
1

Disjunctive Multiperiod Optimization Methods

for Design and Planning of Chemical Process Systems

Susara A. van den Heever* and Ignacio E. Grossmann**

Department of Chemical Engineering, Carnegie Mellon University

Pittsburgh, PA, 15213

July 1998 / Rev. April 1999

Abstract

In this paper, we present a general disjunctive multiperiod nonlinear optimization model, which incorporates

design, as well as operation and expansion planning, and takes into account the corresponding costs incurred in each

time period. This model is formulated with the use of logic and disjunctive programming, and includes Boolean

variables for design, operation planning and expansion planning. We propose two algorithms for the solution of

these problems. The first is a logic-based Outer Approximation (OA) algorithm for multiperiod problems. The

second is a bilevel decomposition algorithm, that exploits the problem structure by decomposing it into an upper

level design problem and a lower level operation and expansion planning problem, each of which is solved with the

logic-based OA algorithm. Applications are considered in the areas of design and planning of process networks, as

well as retrofit design for multiproduct batch plants. The results show that the disjunctive logic-based OA algorithm

performs best for small problems, while the disjunctive bilevel decomposition algorithm is superior for larger

problems. In both cases, a significant decrease in MILP solution time and total solution time is achieved compared

to DICOPT++. Results also show that problems with a significant number of time periods can be solved in

reasonable time.

* E-mail: susara@andrew.cmu.edu
** Author to whom correspondence should be addressed. E-mail: grossmann@cmu.edu

2

1. Introduction

Multiperiod optimization models for design and planning in the chemical industry have

received considerable attention in recent years (e.g. Dedopoulos and Shah, 1996; Iyer and

Grossmann, 1997; Iyer and Grossmann, 1998; Papalexandri and Pistikopoulos, 1994; Paules and

Floudas, 1992; Sahinidis et al., 1989; Sahinidis and Liu, 1996; Varvarezos et al., 1992).

Multiperiod plants are process plants where costs and demands typically vary from period to

period due to market or seasonal changes (Fig. 1). Examples of multiperiod plants include

refineries, utility systems and oil production platforms.

0

20

40

60

80

100

120

Winter Spring Summer Fall

Demand Cost

Figure 1: Seasonal changes in demand and cost

Models for multiperiod optimization typically have an objective, such as minimizing

cost, subject to constraints in the form of equations and usually involve both continuous and

discrete variables. Continuous variables can be either state variables representing operating

conditions such as time dependent flows and temperatures, or design variables representing

equipment sizes. Discrete variables can be binary (0 or 1) or Boolean (true or false) and

represent discrete decisions, for instance to invest in a unit or to operate a unit in a given period.

Equations representing these models can be linear, for example mass balances, or nonlinear, for

example process performance equations. Constraints can be valid for all periods or for an

individual period, and some variables and/or constraints may link the time periods (Fig. 2),

preventing a decomposition solution where time periods are solved independently. Models

involving 0-1 and continuous variables with nonlinear constraints are classified as Mixed Integer

Nonlinear Programming (MINLP) problems. MINLP problems are notorious for being NP-

3

complete (Garey and Johnson, 1978), meaning they require exponential solution times in the

worst case. For multiperiod MINLP models, solution times quickly become intractable,

particularly if the models involve an increase in the number of binary variables with each

additional period. Thus, there is clearly a need for developing more efficient algorithms and

models.

 1 2 3 4
Time period

Linking Constraints

L
in

ki
ng

 V
ar

ia
bl

es

Figure 2: Block-diagonal structure with linking constraints and linking variables

DICOPT++, the MINLP solver used in the commercial optimization software package

GAMS (Brooke et al., 1992), is the basis of comparison for the algorithms proposed in this work.

It makes use of the outer-approximation (OA) algorithm (Duran and Grossmann, 1986), which

involves iterating between a Nonlinear Programming (NLP) subproblem where the binary

variables are held fixed and a Mixed Integer Linear Programming (MILP) master problem where

the model is linearized at the NLP solution points. A similar decomposition technique for mixed

integer problems is the General Benders Decomposition (GBD) (Geoffrion 1972) which involves

the solution of NLP sub-problems and pseudo-integer master problems. The latter correspond to

the projection of the full mixed-integer space of OA onto the space of binary variables only

(Quesada and Grossmann, 1992), and because of this projection, the OA master problem predicts

tighter bounds than the GBD master problem. It will be demonstrated in Section 4 that the

bottleneck in the computation is often the MILP master problem.

Sahinidis et al. (1989) presented a multiperiod MILP model for long range planning in

the chemical industry and solved the problem with techniques such as branch and bound, strong

cutting planes, GBD and heuristics. Other methods used to solve multiperiod MILPs include

constraint generation and projection used in conjunction with a cutting plane algorithm

4

(Sahinidis and Liu, 1996), and a bilevel decomposition strategy for synthesis and planning in the

chemical industry (Iyer and Grossmann, 1998). Dedopoulos and Shah (1996) presented both

MILP and MINLP formulations for multiperiod maintenance planning using an aggregation

approach to reduce the problem size. Varvarezos et al. (1992) proposed an OA based

decomposition method for convex multiperiod MINLPs where the NLP subproblem is further

decomposed into a linearized master problem and a NLP primal problem with penalties to ensure

feasibility. Algorithms based on GBD have also been employed for the solution of multiperiod

MINLP synthesis and planning problems (Papalexandri and Pistikopoulos, 1994). Paules and

Floudas (1992) proposed a nested solution procedure combining the GBD and OA algorithms

and applied it to heat integrated distillation sequences with multiperiod MINLP formulations.

None of these methods, however, specifically address the problem of reducing the computational

effort involved in solving the MILP master problem.

The above mentioned models have been developed for specific applications. In sections

2 and 3 we present the problem statement and propose a general multiperiod MINLP model for

design, operation planning and expansion planning of general chemical process systems. Section

4 contains a motivating example showing the need for more efficient solution methods for

multiperiod MINLPs that involve binary variables for each time period. In Section 5 we

introduce a disjunctive formulation of the general model and show how this model can be

converted into specific models through appropriate manipulations. Disjunctive programming is

an alternative representation of mixed integer programming problems and is discussed by Raman

and Grossmann (1994) for the linear case. Motivated by the use of generalized disjunctive

programming, we propose a disjunctive OA algorithm in Section 6 for solution of the proposed

model. The proposed method is an extension of the logic-based OA algorithm for single period

MINLPs (Turkay and Grossmann, 1996a). A second algorithm is proposed in Section 7, based

on the bilevel decomposition algorithm of Iyer and Grossmann (1998) involving a higher level

design problem and a lower level planning problem. While Iyer and Grossmann’s method was

restricted to MILPs and the subproblems were solved with the commercial solver CPLEX, the

proposed disjunctive bilevel decomposition algorithm is applicable to MINLPs and the sub-

problems are solved with the disjunctive OA algorithm. The effectiveness of these algorithms is

demonstrated in Section 8 with four examples, ranging from a small illustrative example to an

industrial size problem, in the areas of process planning and retrofit design of batch plants.

Conclusions are discussed in Section 9.

5

2. Problem Statement

Given is a process network superstructure operating over T time periods. These can correspond to

months, seasons, years, or to periods from discretized stochastic problems or from multiple

scenarios relating different operating conditions. Demands, costs, feed conditions, and technical

parameters vary from period to period. Deterministic data for these parameters are assumed for

the model. The problem involves optimizing the process over all time periods and has an

objective of minimizing cost or maximizing profit subject to constraints. Constraints include

mass balances, heat balances, process performance equations, linking constraints and logical

relationships between processes and decision variables. We consider three main decisions in the

optimization problem:

a) Selection of a network structure

b) Operation or shutdown of a process in period t

c) Expansion of a process in period t

Decision (a) is a one-time decision involving investment costs, while the other two decisions are

valid for every time period and can involve both fixed and variable operation and expansion

costs. Constraints are both linear and nonlinear, while variables are discrete (binary decision

variables) and continuous (flows, equipment sizes, etc.). Therefore, the model falls under the

general class of multiperiod MINLPs. A general model for design and operation/expansion

planning is presented next and applied to a specific example. This model will serve as

motivation for developing a more efficient model formulation and solution methods.

3. MINLP model

Consider optimizing a given process network superstructure over time periods t = 1…T. A

general model for design and operation/expansion planning of such a superstructure is as follows.

We first define the sets, parameter and variables for the process network as shown below:

Sets:

I set of streams

6

J set of processes

T set of time periods

Indices:

i stream in set I

j process in set J

t time period in set T

Parameters:

αjt variable expansion cost for unit j in period t

βjt fixed expansion cost for unit j in period t

γjt fixed operating cost for unit j in period t

cit cost associated with stream i in period t

U valid upper bounds for corresponding variables

Variables:

Binary decision variables

yj Selection of investment in unit j

wjt Operation of unit j in period t

zjt Capacity expansion of unit j in period t

Continuous decision variables

Qjt Capacity of unit j in period t

QEjt Capacity expansion of unit j in period t

xt State variables in period t

xit Subset of state variables for stream i in period t

COjt Operating cost of unit j in period t

CEjt Expansion cost of unit j in period t

Based on the above definitions, the model is as follows:

min)1(∑∑∑∑∑∑ ++
t i

itit
t j

jt
t j

jt xcCECO

subject to

7

{ }

TtIiJj

zwyxQEQCECO

eEy

dtjwz

ctjzw

btjyw

ajwy

tjUzQE

tjUwx

tjQEQQ

tjxxQh

txxg

tjzQECE

tjwCO

jt

t

jjt

jjt

t
jtj

jtjt

jtt

jttjjt

ttjtjt

ttt

jtjtjtjtjt

jtjtjt

jt

∈∈∈
∈≥

≤

∀≤

∀≤

∀≤

∀≤

∀≤−

∀≤−

∀+=

∀≤
∀≤

∀+=

∀=

∑

∑

=

−

−

−

1,0,,0,,,,

)10(

)9(,

)9(,

)9(,

)9(

)8(,0

)7(,0

)6(,

)5(,0),,(

)4(0),(

)3(,

)2(,

1

1,

1

1

τ
τ

βα
γ

(P)

Equation (1) is the objective function minimizing total cost, while (2) and (3) represent

operating and expansion costs, respectively. Global constraints valid for a particular period, such

as mass balances over mixers, are represented by (4). Constraints represented by (5) are valid for

a given unit j in a particular period, for example unit input-output relationships. Note that both

(4) and (5) may generally involve “pass-on” variables, xt-1, from a previous time period, in which

case they will give rise to linking constraints. Only a small subset of equations involve “pass-

on” variables, if they are present at all, and hence the block-diagonal structure of Fig. 2.

Additional linking constraints are represented by (6) and state that the capacity at the current

period equals the capacity at the previous period plus the capacity expansion. Equation (7) sets

all state variables associated with unit j to zero if it is not operated in period t, while equation (8)

sets capacity expansion of unit j to zero if it is not expanded in period t. Equations (9a)-(9d)

represent logical relationships between the binary variables. Equation (9a) states that a unit is

operated in at least one period if it is selected, while (9b) states that a unit must be selected if it is

operated in any period. Equation (9c) states that a unit can only be operated if it is already

expanded beyond zero capacity, and (9d) states that a unit may only be expanded in a certain

period if it is operated. The assumption here is that unit j is only expanded in period t if it needs

to be operated in period t. This is a realistic assumption, seeing that there will be no need for

expansion if unit j is never operated. The construction work for an expansion has to be

8

completed before operation starts, and is dealt with by discounting the expansion costs

appropriately. Equation (10) represents logic propositions relating binary design variables, y, for

the topology of the network (combinations of units that are permitted). In case of no expansion

(zjt=0), (1) becomes min ∑∑∑∑∑ ++
t i

itit
j

j
t j

jt xcCICO and (5) becomes jjjjj QyCI αβ +=

where jtj QQ ≥ for all t. In all problem formulations hereafter, the domains j∈J, i∈I and t∈T

apply, but are omitted for the sake of convenience.

It should be noted that while the binary variables yj are related to the selection of a unit

independent of time period, the binary variables wjt and zjt for operation and expansion are

defined for each time period. Hence the number of these variables will increase as the number of

time periods increase.

4. Example 1

Consider optimizing the process network superstructure given in Figure 3 over time periods t =

1..21. Demands and costs differ from period to period with an increasing trend, and there exists

a trade-off between costs and process efficiency. It is required to find an optimal structure in

which only one of processes 2 and 3 are selected, or neither, in which case raw material B is

purchased. It is also required to find the optimal operational and capacity expansion plan. Due

to the large amount of data for the examples, they are not presented in this paper. Readers

interested in the data can contact the authors.

Process 2

Process 1

Process 3

Raw
material
A

Intermediate
product B

Raw material B

Product C

Intermediate
product B

Figure 3: Process network superstructure (Kocis and Grossmann, 1989)

9

Figure 4 shows the optimal solution for the above example over five time periods. Other

specific solutions are not discussed, since the intention of this example is to illustrate the

computational difficulties.

Figure 4: Example of solution over 5 time periods

In applying model (P) to this superstructure, and using DICOPT++ to obtain the solution,

it becomes apparent that the major bottleneck is the solution of the MILP master problem. This

is due to the increase in binary variables with each additional time period, as shown in Table 1.

The NLP subproblems do not contain any binaries and are therefore not as difficult to solve as

the MILP master problem. As seen in Figure 5, the MILP solution time increases nearly

exponentially versus the modest increase of the NLP time. Note the maximum of 9.7 CPU

seconds for solving the NLP subproblem versus the near 500 seconds required for solving the

MILP master problem at 21 time periods. The rest of the paper concentrates on addressing the

problem of reducing the computational time of the master problem.

Table 1: Growth in problem size

Time Discrete Continuous Constraints

Periods Variables Variables

1 9 18 38

5 33 74 154

9 57 130 270

13 81 186 386

17 105 242 502

21 129 298 618

Process 2

Process 1A

B

C

Purchase periods 1-2
B

Invest: process 1 & 2

Operate all periods
Expand 1st period

Operate periods 3 - 5
Expand 3rd period

10

0

100

200

300

400

500

0 2 4 6 8 10 12 14 16 18 20 22

Time period

C
P

U
 s

ec
on

ds

NLP time

MILP time

Figure 5: Solution time for the MILP master problem vs. the NLP subproblem

5. Disjunctive Multiperiod Model

5.1 Background

Raman and Grossmann (1994) demonstrated the representation of mixed-integer logic

through generalized disjunctive programming. Consider the disjunction (a set of constraints of

which at least one must be valid) represented here with the use of the logic operators OR (∨) and

NOT (¬):

tj

c

xB

w

c

xh

w

jt

jt

jt

jtjt

jt

jt

,

0

00)(∀
















=
=

¬

∨
















=

≤

α

The above representation can be interpreted as follows: If unit j is operated in period t (wjt

= true), then enforce equation hjt(x) describing that unit and apply a fixed cost αjt. If the unit is

not operated (wjt = false), the fixed cost and a subset of continuous variables are set to zero

through the matrix Bjt. The logical relationships among discrete variables describing connections

and interactions between units are given through logic propositions consisting of the variables

and the logic operators (such as OR (∨), AND (∧), NOT (¬) and IMPLY (⇒)). For example,

 y1 ⇒ y2 ∧ y3

11

means that selection of unit 1 implies selection of unit 2 and selection of unit 3. Likewise,

 yj ⇒ ∨t zjt

means that selection of unit j implies expansion of unit j in at least one of the periods.

5.2 Model

In the following derivation, we convert model (P) step by step to its disjunctive form.

First consider only the expansion planning and associated equations and variables:

tj

CE

QQ

z

QECE

QEQQ

z

jt

tjjt

jt

jtjtjtjt

jttjjt

jt

,

0

1,1, ∀
















=

=

¬

∨
















+=

+= −−

βα
(C1)

(C1) implies that if unit j is expanded in period t, equations (3) and (6) are applied and if

not, the capacity simply equals the capacity from the previous period and no cost is incurred.

Next we consider the higher level decision of operation planning:

tj

CO

xB

w

CequationsExpansion

CO

dxxQh

w

jt

t
jt

jt

jtjt

ttjtjt

jt

,

0

0

)1(

),,(1 ∀
















=
=

¬

∨





















=

≤−

γ
(C2)

(C2) implies that if unit j is operated in period t, the appropriate equations (2) and (5) are

applied, and if not, a subset of variables associated with that unit and operation costs are set to

zero. Note that disjunctions (C1) are embedded in (C2), seeing that an expansion will only be

considered if the unit is operated in the given time period (wjt = True). The construction of the

expansion is started some time before operation starts, and is dealt with through appropriate

discounting of expansion costs. Finally, we add the design level of decision making:

j

t

CI

xB

y

QCI

or

CequationsExpansion

and

CequationsOperation

y

j

t
jt

j

jjjj

j

∀





















∀

=
=

¬

∨



























+=

0

0

)

)1((

)2(

αβ

(C3)

(C3) implies that if it is decided to install unit j, (yj = True), the appropriate equations are

applied, and if not, a subset of variables associated with that unit are set to zero for all periods

12

and no cost is incurred. Disjunctions (C2) and (C1) are embedded in (C3), seeing that an

operational and expansion plan is only necessary if it is decided to invest in a process.

Furthermore, if the expansion is not to be included in the problem, (C1) is simply replaced by the

investment cost function. By substituting the applicable equations into (C3), adding all

remaining equations from (P), and expressing constraints (9a)-(10) in their propositional logic

form (see Raman and Grossmann, 1994) we obtain the final disjunctive formulation of the

multiperiod model (P).

Model (PD):

min ∑ ∑∑ ∑∑ ∑ ++=
t i

itit
t j

jt
t j

jt xcCECOZ

subject to

{ }FalseTruezwyxQEQCOCE

Truey

tjwztjzw

tjywtjwy

j

t

xB

y

t

CO

xB

w

CE

QQ

z

QECE

QEQQ

z

CO

dxxQh

w

y

txxg

jtjtj

t

jt

jjtjt

T

t
j

t
jt

j

jt

t
jt

jt

jt

tjjt

jt

jtjtjtjt

jttjjt

jt

jtjt

ttjtjt

jt

j

ttt

,,,0,,,,

)(

,,,

,,,

0

0

0

0

),,(

0),(

1

1

1,1,

1

1

∈≥
=Ω

∀⇒∀∨⇒

∀⇒∀∨⇒

∀
















∀
=

¬

∨

































∀

































=
=

¬

∨













































=

=

¬

∨
















+=

+=

=

≤

∀≤

=

=

−−

−

−

ττ

βα

γ

Model (PD) is a general representation incorporating three levels of decision making, namely

design, operation planning and expansion planning. These decisions are represented by the

discrete variables, yj, wjt and zjt, respectively and the formulation can easily be converted to a

more specific model by ignoring the appropriate terms and variables. This is illustrated for three

particular classes of problems where these formulations apply:

13

i) Multiperiod design (only y). This problem involves only discrete decisions yj for the

selection of the topology of a process network (e.g. Papalexandri and Pistikopoulos,

1994):

min ∑ ∑∑ +=
t i

itit
j

j xcCIZ

subject to

{ }FalseTrueyxQCI

Truey

j

t

CI

xB

y

QCI

QQ

dxxQh

y

txxg

j

t
jt

jjjj

jtj

ttjtjt

j

ttt

j

,,0,,

)(

0

0),,(

0),(

1

1

∈≥
=Ω

∀





















∀

=
=

¬

∨





















+=

≥

≤

∀≤

−

−

αβ

(P1)

ii) Multiperiod design and capacity planning (y and z). This problem involves the selection of

the topology (yj) of a process network, as well as the potential capacity expansion at each time

period (zjt) (e.g. Iyer, 1997; Sahinidis et al., 1989; Varvarezos et al., 1992):

min ∑ ∑∑∑ +=
t i

itit
t j

jt xcCEZ

subject to

{ }FalseTruezyxQEQCE

Truey

tjyzjzy

j

t

xB

y

t

CE

QQ

z

QECE

QEQQ

z

dxxQh

y

txxg

jjtjt

T

t
j

t
jt

j

jt

tjjt

jt

jtjtjtjt

jttjjt

jt

ttjtjt

j

ttt

,,,0,,,

)(

,,

0

0

),,(

0),(

1

1,1,

1

1

∈≥
=Ω

∀⇒∀∨⇒

∀
















∀
=

¬

∨





























∀
















=

=

¬

∨
















+=

+=

≤

∀≤

=

−−

−

−

βα

(P2)

iii) Multiperiod Planning (only w). This problem arises in process networks with fixed topology

and fixed capacities in which decisions involve the start-up/shutdown of processes (wjt) (e.g. Iyer

and Grossmann, 1997):

min ∑ ∑∑ ∑ +=
t i

itit
t j

jt xcCOZ

subject to

14

{ }FalseTruewxQCO

Truew

tj

CO

xB

w

CO

dxxQh

w

txxg

jt

t
jt

jt

jtjt

ttjtjt

jt

ttt

,,0,,

)(

,

0

0),,(

0),(

1

1

∈≥
=Ω

∀
















=
=

¬

∨
















=

≤

∀≤

−

−

γ
(P3)

6. Disjunctive OA Algorithm

Turkay and Grossmann (1996a) proposed a logic-based OA algorithm based on the OA

method by Duran and Grossmann (1986) which involves iteration between an NLP subproblem

where all binary variables are fixed, and an MILP master problem where the nonlinear equations

are relaxed and linearized at the NLP solution points. In the logic-based algorithm, an initial set

covering problem is solved to determine the least number of possible configurations, N, to cover

all units. These N configurations are used to solve N initial NLP subproblems to generate initial

linearizations for all equations. Alternatively, the relaxed MINLP can be used as starting point if

the set covering is not applicable, for example in the case of the retrofit design problem where an

initial configuration is given. The NLP subproblems only include equations for existing units

(i.e. equations of disjunctions with true value). The algorithm that is proposed in this section

(see Fig. 6) is an extension to multiperiod problems of Turkay and Grossmann’s method, which

was restricted to a single period.

15

Solve set covering problem for fixed y.
Solve initial NLPs (PNLP) with fixed y,w and z from set covering.

Minimum of these yields an upper bound, ZU

Solve MILP master problem (DMILP) with linearizations obtained
from NLP subproblems. Solution yields a lower bound, ZL

ZU - ZL < Tolerance ? STOP
Solution = ZU

yes

Solve NLP subproblem (PNLP) with fixed y, w and z from master
 problem. Use solution to update upper bound, ZU.

no

no

ZU - ZL < Tolerance ?
STOP

Solution = ZU

yes

Figure 6: Disjunctive logic-based OA algorithm as applied in this work

 In applying this algorithm, we decompose model (PD) into an NLP sub-problem and

MILP master problem, as shown below. Both problems are converted to mixed-integer form

through the convex hull formulation (Balas, 1985; see also Turkay and Grossmann, 1996a). The

advantage of this formulation is that it reduces the dimensionality of the problem by only

considering disjunctions for which the Boolean variable is true (see (PNLP) below), avoids

singularities due to linearizations at zero flows, and eliminates non-convexities of non-existing

processes.

The NLP sub-problem is the following:

min ∑∑∑∑∑∑ ++=
t i

itit
t j

jt
t j

jtU xcCECOZ

subject to

16

}
{ }FalseTruezwyxQQECQCE

FalseyxB

Truey

Falsew
CO

xB

Truew

CO

dxxQh

Falsez
CE

QQ

Truez
QECE

QEQQ

xxg

jt
jt

j

jt
jt

t
jt

jt

jtjt

ttjtjt

jt
jt

tjjt

jt
jtjtjtjt

jttjjt

ttt

,,,,0,,,,

0

0

0

),,(

0

0),(

1

1,

1,

1

∈≥

==

=





















=






=
=

=

















=

≤

=






=

=

=






+=

+=

≤

−

−

−

−

γ

βα

(PNLP)

To formulate the MILP master problem, xt is partitioned into two sets of variables,

namely xt,z, which is driven to zero if the Boolean associated with the disjunction is false, and xt,nz,

which can take on any positive value irrespective of the Boolean value. Furthermore, the

equations),,(1−ttjtjt xxQh and),(1−ttt xxg are partitioned into a set of nonlinear equations,

0)(≤t
nl
jt xh and 0)(≤t

nl
t xg , and a set of linear equations

bCQBxAxxxQh jtztnztttjt
l
jt ≤++=− ,,1),,(and dDxxg tt

l
t ≤=)(. For simplicity in the

presentation, the pass-on variables, xt-1, are not considered, although it can easily be shown that

the derivation would be the same if the variables xt-1 were present. Given L major iterations, the

linearization set for active terms of the disjunctions for operation is defined as

{ }TtLkTruewkK jt
jt ..1,..1, ==== . The formulation of the disjunctive master problem is as

follows (DLP).

min ∑ ∑∑ ∑∑ ∑ ++=
t i

itit
t j

jt
t j

jtL xcCECOZ

subject to

17

{ }FalseTruezwyxQEQCOCE

Truey

tjwztjzw

tjywtjwy

j

t

xB

y

t

CO

xB

w

CE

QQ

z

QECE

QEQQ

z

CO

Kk

bCQBxAx

axxxhxxxhxh

w

y

tdDx

txxxgxg

jtjtj

t

jt

jjtjt

T

t
j

t
jt

j

jt

t
jt

jt

jt

tjjt

jt

jtjtjtjt

jttjjt

jt

jtjt

j

jtztnzt

k
ztzt

Tk
t

nl
jtx

k
nztnzt

Tk
t

nl
jtx

k
t

nl
jt

jt

j

t

k
tt

Tk
t

nl
tx

k
t

nl
t

ztnzt

t

,,,,0,,,,

)(

,,,

,,,

0

0

0

0

)()()()()(

0)()()(

1

1

1,1,

,,

,,,, ,,

∈≥
=Ω

∀⇒∀∨⇒

∀⇒∀∨⇒

∀
















∀
=

¬

∨







































∀





































=
=

¬

∨



















































=

=

¬

∨
















+=

+=

=
∈

≤++

≤−∇+−∇+

∀≤

∀≤−∇+

=

=

−−

ττ

βα

γ

After applying the convex hull formulation to each disjunction, the final formulation is obtained

(DMILP) (see Appendix A for the full derivation).

min ∑ ∑∑ ∑∑ ∑ ++=
t i

itit
t j

jt
t j

jtL xcCECOZ

subject to

18

[]

{ }
ℜ∈

∈≥
≤

∀≤

∀≤

∀≤

∀≤

∀≤−
∀+=

∀=

∀+=

∀−≤

∀≤

∀+=

∀≤

∀−≤

∀≤

∀+=

∀≤++

∈

∀−∇−∇−−≤∇+∇

∀≤

∀∇+−≤∇

∑

∑

=

=

−

xQEQCOCE

zxyxQEQCOCE

eEy

tjwz

tjzw

tjyw

jwy

tjUzQE

tjQEQQ

tjwCO

tjzQECE

tjwUQ

tjUwQ

tjQQQ

tjUwx

tjwUx

tjUwx

txxx

tjbwCQBxAx

Kk

tjwaxxhxxhxhxxhxxh

tdDx

txxgxgxxg

jtjt

t

jjt

jjt

T

t
jtj

jtjt

jt

jt

jtjt

jtjt

jtjtjt

jtzt

jtnzt

jtnzt

nztnztnzt

jtjtztnzt

j

jt
k

zt
Tk

t
nl
jtx

k
nzt

Tk
t

nl
jtx

k
t

nl
jtzt

Tk
t

nl
jtxnzt

Tk
t

nl
jtx

t

k
t

Tk
t

nl
tx

k
t

nl
tt

Tk
t

nl
tx

jttjjt

jtjt

jtjtjtjt

ztnztztnzt

tt

,,,,

1,0,,,0,,,,

,

,

,

,0

,

,

,

,)1(

,

,

,

,)1(

,

,

,)()()()()(

)()()(

1

1

2

1

21

,

2
,

1
,

2
,

1
,,

1
,

1
,

,,,
1
,

1,

,,,,

τ
τ

γ
βα

Remarks:

• For the initial NLPs the operation (wjt) and expansion (zjt) Boolean variables are set to true for

all periods if a unit is selected from the set-covering problem. For all other NLPs the

Boolean variables are fixed at values from the MILP master problem (DMILP).

• Branching priorities can be used for the branch and bound search in the master problem,

exploiting the hierarchical structure of the problem by branching first on yj, then on wjt and

then on zjt.

• Convergence to the optimal solution is guaranteed in a finite number of iterations if the

problem is convex.

19

7. Bilevel Decomposition Algorithm

In this section, we consider the further decomposition of problem (PD) in an effort to

improve on the algorithm presented in the previous section. Similarly to Iyer and Grossmann

(1998), the design and planning problem is decomposed into an aggregated upper level design

problem (DP) that includes only the binary variables yj, and a lower level operation and

expansion planning problem (OEP) which corresponds to problem (PD) for fixed value of yj.

The solution to (DP) yields a lower bound and a fixed configuration to be used in (OEP). An

upper bound is obtained from (OEP). Previous values of y, QE and x are used to formulate cuts

for problem (DP) (see Iyer and Grossmann (1998)). Integer cuts in y are used to exclude subsets

and supersets of previously obtained feasible configurations and to exclude infeasible

configurations from future calculations. Design cuts in QE, x and y are used to force values of

state variables in (DP) to be greater than or equal to their values in (OEP) if the same

configuration is chosen in both problems. The solution of (OEP) with the current upper bound is

the final solution after convergence is achieved. The design problem (DP) is given by:

min ∑ ∑∑ ∑∑ ∑ ++=
t i

itit
t j

jt
t j

jt
DP xcCECOZ

subject to

{ }FalseTrueyxQQECOCE

xQQECOCETruey

j

t

Q

CE

CO

xB

y

t

QE

QE
QECE

x

x
CO

QEQQ

xQh

y

txg

jt

jt

jt

t
jt

j

upperjt

jt
jtjtjtjt

uppert

t
jtjt

jttjjt

tjtjt

j

tt

,,,,,,

0,,,,,)(

0

0

0

0

0),(

0)(

,

,

1,

∈ℜ∈
≥=Ω

∀



























∀

=

=

=
=

¬

∨

































∀

+≥

≥

+=

≤

∀≤

−

βα

γ (DP)

(DP) is a relaxation of the original problem, since wjt and zjt are relaxed as described in Appendix

B and shown above. This ensures that the optimal objective value ZDP corresponds to a lower

bound. (OEP) is in a reduced solution space, since a subset of fixed y variables are used as

obtained from (DP), making it possible to ignore a large number of equations and variables.

20

min ∑ ∑∑ ∑∑ ∑ ++=
t i

itit
t j

jt
t j

jt
OEP xcCECOZ

subject to

{ }FalseTruezw

xQQECOCE

xQQECOCE

Truewtjwy

tjwztjzw

tJj

CO

xB

w

CE

QQ

z

QECE

QEQQ

z

CO

xQh

w

txg

jtfixedj

jtjtjjt

jt

t

jt

jt

jt

tjjt

jtjt

jtjt

jt

t

jtjtjtjt

jttjjt

tjtjt

tt

,,

,,,,

0,,,,

)(,

,,

,

0

0

0

0),(

0)(

,

1,

1

1

1,

∈
ℜ∈

≥
=Ω∀¬⇒¬

∀⇒∀∨⇒

∈∀
















=
=

¬
∨













































=
=

¬
∨

















+=

+=

=

≤

∀≤

=

− −

ττ

βα

γ

(OEP)

where J1 = {j| yj = 1}.

8. Disjunctive Bilevel Decomposition Algorithm

Iyer and Grossmann’s work was restricted to linear problems and the sub-problems were

formulated in the full space as mixed integer problems and solved with a branch and bound

method for MILP. The method proposed here (see Fig. 7) is applicable to nonlinear problems

and are solved with the disjunctive logic-based OA algorithm for which MILP master problems

(MIPDP) and (MIPOEP) can be derived by applying the convex hull to each disjunction (see

Appendix B). In this work, the operation and expansion planning are incorporated into one sub-

problem, (OEP), whereas Iyer and Grossmann considered these planning decisions in different

models. The basic idea is that an outer loop iterates between (DP) and (OEP), similar to the

algorithm of Iyer and Grossmann, while both (DP) and (OEP) are solved through inner loops

using the disjunctive algorithm presented in Section 6. For (DP), the initial set covering

problem is solved only once in the first iteration and after that linearizations and cuts are added

directly to the MILP master problem. For (OEP) no initial set covering is needed, since a subset

of y variables is considered as obtained from (DP).

21

Figure 7: Disjunctive bilevel decomposition algorithm

Feasible?

Initial NLPs yield upper bound, ZDP

U

MILP master problem (MIPDP) yields lower bound, ZDP

L

ZDP

U - ZDP

L < Tolerance ?
Solution:
ZDP = ZDP

U

NLP subproblem (DP) solved to update upper bound, ZDP

U

NLP subproblem (OEP) with fixed y solved to update upper bound, ZOEP

U.
For initial NLP y is fixed from DP.

ZOEP

U - ZOEP

L < Tolerance ?
Solution:

ZOEP = ZOEP

U

MILP master problem (MIPOEP) yields lower bound, ZOEP

L

yes

yes

Solution(DP)

Solution (OEP)

Feasible?STOP
no

Global lower bound, LB = ZDP.

no
Add integer cut.

yes

no

no

no

yes Global upper bound,
UB = ZOEP.

UB - LB < Tolerance ?

STOP.
Solution is ZOEP

yes

Add design cuts for x
 and QE obtained in OEP.
Add integer cuts excluding

 subsets and supersets
 of units expanded in OEP.

no

ZDP

U - ZDP

L < Tolerance ?
Solution:
ZDP = ZDP

U

yes

ZOEP

U - ZOEP

L < Tolerance ?
Solution:

ZOEP = ZOEP

U

yes no

22

Remarks:

• An optimal solution is guaranteed in a finite number of iterations if the problem is convex.

• Design cuts in x are always valid if the coefficient in the objective function is positive.

Otherwise, the cut might not be valid (Iyer and Grossmann, 1998).

• Integer cuts to exclude subsets and supersets of feasible solutions are formulated with yj = 1 if

unit j was expanded in (OEP) and yj = 0 otherwise.

9. Examples

9.1 Example 1 revisited

2

1

3

x1

x2

x3

x4

x5

x6

x7

x8

Figure 8: Three unit superstructure

The optimization problem that was considered earlier in the paper can be expressed in the

disjunctive modeling framework (PD) as follows:

i) Objective function:

min ∑∑∑∑∑∑ ++
t i

itit
t j

jt
t j

jt xcCECO

ii) Mass balances at mixing/splitting points:

x x x

x x x x t
t t t

t t t t

1 2 3

4 5 6 7

0

0
, , ,

, , , ,

− − =
+ + − = ∀

iii) Specifications on the flows and production:

tx

tx

t

t

∀≤
∀≤

1

5

8,

5,

iv) Disjunctions for each process:

Process 1:

23

y

w

x x

CO

z

Q Q QE

CE QE

z

Q Q

CE

w

x x

CO

t

t t

t t

t

t t

t t t

t

t t

t

t

t t

t
t

t

1

1

8 7

1 1

1

1 1 1

1 1 1

1

1 1 1

1

1

7 8

1

0 9

0

0

0
1

1

, ,

, ,

, ,

.=
=

= +
= +

















∨
¬
=

=











































∨
¬
= =

=



























− −

γ

α β






∀































∨
¬

= =
∀















t

y

x x

t
t t

1

7 8 0, ,

Process 2:

y

w

x x

CO

z

Q Q QE

CE QE

z

Q Q

CE

w

x x

CO

t

t t

t t

t

t t

t t t

t

t t

t

t

t t

t
t

2

2

4 2

2 2

2

2 1 2

2 2 2

2

2 2 1

2

2

2 4

2

1

0

0

0
2

2

, ,

, ,

, ,

ln()= +
=

= +
= +

















∨
¬
=

=











































∨
¬
= =

=



























− −

γ

α β






∀































∨
¬

= =
∀















t

y

x x

t
t t

2

2 4 0, ,

Process 3:

y

w

x x

CO

z

Q Q QE

CE QE

z

Q Q

CE

w

x x

CO

t

t t

t t

t

t t

t t t

t

t t

t

t

t t

t
t

t

3

3

5 3

3 3

3

3 11 3

3 3 3

3

3 3 1

3

3

3 5

3

12 1

0

0

0
3

3

, ,

, ,

, ,

. ln()= +
=

= +
= +

















∨
¬
=

=











































∨
¬
= =

=























− −

γ

α β











∀































∨
¬

= =
∀















t

y

x x

t
t t

3

3 5 0, ,

v) Propositional logic and specifications:

tjwztjzw

tjywjwy

jtjtj

t

jt

jjtjt

T

t
j

,,

,

1

1

∀⇒∀∨⇒

∀⇒∀∨⇒

=

=

ττ

321312 ,, yyyyyy ¬∨¬⇒⇒

vi) Variables:

{ }
21,..13,..18,..1

,,,0,,,,

===

=≥

tji

FalseTruezwyCOCEQEQx jtjtjjtjtjtjtit

24

Formulated as the above generalized disjunctive program, the problem is first solved with

the disjunctive logic-based OA algorithm outlined in Figure 6. It is then decomposed into (DP)

and (OEP) and solved with the disjunctive bilevel decomposition algorithm outlined in Figure 7.

For comparison, the problem is formulated as the MINLP model (P) and solved with

DICOPT++. All three methods obtain the same objective value for problems with up to 20 time

periods. It is clear from Figure 9 and Table 2 that both the proposed algorithms show

significantly improved MILP solution times. This is partly because of the disjunctive

formulation where equations and variables are only included if the binary variable for that

disjunction equals 1. In addition, the bilevel decomposition leads to two subproblems that are

easier to solve than the original problem (PD), since (DP) is a relaxation of (PD), and (OEP) is in

a reduced space. The benefit of the bilevel decomposition on top of the logic-based OA, is not

seen in the results presented in Table 2 due to the relatively small problem size, but becomes

clear when we solve larger problems (see Examples 2-4).

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16 18 20 22

Time periods

M
IL

P
 t

im
e

(C
P

U
 s

ec
.)

Full space (DICOPT++)

Disjunctive OA

Disjunctive bilevel decomposition

Figure 9: Comparison of MILP solution times of the proposed algorithms with DICOPT++.

Table 2: Comparison of results

Number Discrete Continuous Constraints Total solution time (CPU sec.)

of Variables Variables Full Space Disjunctive Disjunctive

Time (DICOPT++) Logic-Based OA Bilevel

Periods Decomposition

1 9 18 38 0.1 0.1 0.2

25

5 33 74 154 1.7 0.3 1.2

9 57 130 270 8.2 0.4 2.2

13 81 186 386 36.7 0.7 3.6

17 105 242 502 72.3 1.0 5.5

21 129 298 618 456.6 1.2 7.4

9.2 Example 2

Consider the superstructure (Duran and Grossmann, 1986) in Figure 10. Its formulation as

problem (PD) is not given here, but is similar to the formulation of Example 1.

1

2

8

7

6

5

4

3

x1

x2 x3

x4 x5

x6

x7
x8 x9

x10

x11

x12

x13

x14

x15 x16 x17 x18

x19 x20

x21 x22

x23 x24

x25

Figure 10: Eight unit superstructure.

We can see that the trends in the computational results obtained from example 1 hold for

this larger problem. The solution times for the MILP master problems are shown in Figure 11.

Note the large difference in solution times as the number of time periods increases. Table 3 also

shows a comparison of the total solution time for the three methods with the corresponding

problem sizes. Note the increase in the number of 0-1 variables from 24 for 1 time period to 408

for 25 time periods. For small problems (small number of time periods), the disjunctive OA

algorithm seems to be most effective, while the disjunctive bilevel decomposition algorithm

clearly dominates for larger problems. In particular, for the 21 period problem a reduction of

nearly two orders of magnitude was achieved (156 secs. vs. 9341 secs.). Solution times are

significantly reduced with the proposed algorithms, although computation time increases rapidly

at larger number of periods for all three algorithms.

26

0.1

1.0

10.0

100.0

1000.0

10000.0

100000.0

0 5 10 15 20 25 30

Time period

M
IL

P
 ti

m
e

(C
P

U
 s

ec
.)

Full space

Disjunctive OA

Disjunctive bilevel
decomposition

Figure 11: Comparison of algorithm performance in MILP solution time (log scale).

Table 3: Comparison of results

Number Discrete Continuous Constraints Total solution time (CPU sec.)

of Variables Variables Full Space Disjunctive Disjunctive

Time (DICOPT++) Logic-Based OA Bilevel

Periods Decomposition

1 24 41 142 0.5 0.5 0.8

5 88 201 614 12.3 4.4 5.4

9 152 361 1086 43.5 12.6 13.9

13 216 521 1558 222.8 20.5 30.8

17 280 681 2030 730.8 52.0 46.7

21 344 841 2502 9341.2 2047.3 156.3

23 376 921 2738 >10000 11981.8 390.8

25 408 1001 2974 >>10000 >12000 3841.7

9.3 Examples 3 and 4

Consider a multiproduct batch plant for manufacturing N products and consisting of M stages in

sequence with parallel equipment in each stage.

27

S t a g e 1 S t a g e MS t a g e j

V M ,k , tV j , k , tV 1 ,k , t

V M , t
o l dV j , t

o l dV 1 , t
o l d

V M ,1 , tV j , 1 , tV 1 , 1 , t

N M , t
o l dN j , t

o l dN 1 , t
o l d

Figure 12: Superstructure for retrofit design off multiproduct batch plant (Vaselenak et al., 1987)

In the retrofit design of these batch plants, the problem lies in deciding the addition of new

equipment to an existing plant for which new production targets and selling prices have been

specified, which cannot be met by the current plant configuration (Vaselenak et al., 1987;

Fletcher et al., 1991). The new units can be added to operate either in phase with an existing unit

to increase its capacity (option B), or in sequence with existing units to decrease the cycle time

(option C). For the multiperiod retrofit problem, new units can be added at any time period,

depending on the market fluctuations that are predicted over a planning horizon. A major issue

in this problem is to establish an optimal trade-off between the timing for installing new units

and profit from achieving the production target by taking into account discounted costs. A

revised plant configuration, operating strategy, equipment sizes and batch processing parameters

for which the profit is optimal must be found in each time period.

The MINLP problem formulation of this problem for a single time period is given in

Fletcher et al., who in contrast to Vaselenak et al. allowed units to operate in different modes for

different products. We use the same nomenclature as Fletcher et al., with the difference that

some of our parameters and variables are time indexed due to the multiperiod formulation. Note

that expansions take place only once over the entire planning horizon, and are equivalent to the

installation of a new unit. We also use here a convexified formulation of the constraints. The

concave term in the objective is treated through underestimators as discussed in Vaselenak et al.

Also, as will be shown below, the disjunctive model has a structure similar to problem (PD),

28

except that additional disjunctions are needed to model the mode of operation in the units (option

B or option C).

Nomenclature:

Parameters:

N The number of products manufactured

M The number of stages in the plant

Nj

old The number of existing units in stage j

(Vj

old)m The volume of existing unit m in stage j

tij The process time of product i in stage j

H The operating time period

Sij The size factor of product i in stage j

Kjt The annualized fixed charge of installing a new unit in stage j in period t

cjt The annualized cost coefficient of installing a new unit in stage j in period t

Qit The demand of product i in period t

pit The expected net profit per unit of product i in period t

Vj

L The minimum volume of new units in stage j

Vj

U The maximum volume of new units in stage j

Zj The maximum number of units which can be added to stage j

ZU The maximum number of units which can be added to the plant

Variables:

Binary decision variables:

yjk Selection of investment of unit k in stage j

wjkt Operation of unit k in stage j in period t

wB

ijkmt Operate new unit k in phase with existing unit m for product i in stage j in period t

wC

ijkt Operate new unit k in sequence with existing units for product i in stage j in period t

zjkt Expansion/installation of new unit k in stage j in period t

Continuous decision variables:

nit The number of batches of product i in period t

Bit The batch size of product i in period t

TLit The limiting cycle time of product i in period t

Vjkt The volume of new unit k in stage j in period t

ejkt The expansion volume of new unit k in stage j in period t

29

VB

ijkmt The volume required in new unit k in stage j for product i to use it in phase with existing

unit m in period t

VC

ijkt The volume required in new unit k in stage j for product i to use it in sequence with

existing units in period t

CEjkt Expansion/installation cost for new unit k in stage j in period t

We define the following variables to apply the exponential transformation (Vaselenak et al.,

1987): x1it = ln nit, x2it = ln Bit, x3it = ln TLit. The multiperiod formulation, obtained by applying

the general disjunctive model (PD), is then as follows:

i) Objective function:

min ∑∑∑∑∑ ++−
t j k

tjkitit
t i

it CExxp)21exp(

ii) Production targets:

tiQxx ititit ,ln21 ∀≤+

iii) Limiting cycle time of product i:

tjixtwN itij
k

C
ijkt

old
j ,,)3exp(∀−≥+ ∑

iv) Yearly operating time:

tHxx tit
i

it ∀≤+∑)31exp(

v) Bound on total number of new units:

U

j k
jk Zy ≤∑∑

vi) Option B capacity constraints:

() tmjiBSVV itijm

old
j

k

B
ijkmt ,,,∀≥+∑

vii) Distinct assignment of new units:

11,1, −=∀≥ + jkjjk Zkjyy K

viii) Disjunction for every unit k added to stage j:

30

kj
V

y

t
V

w

e

CE

z

VeV

ecKCE

z

i

SBV

VV

VV

w

VV

VV

w

VV

VV

w

VV

w

eVV

VV

y

jkt

jk

jkt

jkt

jkt

jkt

jkt

U
jjkt

L
j

jktjtjtjkt

jkt

ijit
C

ijkt

U
j

C
ijkt

jkt
C

ijkt

C
ijkt

U
j

B
ijkmt

jkt
B

ijkmt

B
ijkmt

U
j

B
tijk

jkt
B

tijk

B
tijk

L
jjkt

jkt

jkttjkjkt

U
jjkt

jk

,
0

0

0

0

1

1

1

1,

∀











=

¬
∨



















































∀











≥

¬
∨

























































=

=

¬

∨



















≤≤

+=

∀























≥

≤

≤
∨



















≤

≤∨∨



















≤

≤

≥

+=

≤

−

K

ix) Propositional logic:

tkjwz

tkjzw

tkjyw

kjwy

kjyz

tkjiwww

jktjkt

t

jkjkt

jkjkt

t
jktjk

jk
t

jkt

jkt
C
ijkt

m

B
ijkmt

,,

,,

,,

,

,

,,,

1

∀≤

∀≤

∀≤

∀≥

∀=

∀=+

∑

∑
∑
∑

=τ
τ

x) Variables:

{ }
old
jj

jkt
C
ijkt

B
ijkmtjktjk

C
ijkt

B
ijkmtjktjktjkLititit

NmZkTtNjNi

FalseTruezwwwyVVVeVTBn

...1...1...1...1...1

,,,,,0,,,,,,,

=====

=≥

For the first time period, data for Examples 3 and 4 is the same as for Examples 1 and 2 in

Fletcher et al. (1991) respectively, and in subsequent periods demands and costs vary. We omit

this data due to the large amount of it, but interested readers can contact the authors. An example

of a solution to Example 3 for four time periods is shown in Figure 13, where it can be seen that

a new unit is added in stage 2 in year 1 and also in stage 2 in year 3 leading to a Net Present

Value (NPV) of $6.3 million. Furthermore, if expansions were only allowed in period 1, the

31

NPV would decrease by 12% to $5.6 million. This shows the value of the multiperiod

formulation allowing discrete decisions for expansion and operation in each time period.

Capacity
Product 1

Capacity
Product 2

Year 1 Year 4Year 3Year 2Initial
configuration

Plant
configuration

0

1500

1000

500

2000

D
em

an
d

(1
00

0
kg

)

V1 =
4000 l

V2 =
3000 l

Stage
1

Stage
2

Stage
1

Stage
2

Stage
1

Stage
2

Stage
1

Stage
2

Stage
1

Stage
2

V1 =
4000 l

V2 =
3000 l

V1 =
4000 l

V2 =
3000 l

V1 =
4000 l

V2 =
3000 l

V1 =
4000 l

V2 =
3000 l

V2 =
2500 l

V2 =
2500 l

V1 =
1000 l

V2 =
2500 l

V1 =
1000 l

V2 =
2500 l

C CC

B B

B

B

B

B

Operating
mode:
Product 1
Product 2

Figure 13: Solution to Example 3 for four time periods

The total solution times show the same trends as the MILP solution times, since the NLP

solution times are insignificant for these examples compared to that of the MILPs. All three

algorithms, i.e. the fullspace MINLP, the disjunctive OA and the disjunctive bilevel

decomposition algorithm, obtain the same objective value. Once again the disjunctive bilevel

decomposition algorithm dominates, with up to one or more orders of magnitude decrease in

solution times compared to the full space method (see Tables 4 and 5). In Table 4 it can be seen

that for the 10 period problem neither the full-space, nor the disjunctive OA, could find the

optimal solution after 20 hours of computation, while the disjunctive bilevel decomposition

algorithm obtained the optimal solution in less than an hour. The benefit of the disjunctive

formulation is not present for the smaller problems, but is significant for larger problems as

shown in Table 5.

Table 4: Comparison of results for example 3: 2 stages 2 products

Number Objective Discrete Continuous Constraints MILP solution time (CPU sec.)

of Profit Variables Variables Full Space Disjunctive Disjunctive

32

Time ($1000) OA Logic-Based OA Bilevel

Periods Decomposition

1 1420.6 20 33 89 0.4 0.5 0.8

2 3257.7 40 65 172 2.0 2.2 1.6

4 7763.2 100 177 484 209.3 171.0 27.3

6 11911.4 180 265 722 2046.4 8372.1 81.4

8 15690.4 320 449 1250 52104.9 >50000* 718.7

10 19700.9 400 561 1560 >70000* >70000* 3362.8

Table 5: Comparison of results for example 4: 4 stages 4 products

Number Objective Discrete Continuous Constraints MILP solution time (CPU sec.)

of Profit Variables Variables Full Space Disjunctive Disjunctive

Time ($1000) OA Logic-Based OA Bilevel

Periods Decomposition

1 497.6 104 105 331 4.4 6.4 1.7

2 1041.6 312 297 936 92.4 148.2 23.7

3 1612.3 468 445 1397 >40000* 4968.4 852.6

4 2202.6 832 769 2422 >40000* 35872.1 13757.9

10. Conclusions

The algebraic method for solving multiperiod MINLPs that involve discrete decisions for

topology selection, capacity expansion and operation at each time period is combinatorially

explosive, as has been shown in this paper. To effectively address this problem, we have

proposed a general model for design and planning of process industry networks, incorporating

design, operation planning and capacity expansion in one model. Furthermore, we have

proposed two algorithms - the disjunctive OA algorithm and the disjunctive bilevel

decomposition algorithm - to solve this model. The proposed methods were applied to the areas

of process planning and retrofit design of batch plants and show significantly reduced solution

times, especially where the latter method is concerned. These algorithms specifically address the

problem of the computational expense in solving the MILP step, which is often the bottleneck in

the computations of multiperiod optimization problems.

* Stopped after 30 major iterations

33

Acknowledgment

The authors would like to acknowledge financial support from the Department of Energy under

Grant number DE-FG02-85ER13396.

References

Balas, E., “Disjunctive Programming and a Hierarchy of Relaxations for Discrete Optimization Problems,” SIAM J.

Alg. Disc. Meth., Vol. 6, pp. 466-486, 1985.

Brooke, A., Kendrick, D., and Meeraus, A., GAMS: A User’s Guide, Release 2.25, The Scientific Press, South San

Francisco, 1992.

Dedopoulos, I.T., and Shah, N., “Long-term Maintenance Policy Optimization in Multipurpose Process Plants,”

Trans IChemE, Vol. 74, Part A, pp. 307-320, 1996.

Duran, M.A., and Grossmann, I.E., “An Outer Approximation Algorithm for a Class of Mixed-Integer Nonlinear

Programs,” Math. Program., Vol. 36, pp. 307-339, 1986.

Fletcher, R., Hall, J.A.J., and Johns, W.R., “Flexible Retrofit Design of Multiproduct Batch Plants,” Computers

chem. Engng, Vol. 15, No. 12, pp. 843-852, 1991.

Garey, M.R., and Johnson, D.S., Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H.

Freeman and Company, New York, 1978.

Geoffrion, A.M., “Generalized Benders Decomposition,” J. Optim. Theory Appl., Vol. 10, p. 237, 1972.

Iyer, R.R., and Grossmann, I.E., “Optimal Multiperiod Operational Planning for Utility Systems,” Computers chem.

Engng, Vol. 21, No. 8, pp. 787-800, 1997.

Iyer, R.R., and Grossmann, I.E., “A Bilevel Decomposition Algorithm for Long-Range Planning of Process

Networks,” Ind. Eng. Chem. Res., Vol. 37, No. 2, pp. 474-481, 1998.

Kocis, G.R. and Grossmann, I.E., “A modeling and decomposition strategy for the MINLP optimization of process

flowsheets,” Computers chem. Engng, Vol. 13, pp. 797-819, 1989.

Papalexandri, K.P., and Pistikopoulos, E.N., “A Multiperiod MINLP Model for the Synthesis of Flexible Heat and

Mass Exchange Networks,” Computers chem. Engng, Vol. 18, No. 11/12, pp. 1125-1139, 1994.

Paules, G.E. IV, and Floudas, C.A., “Stochastic Programming in Process Synthesis: A Two-Stage Model with

MINLP Recourse for Multiperiod Heat-Integrated Distillation Sequences,” Computers chem. Engng, Vol.

16, No. 3, pp. 189-210, 1992.

Quesada, I., and Grossmann, I.E., “An LP/NLP Based Branch and Bound Algorithm for Convex MINLP

Optimization Problems,” Computers chem. Engng, Vol. 16, pp. 937-947, 1992.

34

Raman, R., and Grossmann, I.E., “Modeling and Computational Techniques for Logic Based integer Programming,”

Computers chem. Engng, Vol. 18, No. 7, pp. 563-578, 1994.

Sahinidis, N.V., Grossmann, I.E., Fornari, R.E., and Chathrathi, M., “Optimization Model for Long Range Planning

in the Chemical Industry,” Computers chem. Engng, Vol. 13, No. 9, pp. 1049-1063, 1989.

Sahinidis, N.V., and Liu, M., “Long Range Planning in the Process Industries: A Projection Approach,” Comput.

Oper. Res.,Vol. 23, No. 3, pp. 237-253, 1996.

Turkay, M., and Grossmann, I.E., “Logic-Based MINLP Algorithms for the Optimal Synthesis of Process

Networks,” Computers chem. Engng, Vol. 20, No. 8, pp. 959-978, 1996a.

Turkay, M., and Grossmann, I.E., “Disjunctive Programming Techniques for the Optimization of Process Systems

with Discontinuous Investment Costs – Multiple Size Regions,” Ind. Ebg. Chem. Res., Vol. 35, pp. 2611-

2623, 1996b.

Varvarezos, D.K., Grossmann, I.E., and Biegler, L.T., “An Outer-Approximation Method for Multiperiod design

Optimization,” Ind. Eng. Chem. Res., Vol. 31, No. 6, pp. 1466-1477, 1992.

Vaselenak, J.A., Grossmann, I.E., and Westerberg, A.W., “Optimal Retrofit Design in Multiproduct Batch Plants,”

Ind. Engng Chem. Res. Vol. 26, pp. 718-726, 1987.

Appendix

Appendix A: Derivation of the convex hull of problem (DMILP)

Raman and Grossmann (1994) showed how to convert linear disjunctive programs to mixed

integer form through the convex hull formulation for each disjunction, based on previous work

by Balas (1985). We use the same ideas to convert problem (DLP) to problem (DMILP)

through the convex hull formulation for each disjunction. The basic idea is to replace the

Boolean variables by corresponding binary variables and to disaggregate the continuous

variables to have a variable for each disjunction. The convex hull gives a tighter formulation

than the “big-M” formulation (Turkay and Grossmann, 1996b). As will be seen in the following

derivation, a large number of the disaggregated variables become redundant for this model, and

can be removed to simplify the model. Consider problem (DLP):

min ∑∑∑∑∑∑ ++
t i

itit
t j

jt
t j

jt xcCECO

35

{ }FalseTruezwyxQEQCOCE

Truey

tjwztjzw

tjywjwy

j

t

xB

y

t

CO

xB

w

CE

QQ

z

QECE

QEQQ

z

CO

Kk

bCQBxAx

axxxhxxxhxh

w

y

tDx

txxxgxg

jtjtjt

t

jt

jjtjt

T

t
j

t
jt

j

jt

t
jt

jt

jt

tjjt

jt

jtjtjtjt

jttjjt

jt

jtjt

j

jtztnzt

k
ztzt

Tk
t

nl
jtx

k
nztnzt

Tk
t

nl
jtx

k
t

nl
jt

jt

j

t

k
tt

Tk
t

nl
tx

k
t

nl
t

ztnzt

t

,,,,0,,,,

)(

,,

,

0

0

0

0

)()()()()(

0

0)()()(

1

1

1,1,

,,

,,,, ,,

∈≥
=Ω

∀⇒∀∨⇒

∀⇒∀∨⇒

∀
















∀
=

¬

∨







































∀





































=
=

¬

∨



















































=

=

¬

∨
















+=

+=

=
∈

≤++

≤−∇+−∇+

∀≤

∀≤−∇+

=

=

−−

τ

βα

γ

To convert each disjunction to mixed-integer form through the convex hull formulation, we first

convert the inner disjunction and work outwards until the whole problem is transformed into an

MILP problem. For simplicity, we will ignore most of the sub- and superscripts for the rest of

the derivation, except where they are relevant. First, consider the innermost disjunction:

















=
=

¬
∨








+=

0

0

jtQE

CE

z

QECE

z
jt

jt

jtjtjtjt

jt

βα
(A1)

The expansion equations can in this case be moved to the outer disjunction to simplify derivation

of the convex hull, seeing that they always apply if the process is chosen. The first step is to

disaggregate the variables. Superscript 1 refers to the left disjunction, while superscript 2 refers

to the right disjunction. A binary variable is assigned to every disjunction. The disaggregation is

then as follows:

21

21

21 1

CECECE

QEQEQE

zz

+=
+=

=+
(A2)

36

Substitute disaggregated variables into disjunction 1:

)4(0

)3(
111

111

AUzQEz

AzQECE

≤≤
+= βα

Substitute disaggregated variables into disjunction 2:

)6(00

)5(00
22

22

AzQE

AzCE

==
==

Simplify:

{ }1,0

0,

∈
≥

≤
+=

z

CEQE

UzQE

zQECE βα

(A7)

Next consider the middle disjunction in (DLP) after replacing the inner disjunction with (A7):

















=
=

¬
∨



























=
∈

≤++

≤−∇+−∇+

0

0

)7(

)()()()()(

,
,,

,,,, ,,

jt

jt

jt

jtjt

ztnzt

jt

CO

xB

w

A

CO

Kk

bCQBxAx

axxxhxxxhxh

w

zt
j

jtztnzt

k
ztzt

Tk
t

nl
jtx

k
nztnzt

Tk
t

nl
jtx

k
t

nl
jt

γ

(A8)

The same costs and continuous variables also go to zero in the right hand side disjunction as the

ones in (A7), but they are left out for simplicity. After a similar procedure is applied as in the

derivation of (A7), namely disaggregation of the continuous variables, substitution and

simplification, the following mixed integer convex hull formulation is obtained:

37

[]

{ }1,0,,0,,,,

)1(

)1(

)()()()()(

2

2
,

1

1
,

,

1
,

1
,

,,,
1
,

21

2
,

1
,,

,,,,

∈≥

≤

−≤

−≤

≤

≤

≤

≤

+=

=

≤++

+∇+∇+−≤∇+∇

+=

+=

wzCOCEQEQx

wz

wUQ

wUx

UwQ

Uwx

Uwx

UzQE

zQECE

wCO

bwCQBxAx

waxxhxxhxhxxhxxh

QQQ

xxx

jtjt

jtjt

jtnzt

jtjt

jtnzt

jtzt

jtjt

jtjtjtjtjt

jt

jtjtztnzt

jt
k

zt
Tk

t
nl
jtx

k
nzt

Tk
t

nl
jtx

k
t

nl
jtzt

Tk
t

nl
jtxnzt

Tk
t

nl
jtx

jtjtjt

nztnztnzt

jtjt

ztnztztnzt

βα
γ

(A9)

Finally consider the outer disjunction in (DLP) with (A9):

















=
=

¬

∨















+= −

0

0

)9(
1,

jt

t
jt

j

jttjjt

j

Q

xB

y

A

QEQQ

y

Although it is not shown above, the same variables are set to zero on the right hand side

disjunction as in the formulation of (A9), but they are set to zero for all time periods. After

disaggregation of variables, substitution and simplification, the constraints outside the

disjunctions are added and logical propositions are expressed in algebraic form to give the final

(MILP) formulation, model (DMILP):

min CO CE c x
jt

jt
jt

jt
it it

it
∑∑ ∑∑ ∑∑+ +

subject to

38

[]

{ }1,0,,,0,,,,

,

,

,

,0

,

,

,

,)1(

,

,

,

,)1(

,

,

,,

)()()()()(

0)()()(

1

2

1

21

,

2
,

1
,

2
,

1
,,

1
,

1
,

,,,
1
,

1,

,,,,

∈≥
≤

∀≤

∀≤

∀≤

∀≤

∀≤−
∀+=

∀=

∀+=

∀−≤

∀≤

∀+=

∀≤

∀−≤

∀≤

∀+=

∀≤++

∈∀

−∇+∇−−≤∇+∇

∀≤

∀≤−∇+

∑

∑

=

−

zwyxQEQCOCE

eEy

tjwz

tjzw

tjyw

jwy

tjUzQE

tjQEQQ

tjwCO

tjzQECE

tjwUQ

tjUwQ

tjQQQ

tjUwx

tjwUx

tjUwx

txxx

tjbwCQBxAx

Kktj

waxxhxxhxhxxhxxh

tdDx

txxxgxg

jtjt

t

jjt

jjt

t
jtj

jtjt

jt

jt

jtjt

jtjt

jtjtjt

jtzt

jtnzt

jtnzt

nztnztnzt

jtjtztnzt

j

jt
k

zt
Tk

t
nl
jtx

k
nzt

Tk
t

nl
jtx

k
t

nl
jtzt

Tk
t

nl
jtxnzt

Tk
t

nl
jtx

t

k
tt

Tk
t

nl
tx

k
t

nl
t

jttjjt

jtjt

jtjtjtjt

ztnztztnzt

t

τ
τ

γ
βα

Appendix B: Derivation of the convex hull for the MILP master problems in the bilevel

decomposition

Upper level design problem:

The convex hull for this problem is the same as (DMILP), except that the design variable, y, is

used to drive variables to zero, and the binary variables for operation and expansion planning are

relaxed using either integer relaxation or the following relaxations:

39

)4(

)3(

)2(

)1(

,

,

BKk
QE

QE
z

B
QE

QE
z

BKk
x

x
w

B
x

x
w

k
jt

jt
jt

upperjt

jt
jt

k
t

t
jt

uppert

t
jt

∈≥

≥

∈≥

≥

where K is the number of major iterations between (DP) and (OEP). For (B1) and (B3), upper

bounds are used, while the values obtained in the previous (OEP) problem are used in (B2) and

(B4). The values on the right hand sides of the expressions above will always be less or equal

than 1, and this is therefore a relaxation of the original problem.

After substituting these relaxations, the MILP master problem for (DP) is as follows (MIPDP):

min CO CE c x
jt

jt
jt

jt
it it

it
∑∑ ∑∑ ∑∑+ +

subject to

40

[]

{ }1,0,0,,,,

,0

,

,

,

,

,

,

,)1(

,

,

,

)()()()()(

0)()()(

1,

,,,,

,

,

,

2
,

1
,

2
,

1
,,

,
1
,

,,,
1
,

∈≥
≤

∀≤−
∀+=

∀=

∀=

∀+≥

∀+≥

∀≤

∀−≤

∀≤

∀+=

∀≤++
∈∀

−∇+∇−−≤∇+∇

∀≤

∀≤−∇+

−

yxQEQCOCE

eEy

tjUyQE

tjQEQQ

tj
x

x
CO

tj
x

x
CO

tj
QE

QE
QECE

tj
QE

QE
QECE

tjUyx

tjyUx

tjUyx

txxx

tjbyCQBxAx

Kktj

yaxxhxxhxhxxhxxh

tdDx

txxxgxg

jjt

k
t

t

uppert

t

k
jt

jt

upperjt

jt

jzt

jnzt

jnzt

nztnztnzt

jjtztnzt

j

j
k

zt
Tk

t
nl
jtx

k
nzt

Tk
t

nl
jtx

k
t

nl
jtzt

Tk
t

nl
jtxnzt

Tk
t

nl
jtx

t

k
tt

Tk
t

nl
tx

k
t

nl
t

jttjjt

jtjt

jtjt

jtjtjtjt

jtjtjtjt

ztnztztnzt

t

γ

γ

βα

βα

For the lower level planning problem, the formulation is the same as for (A9), except that the y

values are fixed and with the addition of the expansion equations. The MILP master formulation

is as follows (MIPOEP):

min CO CE c x
jt

jt
jt

jt
it it

it
∑∑ ∑∑ ∑∑+ +

subject to

41

[]

{ }1,0,,0,,,,

,

,

,

,)1(

,)1(

,

,

,

,

,

,

,

,

,,

)()()()()(

,

0)()()(

1

,

,

2

2
,

1

1
,

,

1,

1
,

1
,

,,,
1
,

21

2
,

1
,,

,,,,

∈≥
≤

∀≤

∀≤

∀≤

∀≤

∀−≤

∀−≤

∀≤

∀≤

∀≤

∀≤

∀+=

∀+=

∀=

∀≤++
∈∀

+∇+∇+−≤∇+∇

∀+=

∀+=

∀≤

∀≤−∇+

∑

∑

=

−

wzCOCEQEQx

fFw

tjwz

tjzw

tjyw

jwy

tjwUQ

tjwUx

tjUwQ

tjUwx

tjUwx

tjUzQE

tjQEQQ

tjzQECE

tjwCO

tjbwCQBxAx

Kktj

waxxhxxhxhxxhxxh

tjQQQ

txxx

tdDx

txxxgxg

jtjt

t

jjt

fixedjjt

t
jtfixedj

jtjt

jtnzt

jtjt

jtnzt

jtzt

jtjt

jttjjt

jtjtjtjtjt

jt

jtjtztnzt

j

jt
k

zt
Tk

t
nl
jtx

k
nzt

Tk
t

nl
jtx

k
t

nl
jtzt

Tk
t

nl
jtxnzt

Tk
t

nl
jtx

jtjtjt

nztnztnzt

t

k
tt

Tk
t

nl
tx

k
t

nl
t

jtjt

ztnztztnzt

t

τ
τ

βα
γ

