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Abstract 11 

This work provides the cost-optimal design of a large-scale reverse electrodialysis (RED) 12 

system deployed in a medium-capacity desalination plant (Canary Islands, Spain) using 13 

mathematical programming. The optimization model defines the hydraulic topology and 14 

working conditions of the RED units that maximize the net present value (NPV) of the 15 

RED process. We examine how past and future trends in electricity and carbon prices, 16 

membranes price, desalination plant capacity, and the use of high-conductive membranes 17 

may affect the competitiveness and performance of the NPV-optimal design. We also 18 

compare the conventional series-parallel configuration, and the optimal solution for the 19 

GDP model with recycling and added reuse alternatives of the RED units’ exhausted 20 

streams to size the benefits of optimization over conventional heuristics. In the context of 21 

soaring electricity prices and strong green financing support, and the use of high-22 

performing, affordable membranes (~10 €/m2), RED could save 8% of desalination plant 23 

energy demand from the grid earning profits of up to 5 million euros and LCOE of 66–24 

126 €/MWh comparable to other renewable and conventional power technologies. In such 25 

conditions, the GDP model returns profitable designs for the entire range of medium-26 

capacity desalination plants. 27 
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1 Introduction 30 

The energy released by mixing two water streams of different salinities, so-called salinity 31 

gradient energy (SGE), is a vast yet largely untapped renewable power source [1,2] to 32 

complement and diversify our current carbon and water-intensive energy mix [3–5], and 33 

sustain our energy-intensive water sector [6]. SGE technologies offer an integrated 34 

approach to the United Nations’ Sustainable Development Goal (SDG) 7 on affordable, 35 

reliable, sustainable energy access, and SDG 6 on clean water and sanitation. 36 

Desalination and wastewater reuse are projected to increase in the coming decades [7,8] 37 

to reduce withdrawals from conventional surface and groundwater resources while 38 

meeting stringent water quality standards. However, as large energy users of conventional 39 

power sources [9,10], they are also large greenhouse gas (GHG) emitters that question 40 

their sustainability [11–13]. Seawater reverse osmosis (SWRO), the technology of choice 41 

in the global desalination market [14,15], is getting closer to the practical minimum 42 

energy to desalinate seawater hitting a record, low specific energy consumption (SEC) of 43 

~2 kWh/m3 of desalted water [9]. Despite the marked decline in SEC, the carbon footprint 44 

of large-scale desalination plants remains an issue [16,17]. Hence, coupling desalination 45 

with renewable energy sources will be vital for the sustainable production of desalinated 46 

water [13,18,19]. SGE technologies can provide clean, base-load electricity to 47 

desalination and wastewater treatment plants, supporting their decarbonization and 48 

circularity [6]. 49 

Within the SGE technologies, reverse electrodialysis (RED) has made great progress in 50 

the past two decades, and is now closer to commercialization with some pilot trials and 51 

field demonstrations [20–26]. In principle, a RED system takes in low- and high-salinity 52 

waters (LC and HC) on either side of alternate pairs of cation-exchange (CEM) and anion-53 

exchange (AEM) membranes that let through counter-ions, but not co-ions and water 54 
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[27]. The salinity difference over each ion-exchange membrane (IEM) creates an 55 

electrochemical potential that drives the diffusion of cations through CEMs towards the 56 

cathode, and anions through AEMs towards the anode from the saltier stream to the less-57 

salty side; redox reactions at the outer electrodes convert this ionic flow into an electron 58 

flux. The electric potential of the membrane pile and the resulting electric current can 59 

then be used to power the external load. 60 

The low power density of large-scale RED (0.38–2.7 W/m2 total membrane area), fouling, 61 

and high cost of commercial membranes are the main setbacks for RED technological 62 

readiness [1,28,29]. Niche markets beyond utility-scale electricity open new avenues to 63 

prove and advance RED market readiness. For instance, seawater desalination brine and 64 

wastewater are discarded streams that can be exploited to produce and save energy while 65 

minimizing the environmental impact of brine disposal [30]. Besides, desalination’s 66 

seawater influent is already pre-treated to remove foulants [31], so the rejected brine 67 

would likely be less prone to cause fouling than raw seawater, which would require 68 

further energy-intensive purification. 69 

While several studies have investigated the design of the RED process to improve the 70 

power density and/or the energy conversion efficiency (i.e., the fraction of SGE converted 71 

into useful work) of RED units in series or simple layouts, few have considered more 72 

complex topologies—which may yield optimal designs—and cost metrics (e.g., net 73 

present value, levelized cost of electricity), which are key drivers for widespread RED 74 

adoption [32–35]. Efficiency and power density are mutually exclusive performance 75 

metrics as maximizing both requires differing operating conditions [36]. Multi-staging of 76 

the RED stacks and electrode segmentation can provide efficient designs with higher 77 

power densities than once-through RED operation with unsegmented electrodes [37]. 78 

Multi-staging adds to the design and operation space more degrees of freedom, such as 79 
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individual electrical control of the stages [38–40] like electrode segmentation [41–44], 80 

asymmetric staging (i.e., different spacer thickness, number of cell pairs, membrane 81 

properties, path length and type of mixing promotors in each stage) [37,45,46], and 82 

different configurations [40,44,47,48]. However, these studies do not consider the cost, 83 

which is a key enabler of RED technology adoption. 84 

An alternative to making decisions about RED process design is to use optimization-85 

based methods that rigorously search for the optimal configuration in a given design space 86 

[49]. Notably, Generalized Disjunctive Programming (GDP) [26] is a higher-level 87 

modeling framework that makes the formulation process more intuitive and systematic 88 

while preserving the underlying logic structure of the problem in the model [50]. Tristán 89 

et al. [51] developed a GDP optimization model that incorporates a detailed model of the 90 

RED stack [52,53] to define the hydraulic topology and the working conditions of a set 91 

of RED units that maximize the net present value (NPV) of the RED process. Their work 92 

illustrates the functionality and benefits of mathematical programming and GDP 93 

modeling on the conceptual design and optimization of the RED process over 94 

conventional heuristics. 95 

This follow-up study applies the GDP optimization model [51] to define the cost-optimal 96 

design of a large-scale RED system in a medium-capacity SWRO desalination plant, a 97 

propitious market to prove and advance RED-based electricity. The assessment explores 98 

how electricity and emissions allowances prices over time, membranes price, SWRO 99 

desalination plant capacity, and membranes resistance, may affect the cost-optimal 100 

design, economic feasibility, and competitiveness of the RED process. To evaluate the 101 

benefits of the GDP model over heuristics, we also compare the conventional series-102 

parallel configuration with the optimal solution to the GDP problem, which includes 103 

recycling and reuse alternatives of the exhausted streams of the RED units. This case 104 
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study serves to gauge the emissions and energy savings from the water- and carbon -105 

intensive grid mix the RED system can offer to desalination in the most cost-conscious 106 

way, the way forward to make RED-based electricity a full-scale reality. 107 

2 Methods 108 

Optimization-based strategies involve three major steps: (i) postulating a superstructure 109 

that embeds the relevant flowsheet alternatives from which the optimum solution is 110 

selected, (ii) its formulation as a tractable mathematical programming model; and (iii) 111 

solving the model with an optimization algorithm to determine the optimal configuration 112 

[49,54]. Since the GDP model for the optimal design of the RED process is thoroughly 113 

described in [51], we will brief the reader on the main equations and assumptions. 114 

2.1 Problem statement and superstructure definition 115 

The problem addressed is to define the hydraulic topology, that is, the number and 116 

hydraulic arrangement of the RED units and their working conditions (e.g., electric 117 

current, inlet flow velocities, and molar concentrations) that yield the cost-optimal 118 

flowsheet design of the RED process for a given concentration, volume, and temperature 119 

of the high-salinity and low-salinity feed streams, and a fixed design of the RED stacks. 120 

The superstructure in Fig. 1Fig. 1 displays the feasible design alternatives for the stated 121 

problem, i.e., RED-based electricity production from the embedded energy of the HC and 122 

LC feed waste streams, with Nr conditional RED units. The reader is referred to [51] for 123 

details on the superstructure definition and notation. 124 
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 125 
Fig. 1. Superstructure for the RED process. High (HC) and low-salinity (LC) feed (𝒇𝒔 ∈126 
𝑭𝑺𝑼) and discharge (𝒅𝒎 ∈ 𝑫𝑴𝑼) units. The set of source (𝒓𝒔 ∈ 𝑹𝑺𝑼) and sink (𝒓𝒎 ∈127 
𝑹𝑴𝑼) units and the set of candidate RED units (𝒓 ∈ 𝑹𝑼) are children of the parent RED 128 
Process unit (RPU).  129 
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2.2 Optimization model 130 

The set of equations (1) describes the general form of the non-convex Generalized 131 

Disjunctive Programming (GDP) optimization model for the superstructure in Fig. 1Fig. 132 

1. GDP models involve continuous and Boolean variables with constraints in the form of 133 

algebraic expressions, conditional constraints within disjunctions, and logical 134 

propositions. The Nr two-term disjunctions represent the discrete activation and 135 

deactivation of the Nr candidate RED units. 136 

max𝑁𝑃𝑉 = 𝑓(𝑥)
𝑠. 𝑡. 𝑔(𝑥) ≤ 0

>
𝑌!

ℎ!(𝑥) ≤ 0A ⊻ C
¬𝑌!

𝐵!𝑥 = 0F	 ∀	𝑟 ∈ 𝑅𝑈

𝛺(𝑌!) = 𝑇𝑟𝑢𝑒
𝑥 ∈ 𝑋 ⊆ 𝑅"
𝑌! = {𝑇𝑟𝑢𝑒, 	𝐹𝑎𝑙𝑠𝑒}	 ∀	𝑟 ∈ 𝑅𝑈

	 (1)	137 

In problem (1), the objective is to maximize the Net Present Value (NPV) of the RED 138 

process subject to inequality constraints from process specifications and equality 139 

constraints from material, energy balances, and thermodynamic relationships. The 140 

continuous variables 𝑥 are the molar concentrations and volumetric flows of the streams, 141 

and the internal variables of the active RED units. Decisions are made on the electric 142 

current and the concentration and flowrate of the RED stack’s inlet streams. The global 143 

constraints, 𝑔(𝑥) ≤ 0, outside the disjunctions are equalities and inequalities describing 144 

specifications and physical relationships that apply for all feasible configurations in the 145 

superstructure, e.g., mass balances of the feed, source, sink, and discharge units, and the 146 

upper and lower bounds on concentration and flowrate. In each term of the disjunctions, 147 

the Boolean variables 𝑌! govern the existence or absence of the RED unit; if a unit exists 148 

or is selected (𝑌! = 𝑇𝑟𝑢𝑒), the associated active constraints ℎ!(𝑥) ≤ 0 impose the 149 

relevant mass and energy balances or other physicochemical phenomena that apply in the 150 
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RED unit, add the incurred capital and operating cost to the objective function, and set 151 

lower and upper bounds on its internal variables and the concentration and flowrate of its 152 

inlet and outlet streams; otherwise, the negation (¬𝑌!) ignores the RED unit equations in 153 

the inactive disjunctive term, and 𝐵! 	𝑥 = 0 constraints set to zero a subset of the 154 

continuous variables and cost terms in the objective function. Other types of logical 155 

relationships for selecting the candidate RED units (𝛺(𝑌!) = 𝑇𝑟𝑢𝑒) are specified using 156 

logic propositions. 157 

To formulate the GDP problem, we assume: 158 

(a) The feed streams are pure sodium chloride (NaCl) solutions, thus neglecting the non-159 

idealities of aqueous solution (i.e., unity activity coefficients) and the existence of 160 

other species that would undermine the RED performance. 161 

(b) The internal losses depend only on the ionic resistance of solutions and membranes. 162 

(c) Constant membranes permselectivity and ionic resistance apply, regardless of the 163 

solutions concentration and temperature. 164 

(d) There is no water transport across the membranes against the concentration gradient 165 

due to osmosis, which implies a constant streamwise volumetric flowrate in RED’s 166 

channel. 167 

(e) Salt diffusivities in the membrane phase are independent of solutions concentration 168 

and temperature. 169 

(f) No fluid leakage or ionic shortcut currents in the RED stack’s manifolds. 170 

(g) Co-current flow of the high- and low-concentration streams. 171 

(h) The RED system operates under isothermal and isobaric conditions. 172 

The solution to the GDP model maximizes the NPV of the RED process (2), which 173 

considers operating (OPEX in €/year), and capital costs (CAPEX in €) annualized over 174 
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the expected lifetime of the plant 𝐿𝑇 in years, using the capital recovery factor, 𝐶𝑅𝐹, 175 

given in (4) with a discount rate 𝐷𝑅. The OPEX and annualized CAPEX define the total 176 

annual cost (3), 𝑇𝐴𝐶, of the RED system. The NPV accounts for electricity sales and 177 

carbon pricing revenues. The RED plant electricity is sold to the grid at Spanish average 178 

price of electricity for non-house consumers, 𝑒𝑝 [55], and the abated GHG emissions 179 

from the grid mix (Spanish emission factor, 𝑒𝑓) are subsidized at the average price, 𝑐𝑝, 180 

in the European Union Emission Trading System (EU ETS) [56–60]. 181 

𝑁𝑃𝑉 =
(𝑒𝑝 + 𝑐𝑝	𝑒𝑓)	𝑇𝑁𝑃	8760	𝐿𝐹 − 𝑇𝐴𝐶

𝐶𝑅𝐹
(2)	182 

𝑇𝐴𝐶 = 𝐶𝑅𝐹	𝐶𝐴𝑃𝐸𝑋 + 𝑂𝑃𝐸𝑋 (3)	183 

𝐶𝑅𝐹 =
𝐷𝑅

1 − (1 + 𝐷𝑅)#$%
(4)	184 

𝑇𝑁𝑃 = i 𝑁𝑃!
!∈'(

(5)	185 

We use a semi-rigorous version of Tristán et al. [51,52] RED stack model, to balance 186 

model fidelity and tractability. When the RED unit is active (𝑌! = True), the discretized 187 

model predicts the net power output, NPr, that is added to the net power capacity of the 188 

RED system, i.e., total net power, TNP in kW (5). When the RED unit is absent (¬𝑌!) the 189 

net power output is set to zero. 190 

We consider plant downtime due to membrane cleaning and system maintenance by 191 

applying a load factor, 𝐿𝐹, to the annual energy yield (kWh/year) of the RED plant 192 

working at full capacity. 193 

To estimate the capital investment, we determine the cost of RED stacks, ∑ 𝐶𝐶)*+,-,!!∈'( , 194 

pumps, 𝐶𝐶/01/, and civil and electrical infrastructure costs, 𝐶𝐶,2324. 195 
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𝐶𝐴𝑃𝐸𝑋 = i 𝐶𝐶)*+,-,!
!∈'(

+ 𝐶𝐶/01/ + 𝐶𝐶,2324 (6)	196 

The annual operating cost comprises the electricity cost from pumps, ∑ 𝑂𝐶/01/,!!∈'( , 197 

the replacement cost of membranes, ∑ 𝑂𝐶567)!8/,!!∈'( , and maintenance and labor costs. 198 

𝑂𝑃𝐸𝑋 = i 𝑂𝐶/01/,!
!∈'(

+ i 𝑂𝐶567)!8/,!
!∈'(

+ 0.02	𝐶𝐴𝑃𝐸𝑋 (7)	199 

When the RED unit is active, 𝐶𝐶)*+,-,! is added to CAPEX, and 𝑂𝐶/01/,! and 𝑂𝐶567)!8/ 200 

to OPEX; otherwise, these terms take zero values. 201 

The remainder financial parameters are those reported in Table 1. 202 

Table 1. Financial parameters for the RED plant. 203 

Parameter Value 
Plant lifetime, LT (years) 30 
Membranes’ lifetime, LTm (years) 10 
Load Factor, LF 90% 
Discount rate, DR 5% 
Spanish emission factor, 𝑒𝑓 (kg CO2-eq/kWh) 0.374 

 204 

2.3 Solution strategy 205 

We code the GDP model using the Python-based, algebraic modeling language Pyomo 206 

[61] and Pyomo.GDP, a Pyomo library extension for logic-based modeling and 207 

optimization [62]. To solve the GDP problem, we apply the Global Logic-based Outer 208 

Approximation (GLOA) algorithm [63,64] implemented in the logic-based solver 209 

GDPopt version 20.2.28 built on Pyomo.GDP. The GLOA algorithm decomposes the 210 

solution to the GDP into a sequence of mixed-integer linear programming (MILP) master 211 

problems and reduced nonlinear programming (NLP) subproblems. 212 

We solve the MILP master problems with CPLEX and the NLP subproblems with the 213 

multistart heuristic algorithm MSNLP using IPOPTH as a local NLP solver on a machine 214 
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running Windows 10 (x64) with 6 cores processor (Intel® Core™ i7-8700 CPU @3.2 215 

GHz) and 16 GB of RAM. We access the MINLP and NLP solvers from GAMS 34.1.0 216 

through the Pyomo-GAMS interface. The stopping criteria depend upon the MSNLP 217 

solver’s maximum number of iterations (i.e., 500 NLP solver calls) to guarantee a near-218 

optimal solution. 219 

2.4 Techno-economic performance metrics 220 

To assess the technical performance of the optimal RED process designs, we determine 221 

its net power density, i.e., the net power produced per membrane area, and its net energy 222 

efficiency, or the fraction of exergy or theoretical maximum energy attainable in form of 223 

SG, converted to useful work. We consider the Levelized Cost of Energy (LCOE) to 224 

assess the cost-competitiveness of the RED optimal designs. 225 

Net and thermodynamic energy efficiency 226 

The exergy or Gibbs free energy of mixing is the theoretical maximum energy that is 227 

available for useful work from a system reaching equilibrium. The difference in the Gibbs 228 

free energy between the final mixture and the initial high and low-salinity solutions yields 229 

the change in free energy of mixing of the inlet 𝛥𝐺129,2" and outlet 𝛥𝐺129,:0* (8) streams 230 

of the RED process unit, i.e. streams (𝑓𝑠𝑜, 𝑟𝑠𝑢) and (𝑟𝑚𝑢, 𝑑𝑚𝑖) [41,65]. 231 

𝛥𝐺129,2 = 2	𝑅	𝑇	 i 𝑄2,):4 	𝐶2,):4
):4∈{<=,$=}

𝑙𝑛
𝐶2,):4
𝐶7,2

∀	𝑖 ∈ 𝑖𝑛 ∪ 𝑜𝑢𝑡 = (𝑓𝑠𝑜, 𝑟𝑠𝑢) ∪ (𝑟𝑚𝑢, 𝑑𝑚𝑖)
(8) 232 

𝐶7,2 =
∑ 𝑄2,):4):4∈{<=,$=} 	𝐶2,):4
∑ 𝑄2,):4):4∈{<=,$=}

∀	𝑖 ∈ 𝑖𝑛 ∪ 𝑜𝑢𝑡 = (𝑓𝑠𝑜, 𝑟𝑠𝑢) ∪ (𝑟𝑚𝑢, 𝑑𝑚𝑖)
(9)	233 

where 𝑅 is the gas constant (8.314 J/mol/K), 𝑇 is the absolute temperature (K), 2 denotes 234 

the number of ions each NaCl molecule dissociates into, 𝑄 is the volumetric flowrate 235 
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(m3/s) and 𝐶 the concentration (mol/m3) of the initial high and low-salinity solutions 236 

entering and leaving the RED process. Equation (9) yields the concentration of the mixed 237 

solution in thermodynamic equilibrium (𝐶7 in mol/m3) of the RED process inflow and 238 

outflow streams. 239 

The net energy efficiency, 𝜂"8*, measures the input fraction of free energy that RED 240 

converts into electricity (10). The exergy change between RED process inlet and outlet 241 

streams is the exergy recovered for conversion, i.e., the retrieved exergy for useful work 242 

(𝛥𝐺129,!8*!2838?), that is used to compute the thermodynamic efficiency, 𝜂*@,  of the RED 243 

process. 244 

𝜂"8* =
𝑇𝑁𝑃

𝛥𝐺129,2"
	 (10) 245 

𝜂*@ =
𝑇𝑁𝑃

𝛥𝐺129,2" − 𝛥𝐺129,:0*
=

𝑇𝑁𝑃
𝛥𝐺129,!8*!2838?

	 (11)	246 

Levelized Cost of Energy (LCOE) 247 

The LCOE (€/kWh) estimates the average cost per unit of energy generated across the 248 

lifetime of a power plant that would break even the RED project costs. The LCOE gives 249 

a first-order assessment of the RED project viability. Assuming the energy provided 250 

annually is constant during the lifetime of the project, the LCOE reduces to (12).  251 

𝐿𝐶𝑂𝐸	 =
𝐶𝑅𝐹	𝐶𝐴𝑃𝐸𝑋 + 𝑂𝑃𝐸𝑋

𝑇𝑁𝑃	8760	𝐿𝐹 − 𝑐𝑝	𝑒𝑓 (12) 252 

2.5 Specifications for the RED optimal design deployed in a medium-size 253 

desalination plant 254 

The large-scale RED system recovers energy from the concentrate effluent of 255 

Maspalomas II SWRO desalination plant in Gran Canaria (Canary Islands, Spain) [66–256 

68]. Maspalomas II plant produces 26,184 m3/day of desalted water and rejects 17,602 257 
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m3/day of high-salinity brine (1.67 M NaCl, 20 °C) with a SEC of 3.77 kWh/m3. The low-258 

salinity feedwater (20mM NaCl) may be obtained from nearby wastewater treatment 259 

plants (e.g., el Tablero, las Burras) [69]. Hence, we assume the same LC and HC feed 260 

volume available for SGE conversion. 261 

The case study explores how (i) electricity and carbon prices, (ii) membrane price, (iii) 262 

desalination plant capacity, and (iv) membrane resistance, may affect the cost-263 

competitiveness, power density, and energy efficiency of the NPV-optimal RED design. 264 

All the assessments refer to a commercial RED unit (Table 2) in 2022 unless otherwise 265 

stated. 266 

Table 2. Parameters of the commercial RED stack (Fumatech GmbH®, Germany). 267 

Parameter Value 
Number of cell pairs 1000 
Channel size 1.824 m × 1.532 ma 
Spacers 
Thickness (µm) 270b 
Porosity 82.5% 
Membranes properties: fumasep® CEM (FKS-50) / AEM (FAS-50) 
Areal resistance (Ω·cm2) 1.8 / 0.6c (-20%)d 

Permselectivity (-) 0.93 
Thickness dry (µm) 50 
Active area (m2) 0.7a 

a Four times the size of fumatech® ED-1750 pilot-scale module. b Equal to inter-268 
membrane distance i.e. HC or the LC channels height. c Measured in 0.5 M NaCl at 25 269 
°C. d Reduction assuming future advances in membranes design. 270 

 271 

To assess the influence of electricity price and carbon pricing over time, we gather 272 

Spanish average electricity price [55] and EU ETS average emission allowances price 273 

[70] for the period 2017–2022. We regress EU-27 data from 2007 onwards [55] to 274 

estimate 2030 electricity prices; the carbon price in 2030 is a central estimate benchmark 275 

from OECD [71]. We assess the sensitivity to membrane costs by setting (i) the current 276 

price of membranes (i.e., average CEM and AEM cost from Fumatech®, 87.5 €/m2); and 277 
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(ii) the lowest price reported in the literature (~10 €/m2) [72]. We assume 20% drop in 278 

membranes resistance to reflect future advancements in membranes design. We reduce 279 

the flowrate of both HC and LC feedwaters to estimate the minimum SWRO desalination 280 

plant capacity that would allow the NPV-optimal RED process earn profits. 281 

To evaluate the benefits of the GDP optimization model in RED process design over 282 

heuristic approaches, we compare two hydraulic arrangements each with the same 283 

number of candidate RED units (i.e., Nr = 35):	284 

(i) Fixed series-parallel layout, from our previous assessment [52], where the RED 285 

system treats desalination concentrate into several identical parallel arrays of units in 286 

series, so neither recycling nor alternative reuse of the outlet streams is allowed. The 287 

objective is to maximize the total net power of the parallel branch, as it was set in our 288 

former study [52]. 289 

(ii) GDP layout, leaving the connection between the superstructure units free as a discrete 290 

decision. In this case, the objective is to maximize the NPV. 291 

In the Series layout, we estimate the working conditions that maximize the net power of 292 

a stand-alone RED stack to fix the flowrate of the inlet streams to each parallel branch. 293 

We assume that the high and low salinity feedwaters are evenly split among the parallel 294 

branches, each with the same optimal configuration, so the net power output and costs of 295 

the RED system scale accordingly. 296 

3 Results and discussion 297 

For all the scenarios and the given parameters, each solution provides the NPV-optimal 298 

topology and decision variables that balance electricity production and capital and 299 

operating outlays increase. Discrete decisions include the working RED units and the 300 
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active water streams. Continuous decisions are the flowrate and concentration of the inlet 301 

streams and the electric current of each active RED stack. 302 

It is worth noting that simplifications and assumptions of the RED stack model result in 303 

an overestimation of the net power output and, as such, an underestimation of the LCOE 304 

and an overestimation of the NPV. 305 

3.1 Electricity and carbon price assessment 306 

As expected, the upward trend of electricity and emissions allowances prices over time 307 

(Fig. 2) favors RED process techno-economic performance (Fig. 3), which in turn relieves 308 

the grid mix supply of Maspalomas II desalination plant (RED-based electricity could 309 

meet about ~7–8% of the SEC). 310 

Russia’s invasion of Ukraine in early 2022 brought severe disruptions in the EU energy 311 

market. The unprecedent surge in European fossil gas prices is echoed in the unparallel 312 

electricity price spike in 2022 (Fig. 2), soaring prices that incentives the promotion of 313 

emerging renewable technologies such as RED. Besides, the cap-and-trade EU ETS limits 314 

the volume of allowances in the market over time (Fig. 2) to comply with emissions 315 

reduction targets, the scarcity of emission allowances (among other factors) increases 316 

their price used in financing RED (Fig. 4). 317 

For the assessed period (Fig. 4), electricity sales are the main revenue source, with lower 318 

yet growing revenue shares from auctioning allowances in the EU ETS (e.g., from 1% of 319 

all revenues in 2017 to ~11% in 2022 and ~17% in 2030). As a result, RED benefits grow 320 

by about 52% in five years, a 25% increase in NPV. Despite the slight decline of 321 

electricity price in 2030, the RED process may raise 724,155 euros each year during their 322 

lifetime yielding a NPV of about 4.4 million euros. 323 
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When electricity is priced high, the revenue gained outstrips the increase in costs from a 324 

larger number of RED units (Fig. 4). The optimal solution therefore activates more RED 325 

units to raise the nominal generation capacity of the RED system (10 units in five years 326 

delivering 23% more TNP), but at a cost. Each unit added to the RED system reduces the 327 

overall net power density from 2.1 W/m2 in 2017 to 1.8 W/m2 in 2022 (Fig. 3). On the 328 

flip side, the RED system retrieves more exergy for conversion (15% more exergy than 329 

in 2017) from which a greater share (39% in 2017 and 42% in 2022) is converted into net 330 

electricity, enhancing the overall energy efficiency and net power output of the RED 331 

system (Fig. 3). 332 

The overall net power density loss is related to the lower inlet flowrate of the RED units. 333 

This is because the same HC and LC feed volumes (kept constant throughout the years) 334 

are sourced to a larger number of RED units. Such lower inlet flowrate causes the RED 335 

units to depart from the net-power optimal working conditions, thereby reducing its 336 

power rate. 337 

These findings indicate that in a context of high electricity prices and strong green 338 

financial support, RED technology does not require to reach the ambitious ~2.0 W/m2 to 339 

be competitive as previous studies suggested. This is a reassuring result for RED 340 

transition from lab-scale to commercialization. 341 



18 
 

 342 
Fig. 2. Revenues per MWh from electricity and emission allowances over the period 343 
2017–2022 with projections to 2030 344 

 345 
Fig. 3. Net present value, net power density (markers text), and thermodynamic energy 346 
efficiency (markers color) of the NPV-optimal RED process design over the past five 347 
years from 2022 and forecast to 2030. 348 
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  349 
Fig. 4. NPV-optimal RED process over the period 2017–2022 with projections to 2030: 350 
cost and revenues breakdown in present value and number of active RED units, # RU. 351 

3.2 Membrane price assessment 352 

The membrane price that breaks even the NPV-optimal RED design falls somewhere 353 

between 23 €/m2 and 24 €/m2 (Fig. 5Fig. 5), just under twice to six times the price of 354 

previous estimates of similar feeds concentrations (see Table 3Table 4). Membranes 355 

priced above 23 €/m2 yield larger economic losses when more than one RED unit is 356 

active, that is, the capital and operational expenses overshadow incomes from electricity 357 

sales and green financing incentives to a greater extent with an increasing number of 358 

working RED units (Fig. 6Fig. 6); therefore, the optimal RED process design keeps one 359 

RED unit active under near-optimal working conditions (i.e., maximum net generation), 360 

which results in a higher power density of 2.4 W/m2 but reduced net (21%) and 361 

thermodynamic (36%) efficiencies (Fig. 7Fig. 7). As a result, the net power output and 362 

the derived electricity and emissions revenues from a single RED unit remain unchanged, 363 

whereas the investment and operational costs (i.e., membranes’ replacement cost) 364 

increase linearly with membrane price (Fig. 6Fig. 6). The balance between the constant 365 

revenues and higher total costs of a single but costlier RED stack is reflected in the linear 366 

decline of NPV with membrane price (Fig. 5Fig. 5). 367 
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The NPV trend shifts for membranes rated below 23 €/m2, following a steep increase with 368 

lower membrane prices (Fig. 5Fig. 5). As membrane price falls the GDP model activates 369 

more RED units since the revenues earned outweigh the increase in capital and operating 370 

cost. The overall net power density decreases due to the larger number of RED units fed 371 

with the same feed flowrate, which recover a larger fraction of the input exergy for 372 

conversion increasing the net efficiency (Fig. 7Fig. 7). The thermodynamic efficiency 373 

also increases because the active RED units operate at lower inlet flowrates, reducing the 374 

overall pump power consumption. 375 

With the abatement of membrane costs, designers can focus on achieving higher energy 376 

recovery rates from SG, leading to the development of more efficient and economically 377 

viable designs that increase the RED-based share of the SWRO desalination plant supply 378 

from 0.3% from a single costlier RED unit to 8% from 33 cheaper RED units. The scale-379 

up of the RED process capacity to the MW order would likely make the project profitable 380 

in the short run if cheaper manufacturing membrane processes lower its cost to ~20 €/m2. 381 

 382 
Fig. 5. Membrane price influence on the NPV-optimal RED process design: net present 383 
value and number of active RED units. The inset magnifies the NPV in the membrane 384 
price range within the boxed part of the graph. 385 
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  386 

Fig. 6. Membrane price influence on the NPV-optimal RED process design: cost and 387 
revenues breakdown in present values. 388 

 389 

Fig. 7. Membrane price influence on the NPV-optimal RED process design: net power 390 
density, net and thermodynamic energy efficiencies. 391 

3.3 SWRO desalination plant capacity assessment 392 

The available feeds flowrate restricts the exergy input which in turn bounds the useful 393 

work of the RED process. The exergy input scales linearly with the desalination plant 394 

capacity (Fig. 8Fig. 8), and so does the TNP of the RED plant (Fig. 8Fig. 8 and markers 395 

size in Fig. 9Fig. 9). As such, to maximize the NPV with scarce feed volumes, the GDP 396 

optimization model deactivates RED units (keeping a single RED unit in the low-end 397 

capacity range of medium-sized SWRO desalination plants, i.e., 500 m3/day). By 398 

reducing the number of RED units, the NPV-optimal RED process attempts to emulate 399 
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the overall working conditions with larger feed volumes. With larger HC and LC feed 400 

volumes (4400–17,600 m3/day) the NPV-optimal solution retrieves ~76% and converts 401 

~31% of the input exergy into electricity (TNP) (Fig. 8Fig. 8). The net power density and 402 

thermodynamic efficiency remain roughly constant to ~1.8 W/m2 and ~42% up to a tenth 403 

of Maspalomas II capacity. owing to the lower number of RED units (3 units) operating 404 

with larger, net-power optimal flowrates that increase the net power density to 1.9 W/m2 405 

with a slight decline in thermodynamic efficiency (41%). 406 

Desalination plants rejecting ~334 m3/day (i.e., 500 m3/day nominal capacity), would 407 

allow to install a single RED unit, that must run with a lower sub-optimal flowrate due to 408 

the scarce HC and LC feed flowrates, as such the net power density decreases to 1.4 409 

W/m2, while the energy efficiency increases to 44%. This is because the RED unit 410 

depletes to a greater extent the concentration gradient with lower hydrodynamic losses. 411 

Even so, the RED unit would source about 7.5 kW to the desalination plant reaping a 412 

profit of 53,595 euros.  413 

Overall, the integration of on-site electricity generation based on RED technology in 414 

desalination plants of up to 500 m3/day capacity can alleviate the reliance on water and 415 

energy-intensive grid mixes, contributing to more sustainable and self-sufficient water 416 

supply systems. 417 
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 418 

Fig. 8. SWRO desalination plant capacity influence on the NPV-optimal RED process 419 
design: energy balance. 420 

 421 

Fig. 9. SWRO desalination plant capacity influence on the NPV-optimal RED process 422 
design: net present value, net power density (markers text), total net power output 423 
(markers size), and net thermodynamic efficiency (markers color). 424 

3.4 Membrane resistance assessment 425 

The use of high-performance membranes would provide slightly more powerful—i.e., 426 

7.4% more TNP with a 4.2% increase in the overall net power density (Fig. 10Figure 427 

10)—and efficient designs—3.5% more efficient in terms of thermodynamic efficiency 428 

(Fig. 10Fig. 10)—by simply adding a RED unit to the RED system (about 5.6 km2 of total 429 

IEM area in a single stack). Such small improvement, however, would add up almost a 430 

million euros of benefits with virtually no impact on capital and operational costs, 431 
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resulting in a 13% NPV growth (Fig. 11Fig. 11). The LCOE would also improve, moving 432 

from 103 €/MWh to 97 €/MWh These results emphasize that any improvement in 433 

membranes’ performance has a positive impact on cost-competitiveness and widespread 434 

adoption of RED, a solid reason to thrust the development of cost-effective manufacturing 435 

processes and mass production of low-resistance membranes to reach prices of ~10 €/m2. 436 

 437 

Fig. 10. Membrane resistance influence on the net power density, net and thermodynamic 438 
energy efficiencies of the NPV-optimal design. 439 

 440 

Fig. 11. Membrane resistance influence on the NPV-optimal design: cost and revenues 441 
breakdown in present values and net present value (markers). 442 

3.5 Conventional series-parallel layout vs. NPV-optimal layout 443 

The optimal GDP layout outperforms the series-parallel arrangement, as it renders 444 

economically viable RED process designs with almost equal energy and emissions 445 
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savings from the grid (~7% in the conventional layout and ~8% in the cost-optimal 446 

layout). 447 

The optimal series-parallel design of the RED process that peaks the total net power 448 

output with (i) a fixed hydraulic arrangement of the RED units, (ii) fixed concentration 449 

and flowrate of the HC and LC inlet water streams, and (iii) leaving the number of 450 

working RED units and its electric current as single decision variables, is far from being 451 

profitable (negative NPV of 2.9 million euros, Fig. 12). The GDP optimization model 452 

activates the largest feasible number of RED units in series, i.e., 5 out of the 35 candidate 453 

RED units per parallel branch, to maximize the net power generation of the whole system. 454 

Even though the last RED units in the series increase the net power of the system, the 455 

RED unit’s net power density well decreases from the first 1.9 W/m2 to the last ~7 mW/m2 456 

which makes them prohibitively expensive. 457 

While the net energy efficiency of the series layout (33%, Fig. 13) aligns with the 458 

estimated value to make RED technology competitive with other renewables (i.e., 40%) 459 

[22], the total net power density (0.9 W/m2, Fig. 13) falls well below the estimated value 460 

to make RED cost-competitive (2.0 W/m2) [22]. The capital and operational expenses 461 

outweigh the benefits from electricity sales and green financing incentives which cover 462 

78% of the total costs, as seen in Fig. 12. 463 

These results show that the optimal design from the technical perspective is not always 464 

the same from an economical viewpoint. The series configuration recovers a larger 465 

fraction of SGE at expense of lower power density that renders the RED process 466 

unprofitable. 467 

Even though the conventional layout retrieves more energy for conversion (by increasing 468 

the extent of mixing through the series), the input exergy is lower than the optimal GDP 469 
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layout (Fig. 14). This is because the total LC feed (assumed equal to Maspalomas II’s 470 

desalination brine, ~733 m3/h) restricts the number of parallel branches to 11. The optimal 471 

net-power inlet flowrate is about 0.6 times lower than the inlet LC flowrate, as such, 472 

around 42% of the brine remains untapped reducing the input exergy of the RED system 473 

to 866 kW. 474 

As opposed to the series arrangement, the GDP layout, with its (i) larger volume of HC 475 

and LC feeds, and (ii) recycling and additional reuse alternatives, would provide cost-476 

optimal designs that could earn hefty profits (Fig. 12) while reconciling high efficiency 477 

and higher power densities (Fig. 13). The reduced extent of mixing and lower pump 478 

consumption of the GDP layout (Fig. 14) improves the thermodynamic energy efficiency 479 

which increases from 35% in the series-parallel arrangement to 42% in the GDP layout 480 

(Fig. 13) despite the larger fraction of exergy unused (Fig. 14), which yields a modest 481 

decrease in net efficiency (Fig. 13). 482 

In the series-parallel arrangement, we enforce all RED units to work with higher flow 483 

velocities, those that peak the net power of the stand-alone RED unit (2.6 cm/s in the HC 484 

and 4.5 cm/s in the LC compartments). The effect of such high velocities is twofold: an 485 

overall pump power increase (eight times the GDP’s), which in turn raises the investment 486 

and running costs (Fig. 12) and lowers the energy conversion efficiency (Loss in Fig. 14, 487 

and thermodynamic efficiency in Fig. 13). 488 

These results underscore the value of mathematical programming and higher-level GDP 489 

modeling over heuristics for determining cost-optimal RED flowsheet designs. 490 
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 491 
Fig. 12. Cost and revenues breakdown in present value and net present value of the series-492 
parallel and NPV-optimal layouts. 493 

 494 
Fig. 13. Overall net power density, thermodynamic efficiency, and net energy efficiency 495 
of the series-parallel and NPV-optimal layouts. 496 
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 497 
Fig. 14. Energy balance of the series-parallel and NPV-optimal layouts. In: Gibbs free 498 
energy entering the RED system. Out: Gibbs free energy leaving the RED system unused. 499 
Retrieved: Difference between input and output Gibbs free energies used for conversion 500 
in the RED system. Loss: Gibbs free energy lost in energy conversion. Net: total net 501 
power output of the RED system. 502 

3.6 Contextualizing RED economic competitiveness 503 

Despite the discrepancy between the assumptions and scale of renewables projects (i.e., 504 

utility-scale projects of at least 1 MW) in IRENA’s LCOE estimates [73] and the NPV-505 

optimal LCOE of RED, Fig. 15Fig. 15 provides some insights into RED competitiveness. 506 

The assumed low membrane cost of 10 €/m2 in all the assessed years would make the 507 

LCOE of the NPV-optimal RED design fall within the range of fossil fuel-fired power 508 

generation technologies (Fig. 15Fig. 15). In the face of soaring electricity prices and 509 

stiffen emission reduction targets to be on track of 2030 Paris Agreement’s goals, the 510 

NPV-optimal RED process would even be on par (i.e., concentrated solar power, CSP) or 511 

in the range of other renewables. 512 

If similar trends of steep cost reduction, technological advancements, and high 513 

penetration rates were to occur in RED technology, it is plausible that the LCOE for RED 514 

could reach levels comparable to established renewable technologies such as solar 515 

photovoltaic (PV) or onshore and offshore wind. This is in line with the steep cost 516 

reductions witnessed in solar PV, CSP, and offshore wind over the past decade (Fig. 517 
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15Fig. 15). Even though IRENA’s analysis excludes the impact of government incentives 518 

or subsidies, carbon emission pricing or the benefits of renewables in reducing other 519 

externalities, these figures heighten the need in proving and advancing RED to reach 520 

market-readiness. 521 

 522 
Fig. 15. Global LCOE from newly commissioned, utility-scale renewable power 523 
generation technologies, 2010-2020 [73]. NPV-optimal RED process LCOE range 2017–524 
2022 and 2030 (green filled area) and 2021 LCOE (green dashed line). Grey filled area 525 
denotes price range of fossil fuel-fired technologies. All monetary values are in real, 2021 526 
euros considering inflation and applying the exchange rate for each year. PV: 527 
photovoltaic; CSP: concentrating solar power. 528 

Table 5 compares reported cost estimates of RED and the LCOE of the NPV-optimal 529 

RED process designs for current and future membrane price scenarios in 2022. The 530 

paucity of detailed economic evaluations and wide variability in LCOE (16–4956 531 

€/MWh) across existing studies due to disparity in their underlying financial and process 532 

assumptions, makes any comparison inconclusive and open to discussion. As such, it 533 

serves to extract some general guidelines and trends.  534 

The HC and LC feed concentration, volume, and temperature determine the input exergy 535 

and, thus, the nominal capacity and cost of the RED process. HC sources such as brines 536 

from coal mines, desalination, saltworks, salt lakes, or regenerated thermolytic salt 537 
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solutions used in the so-called RED heat engines (1–5 M), offer higher SGE potential 538 

than less salty water bodies such as seawater (0.5–0.6 M). A purposely designed RED 539 

system could efficiently exploit these high-salinity sources, thus, reducing the LCOE. 540 

Depending on the source, the feeds’ pureness also may affect the performance and 541 

durability of RED if not properly pre-treated which may increase capital and operational 542 

expenses. In this work, the objective function, i.e., the NPV, exclude pre-treatment cost, 543 

which is likely to result in an underestimation of the actual LCOE for RED systems that 544 

use sources with extensive pre-treatment requirements, e.g., treated wastewater effluents, 545 

raw seawater, or river water. 546 

None of the reported cost estimates in Table 5 consider the working conditions of each 547 

RED stack and their relative arrangement that may greatly improve both the performance 548 

and cost of the RED process as seen in the case study. Instead, most of them derived the 549 

cost of RED electricity or the LCOE for an estimated or projected RED unit power density 550 

or a targeted nominal capacity of the RED plant. Some also considered the impact of 551 

availability, concentration, and fouling potential of the HC and LC feeds, different RED 552 

stack sizes, and IEMs properties on RED system costs under fixed, suboptimal working 553 

conditions of the RED units. Such detailed assessments, however, miss cost-optimal 554 

design alternatives that optimization-based approaches can effectively handle and 555 

identify. 556 

The case study and the reviewed studies reveal that realizing high-performing (i.e., low-557 

resistant, high-permselective), affordable membranes is a crucial lever for RED techno-558 

economic progress toward market competitiveness. As shown in the case study, 559 

membrane cost weighs heavily on the objective function. Even though all scenarios have 560 

equal feedstreams conditions and candidate RED units, the high price of commercial 561 

membranes makes the NPV-optimal design uneconomic. Only if IEMs were one-order-562 
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of-magnitude cheaper, such that revenues offset the outlays increase, the NPV-optimal 563 

design would retain more RED units tuning their working conditions such that they reach 564 

the net power density that maximize the NPV. The cumulative experience in operating 565 

and developing RED technology will likely decline its LCOE to the estimated 66–126 566 

€/MWh.567 
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Table 34 Cost estimates of RED reported in the literature and the present study. TP: Total power. PD: Power density. 568 

 High-salinity solution Low-salinity solution 
TP 

(MW) 
PD 

(W/m2) 
Capacity 
Factor 

Lifetime [years] IEMs Price 
(€/m2) r 

LCOEf 

(€/MWh) Plant IEMs 
Turek (2007) 
[74] 

0.6 M 9.6 mM NR 0.46a NR NR 10 68 
($100/m2)c 

NR 4956 (6790)e 

Turek (2008) 
[75] 

1.9 M 9.6 mM NR 1.04a NR NR 10 68 
($100/m2)d 

NR 2041 (3000)e 

Post et al. (2010) 
[22] 

0.5 M 5 mM 0.2 

 
2a 91% 20 7 2 

10 
6% 79 

200 

Daniilidis et al. 
(2014) [35] 

0.5 M 17 mM 200 2.2b 

2.7b 
84% 25 7 4.3, 50 

4 
10% 18, 71 

16 
Weiner et al. 
(2015) [76] 

0.6 M 17 mM NR 1.2b NR 20 NR 676 
($750/m2)c 

6% 5705 (6330) 

Bevacqua et al. 
(2017)g [77] 

2.6 M NH4HCO3 
2.4 M NH4HCO3 

2.5 M NH4HCO3 

75 mM NH4HCO3 

10 mM NH4HCO3 

40 mM NH4HCO3 

0.1a 4.30 
2.39 
4.06 

91% 20 NR 50 6% 683 
306 
436 

Micari et al. 
(2019)g [78] 

5 M 10 mM 1b 3.2 90% 30 10 30 5% 400 

Papapetrou et al. 
(2019)g [33] 

3.8 M 
5 M 

10 mM 
10 mM 

0.1 
1 

0.66b 

4.67b 
90% 30 10 30 5% 1360 

210 

Giacalone et al. 
(2019) [34] 

 1.2 M 
 

5 M 

17 mM 
 

< 103 mM 

2b 

4b 
0.01–1b 
0.04–3b 

1a 

2a 

1.5–2a 
6.5a 

90% 30 10 15 
4, 15 
15 
4 

5% 500 

110, 250 
270–330 
30–50 

Ranade et al. 
(2022) [79] 

5 M 0.5 M 0.015 
0.031 

1.19b 
2.44b 

82% 20 10 5, 50 
 

5% 250, 1500 
120,750 

This workh 1.67 M 20 mM 0.327 
0.013 

1.8b 

2.3b 
90% 30 10 10 

87.5 
5% 98 

998 

a Gross power. b Net power. c Total investment cost. d Including endplates and electrodes. e Cost of electricity. f Values between brackets in $/MWh converted to €/MWh with 569 
the corresponding year average exchange ratio from the International Monetary Fund (IMF). g RED heat engine. h Circa 2022. 570 
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4 Conclusions 571 

RED technology has great prospects in solving the water-energy challenge but needs to 572 

prove that it can generate electricity reliably to gain the trust of investors and 573 

manufacturers to unlock economies-of-scale cost reduction. In this work, we have 574 

presented an optimization model to devise techno-economic viable RED process designs 575 

that support the leap from lab to market. The Generalized Disjunctive Programming 576 

(GDP) model allowed us to define the hydraulic topology and working conditions of a set 577 

of RED units to maximize the net present value of the RED process deployed in a 578 

medium-capacity seawater reverse osmosis plant. 579 

We have estimated the energy and emissions savings from the grid RED-based electricity 580 

may offer to desalination exploring relevant factors involved in the cost-optimal design 581 

of the RED process. The growing electricity and emission allowance prices over time 582 

strengthen RED market readiness in niche applications such as desalination and 583 

wastewater treatment sectors, reaching LCOE of 66–126 €/MWh on par or in the range 584 

of other renewable and conventional power technologies. A realistic near-term reduction 585 

in membrane price (~20 €/m2) would make RED profitable. The NPV-optimal RED 586 

process design may reap profits in medium-capacity SWRO desalination plants of up to 587 

500 m3/day. The use of low-resistance, low-cost membranes does improve the cost-588 

competitiveness of the RED process; a 20% drop in membranes resistance would increase 589 

profits by 13%. 590 

Expanding the operating decision space with recycling and reusing alternatives brings on 591 

RED process designs that not only attain profits while cutting down grid mix emissions, 592 

but also accommodate higher power densities and energy efficiencies. Indeed, with a 593 

slightly lower RED-based take of the total desalination energy demand (~7% in the series-594 

parallel and ~8% the NPV-optimal layouts), the series-parallel layout is as efficient as the 595 
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GDP layout at the expense of a significant drop in power density which bears large 596 

economic losses. 597 

These assessments show mathematical programming is an efficient and systematic 598 

modeling and optimization tool to assist early-stage research, and to extract optimal 599 

design and operation guidelines for full-scale RED implementation.  600 
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