
Improved Big-M Reformulation for Generalized Disjunctive Programs

Francisco Trespalacios and Ignacio E. Grossmann∗

Department of Chemical Engineering
Carnegie Mellon University, Pittsburgh, PA 15213

∗ Author to whom correspondence should be addressed: grossmann@cmu.edu

Abstract

In this work, we present a new Big-M reformulation for Generalized Disjunctive Programs. The proposed MINLP refor-

mulation is stronger than the traditional Big-M, and it does not require additional variables or constraints. We present the new

Big-M, and analyze the strength in its continuous relaxation compared to that of the traditional Big-M. The new formulation

is tested by solving several instances of process networks and muli-product batch plant problems with an NLP-based branch

and bound method. The results show that, in most cases, the new reformulation requires fewer nodes and less time to find the

optimal solution.

1 Introduction

Many Process Systems Engineering (PSE) applications are modelled using MINLP. Furthermore, many developments in

MINLP and global optimization have been motivated by applications in PSE[1]. A comprehensive review of MINLP meth-

ods in process synthesis is provided by Grossmann et al.[2]. MINLP has been applied in the design of distillation columns and

distillation sequencing[3], heat exchange networks[4], and water networks[5]. Other areas such as planning and scheduling[6,

7], process control[8] and molecular design[9, 10], have also applied MINLP methods. We refer the reader to the online library

of problems www.minlp.org which contains PSE problems, as well as a recent review presents MINLP applications in PSE[11].

MILP/MINLP models can be formulated in different ways, and therefore efficiency of the algorithms to solve these problems

strongly depends on the size of the corresponding formulation and tightness of its continuous relaxation.

Generalized Disjunctive Programming (GDP) is an alternative higher-level representation of problems proposed by Raman

and Grossmann[12]. GDP involves not only algebraic equations, but also disjunctions and logic propositions. Although there

are some special techniques to solve this type of problems, such as Disjunctive Branch and Bound[13] and Logic Based Outer

Approximation[14], GDPs are normally reformulated as MILP/MINLP[15][16] to exploit the developments in these solvers. A

comprehensive review of modeling through is given by a previous work[17].

The reformulation of GDP models to MILP/MINLP problems is typically performed by using either the Big-M (BM) or the

Hull-Reformulation (HR), where the former generates a smaller MILP/MINLP, while the latter generates a tighter one[18][19].

In this work, we present an alternative reformulation to GDPs, which is an improved version of the Big-M. The multiple-

parameter Big-M (MBM) has a continuous relaxation that is as strong, and usually stronger, than the traditional (BM). This is

achieved by assigning more than one big-M term in the constraints involved in each disjunction.

This paper is organized as follows. Section 2 provides an overview of GDP and the Big-M reformulation. The section also

provides a method for obtaining the strongest (BM) reformulation of a GDP. Section 3 first presents the alternative reformulation

(MBM), and a method for obtaining the tightest possible (MBM) for a GDP. Second, it shows that this reformulation is strong,

and normally stronger, than the (BM). Finally, it provides a simple example to illustrate the (MBM) reformulation, comparing it

to the traditional (BM). The new reformulation is tested with multi-product batch plant problems, and the results are presented

in Section 4

1

2 Background: Generalized Disjunctive Programming (GDP)

Generalized Disjunctive Programming[20][12] allows the systematic modeling of optimization problems by using algebraic

equations, disjunctions and logic propositions. GDP can be considered an extension to the well-known theory of disjunctive

programming developed by Balas[21], and has been applied to a number of process systems engineering areas [7, 11, 14].

2.1 GDP formulation

The general GDP formulation can be represented as follows:

min z = f(x)

s.t. g(x) ≤ 0

∨
i∈Dk

 Yki

rki(x) ≤ 0

 k ∈ K

Y
i∈Dk

Yki k ∈ K

Ω(Y) = True

xlo ≤ x ≤ xup

x ∈ Rn

Yki ∈ {True, False} k ∈ K, i ∈ Dk

(GDP)

The objective in (GDP) is function of the continuous variables x. The global constraints g(x) must hold true regardless

of the discrete decisions. Each of the disjunctions k ∈ K contains disjunctive terms i ∈ Dk, linked together by an OR

operator (∨). For each disjunctive term in each disjunction, a Boolean variable Yki is assigned with a corresponding set of

inequalities rki(x) ≤ 0. Only one term in each disjunction must be enforced from the condition Y
i∈Dk

Yki. When enforced,

its corresponding Boolean variable takes a value of True. Therefore, when a disjunctive term is active (Yki = True), its

corresponding constraints are also enforced. When it is not active (Yki = False), the constraints are ignored. Ω(Y) = True

represents the logic relations between the Boolean variables.

2.2 Big-M reformulation of GDP

In order to take full advantage of existing solvers[22], GDP problems are normally reformulated as MILP/MINLP by using

either the Big-M[16] (BM) or Hull Reformulation[15] (HR). (BM) generates a smaller MILP/MINLP, while (HR) generates a

tighter one[18][19]. The interest of this work is a modified version of the (BM). We refer the reader to the MINLP and GDP

review work[11] for details on the (HR).

The (BM) reformulation is as follows:

2

min z = f(x)

s.t. g(x) ≤ 0

rki(x) ≤Mki(1− yki) k ∈ K, i ∈ Dk∑
i∈Dk

yki = 1 k ∈ K

Hy ≥ h

xlo ≤ x ≤ xup

x ∈ Rn

yki ∈ {0, 1} k ∈ K, i ∈ Dk

(BM)

In (BM) the Boolean variables Yki are transformed into binary variables yki with a one-to-one correspondence (i.e. Yki =

True is equivalent to yki = 1, while Yki = False is equivalent to yki = 0). The transformation of logic relations (Ω(Y) =

True) to integer linear constraints (Hy ≥ h) can be easily obtained[23][24][25]. The equation
∑

i∈Dk

yki = 1 guarantees that

only one disjunctive term is selected per disjunction. For a selected term (yki = 1) the corresponding constraints rki(x) ≤ 0

are enforced. For a term not selected (yki = 0) and a large enough Mki, the corresponding constraint rki(x) ≤ Mki becomes

redundant. Note that the smaller the M-parameters are (Mki), the tighter the (BM) reformulation is (the right hand side in

the constraints is smaller). For this reason, the ideal M-parameter of a constraint is the smallest number that makes such a

constraint redundant when required (i.e. when a disjunctive term that does not correspond to such constraint is selected). In

many problems, the M-parameter can be obtained from knowledge of the meaning of the constraints. In general, the optimal

value of the M-parameter can be calculated as described in the next section.

2.3 Finding the optimal M-parameter

Consider Eki to be the set of equations corresponding to a disjunctive term ki. In order to find the optimal M-parameter for

a constraint in a disjunctive term (rkie(x), k ∈ K, i ∈ Dk, e ∈ Eki), with respect to another term of the same disjunction

i′, i′ ∈ Dk, i
′ 6= i, it is possible to solve the following GDP:

max Mkiei
′

s.t. rkie(x) = Mkiei
′

rki′(x) ≤ 0

g(x) ≤ 0

∨
i∈Dk̂

 Yk̂i

rk̂i(x) ≤ 0

 k̂ ∈ K, k̂ 6= k

Y
i∈Dk̂

Yk̂i k̂ ∈ K, k̂ 6= k

Ω(Y) = True

xlo ≤ x ≤ xup

x ∈ Rn

Yk̂i ∈ {True, False} k̂ ∈ K, k̂ 6= k, i ∈ Dk̂

(1)

Problem (1) seeks to maximize the value of a constraint (rkie(x)), over the feasible region of the complete problem. It

considers that a disjunctive term from the same disjunction different from i (i
′ ∈ Dk, i

′ 6= i) was selected (i.e. Yki′ = True,

3

so rki′(x) ≤ 0 is enforced).

(1) has to be solved for a given constraint (rkie(x), k ∈ K, i ∈ Dk, e ∈ Eki), for all the terms in it’s corresponding

disjunction (∀i′ ∈ Dk, i
′ 6= i). Then, the optimal M-parameter is Mkie = max

i
′
∈Dk

i
′
6=i

{Mkiei
′

}.

Note that (1) has almost the same difficulty as solving the original problem, and more so in some cases. Furthermore, it

has to be solved several times for every single constraint inside a disjunction. For this reason, a more practical approach is to

find an M-parameter that is optimal for the feasible region of its corresponding disjunction (instead of the feasible region of the

complete problem). This can be achieved by solving the following NLP (LP for linear constraints):

max Mkiei
′

s.t. rkie(x) = Mkiei
′

rki′(x) ≤ 0

xlo ≤ x ≤ xup

(2)

Problem (2) will provide a Mkiei
′

that is optimal for a particular disjunction, although it is weaker than Mkiei
′

obtained

through (1). In a similar manner as with (1), the optimal Mkie for a constraint (rkie(x), k ∈ K, i ∈ Dk, e ∈ Eki) is Mkie =

max
i
′
∈Dk

i
′
6=i

{Mkiei
′

}. There are a few things to note about NLP (2):

1. If the problem is linear, then the optimal M-parameters are obtained through the solution of LPs.

2. If the original problem has convex constraints, and rkie(x) is nonlinear, then (2) is non-convex. However, there is no

need for a global optimal solution. Problem (2) will normally be a small problem with few constraints, so it is expected to

provide a good upper bound (valid M-parameter) fast.

3. It is important to include the bounds of the variables to avoid an unbounded problem. However, (2) is not restricted to

only include these constrains. It is possible to include additional constraints that correspond to the continuous relaxation of (1).

The addition of these constraints to (2) will provide better M-parameters, but the NLP will become larger. Considering that in

general the NLP is non-convex, finding a good trade-off between good M-parameter and the speed to obtain it is an important

consideration.

4. Some conclusions might be drawn from (2). At least two of them provide valuable information. First, if for a given

constraint rkie(x), Mkieii
′

≤ 0 for all i′ 6= i, then that constraint can be removed from the disjunction and be regarded as a

global constraints. Second, if (2) is infeasible, then the term ki′ is infeasible and can be removed from the original problem.

3 New Big-M reformulation

In disjunctions that contain more than two disjunctive terms, it is possible to have stronger (BM) formulations by assigning

more than one big-M term in the constraints (i.e. one big-M term for each other disjunctive term in the disjunction). This

formulation is as follows:

4

min z = f(x)

s.t. g(x) ≤ 0

rki(x) ≤
∑

i
′
∈Dk

i
′
6=i

Mkii
′

yki′ k ∈ K, i ∈ Dk

∑
i∈Dk

yki = 1 k ∈ K

Hy ≥ h

xlo ≤ x ≤ xup

x ∈ Rn

yki ∈ {0, 1} k ∈ K, i ∈ Dk

(MBM)

The idea behind (MBM) is similar to that of (BM). When a disjunctive term is selected (yki = 1, i ∈ Dk), the other

terms in the corresponding disjunction are not (yki′ = 0, ∀i′ ∈ Dk, i
′ 6= i). Therefore,

∑
i
′
∈Dk

i
′
6=i

Mkii
′

yki′ = 0, and the

corresponding constraints rki(x) ≤ 0 are enforced. If it is not selected (yki = 0, k ∈ Dk), then another term must be selected

(yki′ = 1, i
′ ∈ Dk, i

′ 6= i). If Mkii
′

is large enough, then rki(x) ≤Mkii
′

becomes redundant.

The optimal value of Mkii
′

can be directly obtained as with (BM). Mkii
′

is then the vector of M-parameters directly

obtained from (1) or (2), with the advantages of using (1) or (2) aforementioned: Mkii
′

= [...,Mkiei
′

, ...]T , where e ∈ Eki are

equations corresponding to a disjunctive term ki.

We note that the general concept of this reformulation was presented before[26]. More recently, a similar reformulation was

presented for linear problems in the context of MILP formulation techniques[27].

3.1 Tightness of continuous relaxation of (MBM)

In this section we show that (MBM) is at least as tight as (BM), and can be tighter.

Theorem 3.1 Let Mki and Mkii
′

be the optimal values of the M-parameters for (BM) and (MBM) respectively, obtained

through (2). Using such parameters in the reformulation, let (F-BM) and (F-MBM) be the feasible region of the continuous

relaxation (BM) and (MBM), respectively. Then (F-MBM) ⊆ (F-BM).

Proof. The only difference between (BM) and (MBM) are the two following constraints:

rki(x) ≤Mki(1− yki) k ∈ K, i ∈ Dk (3)

rki(x) ≤
∑

i
′
∈Dk

i
′
6=i

Mkii
′

yki′ k ∈ K, i ∈ Dk
(4)

In (3), (1− yki) can be substituted by
∑

i
′
∈Dk

i
′
6=i

yki′ , since
∑

i∈Dk

yki = 1. We then obtain for (BM) the following equation:

rki(x) ≤Mki
∑

i
′
∈Dk

i
′
6=i

yki′ k ∈ K, i ∈ Dk
(5)

or:

5

rki(x) ≤
∑

i
′
∈Dk

i
′
6=i

Mkiyki′ k ∈ K, i ∈ Dk
(6)

(6) represents the same feasible region than (3) in (BM). By definition Mki = max
i
′
∈Dk

i
′
6=i

{Mkii
′

}. Therefore, the right hand

side of (4) dominates the right hand side of (6) �.

Remark 3.2 (MBM) = (BM) when, for all k ∈ K, i ∈ Dk:

Mkii
′

= Mkij ∀j ∈ Dk, j 6= i, j 6= i, j 6= i
′

From 3.1 it is easy to se that (MBM) and (BM) are the same only when the Mkii
′

is exactly the same for all i
′

as stated in

Remark 3.2. In such a case Mki = max
i
′
∈Dk

i
′
6=i

{Mkii
′

} = Mkii
′

. Note that when a disjunction has only two disjunctive terms, there

is only one M-parameter, and (3) = (4) for that disjunction. If all disjunctions have only two terms, then (MBM) = (BM).

Note that if Mki and Mkii
′

are obtained through (1) instead of through (2), Theorem 3.1 still holds true.

3.2 Illustration of (MBM) reformulation

The improved Big-M reformulation is illustrated with the following example:

min z = −2x1 + x2

s.t.

 Y1

(x1)2 + (x2)2 ≤ 1

 ∨
 Y2

(x1 − 1)2 + (x2 − 5)2 ≤ 2

 ∨
 Y3

(x1 − 4)2 + (x2 − 3)2 ≤ 4

Y1 Y Y2 Y Y3

− 1 ≤ x1 ≤ 6

− 1 ≤ x2 ≤ 7

Y1, Y2, Y3 ∈ {True, False}

(7)

The traditional Big-M reformulation of (7), using the optimal M-parameter obtained from (2), is the following:

min z = −2x1 + x2

s.t. (x1)2 + (x2)2 ≤ 1 + 48(1− y1)

(x1 − 1)2 + (x2 − 5)2 ≤ 2 + 35.1981(1− y2)

(x1 − 4)2 + (x2 − 3)2 ≤ 4 + 32(1− y3)

y1 + y2 + y3 = 1

− 1 ≤ x1 ≤ 6

− 1 ≤ x2 ≤ 7

y1, y2, y3 ∈ {0, 1}

(8)

The (MBM) reformulation, using the optimal M-parameter obtained from (2), is the following:

6

min z = −2x1 + x2

s.t. (x1)2 + (x2)2 ≤ 1 + 41.42221y2 + 48y3

(x1 − 1)2 + (x2 − 5)2 ≤ 2 + 35.1981y1 + 29.4223y3

(x1 − 4)2 + (x2 − 3)2 ≤ 4 + 32y1 + 21.1981y2

y1 + y2 + y3 = 1

− 1 ≤ x1 ≤ 6

− 1 ≤ x2 ≤ 7

y1, y2, y3 ∈ {0, 1}

(9)

In the traditional Big-M reformulation (8), the “optimal” M-parameter of the first constraint isM1 = max{41.42221, 48} =

48. The RHS of the first constraint in (8) is 1 + 48(1− y1). Therefore, the first constraint in (9) is tighter than its corresponding

constraint in (8). This can be easily seen if (1− y1) is substituted by y2 + y3 in (9). This would yield 1 + 48y2 + 48y3 as RHS

of the first constraint of (9). Clearly, the RHS of the constraint in (9) dominates the RHS of the one in (9). The same holds true

for the other two Big-M constraints. In this example, the optimal solution of this problem is z∗ = −9.472. The relaxation of

(8) is zBM = −10.493, and the relaxation of (9) is zMBM = −9.735. It is clear that (9) provides a tighter relaxation.

4 Examples and results

The new reformulation was tested with several instances of two problems: the process network problem and the design of

multi-product batch plant problem.

4.1 Process Network (Process)

The process network problem ”Process” is a classic optimization problem in process design. The model seeks to maximize

the profit of selling a set of products taking into account the cost of raw materials and equipment. The model that describes

the performance of each unit is normally large and quite complex. In this example, however, the process is simplified to

single input-output relations that give rise to a convex GDP[28]. We refer the reader to the original source for the details of

the formulation. The presented problem is a modified version of the original one, for which each disjunction represents the

selection of alternative units[29]. The GDP problem formulation is as follows:

min Z =
∑
k∈I

ck +
∑
j∈J

pjxj + α

s.t.
∑
j∈J

rjnxj ≤ 0 ∀n ∈ N

∨
i∈Dk

Yki∑

j∈Jki

dkij(e
xj/tkij − 1)−

∑
j∈Ji

skijxj ≤ 0

ck = γki

 i ∈ I

Ω(Y) = True

ck, xj ≥ 0

Yki ∈ {True, False}

(10)

7

4.2 Design of multi-product batch plant problem formulation

This problem was presented by Ravemark[30] and a convexified version was provided by Vecchietti and Grossmann[31]. The

problem seeks to minimize the investment cost in the design of a plant with multiple units in parallel and intermediate storage

tanks . The design involves selecting the number of parallel units, volume of the equipment, and volume and location of the

intermediate storage tanks. For a detailed explanation of the problem, we refer the reader to the original sources and a recent

review[17]. The problem is as follows:

min Z = α1

∑
j

exp(nj +mj + β1vj) + α2

∑
Tj

exp(β2vTj)

s.t. vj ≥ ln(Sij) + bij − nj ∀i, j

ei ≥ ln(Tij)− bij −mj ∀i, j

H ≥
∑
i

(Qiexp(ei))

Y Sj

vTj ≥ ln(S∗j) + bij+1 ∀i

vTj ≥ ln(S∗j) + bij ∀i

bij − bij+1 ≤ ln(S∗ij) ∀i

bij − bij+1 ≥ − ln(S∗ij) ∀i

∨

¬Y Sj

vTj = 0

bij − bij+1 = 0 ∀i

 ∀j < |J |

 YMj,1

mj = ln(1)

 ∨ ... ∨
 YMj,maxp

mj = ln(maxp)

 ∀j

 Y Nj,1

nj = ln(1)

 ∨ ... ∨
 Y Nj,maxp

nj = ln(maxp)

 ∀j

Y Mj,1 Y ... Y YMj,maxp ∀j

Y Nj,1 Y ... Y Y Nj,maxp ∀j

Y Sj , Y Mj,p, Y Nj,p ∈ {True, False} ∀j, p = 1, ...,maxp

(11)

4.2.1 Optimal M-parameters in the multiproduct batch reactor problem

Problem (11) contains three sets of disjunctions. The first set has only two terms, so the optimal M-parameters are the same for

the (BM) and the (MBM). The other two sets of disjunctions have to be written as inequalities to perform the reformulation:

YMj,1

mj ≤ ln(1)

mj ≥ ln(1)

 ∨ ... ∨

YMj,maxp

mj ≤ ln(maxp)

mj ≥ ln(maxp)

 ∀j (12)

Y Nj,1

nj ≤ ln(1)

nj ≥ ln(1)

 ∨ ... ∨

Y Nj,maxp

nj ≤ ln(maxp)

nj ≥ ln(maxp)

 ∀j (13)

In disjunction (12) and (13) the optimal M-parameters of the (BM) and (MBM) are different.

For p = 1, ...,maxp; q = 1, ...,maxp; q 6= p, the optimal M-parameters of (MBM) are:

8

Table 1: Solution of multi-product batch plant instances

Instance Solutions Continuous relaxation Time (s) Nodes
(BM) (MBM) (BM) (MBM) (BM) (MBM)

Proc-1-21 17.2 1.7 10.0 8.4 4.0 906 404
Proc-1-31 12.2 5.9 7.9 6.5 1.2 639 86
Proc-1-36 12.1 5.6 7.8 14.2 1.5 1,408 112
Proc-1-48 12.1 5.5 7.4 63.7 5.7 6,102 405

BatchS101006 769,440 734,943 734,943 237 40 10,894 1,595
BatchS121208 1,241,125 1,202,365 1,202,365 657 365 23,890 10,587
BatchS141208 1,487,664 1,440,995 1,440,995 1,148 1,018 38,643 29,083
BatchS151208 1,543,472 1,499,913 1,499,913 121 1,872 3,729 47,958
BatchS181210 2,042,327 2,006,860 2,006,860 145 145 3,719 3,088
BatchS201210 2,295,349 2,255,304 2,255,304 525 502 13,774 10,158

M jpq1 = ln(q)− ln(p)

M jpq2 = − ln(q) + ln(p)

The optimal M-parameters of the (BM) are:

M jp1 = max
q=1,...,maxp

q 6=p

{ln(q)− ln(p)} = ln(maxp)− ln(p)

M jp1 = max
q=1,...,maxp

q 6=p

{− ln(q) + ln(p)} = − ln(1) + ln(p)

The (BM) of constraints (12) are:

mj ≤ ln(p) + (ln(maxp)− ln(p))(1− ymj,p) p = 1, ...,maxp

mj ≥ ln(p)− (ln(p)− ln(1))(1− ymj,p) p = 1, ...,maxp

(14)

The (MBM) of constraints (12) are:

mj ≤ ln(p) +
∑

p=1,...,maxp
p 6=q

(ln(q)− ln(p))ymj,q = 1 p = 1, ...,maxp

mj ≥ ln(p)−
∑

p=1,...,maxp
p 6=q

(− ln(q) + ln(p))ymj,q = 1 p = 1, ...,maxp

(15)

4.3 Results

The new reformulation was tested with 10 instances. 4 of these benchmark examples for the multi-product batch plant prob-

lem[32]. Two additional multi-product batch problems were generated using data of the benchmark problems. The 4 instances

for the process network problems were used as test cases in recent work[29]. The instances were solved with SBB (NLP-based

branch and bound) from GAMS 24.3.3[33], using in an Intel(R) Core(TM) i7 CPU 2.93 GHz and 4 GB of RAM. The M-

parameters for the multi-product batch problems were presented in 4.2.1. The M-parameters for the process network problems

were obtained by solving (2).

Table 1 shows the relaxation, number of nodes and time required to solve each of the instances. It is clear that for the process

problems (MBM) provides a much better continuous relaxation. The continuous relaxation of both the (BM) and (MBM) is the

same for the batch problems (although (MBM) is tighter than (BM) as can bee seen from the constraints described in Section

4.2.1). Fewer number of nodes are required for the (MBM) in 9 of the 10 instances, which generally yields reductions in the

solution times. There is only one instance in which the (BM) performs better than the (MBM).

9

5 Conclusions

In this work we presented an enhanced Big-M reformulation for GDP problems. The proposed reformulation is at least as tight

as the traditional Big-M, and it does not require any additional variables or constraints. We reviewed the method for obtaining

optimal M-parameters in the traditional Big-M, and adapted it for the new proposed reformulation. The reformulation was

tested with 10 instances, and the new Big-M formulation performed better than the traditional Big-M in 9 out of 10 instances.

References

[1] Floudas, C. A.; Gounaris, C. E. A review of recent advances in global optimization. Journal of Global Optimization

2009, 45, 3–38.

[2] Grossmann, I. E.; Caballero, J. A.; Yeomans, H. Mathematical programming approaches to the synthesis of chemical

process systems. Korean Journal of Chemical Engineering 1999, 16, 407–426.

[3] Caballero, J. A.; Grossmann, I. E. Chapter 11 of Distillation: Fundamentals and Principles; Academic Press, 2014.

[4] Furman, K. C.; Sahinidis, N. V. A critical review and annotated bibliography for heat exchanger network synthesis in the

20th century. Industrial and Engineering Chemistry Research 2002, 41, 2335–2370.

[5] Jezowski, J. Review of water network design methods with literature annotations. Industrial and Engineering Chemistry

Research 2010, 49, 4475–4516.

[6] Harjunkoski, I.; Maravelias, C. T.; Bongers, P.; Castro, P. M.; Engell, S.; Grossmann, I. E.; Hooker, J.; Méndez, C.; Sand,

G.; Wassick, J. Scope for industrial applications of production scheduling models and solution methods. Computers &

Chemical Engineering 2014, 62, 161–193.

[7] Castro, P. M.; Grossmann, I. E. Generalized disjunctive programming as a systematic modeling framework to derive

scheduling formulations. Industrial & Engineering Chemistry Research 2012, 51, 5781–5792.

[8] Bemporad, A.; Morari, M. Control of systems integrating logic, dynamics, and constraints. Automatica 1999, 35, 407–

427.

[9] Achenie, L.; Venkatasubramanian, V.; Gani, R. Computer aided molecular design: theory and practice; Elsevier, 2002;

Vol. 12.

[10] Sahinidis, N. V.; Tawarmalani, M.; Yu, M. Design of alternative refrigerants via global optimization. AIChE Journal

2003, 49, 1761–1775.

[11] Trespalacios, F.; Grossmann, I. E. Review of Mixed-Integer Nonlinear and Generalized Disjunctive Programming Meth-

ods. Chemie Ingenieur Technik 2014, 86, 991–1012.

[12] Raman, R.; Grossmann, I. E. Modeling and computational techniques for logic-based integer programming. Computers

and Chemical Engineering 1994, 18, 563–578.

[13] Lee, S.; Grossmann, I. E. Logic-based modeling and solution of nonlinear discrete/continuous optimization problems.

Annals of Operations Research 2005, 139, 267–288.

[14] Turkay, M.; Grossmann, I. E. A logic-based outer-approximation algorithm for minlp optimization of process flowsheets.

Computers and Chemical Engineering 1996, 20, 959–978.

10

[15] Lee, S.; Grossmann, I. E. New algorithms for nonlinear generalized disjunctive programming. Computers and Chemical

Engineering 2000, 24, 2125–2141.

[16] Nemhauser, G. L.; Wolsey, L. A. Integer and Combinatorial Optimization, Wiley-Interscience; Wiley, 1988.

[17] Grossmann, I. E.; Trespalacios, F. Systematic modeling of discrete-continuous optimization models through generalized

disjunctive programming. AIChE Journal 2013, 59, 3276–3295.

[18] Grossmann, I. E.; Lee, S. Generalized convex disjunctive programming: nonlinear convex hull relaxation. Computational

Optimization and Applications 2003, 26, 83–100.

[19] Vecchietti, A.; Lee, S.; Grossmann, I. E. Modeling of discrete/continuous optimization problems: characterization and

formulation of disjunctions and their relaxations. Computers and Chemical Engineering 2003, 27, 433–448.

[20] Grossmann, I. E.; Ruiz, J. P. Generalized Disjunctive Programming: A Framework for Formulation and Alternative

Algorithms for MINLP Optimization. The IMA Volumes in Mathematics and its Applications 2012, 154, 93–115.

[21] Balas, E. Disjunctive programming. Annals of Discrete Mathematics 1979, 5, 3–51.

[22] Grossmann, I. E. Review of nonlinear mixed-integer and disjunctive programming techniques. Optimization and Engi-

neering 2002, 3, 227–252.

[23] Clocksin, W. F.; Mellish, C. S. Programming in Prolog; Springer, 1981.

[24] Williams, H. P. Model Building in Mathematical Programming; Wiley, 1985.

[25] Biegler, L. T.; Grossmann, I. E.; Westerberg, A. W. Systematic methods of chemical process design; Prentice-Hall inter-

national series in the physical and chemical engineering sciences; Prentice Hall PTR, 1997.

[26] Trespalacios, F. PhD Thesis Proposal: Algorithmic approach for improved mixed-integer reformulations of Generalized

Disjunctive Programs. Ph.D. Thesis, Carnegie Mellon University, 2013.

[27] Vielma, J. P. Mixed integer linear programming formulation techniques.

[28] Ruiz, J. P.; Grossmann, I. E. A hierarchy of relaxations for nonlinear convex generalized disjunctive programming.

European Journal of Operational Research 2012, 218, 38–47.

[29] Trespalacios, F.; Grossmann, I. E. Cutting plane algorithm for convex Generalized Disjunctive Programs. Informs JOC.

Submitted for publication.

[30] Ravemark, E. Optimization models for design and operation of chemical batch processes. Ph.D. Thesis, ETH Zurich,

1995.

[31] Vecchietti, A.; Grossmann, I. E. LOGMIP: a disjunctive 0-1 non-linear optimizer for process system models. Computers

and Chemical Engineering 1994, 23, 555–565.

[32] CMU; IBM CMU-IBM Open Source MINLP Project. http://egon.cheme.cmu.edu/ibm/page.htm.

[33] Brooke, A.; Kendrick, D.; Meeraus, A.; Raman GAMS, a Users Guide. The Scientific Press 1998.

11

