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Abstract 10 

Reverse electrodialysis (RED) is an emerging electro-membrane technology that 11 

generates electricity out of salinity differences between two solutions, a renewable 12 

source known as salinity gradient energy. Realizing full-scale RED would require more 13 

techno-economic and environmental assessments that consider full process design and 14 

operational decision space from the RED stack to the entire system. This work presents 15 

an optimization model formulated as a Generalized Disjunctive Programming (GDP) 16 

problem that incorporates a finite difference RED stack model from our research group 17 

to define the cost-optimal process design. The solution to the GDP problem provides the 18 

plant topology and the RED units’ working conditions that maximize the net present 19 

value of the RED process for given RED stack parameters and site-specific conditions. 20 

Our results show that, compared with simulation-based approaches, mathematical 21 

programming techniques are efficient and systematic to assist early-stage research and 22 

to extract optimal design and operation guidelines for large-scale RED implementation. 23 
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1.  Introduction 27 

Dispatchable low-carbon sources of power are essential to meet flexibility constraints in 28 

clean energy transitions (Davis et al., 2018). Salinity gradient energy (SGE), or the free 29 

energy released during the mixing of high salinity and low salinity waters (Pattle, 1954), 30 

is a vast yet largely untapped renewable source that can buffer the hour-to-hour 31 

variability of intermittent renewable power sources. According to Gibb’s Gibbs free 32 

energy of mixing, each cubic meter of river water (1.5 mM NaCl) flowing into the sea 33 

(0.6 M NaCl) stores 0.44 kWh of baseload and non-pollutant extractable energy (Yip et 34 

al., 2016). It is estimated that about 1.4 to 1.7 TW is available globally from major river 35 

mouths (Alvarez-Silva et al., 2016; Ramon et al., 2011), of which ~60% could be 36 

harnessed depending on SGE conversion efficiency, siting constraints, freshwater 37 

availability, and environmental and legal constraints (Alvarez-Silva et al., 2016; 38 

Kuleszo et al., 2010; Ramon et al., 2011). Alternatively, anthropogenic waste streams of 39 

energy-intensive processes such as desalination’s concentrates, reclaimed wastewater 40 

effluents, produced waters (a by-product of oil and gas extraction), or thermolytic salt 41 

solutions in energy storage and close-loop applications that recover low-grade waste 42 

heat energy, promise higher SGE (Tian et al., 2020; Tufa et al., 2018; Yip et al., 2016). 43 

For instance, seawater desalination brine (1.2 M NaCl) mixed with low salinity effluent 44 

from wastewater treatment (10 mM), almost doubles the seawater-river water pair’s 45 

SGE, e.g., 0.85 kWh per m3 of low salinity stream (Yip et al., 2016). Global wastewater 46 

discharge into the sea could provide another 18.5 GW of salinity-gradient power 47 

(Ramon et al., 2011).  48 

There are different technologies to capture SGE reported in the literature (Logan and 49 

Elimelech, 2012; Yip et al., 2016), among them reverse electrodialysis (RED) and 50 

pressure retarded osmosis (PRO) are in advanced development stages and have been 51 
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demonstrated at pilot-scale (IRENA, 2020; Jang et al., 2020; Kempener and Neumann, 52 

2014; Makabe et al., 2021; Mehdizadeh et al., 2021; Nam et al., 2019; Pärnamäe et al., 53 

2020; Post et al., 2010; Tedesco et al., 2017). Both technologies use selective 54 

membranes to draw electricity out of the reversible mixing between high and low 55 

salinity streams. RED is an electrochemical technology that uses ion-exchange 56 

membranes (IEM) to directly generate electricity from chemical potential differences 57 

between the two salt-differing water solutions (Pattle, 1954). A RED stack (Fig. 1) 58 

comprises a series of repeating cell pairs framed on either side by electrodes. Each cell 59 

pair is made up of a cation-exchange membrane (CEM), an anion-exchange membrane 60 

(AEM), and two spacers in between to form alternate compartments where the high and 61 

low concentration streams flow. The IEMs allow selective permeation of opposite-62 

charged ions (counterions) while rejecting water and like-charged ions (co-ions). The 63 

concentration difference across the IEMs creates an electrochemical potential that drives 64 

the diffusion of cations across CEMs towards the cathode, and anions across AEMs 65 

towards the anode, from the high concentration (HC) to the low concentration (LC) 66 

solutions. Redox reactions at the electrodes convert the directional flow of ions into an 67 

electric current; the electric current and the electric potential yielded by the RED pile 68 

can then be used to power the external load connected to the electrodes (Pattle, 1954). 69 
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 70 
Figure 1 Working principle of reverse electrodialysis (RED). CEM: Cation-exchange 71 

membrane; AEM: Anion-exchange membrane. 72 

Several authors have developed predictive models to fully capture the RED stack 73 

performance (Tristán et al., 2020a). Early modeling approaches dating back to the ’80s 74 

(Lacey, 1980; Weinstein and Leitz, 1976) were updated and refined thereafter to 75 

consider non-idealities (e.g., concentration polarization, electric short-cut currents, 76 

electrode system resistance) (Culcasi et al., 2020; Gurreri et al., 2014; La Cerva et al., 77 

2017; Ortiz-Imedio et al., 2019; Pawlowski et al., 2016; Post et al., 2008; Tedesco et al., 78 

2015a; Tristán et al., 2020a; Veerman et al., 2008), complex geometries (e.g., spacers’ 79 

designs or profiled membranes) (Ciofalo et al., 2019; Dong et al., 2022; Faghihi and 80 

Jalali, 2022; Gurreri et al., 2017; Kim et al., 2022; Pawlowski et al., 2016), flow 81 

patterns (e.g., co-, counter-, and cross-flow stacks) (Pintossi et al., 2021; Simões et al., 82 

2020; Tedesco et al., 2015b; Vermaas et al., 2013), advanced electrode systems (e.g., 83 

electrode segmentation) (Kim et al., 2022; Pintossi et al., 2021; Simões et al., 2020; 84 

Veerman et al., 2011), and the presence of organic and inorganic pollutants and multi-85 

valent ions on feed solutions (Gómez-Coma et al., 2019; Pintossi et al., 2021; Simões et 86 

al., 2022). 87 
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The membrane power density, i.e., the power generated per total membrane area, the 88 

specific energy, i.e., the energy delivered per volume of HC and/or LC feedwater 89 

consumed, and the energy efficiency, i.e., the salinity gradient energy converted into 90 

useful work, are well-accepted metrics to assess RED energy production feasibility as 91 

they implicitly inform about its cost-competitiveness. Optimization studies mainly focus 92 

on the design and working conditions that maximize these key performance metrics, but 93 

few consider cost metrics (e.g., levelized cost of electricity and capital costs per unit of 94 

power) that are the primary drivers of technology adoption in any sector (Daniilidis et 95 

al., 2014; Giacalone et al., 2019; Papapetrou et al., 2019; Weiner et al., 2015). Genetic 96 

algorithms (Faghihi and Jalali, 2022; Long et al., 2018a, 2018b), gradients-ascent 97 

algorithms (Ciofalo et al., 2019), and response surface methods with a central composite 98 

design (Altıok et al., 2022) are some of the approaches to solve single and multi-99 

objective optimization problems, to define designs and operating conditions that 100 

maximize the net power density (Altıok et al., 2022; Ciofalo et al., 2019; Long et al., 101 

2018b), maximize the mass transfer and minimize the pressure drop in the RED cell 102 

(Faghihi and Jalali, 2022), or maximize the net power density and energy efficiency 103 

(Long et al., 2018a) of the RED stack. 104 

Few works address the synthesis and design of the RED process featuring these 105 

predictive models to devise technically and economically feasible flowsheet designs. 106 

Most of the reported studies in the open literature investigate the RED process as a 107 

separate unit or several units in either series or simple arrangements, focusing primarily 108 

on improving the power density and/or the energy conversion efficiency of RED. There 109 

is an intrinsic trade-off between efficiency and power of RED stack as maximizing both 110 

would require conflicting operating conditions, multi-staging or cascade operation and 111 

electrode segmentation of the RED stacks could attain efficient designs with higher 112 
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power densities than once-through RED operation (Simões et al., 2021). Multi-stage 113 

RED adds several degrees of freedom, such as independent electrical control of the 114 

stages (Hu et al., 2020, 2019; Veerman, 2020) (as electrode segmentation offers), 115 

asymmetric staging, and different configurations (Tedesco et al., 2015b; Veerman, 116 

2020; Veerman et al., 2009). Simões et al. (Simões et al., 2022, 2021, 2020) and 117 

Pintossi et al. (Pintossi et al., 2021) also investigated the effect of electrode 118 

segmentation and multi-staging of RED stacks under different flow configurations, both 119 

strategies provided higher power densities and energy efficiencies. 120 

Full-scale RED progress demands more techno-economic and environmental 121 

assessments that consider full process design and operational decision space from stack 122 

to the whole system. These pioneering works evidence how challenging it is to model 123 

and estimate the cost of a complex system with interdependent processes and 124 

phenomena. Cost-optimization modeling can effectively assess the economic feasibility 125 

of RED as it can handle strongly coupled systems of equations with several degrees of 126 

freedom (Pistikopoulos et al., 2021). Hence, our aim is to develop a modeling tool to 127 

provide decision-making support from early-stage applied research to full-scale RED 128 

deployment in real scenarios. We present an optimization model formulated as a 129 

Generalized Disjunctive Programming (GDP) problem to define the cost-optimal RED 130 

process design for different deployment scenarios. The GDP optimization model 131 

incorporates a semi-rigorous version of our RED stack model (Gómez-Coma et al., 132 

2019; Ortiz-Imedio et al., 2019; Ortiz-Martínez et al., 2020; Tristán et al., 2020a) to 133 

determine the flowsheet design that maximize the net present value of the RED process. 134 

  135 
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2. Problem statement and superstructure definition 136 

Given the site-specific working conditions, i.e., concentration, total flowrate, and 137 

temperature of the HC and LC feedwaters, and the stack parameters of the RED units, 138 

i.e., number of cell pairs, properties of membranes and spacers, the problem is to 139 

determine the RED plant topology and the working conditions of each RED stack in the 140 

plant that maximize the net present value of the RED process. In the quest to tackle 141 

water scarcity, seawater reverse osmosis (SWRO) desalination and re-use of reclaimed 142 

wastewater effluents stand out above all else (UNESCO, 2020; van Vliet et al., 2021). A 143 

foreseeable scenario for RED promotion is next to these energy-intensive processes 144 

(Rani et al., 2022) heavily reliant on fossil fuels (IEA, 2016). The SGE embodied in the 145 

reversible mixing of the high-saline SWRO brine and a low-salinity stream as treated 146 

wastewater could partially displace the carbon-intensive grid mix supply of these 147 

processes. Besides, environmental and permitting challenges associated with brine 148 

discharge may incentivize RED technology mature. Hence, in all assessed scenarios, we 149 

assume the RED system recovers energy from a SWRO concentrate effluent (as HC 150 

feedstream) paired with a low-salinity water, e.g., freshwater, or reclaimed wastewater 151 

as LC feedstream. 152 

We have defined the superstructure of alternatives based on the Pyosyn Graph (PSG) 153 

representation (Chen et al., 2021b). The RED process’ PSG representation in Fig. 2 154 

consists of the following elements: 155 
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 156 
Figure 2. Superstructure representation of the RED process with Nr conditional RED 157 
units. The set of source (RSU) and sink (RMU) units and the set of candidate RED units 158 
(RU) are children of the parent RED Process unit (RPU). Dashed boxes indicate the 159 
association between the set of source units with its parent ports, rsi, and the set of sink 160 
units with its parent ports, rmo. The whole set of units, ports, and streams and their 161 
index notation is in Table 1. 162 

(a) The RED Process Unit (RPU), where discrete decisions on the selection of the RED 163 

units are made, which embeds: (i) the set of Nr candidate RED units r ∈ RU = 164 

{r1…,rNr}; the set of permanent (ii) source rs ∈ RSU and (iii) sink rm ∈ RMU units 165 

for the high-salinity and low-salinity streams, i.e., sol ∈ SOL = {HC, LC}. The 166 

source and sink units govern the material inflows and outflows at the interface of the 167 

RPU parent block with the overall flowsheet (i.e., with the feed and discharge units). 168 

(b)  The sets of concentrate and diluate feed units, fs ∈ FSU, and discharge units, dm ∈ 169 

DMU 170 

(c) The inlet and outlet ports p ∈ P = 𝑃!"# ∪ 𝑃$%, i.e., mixers and splitters, where flows 171 

of material at the unit interface with other process units may take place. 172 

(d) The set of streams or feasible outlet-to-inlet port pairs, 𝑠	 ∈ 	𝑆	 ⊆ 	𝑃!"# × 𝑃$%, 173 

defined considering the following screening rules: 174 

- The feed units, FSU, supply the concentrate and diluate feed streams, 𝑠	 ∈175 

	𝑆&'! ⊆	𝑆(, to the RED Process Unit (RPU); the discharge units DMU collect 176 
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the exhausted high- and low-concentration RPU effluents, and the unused feed 177 

streams from the feed units FSU, 𝑠	 ∈ 	 𝑆)*$ ⊆	𝑆$. 178 

- Within the RPU, the source units, RSU, supply the concentrate and diluate 179 

streams coming from the feed units FSU to one or more of the active RED units, 180 

𝑠	 ∈ 	 𝑆+'! ⊆	𝑆(. Once the active RED units exploit SGE from the inlet streams, 181 

𝑠	 ∈ 	 𝑆+$ ⊆	𝑆$, the spent effluents, 𝑠	 ∈ 	 𝑆+! ⊆	𝑆(, may be recycled back, sent to 182 

other active RED units for reuse, or may be directed to the sink units, RMU. The 183 

RPU effluent from RMU, 𝑠	 ∈ 	 𝑆+*! ⊆	𝑆(, is disposed of in the overall 184 

discharge unit DMU. 185 

- No flow between the RSU and RMU is allowed; it only can take place between 186 

FSU and DMU. 187 

- Mixing between the concentrate and diluate streams only takes place within the 188 

candidate RED units owing to the flow of ions from high-salinity compartments 189 

to low-salinity ones through ion-exchange membranes (IEMs). 190 

Table 1 summarizes the indices and sets of units, ports, and streams of the general 191 

superstructure in Fig. 2. Fig. 3 shows an example with two candidate RED units. 192 

  193 
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Table 1. Indices and sets of units, ports, and streams of the RED process superstructure.  194 

Unit 

Port 
Streams 

𝒔	 ∈ 	𝑺	 ⊆ 	𝑷𝒐𝒖𝒕 × 𝑷𝒊𝒏 
In 
𝑷𝒊𝒏 

Out 
𝑷𝒐𝒖𝒕 

In 
𝒊 ∈ 𝑺𝒊 ⊆ 𝑺 

Out 
𝒌 ∈ 	𝑺𝒌 ⊆ 𝑺 

Feed unit 
fs ∈ FSU 

fsi fso in,fsi b fso,rsi 
fso,dmi 

Source unit 
rs ∈ RSU 

rsi rso fso,rsi rso,ri 

RED unita 
r ∈ RU 

ri ro rso,ri 
ro’,ric 

ro,rmi 
ro,ri’c 

Sink unit 
rm ∈ RMU 

rmi rmo ro,rmi rmo,dmo 

Discharge unit 
dm ∈ DMU 

dmi dmo fso,dmi 
rmo,dmi 

dmo,out 

aWhen the RED unit is active (𝑌+ = True): 𝑖 = (𝑟, 𝑟𝑜) in (7),	𝑘 = (𝑟𝑖, 𝑟) in (8). 
bKnown feed streams composition and volume according to RED’s implementation 
scenario. 
cRecycle or reuse. 
 195 

 196 

Figure 3 Example of RED process’ superstructure with two conditional RED units. 197 

  198 



11 
 

3. Optimization model 199 

3.1 Generalized Disjunctive Programming (GDP) model 200 

The general form of the optimization model for the superstructure in Fig. 2, is 201 

formulated as a Generalized Disjunctive Programming (GDP) problem in (1). 202 

max 𝑜𝑏𝑗 = 𝑓(𝑥)
𝑠. 𝑡. 𝑔(𝑥) ≤ 0

C
𝑌+

𝑟+(𝑥)	 ≤ 	0D ⊻ F
¬𝑌+

𝐵+ 	𝑥	 = 	0I ∀	𝑟 ∈ 𝑅𝑈

𝛺(𝑌+)	 = 	𝑇𝑟𝑢𝑒
𝑥 ∈ 𝑋 ⊆ 	𝑅%
𝑌+ 	 = 	{𝑇𝑟𝑢𝑒, 	𝐹𝑎𝑙𝑠𝑒}	∀	𝑟 ∈ 𝑅𝑈

	 (1) 203 

The objective function 𝑓(𝑥) maximizes the Net Present Value (NPV) of the RED 204 

process subject to inequality constraints (e.g., process specifications) and equality 205 

constraints (e.g., material, energy balances, and thermodynamic relationships). The 206 

variables 𝑥 describe continuous variables (e.g., molar concentrations, volumetric flows) 207 

of all feasible streams and internal variables of the candidate RED units (e.g., electric 208 

current). The global constraints, 𝑔(𝑥) ≤ 0, are equalities and inequalities describing 209 

specifications and physical relationships that apply for all feasible configurations in the 210 

superstructure, i.e., linking constraints, flow and mass balances of the feed, source, sink, 211 

and discharge units’ inlet and outlet ports, and bounds on streams variables 212 

(concentration and flowrate). The disjunctions—corresponding to logical-XOR 213 

relationships such that at most one disjunct in each disjunction is True—describe the 214 

existence or absence of the RED units within the RED process unit. The Boolean 215 

variables 𝑌+ indicates whether a given RED unit exists or not. If a unit exists (𝑌+ = 216 

True), the constraints 𝑟+(𝑥)	 ≤ 	0 enforce the relevant mass and energy balances, 217 

thermodynamics, kinetics, or other physical/chemical phenomena taking place within 218 

the RED unit; if the unit is absent, the negation (¬𝑌+) sets to zero a subset of the 219 
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continuous variables, and cost terms in the objective function through the 𝐵+ 	𝑥	 = 	0 220 

constraints. 221 

When the RED unit ports exist, mixing and splitting calculations, and linking 222 

constraints, which equate stream flow properties between the RED unit’s ports and its 223 

set of cell pairs, are included within the constraints 𝑟+(𝑥)	 ≤ 	0, and port absence in the 224 

linear constraints 𝐵+ 	𝑥	 = 	0. We adopt the no-flow approach for modeling an absent 225 

unit, enforcing that if a stream does not exist, no flow may take place between the 226 

corresponding outlet-inlet port pair. 227 

The logical relationships (𝛺(𝑌+)	 = 	𝑇𝑟𝑢𝑒) establish the logic conditions for selecting 228 

the candidate RED units. In the following sections, we will present the detailed 229 

equations and constraints after stating the major assumptions. 230 

3.2 Assumptions 231 

We consider the following simplifying assumptions in the development of the GDP 232 

model: 233 

(a) The feed streams are pure sodium chloride (NaCl), ideal aqueous solutions (i.e., 234 

activity coefficients equal to 1), thus neglecting the non-idealities of aqueous 235 

solution and the existence of other species that would undermine the RED 236 

performance. 237 

(b) There is no non-ohmic contribution in the internal losses ascribed to concentration 238 

polarization phenomena in the concentrate and diluate membrane-solution 239 

interfaces, and due to concentration gradient decline along the main flow direction. 240 

We only consider the ohmic contribution of solutions’ ionic conductivity and 241 

membranes’ ionic resistance. 242 
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(c) Membranes’ permselectivity and ionic resistance are constant regardless of 243 

solutions’ concentration and temperature. 244 

(d) There is no water transport due to osmosis from the low-salinity side to the high-245 

salinity one across membranes, which implies a constant streamwise volumetric 246 

flowrate in RED’s channel. 247 

(e) Salt diffusivities in the membrane phase are constant whatever concentration and 248 

temperature. 249 

(f) All cell pairs behave equally, as we assume no fluid leakage or ionic shortcut 250 

currents in the RED stack’s manifolds. 251 

(g) Co-current flow of the high- and low-concentration streams. 252 

(h) The RED system operates under isothermal and isobaric conditions. 253 

3.3 RED stack model 254 

We use a semi-rigorous version of the RED stack model from our research group 255 

(Tristán et al., 2020a), to find a middle ground between model fidelity and tractability. 256 

The semi-rigorous model is a system of differential and algebraic equations defining 257 

RED performance from cell pair to module scale. The reader is referred to Tristán et al. 258 

(Tristán et al., 2020a) work and supplementary material for more details on the RED 259 

stack model. 260 

As nonlinear optimization solvers are unable to handle integrals or differential equations 261 

directly, we reformulate first-order ordinary differential equations and integrals into 262 

algebraic equations, discretizing the x-domain with the backward finite difference 263 

method (implicit or backward Euler difference method) and applying the trapezoid rule, 264 

respectively (Butcher, 2016; Nicholson et al., 2017). 265 
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When the RED unit is active (𝑌+ = True), the discretized model (ℎ+(𝑥) ≤ 0) computes 266 

the net power output, NPr, that is added to the nameplate generating capacity of the 267 

RED system, i.e., the total net power output, 𝑇𝑁𝑃 in equation (21)TNP; otherwise 268 

(¬𝑌+), the net power output and cost terms in the objective function are set to zero. 269 

3.4 Flow and mass balances formulation 270 

We formulate flow and mass balance equations considering total flows (volumetric flow 271 

rate, Q in m3·h-1) and species composition (molar concentration of sodium chloride, C 272 

in mol·m-3) (Karuppiah and Grossmann, 2006; Quesada and Grossmann, 1995), of the 273 

high- and low-salinity streams. The general mass balances in (2) and (3) are in both the 274 

global constraints (e.g., applied to the feed, discharge units in the overall flowsheet, and 275 

source and sink child units in RPU parent block) as well as in 𝑟+(𝑥)	 ≤ 	0 constraints 276 

when the RED unit is active. 277 

The mixer balances (2) apply to the inlet ports of the discharge units, the sink units, and 278 

the active RED units (i.e., when 𝑌+ = True); mixing equations are nonlinear and 279 

nonconvex due to bilinear terms from the product of volumetric flows times molar 280 

concentration, which makes it difficult to find the global optimum. 281 

𝑄(,'!3 	𝐶(,'!3 = \ 𝑄$,'!3 	𝐶$,'!3
$∈5!⊆5

𝑄(,'!3 = \ 𝑄$,'!3
	$∈5!⊆5

∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿, 𝑘 ∈ 	 𝑆( ⊆ 𝑆 (2)

 282 

The linear splitter balances (3) apply to the outlet ports of the feed units, the source 283 

units, and the active RED units (i.e., when 𝑌+ = True). 284 
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𝐶$,'!3 = 𝐶(,'!3
𝑄$,'!3 = \ 𝑄(,'!3

	(∈	5"⊆5

∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿, 𝑖 ∈ 𝑆$ ⊆ 𝑆 (3)

 285 

For the set of candidate RED units, the index k in splitting equations (3) is (r,ro) 286 

corresponding to the exhausted streams from RED’s compartments leaving the high 287 

salinity and low salinity outlet ports. In the mixing equations (7), the index i refers to 288 

the streams flowing from the inlet port to the RED unit’s compartments (ri,r). The 289 

remainder index notations are summarized in Table 1. 290 

3.5 Bounds on variables 291 

 Using (4) and (5), we calculate the value, and upper (superscript U) and lower 292 

(superscript L) bounds of candidate RED units’ flowrate (i.e., streams 𝑠 ∈ 𝑆+ ⊆ 𝑆) in 293 

(6). Each RED unit has upper limits on the flowrate, according to the maximum linear 294 

crossflow velocity (m·s-1),	 𝑣+8, along the channel’s length of the RED stack as the 295 

manufacturer specifies (Table 3). The lower bound 𝑣+9 is a designer specification. In (4) 296 

and (5), 𝑣+,'!3 is the average linear crossflow velocity along RED units’ channel length. 297 

The product 𝑁:;	𝜀';,'!3 	𝑏	𝛿';,'!3 in (5) yields the cross-sectional area, 𝐴+ (m2), of all 298 

RED unit’s compartments, where 𝑁:;	is the number of cell pairs, 𝜀';,'!3 (-) the porosity, 299 

𝑏 (m)  the width, and 𝛿';,'!3 (m) the thickness of the concentrate and diluate spacers, 300 

which are parameters of the RED stack model (see Table 3). 301 

𝑣+9	 ≤ 𝑣+,'!3 ≤ 𝑣+8	∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿, 𝑟 ∈ 𝑅𝑈 (4) 302 

𝑄','!3 = 𝑣+,'!3 	f𝑁:;	𝜀';,'!3 	𝑏	𝛿';,'!3g+
= 𝑣+,'!3 	𝐴+ 	∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿, 𝑠 ∈ 𝑆+ , 𝑟 ∈ 𝑅𝑈 (5)

 303 

𝑄+,'!39 ≤ 	𝑄','!3 ≤ 	𝑄+,'!38

∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿, 𝑠 ∈ 𝑆+ , 𝑟 ∈ 𝑅𝑈 (6)
 304 
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The subset of streams 𝑠 ∈ 𝑆	\𝑆+ have upper bounds on flowrate (7), as given in (8) for 305 

outlet and inlet ports of the sink and source units, respectively (i.e., streams 𝑠 ∈ 𝑆+*! ∪306 

𝑆+'$), while for the inlet and outlet ports (i.e., streams 𝑠 ∈ 𝑆+*$ ∪ 𝑆+'!) (9) applies.  307 

0 ≤ 𝑄','!3 ≤ 	𝑄','!38 	∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿 (7) 308 

𝑄','!38 =

⎩
⎪
⎨

⎪
⎧ 𝑣+8	𝐴+ , 𝑄+,'!38 	≤ \ 𝑄$,'!3

$∈5#$!⊆5!

\ 𝑄$,'!3
$∈5#$!⊆5!

, 𝑄+,'!38 	> \ 𝑄$,'!3
$∈5#$!⊆5!

∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿, 𝑠 ∈ 𝑆+*! ∪ 𝑆+'$ , 𝑟 ∈ 𝑅𝑈 (8)

 309 

𝑄','!38 =

⎩
⎪
⎨

⎪
⎧ 	𝑁+ 	𝑣+8	𝐴+ , 𝑄+,'!38 	𝑁+ ≤ \ 𝑄$,'!3

$∈5#$!⊆5!

\ 𝑄$,'!3
$∈5#$!⊆5!

, 𝑄+,'!38 	𝑁+ > \ 𝑄$,'!3
$∈5#$!⊆5!

∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿, 𝑠 ∈ 𝑆+*$ ∪ 𝑆+'! , 𝑟 ∈ 𝑅𝑈 (9)

 310 

We use (10)–(12) to define the upper and lower limits on the concentrate and diluate 311 

streams’ molar concentration (Table 2). 312 

𝜙+8 =
𝑄+,9<8

𝑄+,=<9 + 𝑄+,9<8

𝜙+9 =
𝑄+,9<9

𝑄+,=<8 + 𝑄+,9<9

∀𝑟 ∈ 𝑅𝑈 (10)

 313 

where 𝜙 (-) is the ratio of diluate solution’s flowrate to the total flowrate that is fed to 314 

the RED unit. 315 

𝐶>,+8 = 𝜙+9 𝑚𝑎𝑥
$∈5#$!⊆5!

f𝐶$,9<g + (1 − 𝜙+9) 𝑚𝑎𝑥
$∈5#$!⊆5!

f𝐶$,=<g

𝐶>,+9 = 𝜙+8 𝑚𝑖𝑛
$∈5#$!⊆5!

f𝐶$,9<g + (1 − 𝜙+8) 𝑚𝑖𝑛
$∈5#$!⊆5!

f𝐶$,=<g

∀𝑟 ∈ 𝑅𝑈 (11)

 316 

𝐶>,+ (mol·m-3) is the concentration of the mixed solution reaching equilibrium. 317 
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	𝐶'!39 ≤ 𝐶','!3 ≤ 𝐶'!38 	∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿, 𝑠 ∈ 𝑆 (12) 318 

The high salinity streams’ concentration could be as high as the maximum 319 

concentration of the feed streams, in (if there are multiple feed alternatives), while for 320 

the low salinity streams, the molar concentration could be as high as the concentration 321 

reached after the complete mixing of the concentrate and diluate stream (if reached 322 

thermodynamic equilibrium). The opposite holds for the lower bound on the 323 

concentration of the concentrate and diluate streams. 324 

Table 2. Upper and lower bounds on concentration of superstructure’s streams 325 

Bounds 𝒔𝒐𝒍 = 𝑯𝑪 𝒔𝒐𝒍 = 𝑳𝑪 

𝐶'!38  𝑚𝑎𝑥
$∈5#$!⊆5!

f𝐶$,=<g 𝐶>,+8  

	𝐶'!39  𝐶>,+9  𝑚𝑖𝑛
$∈5#$!⊆5!

f𝐶$,9<g 

 326 

3.6 Boundary conditions and linking constraints 327 

When the RED unit is active (𝑌+ = True), the boundary conditions (13) link the inlet 328 

port 𝑟𝑖 with the RED unit’s inlet compartments (i.e., 𝑥+ = 0), and (14) the outlet from 329 

the set of cell pairs (i.e., 𝑥+ = 𝐿) with the outlet port 𝑟𝑜 of the RED unit. 330 

𝐶+$,+,'!3 = 𝐶?,+,'!3 ,
𝑄+$,+,'!3 = 𝑁:;	𝑄?,+,'!3 ,

∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿, 𝑟 ∈ 𝑅𝑈, 𝑟𝑖 ∈ 𝑃+$ ⊆ 𝑃$% (13)
 331 

𝐶+,+!,'!3 = 𝐶9,+,'!3 ,
𝑄+,+!,'!3 = 𝑁:;	𝑄9,+,'!3

∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿, 𝑟 ∈ 𝑅𝑈, 𝑟𝑜 ∈ 𝑃+! ⊆ 𝑃!"# (14)
 332 

When the RED unit is absent (¬𝑌+) (15) applies. 333 

𝐶','!3 = 	𝐶'!39 , ∀	𝑠 ∈ 	 𝑆+$ ∪ 𝑆+! ,
∑ 𝑄$,'!3$∈5%!⊆5! = 0,

𝑄+'!,+$,'!3 = 0	∀	𝑟𝑠𝑜 ∈ 𝑃+'! , 𝑟𝑖 ∈ 𝑃+$ 		
∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿 (15)

  334 
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3.7 Logic constraints 335 

We add the following logic propositions: 336 

(a) A programming logic constraint (16) enforcing that at least one RU is active in the 337 

RPU section: 338 

~𝑌+

@%

+AB

(16) 339 

(b) Since all candidate RED units are equal, we added symmetry-breaking constraints 340 

(17) to avoid structural redundancy (combinatorial redundancy) by eliminating 341 

symmetric solutions, thus, easing the computational effort. 342 

𝑌+CB ⇒ 𝑌+ 	∀	𝑟 ∈ 𝑅𝑈 (17) 343 

3.8 Objective function: Maximize the Net Present Value (NPV) 344 

The objective of the GDP problem is to maximize the NPV of the RED process. The 345 

NPV (18) considers operating (OPEX in USD2019·year-1), and capital costs (CAPEX in 346 

USD2019) annualized over the expected lifetime of the plant, 𝐿𝑇 in years. The CAPEX is 347 

annualized using the capital recovery factor (𝐶𝑅𝐹) given in (20) with an interest rate 	𝑟. 348 

The annualized CAPEX and OPEX define the total annual cost (19), 𝑇𝐴𝐶, of the RED 349 

system. The NPV accounts for profits from RED’s electricity sales. We assume the 350 

surplus electricity unexpended by the RED plant is sold to the grid at EU-27 2019-351 

average price of electricity for non-house consumers (Band IB: annual consumption 352 

between 20 and 500 MWh excluding taxes and levies), i.e., 𝑒𝑝 = 0.11 €·kWh-1 ($0.12 353 

kWh-1).  354 

𝑁𝑃𝑉	 = [𝑒𝑝	𝑇𝑁𝑃	8760	𝐿𝐹 − 𝑇𝐴𝐶]/𝐶𝑅𝐹 (18) 355 

𝑇𝐴𝐶	 = 𝐶𝑅𝐹	𝐶𝐴𝑃𝐸𝑋 + 𝑂𝑃𝐸𝑋 (19) 356 
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𝐶𝑅𝐹	 =
𝑟

1	 − 	(1	 + 	𝑟)D9E
(20) 357 

𝑇𝑁𝑃	 = \ 𝑁𝑃+
+∈F8

(21) 358 

The annual energy yield (kWh·year-1) of the RED plant working at full capacity, i.e., 359 

8760 full load hours per year, is corrected with a load factor, 𝐿𝐹, of 90% (i.e., RED 360 

works 8000 hours each year) to account for expected plant downtime due to membrane 361 

cleaning and system maintenance. The summation of the net power output over the 362 

candidate RED units yields the nominal capacity of the RED system (21) i.e., the total 363 

net power output, 𝑇𝑁𝑃, in kW. 364 

To estimate the capital investment, we determine the cost of RED stacks, pumps, and 365 

civil and electrical infrastructure cost. 366 

𝐶𝐴𝑃𝐸𝑋	 = \ 𝐶𝐶'#G:(,+
+∈F8

+ 𝐶𝐶;"*; + 𝐶𝐶:$H$3 (22) 367 

The RED unit’s cost, 𝐶𝐶'#G:(,+ involves the cost of membranes, 𝐶𝐶IJ>',+, i.e., total 368 

membrane area, 2	f	𝑁:;	𝑏	𝐿g+, times the specific price of membranes, 𝑐𝑚, and the cost 369 

of electrodes and stack, which is assumed to be 51.7% of the current membrane cost 370 

(Papapetrou et al., 2019). When the RED unit is absent, the capital cost of the stack is 371 

set to zero. 372 

𝐶𝐶'#G:(,+ =	𝐶𝐶IJ>',+ 	(1	 + 	0.517)
= 	2	𝑐𝑚	f	𝑁:;	𝑏	𝐿g+(1	 + 	0.517) (23) 373 

We estimate the concentrate and diluate pump costs, 𝐶𝐶;"*;, using Sinnot and 374 

Towler’s (Sinnott and Towler, 2020) non-linear correlation as given in (24), valid 375 

between 0.2 and 126 L·s-1 (0.72–453.6 m3·h-1). The purchased pump’s cost on a U.S. 376 
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Gulf Coast basis, Jan. 2007 is converted to 2019 dollars with the Chemical Engineering 377 

Plant Cost Index (CEPCI). 378 

𝐶𝐶;"*;	 = 	
𝐶𝐸𝑃𝐶𝐼K?BL
𝐶𝐸𝑃𝐶𝐼+M&

\ �𝑎 + 𝑏� \ 𝑄(,'!3
(∈	5%$&⊆5"

�

N

�
'!3∈5O9

(24) 379 

𝐶𝐶;"*;	 = 	
𝐶𝐸𝑃𝐶𝐼K?BL
𝐶𝐸𝑃𝐶𝐼+M&

\ [𝑎 + 𝑏	𝑍'!3]
'!3∈5O9

(25) 380 

𝑍'!3 = � \ 𝑄(,'!3
(∈	5%$&⊆5"

�

N

𝑍'!3 ≥ 0

𝑍'!3
B N⁄ ≥ \ 𝑄(,'!3

(∈	5%$&⊆5"

(26)

 381 

where 𝑎, 𝑏, and 𝛽 are cost parameters and the sizing variable is the flowrate of streams 382 

leaving the source units in the RPU given in L·s-1.  383 

Power law expressions whose exponent is lower than one, such as pumps’ investment 384 

cost, are concave and, as such, a source of computational difficulties due to unbound 385 

derivatives when the flows (the sizing variable) take zero values (Cafaro and 386 

Grossmann, 2014). 387 

A common workaround to bound gradients for zero flows is to add a small tolerance to 388 

the sizing variable in the concave cost function (Ahmetović and Grossmann, 2011). 389 

Even though smaller tolerances provide better approximations of the original cost 390 

function, they also yield larger derivatives when flows are zero due to ill-conditioning 391 

for the NLP. Hence, to prevent this numerical issue, we propose to reformulate the 392 

concave pump cost term (24) into a linear function (25), adding a new variable 𝑍'!3, 393 

defined in (26), to replace the size variable raised to the 𝛽th. The equality constraint in 394 
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(26) is relaxed into a concave inequality which is exactly zero and whose derivatives are 395 

bounded when the sizing variable takes zero values. 396 

We compute the civil and electrical infrastructure costs as follows: 397 

𝐶𝐶:$H$3 = 𝑐𝑐𝑖𝑣𝑖𝑙	𝑇𝑁𝑃 (27) 398 

where 𝑐𝑐𝑖𝑣𝑖𝑙 is the cost parameter (250 €·kW-1) (Papapetrou et al., 2019).  399 

The annual operating cost comprises the electricity consumption cost of pumps,  400 

𝑂𝐶;"*;,+, the replacement cost of membranes, 𝑂𝐶IJ>'+M;,+ , and maintenance and labor 401 

costs (as 20% of CAPEX). 402 

𝑂𝑃𝐸𝑋	 = 	 \ 𝑂𝐶;"*;,+
+∈F8

+ \ 𝑂𝐶IJ>'+M;,+
+∈F8

+ 	0.2	𝐶𝐴𝑃𝐸𝑋 (28) 403 

When the RED unit is active, (29) and (30) are enforced, if not 𝑂𝐶;"*;,+ and 404 

𝑂𝐶IJ>'+M;,+  are set to zero. 405 

In (29), 𝑒𝑝 (USD2019·kWh-1) is the electricity price, and 𝑃𝑃+ in kW, the power 406 

consumed to overcome the pressure drop in the high- and low-concentrated channels of 407 

the RED unit. 408 

𝑂𝐶;"*;,+ 	 = 	𝑒𝑝	𝐿𝐹	8760	𝑃𝑃+ (29) 409 

To estimate the replacement cost of membranes (30), we convert the series of 410 

disbursements at the end of the lifetime of membranes, 𝐿𝑇*, into an equivalent yearly 411 

annuity considering the first payment as a future value over the first period (i.e.,	𝐿𝑇*)  412 

and finding the equivalent annuity over that period using the sinking fund factor. The 413 

sinking fund factor converts a single future amount, i.e., 𝐶𝐶IJ>', into a series of equal-414 

sized disbursements, 𝑂𝐶IJ>'+M;,+, made over 𝐿𝑇* equally spaced intervals, at the given 415 

interest rate 𝑟 compound annually (Fraser and Jewkes, 2012). 416 
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𝑂𝐶IJ>'+M;,+ 	 = 	𝐶𝐶IJ>'
𝑟

(1	 + 	𝑟)9E' 	 − 	1
(30) 417 

Wherever needed, all currencies were converted to USD2019 according to the historical 418 

average exchange rate of the corresponding publication year. 419 

Table 3. Parameters of the commercial RED stack (Fumatech GmbH®, Germany).  420 

Parameter Value 
Maximum flow velocity, 𝑣+8 (cm·s-1) 3.0 
Number of cell pairs, Ncp (-) 1000 
Channel size, b (m) × L (m) 0.456 × 0.383 
Spacers 
Thickness, δsp (µm) 270a 
Porosity, εsp (-) 82.5% 
Membranes properties: fumasep® CEM (FKS-50) / AEM (FAS-50) 
Areal resistance, RIEM0 (Ω·cm2) 1.8 / 0.6b 
Permselectivity, αIEM0 (-) 0.93 
Thickness dry, δIEM (µm) 50 
Active area, b × L (m2) 0.175 
a Equal to inter-membrane distance i.e. height of the HC or the LC channels. b Measured 421 
in 0.5 M NaCl at 25 °C.  422 

Table 4. Financial parameters for the RED plant. 423 

Parameter Value 
Plant lifetime, LT (years) 20 
Membranes’ lifetime, LTm (years) 2 
Load Factor, LF 90% 
Discount rate, r 7.5% 
 424 

3.9 Economic Performance Metrics: Levelized Cost of Energy (LCOE) 425 

The LCOE (USD2019 kWh-1), a common metric to benchmark different renewable power 426 

technologies, estimates the average cost per unit of energy generated across the lifetime 427 

of a power plant that would break even the RED project costs. The LCOE gives a first-428 

order assessment of 1he RED project viability (Krey et al., 2014). 429 

Assuming the energy provided annually is constant during the lifetime of the project, 430 

the LCOE reduces to (31).  431 
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𝐿𝐶𝑂𝐸	 =
𝐶𝑅𝐹	𝐶𝐴𝑃𝐸𝑋	 + 	𝑂𝑃𝐸𝑋

𝑇𝑁𝑃	8760	𝐿𝐹
(31) 432 

The set of equations (32) shows the explicit representation of the GDP model (1) with 433 

Nr explicit disjunctions to decide whether the RED units exist or not. 434 

max𝑁𝑃𝑉 = 𝑓(𝑥)
𝑠. 𝑡.

𝑄!,#$%	𝐶!,#$% = 2 𝑄&,#$%	𝐶&,#$%
	&∈)!"#	∪	)$"#	⊆	)#

,

𝑄!,#$% = 2 𝑄&,#$%
		&∈)!"#	∪	)$"#	⊆	)# ⎭

⎪
⎬

⎪
⎫

	∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿, 𝑘 ∈ 	 𝑆,-$ ∪ 𝑆.-$ ⊆ 𝑆!

𝐶&,#$% = 𝐶!,#$%	∀	𝑘 ∈ 𝑆/#$ 	∪ 	𝑆,#$ ⊆ 𝑆!,

𝑄&,#$% = 2 𝑄!,#$%
	!∈)%&'	∪	)!&'⊆)(

B∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿, 𝑖 ∈ 𝑆/#& ∪ 𝑆,#& ⊆ 	𝑆&

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑌,
𝑹𝑬𝑫	𝒔𝒕𝒂𝒄𝒌	𝒎𝒐𝒅𝒆𝒍	𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏𝒔:

ℎ,(𝑥) ≤ 0
𝑰𝒏𝒍𝒆𝒕	𝒑𝒐𝒓𝒕	(𝒎𝒊𝒙𝒆𝒓)	𝒃𝒂𝒍𝒂𝒏𝒄𝒆𝒔:

𝑄!,#$%	𝐶!,#$% = 2 𝑄&,#$%	𝐶&,#$%
	&∈(,&,,)⊆)#

,

𝑄!,#$% = 2 𝑄&,#$%
		&∈(,&,,)⊆)# ⎭

⎪
⎬

⎪
⎫

∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿, 𝑘 ∈ (𝑟, 𝑟𝑜) ⊆ 𝑆!
𝑶𝒖𝒕𝒍𝒆𝒕	𝒑𝒐𝒓𝒕	(𝒔𝒑𝒍𝒊𝒕𝒕𝒆𝒓)	𝒃𝒂𝒍𝒂𝒏𝒄𝒆𝒔:
𝐶&,#$% = 𝐶!,#$%	∀	𝑘 ∈ (𝑟, 𝑟𝑜) ⊆ 𝑆!,

𝑄&,#$% = 2 𝑄!,#$%
	!∈(,,,$)⊆)(

d

∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿, 𝑖 ∈ (𝑟𝑖, 𝑟) ⊆ 𝑆&
𝑩𝒐𝒖𝒏𝒅𝒔	𝒐𝒏	𝒇𝒍𝒐𝒘𝒓𝒂𝒕𝒆	𝒐𝒇	𝒔𝒕𝒓𝒆𝒂𝒎𝒔:

𝑣,2	 ≤ 𝑣,,#$% ≤ 𝑣,3,
𝑄#,#$% = 𝑣,,#$%	𝐴, ,
𝑄,,#$%2 ≤ 	𝑄#,#$% ≤ 	𝑄,,#$%3 j ∀	𝑠 ∈ 𝑆, ,

∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿, 𝑟 ∈ 𝑅𝑈
𝑩𝒐𝒖𝒏𝒅𝒔	𝒐𝒏	𝒄𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏	𝒐𝒇	𝒔𝒕𝒓𝒆𝒂𝒎𝒔:
	𝐶#$%2 ≤ 𝐶#,#$% ≤ 𝐶#$%3 	∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿, 𝑠 ∈ 𝑆, ,

𝐶#$%3 	𝑎𝑛𝑑		𝐶#$%2 	𝑖𝑛	𝑇𝑎𝑏𝑙𝑒	2
𝑩𝒐𝒖𝒏𝒅𝒂𝒓𝒚	𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏𝒔	𝒂𝒏𝒅	𝒍𝒊𝒏𝒌𝒊𝒏𝒈	𝒄𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔:
𝐹𝑟𝑜𝑚	𝑖𝑛𝑙𝑒𝑡	𝑝𝑜𝑟𝑡	𝑡𝑜	𝑅𝐸𝐷	𝑢𝑛𝑖𝑡	𝑐𝑜𝑚𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡𝑠	(𝑥, = 0)
𝐶,&,,,#$% = 𝐶4,,,#$% ,
𝑄,&,,,#$% = 𝑁56	𝑄4,,,#$%

} ∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿, 𝑟 ∈ 𝑅𝑈, 𝑟𝑖 ∈ 𝑃,& ⊆ 𝑃&7

𝐹𝑟𝑜𝑚	𝑅𝐸𝐷	𝑢𝑛𝑖𝑡	𝑐𝑜𝑚𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡𝑠	(𝑥, = 𝐿)	𝑡𝑜	𝑜𝑢𝑡𝑙𝑒𝑡	𝑝𝑜𝑟𝑡
𝐶,,,$,#$% = 𝐶2,,,#$% ,
𝑄,,,$,#$% = 𝑁56	𝑄2,,,#$%

} ∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿, 𝑟 ∈ 𝑅𝑈, 𝑟𝑜 ∈ 𝑃,$ ⊆ 𝑃$89

𝑹𝑬𝑫	𝒔𝒕𝒂𝒄𝒌	𝒄𝒂𝒑𝒊𝒕𝒂𝒍	𝒊𝒏𝒗𝒆𝒔𝒕𝒎𝒆𝒏𝒕:
𝐶𝐶#9:5!,, = 	𝐶𝐶;<=#	(1	 + 	0.517)

𝑷𝒖𝒎𝒑𝒔	𝒂𝒏𝒅	𝒎𝒆𝒎𝒃𝒓𝒂𝒏𝒆𝒔>𝒓𝒆𝒑𝒍𝒂𝒄𝒆𝒎𝒆𝒏𝒕	𝒐𝒑𝒆𝒓𝒂𝒕𝒊𝒏𝒈	𝒄𝒐𝒔𝒕𝒔:
𝑂𝐶68-6,,	 = 	𝑒𝑝	𝐿𝐹	8760	𝑃𝑃,

𝑂𝐶;<=#,?6,,	 = 	𝐶𝐶;<=# 	
𝑟
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⎡

¬𝑌,
𝑁𝑃, = 0

𝐶#,#$% = 	𝐶#$%2 	∀	𝑠 ∈ 	 𝑆,& ∪ 𝑆,$,

2 𝑄&,#$%
&∈)!#⊆)#

= 0,

𝑄#,#$% = 0	∀	s ∈ (𝑟𝑠𝑜, 𝑟𝑖) ⊆ 𝑆,& ∪ 𝑆,#$⎭
⎪
⎬

⎪
⎫

∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿
𝐶𝐶#9:5!,, = 0
𝑂𝐶68-6,,	 = 	0
𝑂𝐶;<=#,?6,,	 = 	0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

∀	𝑟 ∈ 𝑅𝑈

0 ≤ 𝑄#,#$% ≤ 	𝑄#,#$%3 	∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿, 𝑠 ∈ 𝑆	𝑆,
	𝐶#$%2 ≤ 𝐶#,#$% ≤ 𝐶#$%3 	∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿, 𝑠 ∈ 𝑆	𝑆,
𝛺(𝑌,)	 = 	𝑇𝑟𝑢𝑒
𝑥 ∈ 𝑋 ⊆ 	𝑅7
𝑌,	 = 	{𝑇𝑟𝑢𝑒, 	𝐹𝑎𝑙𝑠𝑒}	∀	𝑟 ∈ 𝑅𝑈

	

(32) 435 

  436 
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Table 5 Specifications of the illustrative example and the cases of study. 437 

 Candidate 
RED units, Nr 

LC Concentration 
(mM) 

Flowrate (m3·h-1) 
HC LC 

Example 4 4 10 10 
Case study     
Scenario #1 10 4 100 100 

Scenario #2 10 40 10 10 
Membrane’s price is 2.0 €·m-2. HC feed concentration = 1.23 M NaCl. T = 25 °C 438 

4. Illustrative example 439 

We illustrate the functionality of the RED process optimization model using the 440 

superstructure in Fig. 4, with four conditional industrial-scale RED stacks (relevant 441 

parameters in Table 3). An actual RED plant will probably house several hundreds of 442 

RED units, especially as regards economies-of-scale cost reduction, but we decide to 443 

stick to four RED units to provide an instructive demonstration of the GDP model. The 444 

same logic applies to feeds volume; to represent a low-availability feed case, we set the 445 

volume of the HC and LC feeds roughly equal to the maximum inlet flowrate of the 446 

RED units (i.e., 𝑄&'!,+'$,'!3 ≅ 𝑄+,'!38 	∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿). Later on, in Case Study, we wade 447 

into feeds availability influence on the optimal design of the RED process. The size and 448 

computational performance of the GDP model can be found in section 6. For ease of 449 

representation, Fig. 5 shows a split view of the high salinity (top graph) and low salinity 450 

(bottom graph) units’ ports and all feasible streams of the RED process superstructure in 451 

Fig. 4. For the given high- and low-salinity feed streams’ properties (i.e., flow velocity, 452 

concentration, and temperature), and membranes cost in Table 5, and the given 453 

parameters, the solution of the GDP problem in equations (1)–(32) provides the cost-454 

optimal NPV topology, shown in Fig. 6, and decision variables that balance electricity 455 

production and the increase in capital and operating expenses. Discrete decisions 456 

involve the working RED units and the active water streams. Continuous decisions are 457 

the flowrate and concentration of the inlet streams and the electric current of each active 458 
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RED stack. We set the volume of the HC and LC feeds roughly equal to the maximum 459 

inlet flowrate of the RED units (i.e., 𝑄&'!,+'$,'!3 ≅ 𝑄+,'!38 	∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿).  460 

To assess the optimal solution to the GDP problem, we also estimate the working 461 

conditions (i.e., the concentration of the low-salinity inlet stream, the flowrate of the 462 

high and low-salinity inlet streams, and the electric current) that maximize the net 463 

power output of the stand-alone RED stack. 464 

 465 
Figure 4 RED process superstructure with four conditional RED units. In the bottom 466 
graph, the parent RED Process Unit, RPU, embeds the set of candidate RED units, 𝒓 ∈467 
𝑹𝑼, a pair of source, 𝒓𝒔 ∈ 𝑹𝑺𝑼, and sink, 𝒓𝒎 ∈ 𝑹𝑴𝑼, permanent units for the high-468 
salinity, HC, and low-salinity, LC, streams. 469 
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 470 
Figure 5 Port representation of the RED process superstructure of alternatives in Fig. 4. 471 
The top graph shows all feasible links between HC ports and the bottom graph between 472 
LC ports. The dark and light blue-colored arrows represent the RED units’ HC and LC 473 
recycled streams. Port notation: HC (high concentration ports), LC (low concentration 474 
ports), and RU (RED units’ HC and LC ports). For ease of representation, the inlet and 475 
outlet ports of the feed, source, sink, and discharge units are lumped into ports fs, rsu, 476 
rmu, and dm. 477 

The NPV-optimal solution, whose port representation is in Fig. 6, keeps three RED 478 

units working. The limited number of active RED units restricts the nominal capacity of 479 

the RED system (2.60 kW), as such, the capital and operational expenses outweigh the 480 

benefits from electricity sales resulting in an unprofitable design (negative NPV of 481 

$15,391, and LCOE of $194 MWh-1 above electricity market price). Larger membranes’ 482 
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lifetimes, which it is acceptable given the mild working conditions of the RED units, 483 

and economies of scale would bring clear cost reductions that would make the RED 484 

process profitable (Daniilidis et al., 2014; Post et al., 2010). 485 

Regarding the working conditions of the optimal solution, the HC and LC flow velocity 486 

of the RED units declines below the estimated net-power-optimal value of the stand-487 

alone RED stack (Fig. 12953 W) owing to pumps’ investment and electrical 488 

consumption costs. Lower velocity means longer residence time of the HC and LC 489 

streams in the RED unit compartments facilitating the ions’ transfer from the high 490 

salinity side to the low salinity one. Hence, to keep the concentration gradient for longer 491 

along channels, the LC inlet stream concentration of all RED units should be lower than 492 

the net-power optimal value (i.e., 40 mM, Fig 12). The limited high- and low-salinity 493 

feeds, however, constrain the inlet flowrate of the RED units and so the chances to 494 

reach the optimal LC inlet concentration. Hence, the recycled and reused LC streams 495 

from RED unit r3 increase the LC inlet stream concentration of all RED units above the 496 

optimal value (Fig. 6 and Fig. 12). 497 

The RED unit r3 works with a less saline LC inlet stream, a higher LC flow, and a 498 

lower HC flow than the remainder active units such that the concentration of the LC 499 

inlet streams approaches the optimum once the r3’s outlet LC streams mix with the 4 500 

mM LC feed (Fig. 6). The RPU’s source unit, rs, supplies a lower volume of HC than 501 

LC feed to the RED units, since higher flow velocities in LC than in HC compartments 502 

enhances the net power of the RED unit (Ortiz-Martínez et al., 2020; Tristán et al., 503 

2020a). 504 
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 505 
Figure 6 Illustrative example result: Port representation of the NPV-optimal RED 506 
process design with three active RED units. The top graph shows the links between HC 507 
ports and the bottom graph between LC ports. 508 

The polarization and power curves of the RED units (Fig. 7) vary according to the inlet 509 

streams’ flowrate and concentration, and so does the optimum working point. That is, 510 

the GDP model adjusts the electric current of each RED unit to peak its net power 511 

output except unit r3, whose electric current is reduced below the optimum to slow 512 

down the electromigration of ions across membranes. The reduced electromigrative 513 

transport thereby limits the LC stream concentration increase. 514 

 515 
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 516 
Figure 7 Illustrative example results: Polarization and polar curves of the active RED 517 
units r1, r2, and r3. Markers denote the maximum net-power working conditions (max 518 
NPr) and the NPV-optimal RED process working conditions (RED system) of the RED 519 
units. 520 

5. Case study 521 

Once we have demonstrated the GDP model functionality in the illustrative example, 522 

we now apply the GDP optimization model to superstructure in Fig. 8, with ten 523 

industrial-scale RED candidate units (with the same parameters as the illustrative 524 

example, Table 3) and two feed scenarios (see Table 5) to explore the influence of the 525 

feedstreams concentration and availability on the cost-optimal topology and operating 526 

conditions of the RED process. In the high-availability case (scenario #1), we set the 527 

flowrate of the HC and LC feeds equal to the RED unit’s maximum inlet flowrate times 528 

the number of candidate RED units in the superstructure (𝑄&'!,+'$,'!3 ≅529 

𝑁+ 	𝑄+,'!38 	∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿); in the low-availability case (scenario #2), the volume of the HC 530 

and LC feeds are nearly equal to the maximum inlet flowrate of the RED units 531 

(𝑄&'!,+'$,'!3 ≅ 𝑄+,'!38 	∀	𝑠𝑜𝑙 ∈ 𝑆𝑂𝐿). We discuss the model size and computational 532 

performance of the two cases of study in section 6. As in the illustrative example, we 533 
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compare the working conditions of each RED stack in the cost-optimal design with 534 

those that would maximize the net power of the stand-alone RED unit. To size the 535 

improvement in cost-competitiveness of the RED process, we also compare the optimal 536 

configuration in scenarios #1 and #2 with a series arrangement of the RED units without 537 

either recycling or reusing alternatives of the RED units’ outlet streams, and the same 538 

number of candidate units. To reproduce the series layout from our previous assessment 539 

(Tristán et al., 2020b), we fix the net-power optimal concentration and flow velocities of 540 

the stand-alone RED unit to the inlet feedstreams of the series, the electric current of 541 

each RED unit is left as a decision variable and is adjusted to maximize the net power of 542 

the RED system.  543 

The GDP optimization model predicts the NPV-optimal flowsheet design from the 544 

representation of alternatives, whose port representation is in Fig. 8, for the given: (i) 545 

high- and low-salinity feed availability (i.e., ~100 and ~10 m3·h-1) and (ii) low-salinity 546 

feed concentration (i.e., 40 and 4 mM NaCl) in scenarios #1 and #2. 547 
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 548 

 549 
Figure 8 Case Study. Port representation of the RED process superstructure with ten 550 
RED candidate units for scenarios #1 and #2. The top graph shows all feasible links 551 
between HC ports and the bottom graph between LC ports. The dark and light blue-552 
colored arrows represent the RED units’ HC and LC recycled streams. Port notation: 553 
HC (high concentration ports), LC (low concentration ports), and RU (RED units’ 554 
ports).  555 

The cost-optimal flowsheet design in scenarios #1 (Fig. 9) and #2 (Fig. 10) outperforms 556 

the conventional series arrangement (Table 6), albeit the feed conditions and the limited 557 

numbers of RED units in scenarios #1 and #2 render unprofitable RED process designs. 558 

Maximizing the total net power output requires larger disbursements that outweigh the 559 

meager profits from electricity sales, even if the feed conditions are more favorable than 560 

in scenario #2. 561 
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Table 6 Case study optimal results: Techno-economic performance metrics of series 562 
layout, and scenarios #1 and #2. 563 

 TNP (kW) LCOE($·MWh-1) NPV ($) 
Series 3.65 293 -50,800 
Scenario #1 9.35 121 -543 
Scenario #2 1.78 238 -16,789 
TNP: Total Net Power; LCOE: Levelized Cost of Energy; NPV: Net Present Value. 564 

Feed scenario #1 yields the RED process’ optimal design in Fig. 9. The larger 565 

feedstreams’ volume allows installing more RED units, and the 4 mM LC feed adds 566 

reuse and recycling alternatives to the decision space, enabling the active RED units to 567 

work closer to the optimal net power conditions of the stand-alone RED stack (Fig. 11 568 

and Fig. 12). The increased number of RED units working in near-optimal conditions 569 

thereby enhances the RED system power rating to 9.35 kW. As a result, revenues 570 

almost break even the total cost of the RED process (i.e., the LCOE almost equals the 571 

electricity market price and the NPV gets closer to zero, see Table 6).    572 
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 573 
Figure 9 Port representation of the optimal RED system design for feed scenario #1. 574 
The top graph shows the links between HC ports and the bottom graph between LC 575 
ports. 576 
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 577 
Figure 10 Port representation of the optimal RED system design for feed scenario #2. 578 
The top graph shows the links between HC ports and the bottom graph between LC 579 
ports. 580 
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 581 

Figure 11. Case Study results: NPV-optimal working conditions of the active RED 582 
units for scenarios #1 and #2, and the working conditions that maximize the net power 583 
output of the stand-alone RED stack. EMF: Electromotive force (Nernst potential); E: 584 
Electric potential of the stack; I: Electric current of the stack; GP: Gross power; NP: Net 585 
power. 586 
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 587 

Figure 12. Case Study results: NPV-optimal inlet flowrate and molar concentration of 588 
the active RED units for scenarios #1 and #2, and the working conditions that maximize 589 
the net power output of the stand-alone RED stack. v: linear crossflow velocity within 590 
the RED unit’s channel; C: NaCl molar concentration of the RED unit’s inlet stream. 591 

The capital and operational costs of pumps cause the RED units’ HC and LC inlet 592 

flowrate (Fig. 12) to be lower than the one that would maximize the net power output of 593 

the RED stack. Hence, the RED unit would deplete the concentration gradient earlier 594 

unless the LC inlet stream concentration of all RED units is decreased below the net-595 

power optimal value (i.e., below 40 mM) as the optimization model predicts; the 596 

recycled and reused low-salinity streams from RED units r1, r8, and r9 concentrate the 597 

LC inlet stream of all RED units to reach the optimal value (Fig. 9 and Fig. 12). The 598 

electric current of each RED unit maximizes the net power output according to the inlet 599 

flow and concentration (Fig. 11) as in the illustrative example. 600 

Feed scenario #2, shown in Fig. 10, yields an optimal flowsheet design with larger 601 

LCOE and lower NPV than scenario #1. The LC feed’s limited availability restricts, 602 

even more, the HC and LC inlet flowrate of the RED units for the sake of profitability. 603 
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To maximize the NPV of the RED process, the number of active RED units should 604 

decrease from ten in scenario #1 to two, such that the RED units’ working conditions fit 605 

better to the adverse feed conditions. The 40 mM LC feed dwindles recycling and reuse 606 

alternatives that would improve the RED process power rating. A 4 mM rather than a 40 607 

mM LC feed, as in the illustrative example, would enable adding a RED unit which 608 

results in a costlier but more productive RED system that offsets the TAC increase. The 609 

rise in the net power production from 1.78 to 2.60 kW would make the revenues share 610 

of total annual costs increase from ~50% up to ~62%. 611 

The cost-optimal flowsheet design in scenarios #1 and #2 outperforms the conventional 612 

series arrangement (Table 6), albeit the feed conditions and the limited numbers of RED 613 

units in scenarios #1 and #2 render unprofitable RED process designs. Maximizing the 614 

total net power output requires larger disbursements that outweigh the meager profits 615 

from electricity sales, even if the feed conditions are more favorable than in scenario #2. 616 

Table 6 Case study optimal results: Techno-economic performance metrics of series 617 
layout, and scenarios #1 and #2. 618 

 TNP (kW) LCOE($·MWh-1) NPV ($) 
Series 3.65 293 -50,800 
Scenario #1 9.35 121 -543 
Scenario #2 1.78 238 -16,789 
TNP: Total Net Power; LCOE: Levelized Cost of Energy; NPV: Net Present Value. 619 

Overall, these results illustrate how the GDP optimization model can assist the RED 620 

process conceptual design in determining the cost-optimal one out of a complex process 621 

configuration and working decision space. The reader must recall that the present study 622 

serves to illustrate the functionality of the GDP optimization model on the conceptual 623 

design of the RED process rather than giving actual figures of the RED technology. The 624 

scale-up of the RED process’s nameplate capacity to the MW order with more candidate 625 

RED units and longer membranes’ lifetime would likely make the project profitable 626 
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(Post et al., 2010). For instance, Giacalone et al. estimated the LCOE of a large-scale 627 

RED plant recovering energy from several natural and anthropogenic SG sources. The 628 

authors assumed the high and low salinity feedwaters are equally split between a set of 629 

identical RED units arranged in parallel; the scarcer feed restricts the number of RED 630 

units that can be installed and, accordingly, the nominal capacity of the RED plant. The 631 

RED plant sourced with SWRO brine (~1.2 M NaCl) and treated wastewater (17 mM 632 

NaCl)—akin to Illustrative example and Case Study concentrations but with far more 633 

feeds volume—would deliver two to three orders of magnitude more net power at a 634 

competitive cost.  SGE-based technologies—yet in early development stages and, as 635 

such, costlier than other mature low-carbon power technologies—promise worthy 636 

benefits for society’s welfare and environment protection and conservation. Hence, it is 637 

important to note that actual investment decisions must consider all these factors that 638 

LCOE and NPV, as they are defined, do not fully reflect. 639 

 640 

6. Computational results 641 

Table 7 reports the GDP model sizes and solution times of the illustrative example with 642 

four candidate RED units, and the cases of study #1 and #2 with ten candidate RED 643 

units; scenarios #1 and #2 have equal sizes but different solution times subject to the 644 

feed streams conditions. We code and solve the GDP model with Pyomo algebraic 645 

modeling language written in Python (Hart et al., 2017) and Pyomo.GDP modeling 646 

environment for logic-based modeling and optimization (Chen et al., 2021a) on a 647 

machine running Windows 10 (x64) with 6 cores processor (Intel® Core™ i7-8700 CPU 648 

@3.2 GHz) and 16 GB of RAM. 649 

We apply the Global Logic-based Outer Approximation (GLOA) algorithm (Chen et al., 650 

2021a; Lee and Grossmann, 2001)—available in Pyomo.GDP through GDPopt solver—651 
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to solve the non-convex GDP problem (1)–(32). This strategy decomposes the solution 652 

to the GDP into reduced NLP subproblems and master MILP problems, to avoid “zero-653 

flow” numerical issues arising in nonlinear design problems when units or streams 654 

disappear. 655 

The MILP master problem is solved with CPLEX and the reduced NLP subproblems 656 

with the multistart heuristic algorithm MSNLP and IPOPTH as local NLP solver. We 657 

access the solvers from GAMS 34.1.0 via the Pyomo-GAMS interface. 658 

Given the complexity of the NLP subproblems, the stopping criteria depend on the 659 

maximum number of iterations of the MSNLP solver. We set 500 gradient-based NLP 660 

solver calls from multiple starting points as it suffices to guarantee a near-optimal 661 

solution. The time limit for each run is set at 1 hour (3600 CPU seconds). 662 

As expected, each RED unit added to the superstructure increases the size of the model 663 

and, as such, the time in solving the GDP problem (see Fig. 13). The most time-664 

demanding steps are (set-covering) initial linearization of the GDP problem and solving 665 

the reduced NLP subproblems—together require almost 45% of the total solution time 666 

with four candidate RED units which scales up to ~80% with 20 RED units.  667 

Table 7 GDP model size, solution time, and objective function value for the illustrative 668 
example and the cases of study. 669 

  vars Bool cont 
cons 
(nl) disjtn 

CPU 
Time (s) NPV ($) 

Example  1226 8 1218 1298 
(278) 

4 35 -15,348 

Case study #1 
#2 

3278 20 3258 3458 
(686) 

10 282  
328 

-543 
-16,789 

Headings: vars = variables, Bool = Boolean variables, cont = continuous variables, cons = constraints, nl 670 
= nonlinear constraints, disjtn = disjunctions 671 
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   672 

Figure 13. Model size and solution time as a function of candidate RED units in the 673 
superstructure for the feed conditions of the illustrative example (see Table 5). 674 

  675 
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7. Conclusions 676 

In this work, we propose a non-convex GDP model to systematically synthesize and 677 

optimize the RED process for salinity-gradient-based electricity production. We apply 678 

the GLOA algorithm to solve the GDP problem. The solution to the GDP problem 679 

provides the hydraulic topology, i.e., number of active RED units and their hydraulic 680 

arrangement, and operating conditions of each RED stack that maximize the NPV of the 681 

RED system. To illustrate the functionality of the GDP model, we defined an example 682 

with four conditional RED units. Then, we assessed two feedstreams’ scenarios in an 683 

up-scaled system with ten candidate RED units. We compared the cost-optimal design 684 

in the two feed scenarios with a net-power optimal series arrangement. Even though the 685 

limited number of RED units and feed conditions render the RED process uneconomic, 686 

the optimal solution to the GDP problem in both scenarios yields more profitable 687 

designs than the conventional series staging of the RED units where the net power 688 

output is maximized. Longer lifespan of membranes and up-scaling of the RED process 689 

nameplate capacity would make the RED process profitable. Our results have shown 690 

that mathematical programming techniques based on GDP are an efficient and 691 

systematic decision-making approach over simulation alone to advance full-scale RED 692 

progress. The GDP model could be a valuable tool to assist RED field demonstration 693 

and deployment stages in real environments. 694 

Furthermore, given the complexity and non-convex nature of the RED stack model, we 695 

will explore the development of a surrogate model to improve the computational effort 696 

and robustness of the GDP model while preserving the accuracy of our rigorous RED 697 

stack model. We will also extend the superstructure of alternatives and decision space 698 

with more discrete and continuous decision variables, concerning the RED stack design 699 

(e.g., the number of cell pairs, properties of spacers and membranes) and the RED 700 
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system (e.g., adding auxiliary equipment as DC-AC inverters, pre-treatment of feed 701 

solutions). We will also consider environmental concerns through multi-objective 702 

optimization. 703 
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