Solution (BM) (HR) Algorithm (BM) (HR) Algorithm (BM) (HR) Algorithm
Batch101006 769440 734943 745909 750769 1020 1897 1004 279/129 789/129 276/120
Batch121208 1241126 1202365 1217603 1223599 1512 2781 1514 407/203 1163/203 415/203
Batch151208 1543472 1499913 1514948 1519320 1782 3348 1784 446/203 1334/203 454/203
Batch181210 2042327 2006860 2021546 2021546 2148 4011 2150 533/251 16001/251 543/251
Batch201210 2295349 2255304 2272082 2277093 2328 4389 2330 559/251 1715/251 569/251
C-Lay-3-2 41573 0 0 2200 57 195 568 32/18 92/18 240/18
C-Lay-3-3 26669 0 0 2200 69 219 338 35/21 101/21 139/20
C-Lay-4-2 6545 0 0 3025 93 349 952 54/32 166/32 390/32
C-Lay-4-3 4683 0 0 2219 109 381 968 58/36 178/36 394/36
C-Lay-5-2 17581 0 0 6685 138 530 1329 82/50 262/50 546/50
C-Lay-5-3 10851 0 0 4268 158 588 543 87/55 277/55 237/52
C-Lay-5-4 9299 0 0 2695 178 608 952 92/60 292/60 392/59
C-Lay-6-2 10262 0 0 2811 192 748 502 116/72 380/72 240/71
C-Lay-6-3 9861 0 0 2936 216 800 1478 122/78 398/78 566/69
C-Lay-6-4 17435 0 0 6998 240 888 1231 128/84 416/84 497/71
C-Lay-6-5 13227 0 0 4500 264 936 871 134/90 434/90 382/79
Dice0605 12 1.9 6 6 2432 5162 3090 1292/1260 2912/1260 2000/1051
Dice0606 12 1.6 6 6 1802 6842 3090 1766/1728 3926/1728 2002/1051
Dice0804 24 3.8 8 8 2914 6530 3860 1570/1536 3618/1536 2676/1249
Dice0805 21 3 8 8 4282 9122 5468 2282/2240 5162/2240 3544/1881
Dice1203 56 10.1 14.7 15.3 2998 9650 5610 2198/2160 5222/2160 3892/1690
DiceH0605 12 2.8 6 6 632 2432 444 1292/1260 2012/1260 1294/1250
DiceH0606 12 2.6 6 6 758 2918 2253 1766/1728 2630/1728 2766/1718
DiceH0804 24 4.8 8 8 866 3426 2556 1570/1536 2594/1536 2706/1522
DiceH0805 21 4.1 8 8 1082 4282 3205 2282/2240 3562/2240 3706/2226
DiceH1203 56 11.7 14.7 15.3 1406 5726 4149 2198/2160 3926/2160 4042/2138
F-lay-3 49 31 31 42 27 195 160 28/12 124/12 88/12
F-lay-4 54 31 31 42 45 381 141 44/24 236/24 88/24
F-lay-5 68 35.3 35.7 49.3 68 628 164 64/40 384/40 108/40
F-lay-6 67 34.6 34.6 46.5 96 936 192 88/60 568/60 132/60
Process-12 1250 0 1226.6 1248.3 121 188 635 71/12 151/12 431/11
Process-8 1098 0 1079.3 1098.2 84 163 201 48/8 116/8 120/7
S-Pck12 35 9 12.8 17 344 2192 299 290/264 1346/264 298/204
S-Pck13 59 10 14.3 28 327 2589 675 340/312 1588/312 481/202
S-Pck14 48 9 12.8 25 471 3019 759 394/364 1850/364 538/272
S-Pck15 40 10 11.7 16 542 3482 433 452/420 3482/2132 460/296

the smaller instances (C-Lay-3-2 to C-Lay-4-3). In the larger instances the algorithm performs much better than the (BM) and

(HR). In Dice and DiceH the algorithm performs the best, while the (HR) performs the worst. For the F-Lay problem the (BM)

performs the best, while the (HR) performs the worst. For Process (HR) is the best formulation, and the algorithm the worst,

but note that the time to solve is very fast, so the presolve and rest of the algorithm takes much more time than actually solving

the MINLP. For the S-Pck problems the (BM) performs the best, then the algorithm, and the (HR) the worst. Note that in

C-Lay-6-2, C-Lay-6-3, C-Lay-6-4, and the larger instances of Dice and DiceH the (BM) and (HR) reformulations do not solve

to optimality within two hours while the algorithm does. It is also important to note that in the examples related to process

design (Process and Batch) the (HR) performs much better than the (BM), while in the packing (C-Lay, F-Lay and S-Pck) and

Dice the (BM) is much better than the (HR).
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Table 3: Solution time, optimality gap and B&B nodes for the (BM), (HR) and algorithm formulations
Solution timea (pre-solve time)(s) Optimality gap (%) Number of B&B nodesb

Example Type (BM) (HR) Algorithm (BM) (HR) Algorithm (BM) (HR) Algorithm
Batch101006 MINLP 204 12 288 (104) 0.1 0.1 0.1 9424 300 8553
Batch121208 MINLP 286 77 390 (210) 0.1 0.1 0.1 10551 1554 6886
Batch151208 MINLP 319 314 2007 (236) 0 0.1 0.1 11619 5400 54549
Batch181210 MINLP 1523 205 334 (301) 0.1 0 0.1 41053 3020 983
Batch201210 MINLP 5980 44 761 (405) 0 0.1 0.1 153039 692 10769
C-Lay-3-2 MINLP 3 6 13 (9) 0 0 0 282 379 187
C-Lay-3-3 MINLP 4 10 20 (10) 0 0 0 462 449 389
C-Lay-4-2 MINLP 33 30 39 (20) 0 0 0 4236 1880 945
C-Lay-4-3 MINLP 37 77 56 (24) 0.1 0.1 0 4341 2590 1490
C-Lay-5-2 MINLP 439 770 377 (45) 0.1 0.1 0.1 47882 37783 12791
C-Lay-5-3 MINLP 484 1022 378 (71) 0.1 0.1 0 55512 35967 14138
C-Lay-5-4 MINLP 1486 3547 740 (94) 0.1 0.1 0.1 162455 59502 11783
C-Lay-6-2 MINLP 7200 7200 4859 (96) 13.9 46.3 0.1 646748 236660 366218
C-Lay-6-3 MINLP 7200 7200 5843 (203) 55.8 40.7 0.1 550700 203360 111051
C-Lay-6-4 MINLP 7200 7200 6627 (184) 49 41.6 0 530100 96860 146571
C-Lay-6-5 MINLP 7200 7200 7200 (214) 30.4 72.1 15.4 557700 75560 304620
Dice0605 MILP 2340 7200 955 (766) 0 350 0 739393 596342 16043
Dice0606 MILP 2405 7200 1203 (1065) 0 414.3 0 363657 446270 13104
Dice0804 MILP 1436 7200 1480 (1083) 0 433.3 0 164227 518659 14802
Dice0805 MILP 7200 7200 3490 (2207) 50 540 0 1319930 290636 29728
Dice1203 MILP 7200 7200 4371 (2225) 12 380 0 570555 391152 81598
DiceH0605 MILP 3108 7200 284 (174) 0 300 0 1904882 2220152 39232
DiceH0606 MILP 5619 7200 2398 (231) 0 414.3 0 2124442 1621400 831391
DiceH0804 MILP 7200 7200 3879 (296) 433.3 276.5 0 5419210 1806748 843383
DiceH0805 MILP 7200 7200 3422 (423) 326.7 481.8 0 2884668 970273 487549
DiceH1203 MILP 7200 7200 7200 (639) 200 311.4 22.2 1433590 953789 551692
F-lay-3 MINLP 1 2 7 (5) 0 0 0 102 110 102
F-lay-4 MINLP 25 61 37 (12) 0.1 0.1 0.1 3059 2931 2546
F-lay-5 MINLP 1125 5141 1263 (28) 0.1 0.1 0.1 134026 143465 112606
F-lay-6 MINLP 7200 7200 7200 (54) 18.1 42.9 44 9037824 101775 442630
Process-12 MINLP 2 1 14 (13) 0 0 0 168 48 232
Process-8 MINLP 1 0 9 (8) 0 0 0 24 16 18
S-Pck12 MILP 100 3257 260 (118) 0 0 0 1026258 2630563 1239283
S-Pck13 MILP 7200 7200 7200 (222) 13.5 1.7 13.5 28179292 4600552 14313072
S-Pck14 MILP 2205 7200 3142 (206) 0 4.3 0 17864367 2918216 10168644
S-Pck15 MILP 7200 7200 7200 (245) 11.1 21.2 8.1 21255244 3329851 56619228

aTime to solve includes the processing time of the algorithm
bNumber of nodes evaluated after two hours for the instances that reached the time limit before finding the optimal solution
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7 Conclusion

In this paper, we have proposed an automated algorithm that improves the relaxation of GDP formulations compared to the

common (BM) and (HR) reformulations. We have developed a pre-solve procedure that reduces problem formulations, gen-

erates stronger bounds, and provides a value that helps in the selection of disjunctions to which apply basic steps. We have

presented an iterative procedure in which basic steps are applied over the same disjunction in order to improve the continu-

ous relaxation of the problem. In this step of the algorithm, we have also proposed some heuristics on the selection of these

disjunctions. We show that a hybrid reformulation can provide some of the advantages of both (BM) and (HR), and that the

selection of disjunctions reformulated through (BM) or (HR) is simple and clear for the proposed algorithm. Finally, we have

applied the proposed method to improve the formulation of different numerical examples of Generalized Disjunctive Programs.

These results show that the algorithm provides better formulations, in the sense that they yield strong lower bounds without

an excessive increase in problem size. Furthermore, solution times for large instances are reduced by using the algorithm.

Finally, even though the algorithm shows promising results, further research in the selection of key and secondary disjunctions,

as well as improvements in the presolve and infeasible term detection, is needed to achieve faster performance. Particularly, in

problems with a large number of disjunctive terms the pre-solve may not be a good option. For these cases different rules for

the selection of disjunctions would have to be derived.
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Appendix

Appendix 1: Example of GDP reformulation

To illustrate a linear GDP formulation and its corresponding (HR) and (BM) reformulations, consider the optimization of a

process superstructure illustrated in Figure15. In this process, either reactor 1 or reactor 2 have to be selected. For reactor 1

there are three different alternatives (R11, R12, R13). If reactor 2 (R2) is selected, then a choice needs to be made between

using separation process 1 or 2 (S1, S2). A GDP representation of this problem is shown in (17).
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Figure 15: Process flowsheet example

max z = P11F11 − P1F1 − CR − CS

s.t. F1 = F2 + F4

F5 = F6 + F7

F10 = F8 + F9

F11 = F3 + F10
YR11

F3 = βR11F2

F4,5,6,7,8,9,10 = 0

CR = γR11

 ∨


YR12

F3 = βR12F2

F4,5,6,7,8,9,10 = 0

CR = γR12

 ∨


YR13

F3 = βR13F2

F4,5,6,7,8,9,10 = 0

CR = γR13

 ∨


YR2

F5 = βR2F4

F2,3 = 0

CR = γR2




YS1

F8 = βS1F6

CS = γS1

 ∨


YS2

F9 = βS1F7

CS = γS2

 ∨
 YnotR2

CS = 0


YR11 Y YR12 Y YR13 Y YR2

YS1 Y YS2 Y YnotR2

YR2 ⇔ YS1 ∨ YS2

0 ≤ Fi ≤ Fup
i i = 1, ..., 11

0 ≤ CR,S ≤ Cup

Yk ∈ {True, False} k ∈ {R11, R12, R13, R2, S1, S2, notR2}

(17)

In (17) Fi represents the flows in the superstructure. Yk represents the selection of an equipment. CR and CS represent the

cost of the reactor and the cost of the separation unit respectively. The global constraints represent the material balances in the

nodes of the flowsheet. The first disjunction allows the selection of any of the three alternatives of reactor 1 or the selection of

reactor 2. When the alternative of reactor 1 is selected, F3 becomes a function of F2, the flows associated with R2 become 0,

and the reactor cost takes a value that corresponds to that selection. When R2 is selected, F5 becomes proportional to F4, the

flows associated with rector 1 (F2, F3) become 0, and CR takes a value that corresponds to the cost of reactor 2. The second

disjunction represents the selection of either one of the two separation processes or no separation process (when reactor 2 is

not selected). The flows after the separation process and the cost of separation unit are associated with this decision. The logic
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constraint forces that if and only if YR2 is selected then either YS1 or YS2 has to be selected. Note that this constraint implies

that if YR11 or YR12 or YR13 is selected, then YnotR2 is selected.

The (BM) and (HR) reformulations of this example are shown in (18) and (19) respectively. Note that in (18) we are

additionally relaxing some of the equality constraints as inequalities, in order to avoid additional constraints. It is easy to show

that the problem with inequality relaxations is equivalent to the original problem.

max z = P11F11 − P1F1 − CR − CS

s.t. F1 = F2 + F4

F5 = F6 + F7

F10 = F8 + F9

F11 = F3 + F10

F3 ≤ βR11F2 +M(1− yR11)

F4,5,6,7,8,9,10 ≤M(1− yR11)

CR ≥ γR11 −M(1− yR11)

F3 ≤ βR12F2 +M(1− yR12)

F4,5,6,7,8,9,10 ≤M(1− yR12)

CR ≥ γR12 −M(1− yR12)

F3 ≤ βR13F2 +M(1− yR13)

F4,5,6,7,8,9,10 ≤M(1− yR13)

CR ≥ γR13 −M(1− yR13)

F5 ≤ βR2F4 +M(1− yR2)

F2,3 ≤M(1− yR2)

CR ≥ γR2 −M(1− yR2)

F8 ≤ βS1F6 +M(1− yS1)

CS ≥ γS1 −M(1− yS1)

F9 ≤ βS2F7 +M(1− yS2)

CS ≥ γS2 −M(1− yS2)

CS ≤M(1− ynotR2)

yR11 + yR12 + yR13 + yR2 = 1

yS1 + yS2 + ynotR2 = 1

yR2 = yS1 + yS2

0 ≤ Fi ≤ Fup
i i = 1, ..., 11

0 ≤ CR,S ≤ Cup

yk ∈ {0, 1} k ∈ {R11, R12, R13, R2, S1, S2, notR2}

(18)
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max z = P11F11 − P1F1 − CR − CS

s.t. F1 = F2 + F4

F5 = F6 + F7

F10 = F8 + F9

F11 = F3 + F10

Fi = FR11
i + FR12

i + FR13
i + FR2

i i = 1, ..., 11

Fi = FS1
i + FS2

i + FnotR2
i i = 1, ..., 11

CR = CR11
R + CR12

R + CR13
R + CR2

R

CS = CS1
S + CS2

S + CnotR2
S

FR11
3 = βR11F

R11
2

FR11
4,5,6,7,8,9,10 = 0

CR11
R = γR11 ∗ yR11

FR12
3 = βR12F

R12
2

FR12
4,5,6,7,8,9,10 = 0

CR12
R = γR12 ∗ yR12

FR13
3 = βR13F

R13
2

FR13
4,5,6,7,8,9,10 = 0

CR13
R = γR13 ∗ yR13

FR2
5 = βR2F

R
4 2

FR2
2,3 = 0

CR2
R = γR2 ∗ yR2

FS1
8 = βS1F

S1
6

CS1
S = γS1 ∗ yS1

FS2
9 = βS2F

S2
7

CS2
S = γS2 ∗ yS2

CnotR2
S = 0

yR11 + yR12 + yR13 + yR2 = 1

yS1 + yS2 + ynotR2 = 1

yR2 = yS1 + yS2

0 ≤ F k
i ≤ F

up
i ∗ yk i = 1, ..., 11, k ∈ {R11, R12, R13, R2, S1, S2, notR2}

0 ≤ Ck
R,S ≤ Cup ∗ yk k ∈ {R11, R12, R13, R2, S1, S2, notR2}

yk ∈ {0, 1} k ∈ {R11, R12, R13, R2, S1, S2, notR2}

(19)

Appendix 2: Hybrid reformulation of algorithm example

min lt

s.t. lt ≥ x4 + 3
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xj = x1,1j + x1,2j + x2,1j + x2,2j j = 1, 2, 3

lt = lt1,1 + lt1,2 + lt2,1 + lt2,2

lt1,1 ≥ x1,11 + 6 ∗ ŷ1,1
lt1,1 ≥ x1,12 + 5 ∗ ŷ1,1
lt1,1 ≥ x1,13 + 4 ∗ ŷ1,1
x1,11 + 6 ∗ ŷ1,1 ≤ x1,12

x1,11 + 6 ∗ ŷ1,1 ≤ x1,13

lt1,2 ≥ x1,21 + 6 ∗ ŷ1,2
lt1,2 ≥ x1,22 + 5 ∗ ŷ1,2
lt1,2 ≥ x1,23 + 4 ∗ ŷ1,2
x1,21 + 6 ∗ ŷ1,2 ≤ x1,22

x1,23 + 4 ∗ ŷ1,2 ≤ x1,21

lt2,1 ≥ x2,11 + 6 ∗ ŷ2,1
lt2,1 ≥ x2,12 + 5 ∗ ŷ2,1
lt2,1 ≥ x2,13 + 4 ∗ ŷ2,1
x2,12 + 5 ∗ ŷ2,1 ≤ x2,11

x2,11 + 6 ∗ ŷ2,1 ≤ x2,13

lt2,2 ≥ x2,21 + 6 ∗ ŷ2,2
lt2,2 ≥ x2,22 + 5 ∗ ŷ2,2
lt2,2 ≥ x2,23 + 4 ∗ ŷ2,2
x2,22 + 5 ∗ ŷ2,2 ≤ x2,21

x2,23 + 4 ∗ ŷ2,2 ≤ x2,21 (20)

x1 − x4 + 6 ≤M ∗ (1− y31)

x4 − x1 + 3 ≤M ∗ (1− y32)

h4 − h1 + 6 ≤M ∗ (1− y33)

h1 − h4 + 3 ≤M ∗ (1− y34)

x2 − x3 + 5 ≤M ∗ (1− y41)

x3 − x2 + 4 ≤M ∗ (1− y42)

x2 − x4 + 5 ≤M ∗ (1− y51)

x4 − x2 + 3 ≤M ∗ (1− y52)

h4 − h2 + 7 ≤M ∗ (1− y53)

h2 − h4 + 3 ≤M ∗ (1− y54)

x3 − x4 + 4 ≤M ∗ (1− y61)

x4 − x3 + 3 ≤M ∗ (1− y62)

h4 − h3 + 5 ≤M ∗ (1− y63)

h3 − h4 + 3 ≤M ∗ (1− y64)

yk1 + yk2 + yk3 + yk4 = 1 k = 3, 5, 6

yk1 + yk2 = 1 k = 1, 2, 4

y11 = ŷ1,1 + ŷ1,2
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y12 = ŷ2,1 + ŷ2,2

y21 = ŷ1,1 + ŷ2,1

y22 = ŷ1,2 + ŷ2,2

0 ≤ xî1 ≤ 12ŷî î = {(1, 1), (1, 2), (2, 1), (2, 2)}

0 ≤ xî2 ≤ 13ŷî î = {(1, 1), (1, 2), (2, 1), (2, 2)}

0 ≤ xî3 ≤ 14ŷî î = {(1, 1), (1, 2), (2, 1), (2, 2)}

0 ≤ xî3 ≤ 15ŷî î = {(1, 1), (1, 2), (2, 1), (2, 2)}

0 ≤ ltî ≤ 20ŷî î = {(1, 1), (1, 2), (2, 1), (2, 2)}

0 ≤ lt ≤ 20; 0 ≤ x1 ≤ 12; 0 ≤ x2 ≤ 13; 0 ≤ x3 ≤ 14; 0 ≤ x4 ≤ 15

6 ≤ h1 ≤ 10; 7 ≤ h2 ≤ 10; 5 ≤ h3 ≤ 10; 3 ≤ h4 ≤ 10

yki ∈ {0, 1} k = 1, ..., 6, i ∈ Dk

0 ≤ ŷ1,1, ŷ1,2, ŷ2,1, ŷ2,2 ≤ 1

xj , hj ∈ R1 j = 1, 2, 3, 4

Appendix 3: Nomenclature for design of a multi-product batch plant example

Given:

α1, α2, β1, β2: Coefficients for the capital cost of the units and intermediate storage tanks.

i ∈ I: products.

j ∈ J : stages.

H: horizon time.

Qi: production rate of product i.

Tij : processing time of product i at stage j.

Sij : size factor of product i at stage j.

S∗j : size factor for intermediate storage tank.

S∗ij : size factor for stages.

Determine:

Bij : batch size product i at stage j.

Ei: inverse production rate for product i.

Mj : number of units in parallel out-of-phase at stage j.

Nj : number of units in parallel in phase at stage j.

Vj : Unit size of stage j.

VTj : size of intermediate storage tank between stage j and j + 1.

In order to convexify the problem, the following variables are introduced:

bij = ln(Bij)

ei = ln(Ei)
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mj = ln(Mj)

nj = ln(Nj)

vj = ln(Vj)

vTj = ln(VTj)
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