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Abstract

In this paper, we present ageneral disjunctive multiperiod nonlinear optimization model, which incorporates
design, as well as operation and expansion planning, and takes into account the corresponding costs incurred in each
time period. This model is formulated with the use of logic and digunctive programming, and includes Boolean
variables for design, operation planning and expansion planning. We propose two algorithms for the solution of
these problems. The first is a logic-based Outer Approximation (OA) agorithm for multiperiod problems. The
second is a bilevel decomposition algorithm, that exploits the problem structure by decomposing it into an upper
level design problem and a lower level operation and expansion planning problem, each of which is solved with the
logic-based OA agorithm. Applications are considered in the areas of design and planning of process networks, as
well as retrofit design for multiproduct batch plants. The results show that the disjunctive logic-based OA agorithm
performs best for small problems, while the disunctive bilevel decomposition algorithm is superior for larger
problems. In both cases, a significant decrease in MILP solution time and total solution time is achieved compared
to DICOPT++. Results also show that problems with a significant number of time periods can be solved in

reasonable time.
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1. Introduction

Multiperiod optimization models for design and planning in the chemical industry have
received considerable attention in recent years (e.g. Dedopoulos and Shah, 1996; lyer and
Grossmann, 1997; lyer and Grossmann, 1998; Papalexandri and Pistikopoulos, 1994; Paules and
Floudas, 1992; Sahinidis et al., 1989; Sahinidis and Liu, 1996; Varvarezos et al., 1992).
Multiperiod plants are process plants where costs and demands typically vary from period to
period due to market or seasonal changes (Fig. 1). Examples of multiperiod plants include

refineries, utility systems and oil production platforms.

Winter Spring Summer Fall

B Demand O Cost

Figure 1: Seasonal changes in demand and cost

Models for multiperiod optimization typically have an objective, such as minimizing
cost, subject to constraints in the form of equations and usually involve both continuous and
discrete variables. Continuous variables can be either state variables representing operating
conditions such as time dependent flows and temperatures, or design variables representing
equipment sizes. Discrete variables can be binary (0 or 1) or Boolean (true or false) and
represent discrete decisions, for instance to invest in a unit or to operate a unit in a given period.
Equations representing these models can be linear, for example mass balances, or nonlinear, for
example process performance equations. Constraints can be valid for al periods or for an
individual period, and some variables and/or constraints may link the time periods (Fig. 2),
preventing a decomposition solution where time periods are solved independently. Models
involving 0-1 and continuous variables with nonlinear constraints are classified as Mixed Integer

Nonlinear Programming (MINLP) problems. MINLP problems are notorious for being NP-
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complete (Garey and Johnson, 1978), meaning they require exponential solution times in the
worst case. For multiperiod MINLP models, solution times quickly become intractable,
particularly if the models involve an increase in the number of binary variables with each
additional period. Thus, there is clearly a need for developing more efficient algorithms and

models.

Linking Constraints

Linking Variables

1 2 3 4
Time period

Figure 2: Block-diagonal structure with linking constraints and linking variables

DICOPT++, the MINLP solver used in the commercial optimization software package
GAMS (Brooke et al., 1992), is the basis of comparison for the algorithms proposed in this work.
It makes use of the outer-approximation (OA) algorithm (Duran and Grossmann, 1986), which
involves iterating between a Nonlinear Programming (NLP) subproblem where the binary
variables are held fixed and a Mixed Integer Linear Programming (MILP) master problem where
the moddl is linearized at the NLP solution points. A similar decomposition technique for mixed
integer problems is the General Benders Decomposition (GBD) (Geoffrion 1972) which involves
the solution of NLP sub-problems and pseudo-integer master problems. The latter correspond to
the projection of the full mixed-integer space of OA onto the space of binary variables only
(Quesada and Grossmann, 1992), and because of this projection, the OA master problem predicts
tighter bounds than the GBD master problem. It will be demonstrated in Section 4 that the
bottleneck in the computation is often the MILP master problem.

Sahinidis et al. (1989) presented a multiperiod MILP model for long range planning in
the chemical industry and solved the problem with techniques such as branch and bound, strong
cutting planes, GBD and heuristics. Other methods used to solve multiperiod MILPs include

constraint generation and projection used in conjunction with a cutting plane agorithm



(Sahinidis and Liu, 1996), and a bilevel decomposition strategy for synthesis and planning in the
chemical industry (lyer and Grossmann, 1998). Dedopoulos and Shah (1996) presented both
MILP and MINLP formulations for multiperiod maintenance planning using an aggregation
approach to reduce the problem size. Varvarezos et al. (1992) proposed an OA based
decomposition method for convex multiperiod MINLPs where the NLP subproblem is further
decomposed into alinearized master problem and a NLP primal problem with penalties to ensure
feasibility. Algorithms based on GBD have also been employed for the solution of multiperiod
MINLP synthesis and planning problems (Papalexandri and Pistikopoulos, 1994). Paules and
Floudas (1992) proposed a nested solution procedure combining the GBD and OA algorithms
and applied it to heat integrated distillation sequences with multiperiod MINLP formulations.
None of these methods, however, specifically address the problem of reducing the computational
effort involved in solving the MILP master problem.

The above mentioned models have been developed for specific applications. In sections
2 and 3 we present the problem statement and propose a general multiperiod MINLP model for
design, operation planning and expansion planning of general chemical process systems. Section
4 contains a motivating example showing the need for more efficient solution methods for
multiperiod MINLPs that involve binary variables for each time period. In Section 5 we
introduce a digunctive formulation of the general model and show how this model can be
converted into specific models through appropriate manipulations. Digunctive programming is
an aternative representation of mixed integer programming problems and is discussed by Raman
and Grossmann (1994) for the linear case. Motivated by the use of generalized digunctive
programming, we propose a disunctive OA algorithm in Section 6 for solution of the proposed
model. The proposed method is an extension of the logic-based OA algorithm for single period
MINLPs (Turkay and Grossmann, 1996a). A second algorithm is proposed in Section 7, based

on the bilevel decomposition algorithm of lyer and Grossmann (1998) involving a higher level

design problem and a lower level planning problem. While Iyer and Grossmann’s method was

restricted to MILPs and the subproblems were solved with the commercial solver CPLEX, the

proposed disjunctive bilevel decomposition algorithm is applicable to MINLPs and the sub-

problems are solved with the disjunctive OA algorithm. The effectiveness of these algorithms is

demonstrated in Section 8 with four examples, ranging from a small illustrative example to an

industrial size problem, in the areas of process planning and retrofit design of batch plants.

Conclusions are discussed in Section 9.



2. Problem Statement

Given is a process network superstructure operating over T time periods. These can correspond to
months, seasons, years, or to periods from discretized stochastic problems or from multiple
scenarios relating different operating conditions. Demands, costs, feed conditions, and technical
parameters vary from period to period. Deterministic data for these parameters are assumed for
the model. The problem involves optimizing the process over all time periods and has an
objective of minimizing cost or maximizing profit subject to constraints. Constraints include
mass balances, heat balances, process performance equations, linking constraints and logical
relationships between processes and decision variables. We consider three main decisions in the
optimization problem:

a) Selection of anetwork structure

b) Operation or shutdown of a processin period t

c) Expansion of aprocessin period t

Decision (a) is a one-time decision involving investment costs, while the other two decisions are
valid for every time period and can involve both fixed and variable operation and expansion
costs. Constraints are both linear and nonlinear, while variables are discrete (binary decision
variables) and continuous (flows, equipment sizes, etc.). Therefore, the model falls under the
genera class of multiperiod MINLPs. A general model for design and operation/expansion
planning is presented next and applied to a specific example. This model will serve as

motivation for developing a more efficient model formulation and solution methods.

3. MINLP moded

Consider optimizing a given process network superstructure over time periodst = 1...T. A
general model for design and operation/expansion planning of such a superstructure is as follows.

We first define the sets, parameter and variables for the process network as shown below:

Sets:

[ set of streams



J

T
Indices:

[

]

t
Parameters:

a
B
%
Ci

U
Variables:

set of processes

set of time periods

streamin set |
processin set J

timeperiodinset T

variable expansion cost for unit j in period t
fixed expansion cost for unit j in period t
fixed operating cost for unit j in period t
cost associated with stream i in period t

valid upper bounds for corresponding variables

Binary decision variables

Y
W

it
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Selection of investment in unit
Operation of unit j in period t

Capacity expansion of unit j in period t

Continuous decision variables

Q
QE,
X
X,
Co,
CE

it

Capacity of unit j in period t

Capacity expansion of unit j in period t

State variablesin period t

Subset of state variablesfor stream i in period t
Operating cost of unit j in period t

Expansion cost of unit j in period t

Based on the above definitions, the model is as follows:

subject to

min Z ZCOJt + Z ZCEJt + Z ZC“X“

@



CO ;i =y Wy dj,t  (2)

CE, =a,QE jt+18jtzjt Oj,t (3)
9. (X, X 4) =0 Dt (4)
hjt(th’xt’Xt—l)S 0 Dj,t (5)
th :Qj,t—1+QE it Oj, t (6)
X, —Uw, <0 Oj, t (7)
QE,-Uz, <0 Oj,t  (8)
y, < z W Oj (9a)
t
W, <Y, Oj,t  (9b)
t
Wi s ) Z; Oj,t - (9c)
Jt rzzl ]
zZ, sw, Oj,t  (9d)
Ey <e (10)
CO,CE,Q,QE,x=20 y,w,z0{0,1} @
joJ i0 | toT

Equation (1) is the objective function minimizing total cost, while (2) and (3) represent
operating and expansion costs, respectively. Global constraints valid for a particular period, such
as mass balances over mixers, are represented by (4). Constraints represented by (5) are valid for
agiven unit j in a particular period, for example unit input-output relationships. Note that both
(4) and (5) may generally involve “pass-on” variables,from a previous time period, in which
case they will give rise to linking constraints. Only a small subset of equations involve “pass-
on” variables, if they are present at all, and hence the block-diagonal structure of Fig. 2.
Additional linking constraints are represented by (6) and state that the capacity at the current
period equals the capacity at the previous period plus the capacity expansion. Equation (7) sets
all state variables associated with yrtb zero if it is not operated in periodwvhile equation (8)
sets capacity expansion of upito zero if it is not expanded in peribd Equations (9a)-(9d)
represent logical relationships between the binary variables. Equation (9a) states that a unit is
operated in at least one period if it is selected, while (9b) states that a unit must be selected if it is
operated in any period. Equation (9c) states that a unit can only be operated if it is already
expanded beyond zero capacity, and (9d) states that a unit may only be expanded in a certain
period if it is operated. The assumption here is thatjusionly expanded in periddf it needs
to be operated in periad This is a realistic assumption, seeing that there will be no need for

expansion if unitj is never operated. The construction work for an expansion has to be



completed before operation starts, and is dealt with by discounting the expansion costs
appropriately. Equation (10) represents logic propositions relating binary design variables, vy, for
the topology of the network (combinations of units that are permitted). In case of no expansion

(z=0), (1) becomes minz ZCOjt + ZCIi + Z chxn and (5) becomes CI; = By, +a,Q,
[ ] t 1

where Q; 2Q,, for al t. In al problem formulations hereafter, the domains j/Z4, i1 and tZT

apply, but are omitted for the sake of convenience.

It should be noted that while the binary variables y, are related to the selection of a unit
independent of time period, the binary variables w, and z, for operation and expansion are
defined for each time period. Hence the number of these variables will increase as the number of

time periods increase.

4. Examplel

Consider optimizing the process network superstructure given in Figure 3 over time periods t =
1..21. Demands and costs differ from period to period with an increasing trend, and there exists
a trade-off between costs and process efficiency. It is required to find an optimal structure in
which only one of processes 2 and 3 are selected, or neither, in which case raw material B is
purchased. It is aso required to find the optimal operational and capacity expansion plan. Due
to the large amount of data for the examples, they are not presented in this paper. Readers

interested in the data can contact the authors.

Intermediate Raw material B
product B
—— P Process?2 »
Raw Product C
material Processl ———p»
A TP
Intermediate
product B
—— 3| Process 3 ’

Figure 3: Process network superstructure (Kocis and Grassmann, 1989)



Figure 4 shows the optimal solution for the above example over five time periods. Other
specific solutions are not discussed, since the intention of this example is to illustrate the

computational difficulties.
Purchase periods 1-2

Invest: process1 & 2 B
Process 2 B
>
A | Y ; Process 1 C ;
Operate periods 3 - 5
Expand 3 period

Operate al periods
Expand 1% period

Figure 4: Example of solution over 5 time periods

In applying model (P) to this superstructure, and using DICOPT++ to obtain the solution,
it becomes apparent that the major bottleneck is the solution of the MILP master problem. This
IS due to the increase in binary variables with each additional time period, as shown in Table 1.
The NLP subproblems do not contain any binaries and are therefore not as difficult to solve as
the MILP master problem. As seen in Figure 5, the MILP solution time increases nearly
exponentially versus the modest increase of the NLP time. Note the maximum of 9.7 CPU
seconds for solving the NLP subproblem versus the near 500 seconds required for solving the
MILP master problem at 21 time periods. The rest of the paper concentrates on addressing the

problem of reducing the computational time of the master problem.

Table 1: Growth in problem size

Time Discrete | Continuous | Constraints
Periods | Variables | Variables

1 9 18 38

5 33 74 154
9 57 130 270
13 81 186 386
17 105 242 502
21 129 298 618
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Figure 5: Solution time for the MILP master problem vs. the NLP subproblem

5. Digunctive Multiperiod Model

5.1 Background

Raman and Grossmann (1994) demonstrated the representation of mixed-integer logic

through generalized digunctive programming. Consider the digunction (a set of constraints of

which at least one must be valid) represented here with the use of the logic operators OR ([J) and

Pd()T'(ﬂ)Z
0w, 0 O-w, O
0.0, 0O
{(¥ =00 x=0g
0 O O 0
0% =g g% =0

0j,t

The above representation can be interpreted as follows: If unit j is operated in period t (w,

= true), then enforce equation h (x) describing that unit and apply a fixed cost a.

If the unit is

not operated (w, = false), the fixed cost and a subset of continuous variables are set to zero

through the matrix B". The logical relationships among discrete variables describing connections

and interactions between units are given through logic propositions consisting of the variables

and the logic operators (such as OR (), AND (), NOT (=) and IMPLY (O)). For example,

y. 0y, 0y,
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means that selection of unit 1 implies selection of unit 2 and selection of unit 3. Likewise,

y,t tz
means that selection of unit j implies expansion of unit j in at least one of the periods.

5.2 Model

In the following derivation, we convert model (P) step by step to its digunctive form.

First consider only the expansion planning and associated equations and variables:

0 z, O O —Z; 0
O 0O Qg O .
Dth :Qj,t—1+QEjt U @jt :Qj,t—1D 0j,t (Cy)

%:Eit =a;QE; +ﬁitE ECEJ-[ =0 E
(C1) implies that if unit j is expanded in period t, equations (3) and (6) are applied and if
not, the capacity simply equals the capacity from the previous period and no cost is incurred.

Next we consider the higher level decision of operation planning:

0 w; 0

m h X ]tx <d = E M E

0 jt (thl t1 t—l) = DD EBitX =0 Dj,t (CZ)
O CO., = V. O t

0 i = Vi 0 Ho, =0F

HExpansion equations (CHH :
(C2) impliesthat if unit j is operated in period t, the appropriate equations (2) and (5) are
applied, and if not, a subset of variables associated with that unit and operation costs are set to
zero. Notethat digunctions (C1) are embedded in (C2), seeing that an expansion will only be
considered if the unit is operated in the given time period (w, = True). The construction of the
expansion is started some time before operation starts, and is dealt with through appropriate

discounting of expansion costs. Finally, we add the design level of decision making:

0 Y, 0
%Dperation equations (CZ)E o =y, E

. and oomBx =00 . (C3)
[{Expansion  equations (CHg BCI ;=0 E

E or E Q Ot Q

B Cly=B;+a,Q)) B

(C3) impliesthat if it is decided to install unit j, (y, = True), the appropriate equations are
applied, and if not, a subset of variables associated with that unit are set to zero for al periods
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and no cost is incurred. Digunctions (C2) and (C1l) are embedded in (C3), seeing that an
operational and expansion plan is only necessary if it is decided to invest in a process.
Furthermore, if the expansion is not to be included in the problem, (C1) is simply replaced by the
investment cost function. By substituting the applicable equations into (C3), adding all
remaining equations from (P), and expressing constraints (9a)-(10) in their propositional logic
form (see Raman and Grossmann, 1994) we obtain the final digunctive formulation of the

multiperiod model (P).

Model (PD):
min -z = Co, + CE , + C X,
DENPP LIS
subject to
gt(xt’xt—l)so Dt
O Y, O
U U
% Wi B E U
U
[l hjt(th’Xt’Xt—l)Sd U O 0 =y; O
i CO. = O 0 "W 0 it H .
i it = Vit O-Ohio o0 B x =00 Oj
D|j3 XI—O t 0 0
0N z, 00 -z, O m 28 g Ot g
[ J 0o ' o) #£0,=0R O
%Q QJtl+QEJt DD@H: jtl% |:| E
EJt_athE]t-'_ﬁJtD DCE =0 m H |
y; U @let 0j, t, w, Oy, Oj,t
w;, O TDlz], 0j,t, z, O w, 0j, t
Q(y) =True
CE,CO,Q,QE, x>0 y,w, zO{True, False}

Model (PD) is a genera representation incorporating three levels of decision making, namely
design, operation planning and expansion planning. These decisions are represented by the
discrete variables, y, w, and z, respectively and the formulation can easily be converted to a
more specific model by ignoring the appropriate terms and variables. Thisisillustrated for three

particular classes of problems where these formulations apply:
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) Multiperiod design (only y). This problem involves only discrete decisionsy, for the

selection of the topology of a process network (e.g. Papalexandri and Pistikopoul os,

1994):
mn z=%NCl + Cii Xi
yorrzen
subject to
9 (X, %) <0 Lt

O Y E O -y O

0 . 0
%jt(thanXt—l)SdDDﬂ?’JtXt:OD j
E Q; 2Qy E ECIiZOE (F)
HCl, =B,+aQ H B 0Ot B

Q(y) =True

Cl,Q,x=0, yO{True, False}
i) Multiperiod design and capacity planning (y and z). This problem involves the selection of
the topology (y,) of a process network, as well as the potential capacity expansion at each time

period (z)) (e.g. lyer, 1997; Sahinidiset al., 1989; Varvarezos et al., 1992):

min 7= Z ZCEjt +Z chxn

subject to
9, (Xt ) Xt—l) <0 Ut
0 Y 0
O O
O hjt (th 1 X Xt—l) <d N
0 O —'y]— O
z, o0 -z, O [0, o
0 0 0 oo ™x =00 L]
Q =Q; 1 *QE;, UM, =Q; .t 0 O
0 0 o8 g U g
Ejt=athEjt+,8th DCEJt:0 g E
g B
T
y; 0z, L z, Oy 0j,t (P2)
Q(y) =True
CE,Q,QE,x =0, y, zO{True, False}

iii) Multiperiod Planning (only w). This problem arises in process networks with fixed topology
and fixed capacities in which decisions involve the start-up/shutdown of processes (w,) (e.g. lyer

and Grossmann, 1997):
min ZzZZCOjt"'ZZCitXit

subject to
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9 (X, X1) <0 Ot

0 W, 00g-w, O
0 .
7 Quxx)dBBix =08 i -
0 0 _ o0
3 CO.=y, g £9,=0p
Q(w) =True

CO,Q,x=0, wO{True, False}

6. Digunctive OA Algorithm

Turkay and Grossmann (1996a) proposed a logic-based OA agorithm based on the OA
method by Duran and Grossmann (1986) which involves iteration between an NLP subproblem
where all binary variables are fixed, and an MILP master problem where the nonlinear equations
are relaxed and linearized at the NLP solution points. In the logic-based agorithm, an initial set
covering problem is solved to determine the least number of possible configurations, N, to cover
al units. These N configurations are used to solve N initial NLP subproblems to generate initial
linearizations for al equations. Alternatively, the relaxed MINLP can be used as starting point if
the set covering is not applicable, for example in the case of the retrofit design problem where an
initial configuration is given. The NLP subproblems only include equations for existing units
(i.e. equations of digunctions with true value). The algorithm that is proposed in this section
(see Fig. 6) is an extension to multiperiod problems of Turkay and Grossmann’s method, which

was restricted to a single period.
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Solve set covering problem for fixed y.
Solveinitiad NLPs (PNLP) with fixed y,w and z from set covering.
Minimum of these yields an upper bound, Z,,

|

Solve MILP magter problem (DMILP) with linearizations obtained
from NLP subproblems. Solution yields alower bound, Z;

Y

Z,-Z, <Toerance? yes STOP
Solution=Z,,

\ 4

no

Y

Solve NLP subproblem (PNLP) with fixed y, w and z from master
problem. Use solution to update upper bound, Z, .

Y

no
< Z,-Z, <Tolerance?

yes STOP
Solution=2

\ 4

Figure 6: Disunctive logic-based OA algorithm as applied in this work

In applying this algorithm, we decompose model (PD) into an NLP sub-problem and
MILP master problem, as shown below. Both problems are converted to mixed-integer form
through the convex hull formulation (Balas, 1985; see also Turkay and Grossmann, 1996a). The
advantage of this formulation is that it reduces the dimensionality of the problem by only
considering digunctions for which the Boolean variable is true (see (PNLP) below), avoids
singularities due to linearizations at zero flows, and eliminates non-convexities of non-existing

processes.

The NLP sub-problem isthe following:
min ZU :chqt +zZCEjt +ZZ(:ItXit
to] t ) t 1

subject to
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9 (%, %) <0

- =Q... +0E. O O
Q]t Q],t 1 Q jt E . =True D D
CE, =a,QE,; +18jt O B
_ 0
gll; _?SH Ez“ = False Eth =True %
it~ O %,_ —True (PNLP)
h, (Q )<d = J
it Qs X X)) S 0 0
CO; =V, H B
ity — O
B™x =0 g . =False U
CO, =0 ENJ g
Bi'x, =0 by, = False
CE,CQ,QE,Q, x>0, y,w, zO{True, Falsg

To formulate the MILP master problem, x is partitioned into two sets of variables,
namely x ,, which is driven to zero if the Boolean associated with the digunction is false, and x .,
which can take on any positive value irrespective of the Boolean value. Furthermore, the

equations h, (Q, %, %) and g,(x,%,) are partitioned into a set of nonlinear equations,
hi(x)<0 and g (x)<0, and a set of linear equations
hi (Qps % %) = A, +BX,, +CQ, <b and g,(x)=Dx <d. For simplicity in the
presentation, the pass-on variables, x ,, are not considered, although it can easily be shown that

the derivation would be the same if the variables x , were present. Given L major iterations, the

linearization set for active terms of the digunctions for operation is defined as

Kt :{k‘wjt =True,k =1..L,t :1..T}. The formulation of the disjunctive master problem is as

follows (DLP).

subject to
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9" (x)+0, 9" () (x —x)<0 Ot

Dx <d Lt
0 Y, 0
O O
i w;, % % O
nl nl ni D
T () + 0, ()T (%, = X5) + 0, R ()7 (x,, - X5,) < o
il O O
il Axt,nz + thz +Cth <b ] 0 ~w 0 E _ij E
il j O I DD it =0
i KoK DDEB“& =0ty EB . 7
i CO; =V O _om U g Lt O
M 0] %:OJI _0[[]] O
T L R
O
il Dth :Qj,t—l +QEjt DD @jt :QJ,HD O B O
_ O 0O -n O 0
% %:Ejt =a,QE; + B0 0CE:=0 g 0 H E
T - -
y; O Elet 0, t, w, Oy, 0j, t
t
w;, U Elzj, 0. t, z, U w, 0, t
Q(y) =True
CE,CO,Q,QE, x>0, y,w, zO{True Falsd

After applying the convex hull formulation to each digunction, the final formulation is obtained
(DMILP) (see Appendix A for the full derivation).

min ZL:ZZCO“+ZZCE“+ZZC“X“
] J :

subject to
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0, 98" ()" % =g/ (x) +0, g7 ()"

Dx, <d

O, bt () X + 0, i O¢) T %, <= (¢) =0, hi ()T x5 =0, hi (¢)" %, —aw;,

AXtl,nz + thz + Clet = ijt

Xime = X + X

Xere SUW,

X SU@L-W,)
2 <Uw,

Q, =Qj +Q;

Qj, sUw,

szt <UQ@- th)

CE, =a,QE, +p,z,

CO, =y, w,

Q,=Q,. +QE,

QE, -Uz, <0

it=

.
y; = Zth
=

Wi <Y

CE,CO,Q,QE, x>0,
CE, CO, Q,QE, x[I

Remarks:

Lt
Lt

Oj, t
Ot

Oj, t
Oj, t
Oj, t
Oj,t
Oj,t
Oj,t
Oj,t
Oj,t
Oj,t
Oj, t
0j

Oj, t
Oj,t

0j,t

Y, X Z D{O,J}

kOK!

Oj, t

 For theinitial NLPsthe operation (w,) and expansion (z,) Boolean variables are set to true for

al periods if a unit is selected from the set-covering problem. For al other NLPs the
Boolean variables are fixed at values from the MILP master problem (DMILP).

» Branching priorities can be used for the branch and bound search in the master problem,

exploiting the hierarchical structure of the problem by branching first on y,, then on w, and

thenon z,.

» Convergence to the optimal solution is guaranteed in a finite number of iterations if the

problem is convex.
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7. Bilevel Decomposition Algorithm

In this section, we consider the further decomposition of problem (PD) in an effort to
improve on the agorithm presented in the previous section. Similarly to lyer and Grossmann
(1998), the design and planning problem is decomposed into an aggregated upper level design
problem (DP) that includes only the binary variables y, and a lower level operation and
expansion planning problem (OEP) which corresponds to problem (PD) for fixed value of y.
The solution to (DP) yields a lower bound and a fixed configuration to be used in (OEP). An
upper bound is obtained from (OEP). Previous values of y, QE and x are used to formulate cuts
for problem (DP) (see lyer and Grossmann (1998)). Integer cutsiny are used to exclude subsets
and supersets of previously obtained feasible configurations and to exclude infeasible
configurations from future calculations. Design cutsin QE, x and y are used to force values of
state variables in (DP) to be greater than or equal to their values in (OEP) if the same
configuration is chosen in both problems. The solution of (OEP) with the current upper bound is

the final solution after convergence is achieved. The design problem (DP) is given by:

min ZDP=ZZCOjt+ZZCEJt+zZCan
7 T T 5

subject to
9,(x)=<0 Ot

O Y, O
O O
O hjt(th'Xt)SO O O _'yi 0
E Qi =Q, 1 *QE, E Bx, :OE
O O O. =0
0 CO, 3y, —t— DDEt BTC0 g (DP)
0 t upper 0 ECE it =00
0 QE. O -

0Qx =010
H:EjtZathEit""BJtE—JtD [l ! [l
E Q it,upperg o 0t g
0 Lt 0

Q(y) =True, CE,CO,QE,Q,x=20

CE,CO,QE,Q,x00, y O{True, False}

(DP) is arelaxation of the original problem, since w, and z, are relaxed as described in Appendix
B and shown above. This ensures that the optimal objective value Z°* corresponds to a lower
bound. (OEP) is in a reduced solution space, since a subset of fixed y variables are used as

obtained from (DP), making it possible to ignore a large number of equations and variables.
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min 7 =ZZJCOJ'1+ZZJCEH+ZZCMXH

subject to
g.(x)<0 Ot
0 W, 0
O O
0 h,(Q;,%)<0 0
m co, =y, 0 0-~w O
0 J i DD%JIXI:OD DJDJl,t
(0 z, 00 -z O
D C % s 0 Ho, =08
E[Dth =Qj,t—l+QEjt oU = Qad
_ | —
%Eit_ahQEjt-’-ﬁth HCE“—O%
t
w, [ @lz” 0j, t z, 0w, 0j, t
_|yj,fixed U _'WJ‘ D],t Q(W) =True (OEP)

CE,CO,QE,Q,x>0
CE,CO,QE,Q,x00
w, zO{True, False}

whereJ" = {j|y = 1}.

8. Digunctive Bilevel Decomposition Algorithm

lyer and Grossmann’s work was restricted to linear problems and the sub-problems were
formulated in the full space as mixed integer problems and solved with a branch and bound
method for MILP. The method proposed here (see Fig. 7) is applicable to nonlinear problems
and are solved with the disjunctive logic-based OA algorithm for which MILP master problems
(MIPDP) and (MIPOEP) can be derived by applying the convex hull to each disjunction (see
Appendix B). In this work, the operation and expansion planning are incorporated into one sub-
problem, (OEP), whereas lyer and Grossmann considered these planning decisions in different
models. The basic idea is that an outer loop iterates between (DP) and (OEP), similar to the
algorithm of lyer and Grossmann, while both (DP) and (OEP) are solved through inner loops
using the disjunctive algorithm presented in Section 6. For (DP), the initial set covering
problem is solved only once in the first iteration and after that linearizations and cuts are added
directly to the MILP master problem. For (OEP) no initial set covering is needed, since a subset

of y variables is considered as obtained from (DP).
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on(DP)

Add design cuts for x
and QE obtained in OEP.
Add integer cuts excluding
subsets and supersets
of units expanded in OEP.

A

~

A

~

Initial NLPsyield upper bound, 2™,
.
- MILP master problem (MIPDP) yields lower bound, 2™, ~
A 7 é
Y
T o
ZSD?,' Etlg.;rl < Y Z”,-Z" <Tolerance?
- u
no \ 2
NLP subproblem (DP) solved to update upper bound, 2™,
Y
lution: es no
NE >
\ 4
STOP no Feasible?
yes
Global lower bound, LB = Z2™.
\ 4
/ Solution (OEP)
NL P subproblem (OEP) with fixed y solved to update upper bound, Z°,.
For initial NLPv isfixed from DP.
) N
: €s
Zgg’l Etlzog]ép 2’ Z%%,- 2% < Tolerance ?
- u
no |
MILP master problem (MIPOEP) yields lower bound, Z*",
i : no
: €s
Zggl Eu;c?ép 2’ Z°%,- 2% < Tolerance ?
N
Y
no _ es
Add integer cu. Feasible? Y GIObal E;J Ep;rogo und,

Figure 7: Digunctive bilevel decomposition algorithm

no

> UB - LB < Tolerance ?
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Remarks:

* Anoptimal solution is guaranteed in afinite number of iterationsif the problemis convex.

» Design cuts in x are always valid if the coefficient in the objective function is positive.
Otherwise, the cut might not be valid (lyer and Grossmann, 1998).

* Integer cuts to exclude subsets and supersets of feasible solutions are formulated with y, = 1 if

unit j was expanded in (OEP) and y, = O otherwise.

9. Examples

9.1 Example 1 revisited

Xg

Figure 8: Three unit superstructure

The optimization problem that was considered earlier in the paper can be expressed in the
disjunctive modeling framework (PD) as follows:

i) Objective function:
min % ZCOjt +> zCEjt +> Zcitxit
[ T ] T 0

1) Mass balances at mixing/splitting points:

X % % =0
X T HXoe =0 =0 B
iii) Specifications on the flows and production:
X5 <D Lt
Xg<1 Lt

iv) Digunctionsfor each process:

Process 1:
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U Y1 E
% Wy 0 B 0
— 0
o X, = 09X, 0 . 0 oy, O
W
i COy =Yy E O " %] 00, = Xse =00
@ |:| |:| EEDB(M :X8t :0 tl:'
Zy 0 nZy il H Cco. =0 % U H 0t H
Q. =Qu4 *QE, UMy = Ql,t—l[[]j . 5 E
E,=a,QE, + 1811 E HCEH =0 % a 9
Process 2:
U \2 E
% Wa O E 0
@ X4vt = |n(1+ Xz,t) E |:| B B —|y2 B
W
il CO, =y U 5 . 00 3, =%, =0
H U0 %, = X, = 00itO ’ ’
z 00 -z, O 57 H ot H
2t 0 2t 0 E Co. =0 % [l
Q, = Qi +QE, I gam = Qz,t—lfﬂ] “ 5 E
HEE, = a,QE, + B, H HCE, =0 H 5 B
Process 3:
: " :
% W 0 B O
X, =12In(1+ X;,) . 0g .y, @
% = 0 0wy A U ? O
COy = Va 0O 00 x5, = %, =00
i 0O g Do =% = 00U H
il Zy 0 T2y ¥ H CO. =0 % U H Ut
ﬂQa = Qgaq QB U %DBt = Q3,t—1|:[]:| ¥ 8 E
%Esl = 05 QE, +:83tH HCEat =0 % B H
v) Propositional logic and specifications:
T
y, 0 Qw0 w Oy, Ot
w;, [ EZJ” 0j,t z, 0w, 0j,t
Y. Uy, Y. Uy, Yy, Uy,
vi) Variables:
X, Q. QE;,CE;,CO, 20 Y, Wz, ={True Falsg
i=1.8 ]=1.3 t=1.21
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Formulated as the above generalized digjunctive program, the problem is first solved with
the digunctive logic-based OA agorithm outlined in Figure 6. It is then decomposed into (DP)
and (OEP) and solved with the disjunctive bilevel decomposition algorithm outlined in Figure 7.
For comparison, the problem is formulated as the MINLP model (P) and solved with
DICOPT++. All three methods obtain the same objective value for problems with up to 20 time
periods. It is clear from Figure 9 and Table 2 that both the proposed algorithms show
significantly improved MILP solution times. This is partly because of the digunctive
formulation where equations and variables are only included if the binary variable for that
disunction equals 1. In addition, the bilevel decomposition leads to two subproblems that are
easier to solve than the original problem (PD), since (DP) is arelaxation of (PD), and (OEP) isin
areduced space. The benefit of the bilevel decomposition on top of the logic-based OA, is not
seen in the results presented in Table 2 due to the relatively small problem size, but becomes

clear when we solve larger problems (see Examples 2-4).

450 N —o— Full space (DICOPT ++)
~ 400 11 —x— Disjunctive OA

—&— Digjunctive bilevel decomposition

MILP time (CPU

# Time periods

Figure 9: Comparison of MILP solution times of the proposed a gorithms with DICOPT ++.

Table 2: Comparison of results

Number | Discrete | Continuous | Constraints Total solution time (CPU sec.)
of Variables | Variables Full Space Digjunctive Digjunctive
Time (DICOPT++) Logic-Based OA Bilevel
Periods Decomposition
1 9 18 38 0.1 0.1 0.2
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5 33 74 154 1.7 0.3 1.2

9 57 130 270 8.2 0.4 2.2

13 81 186 386 36.7 0.7 3.6

17 105 242 502 72.3 1.0 55

21 129 208 618 456.6 12 7.4
9.2 Example 2

Consider the superstructure (Duran and Grossmann, 1986) in Figure 10. Itsformulation as

problem (PD) is not given here, but is similar to the formulation of Example 1.

We can see that the trends in the computational results obtained from example 1 hold for
this larger problem. The solution times for the MILP master problems are shown in Figure 11.
Note the large difference in solution times as the number of time periods increases. Table 3 also
shows a comparison of the total solution time for the three methods with the corresponding
problem sizes. Note the increase in the number of 0-1 variables from 24 for 1 time period to 408
for 25 time periods. For small problems (small number of time periods), the digunctive OA
algorithm seems to be most effective, while the digunctive bilevel decomposition algorithm
clearly dominates for larger problems. In particular, for the 21 period problem a reduction of
nearly two orders of magnitude was achieved (156 secs. vs. 9341 secs). Solution times are

significantly reduced with the proposed algorithms, although computation time increases rapidly

Y

Y

A

X X
19 20
X X14 »| 6 >
3 > x \ 4
2] 4 >
X X X
sl X1 13
Jd 7 | Xes X4
X1 X22
X
25
X X X X
Xg 15 16 :] vl 8 18
A
X Xg - Xg
A 4 | X10

at larger number of periods for al three algorithms.
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Figure 10: Eight unit superstructure.




100000.0
10000.0 4| — ¢ Full space o X
- .. . */ ’ / p
§ 10000 | - - % - - Digunctive OA -
:) 7/
0 . - X %]
o — 8 — Digunctive bileve /\/ / Pid
) 100.0 decomposition A
o / . = —
- 10.0 = iy
2 - -
1.0 §.- 34
¢
0.1 : | | : ‘
0 5 10 15 20 25 30
Time period
Figure 11: Comparison of algorithm performancein MILP solution time (log scal€).
Table 3: Comparison of results
Number | Discrete | Continuous | Constraints Total solution time (CPU sec.)
of Variables | Variables Full Space Digunctive Digunctive
Time (DICOPT++) Logic-Based OA Bilevel
Periods Decomposition
1 24 41 142 0.5 0.5 0.8
5 88 201 614 12.3 44 54
9 152 361 1086 435 12.6 13.9
13 216 521 1558 222.8 20.5 30.8
17 280 681 2030 730.8 52.0 46.7
21 344 841 2502 9341.2 2047.3 156.3
23 376 921 2738 >10000 11981.8 390.8
25 408 1001 2974 >>10000 >12000 3841.7

9.3 Examples3and 4

Consider a multiproduct batch plant for manufacturing N products and consisting of M stages in

sequence with parallel equipment in each stage.
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Figure 12: Superstructure for retrofit design off multiproduct batch plant (Vaselenak et al., 1987)

In the retrofit design of these batch plants, the problem lies in deciding the addition of new
equipment to an existing plant for which new production targets and selling prices have been
specified, which cannot be met by the current plant configuration (Vaselenak et al., 1987;
Fletcher et al., 1991). The new units can be added to operate either in phase with an existing unit
to increase its capacity (option B), or in sequence with existing units to decrease the cycle time
(option C). For the multiperiod retrofit problem, new units can be added at any time period,
depending on the market fluctuations that are predicted over a planning horizon. A major issue
in this problem is to establish an optimal trade-off between the timing for installing new units
and profit from achieving the production target by taking into account discounted costs. A
revised plant configuration, operating strategy, equipment sizes and batch processing parameters
for which the profit is optimal must be found in each time period.

The MINLP problem formulation of this problem for a single time period is given in
Fletcher et al., who in contrast to Vaselenak et al. allowed units to operate in different modes for
different products. We use the same nomenclature as Fletcher et al., with the difference that
some of our parameters and variables are time indexed due to the multiperiod formulation. Note
that expansions take place only once over the entire planning horizon, and are equivalent to the
installation of a new unit. We aso use here a convexified formulation of the constraints. The
concave term in the objective is treated through underestimators as discussed in Vaselenak et al.

Also, as will be shown below, the disunctive model has a structure similar to problem (PD),
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except that additional disunctions are needed to model the mode of operation in the units (option

B or option C).

Nomenclature:

Parameters:

N The number of products manufactured

M The number of stagesin the plant

N™  The number of existing unitsin stage |

(V™),, Thevolume of existing unit min stage |

’ The process time of product i in stage |

H The operating time period

S The size factor of product i in stagej

K, The annualized fixed charge of installing anew unit in stagej in period t
C, The annualized cost coefficient of installing anew unit in stage j in period t
Q. The demand of product i in period t

P, The expected net profit per unit of product i in period t

V" Theminimum volume of new unitsin stage

\/J.U The maximum volume of new unitsin stage]j

Z The maximum number of units which can be added to stage |

z’ The maximum number of units which can be added to the plant
Variables:

Binary decision variables:

Yix

Selection of investment of unit kin stage |

Operation of unit kin stagej in period t

Operate new unit k in phase with existing unit mfor product i in stagej in period t
Operate new unit k in sequence with existing units for product i in stagej in period t

Expansion/installation of new unit kin stagej in period t

Continuous decision variables:

The number of batches of product i in period t
The batch size of product i in period t

The limiting cycle time of product i in period t
The volume of new unit kin stagej in period t

The expansion volume of new unit kin stagej in period t
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The volume required in new unit k in stage j for product i to useit in phase with existing

VBijkmt

unit min period t

\/Cijkt The volume required in new unit k in stage j for product i to use it in sequence with
existing unitsin period t
CE, Expansion/ingtallation cost for new unitkin stagej in period t

We define the following variables to apply the exponential transformation (Vaselenak et al.,
1987): x1, =Inn, x2,=InB, x3,=InT_,. The multiperiod formulation, obtained by applying

the general disunctive model (PD), isthen as follows:

) Objective function:
min — P, exp(xd, +x2,) + CE,
ZZ « &XPOd;; + X2, ZZZ Ey
i) Production targets:
XL, + X2, <InQ, i, t
1) Limiting cycle time of product i:

NP + Zvvi(j:lq 2 t; exp(=x3,) bi gt

iv) Y early operating time:

S ep(x, +x3,)<H, Ot

V) Bound on total number of new units:

y, <ZY
22
Vi) Option B capacity constraints:
Z e+ vold _2§B Oi, j,mt

1j =it

vii)  Distinct assignment of new units:
Yic 2 Yipn U k=1..7Z,-1

J

viii)  Digiunction for every unit k added to stage j:
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'E hwy, O =
DDS/ - it
0 k205 O
0 0
M 0
B U
B U
- -
5 0
IX) Propositional logic:

> Wiian + Wi =Wy Oi kot

szkt =Y, Ok

t

Yik 2 ijkt 0j, k

t
Wi < Vi 0j, k,t
t
Wi < szkr 0j, k,t
Zje S Wy, 0j, k,t
X) Variables:
n“’B”'TL“’Vik’eikt’vikt’VijBkmt’Viith 20 yjk’ijt'VViljgkmt’VVijth’ijt :{True FaJSé
i =1..N j=1.N  t=1.T k=1.Z, m=1.N

For the first time period, data for Examples 3 and 4 is the same as for Examples 1 and 2 in
Fletcher et al. (1991) respectively, and in subsequent periods demands and costs vary. We omit
this data due to the large amount of it, but interested readers can contact the authors. An example
of a solution to Example 3 for four time periods is shown in Figure 13, where it can be seen that
anew unit is added in stage 2 in year 1 and aso in stage 2 in year 3 leading to a Net Present

Value (NPV) of $6.3 million. Furthermore, if expansions were only alowed in period 1, the
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NPV would decrease by 12% to $5.6 million.

This shows the value of the multiperiod

formulation allowing discrete decisions for expansion and operation in each time period.

g

=
[
(@)
10

Stage Stage
1 2

VAERRVEE
40001 30001

Demand (1000 kg)
=
g 8
10O

o

Initial
configuration

Stage Stage
1 2

B

E
25001

ol

VAERVEE
40001 30001

Year 1

Stage Stage
1 2

C
B

V2=
25001

ol

Vi= v2=
40001 30001

Year 2

Stage Stage Stage Stage
1 2 1 2
B C B C Operating
mode:
B B Product 1
Product 2
Vi= v2= Vi= vy2=
10001 25001 | 10001 25001
JUHUL A[U]_[UL } Plant
configuration
\ A
vi= v2= | vi= V2=
40001 30001 | 40001 3000 |
[l Capacity
Product 1
[l Capacity
Product 2

Year 3 Year 4

Figure 13: Solution to Example 3 for four time periods

The total solution times show the same trends as the MILP solution times, since the NLP

solution times are insignificant for these examples compared to that of the MILPs. All three
algorithms, i.e. the fullspace MINLP, the digunctive OA and the digunctive bilevel

decomposition algorithm, obtain the same objective value. Once again the digunctive bilevel

decomposition algorithm dominates, with up to one or more orders of magnitude decrease in
solution times compared to the full space method (see Tables 4 and 5). In Table 4 it can be seen

that for the 10 period problem neither the full-space, nor the digunctive OA, could find the

optimal solution after 20 hours of computation, while the digunctive bilevel decomposition

algorithm obtained the optimal solution in less than an hour. The benefit of the digunctive

formulation is not present for the smaller problems, but is significant for larger problems as
shown in Table5.

Table 4: Comparison of results for example 3: 2 stages 2 products

Number

of

Objective

Profit

Discrete

Variables

Continuous

Variables

Constraints

MILP solution time (CPU sec.)
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Time ($1000) OA Logic-Based OA Bilevel
Periods Decomposition
1 1420.6 20 33 89 0.4 0.5 0.8
2 3257.7 40 65 172 20 2.2 1.6
4 7763.2 100 177 434 209.3 171.0 273
6 119114 180 265 722 2046.4 83721 814
8 15690.4 320 449 1250 52104.9 >50000 718.7
10 19700.9 400 561 1560 >70000 >70000 3362.8
Table 5: Comparison of results for example 4: 4 stages 4 products
Number | Objective | Discrete | Continuous | Constraints MILP solution time (CPU sec.)
of Profit Variables | Variables Full Space Digunctive Digunctive
Time ($1000) OA Logic-Based OA Bilevel
Periods Decomposition
1 497.6 104 105 331 44 6.4 17
2 1041.6 312 297 936 924 148.2 23.7
3 1612.3 468 445 1397 >40000 4968.4 852.6
4 2202.6 832 769 2422 >40000 35872.1 13757.9

10. Conclusions

The algebraic method for solving multiperiod MINLPs that involve discrete decisions for
topology selection, capacity expansion and operation at each time period is combinatorially
explosive, as has been shown in this paper. To effectively address this problem, we have
proposed a general model for design and planning of process industry networks, incorporating
design, operation planning and capacity expansion in one model. Furthermore, we have
proposed two algorithms - the digunctive OA agorithm and the digunctive bilevel
decomposition algorithm - to solve this model. The proposed methods were applied to the areas
of process planning and retrofit design of batch plants and show significantly reduced solution
times, especialy where the latter method is concerned. These algorithms specifically address the
problem of the computational expense in solving the MILP step, which is often the bottleneck in

the computations of multiperiod optimization problems.

" Stopped after 30 major iterations
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Appendix
Appendix A: Derivation of the convex hull of problem (DMILP)

Raman and Grossmann (1994) showed how to convert linear digunctive programs to mixed

integer form through the convex hull formulation for each digunction, based on previous work

by Balas (1985). We use the same ideas to convert problem (DLP) to problem (DMILP)

through the convex hull formulation for each digunction. The basic idea is to replace the

Boolean variables by corresponding binary variables and to disaggregate the continuous
variables to have a variable for each digunction. The convex hull gives a tighter formulation

than the “big-M” formulation (Turkay and Grossmann, 1996b). As will be seen in the following
derivation, a large number of the disaggregated variables become redundant for this model, and

can be removed to simplify the model. Consider problem (DLP):

min tszCOit +ZJZCEjt +lec|txit



9" (x)+0, 9" () (x —x)<0 Ot

Dx, <0 Lt
0 Y, 0
a a
il th 0 0 o
%m 0 0 QO
i O)+0, hR () (4 = X5) + 0, i ()T (%, —x,)<ag S O
0
% Axt,nz+BXt,z+CthSb ] 0 -w S E _'yj E
. t .
% kOK! BDEB“ J_O%]ED B'x =00 0

_ X = O O

% COjt Vit B 0] :Om B O Lt l
T O z, 00 -z, O o Bog
i O 0 O O 0 0O
il Dth :Qj,t—l +QEjt DD @jt :QJ,HD O 0 0
jt it it O“-it 0 O E O

y; O @lwn Oj w, Oy, Oj,t
w;, U @lzjt 0j,t z, U w, 0, t
Q(y) =True
CE,CO,Q,QE, x>0, y,w, zO{True Falsd

To convert each digunction to mixed-integer form through the convex hull formulation, we first
convert the inner digunction and work outwards until the whole problem is transformed into an
MILP problem. For simplicity, we will ignore most of the sub- and superscripts for the rest of

the derivation, except where they are relevant. First, consider the innermost disjunction:

. [l —IZ [l
mE ECEJ‘ D (A1)

%:E _O’ QE ﬂnD %DE. _OD
jt

The expansion eguations can in this case be moved to the outer disunction to ssmplify derivation
of the convex hull, seeing that they always apply if the process is chosen. The first step is to
disaggregate the variables. Superscript 1 refers to the left digunction, while superscript 2 refers
to theright digunction. A binary variable is assigned to every digunction. The disaggregation is
then asfollows:

Z'+z° =1

QE =QE'+QE? (A2)
CE =CE' +CE?
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Substitute disaggregated variables into disunction 1.

CE'=aQE* + g2 (A3)
0z! < QE! <Uz! (A4)
Substitute disaggregated variables into disunction 2:

CE?=0z?=0 (A5)
QE2=0z2=0 (A6)
Simplify:

CE =aQE + Sz
QE <Uz

QE,CE >0
z0{0,}

(A7)

Next consider the middle disunction in (DLP) after replacing the inner disunction with (A7):

0 W, 0
nl nl nl O
%ﬁtI (th) + DX{,nz hjtI (th)T (Xt,nz - th,nz) + Dx“Z hjtI (th)T (th - thz) < aD 0 W H
O [l TV
0 Axt,nz + thz + Cth <b DD %nxt :OD (A8)
| KOK' 05 °f
0 0 Heo, =0f
O CO, =y, 0
0 0
O (A7) O

The same costs and continuous variables also go to zero in the right hand side disunction as the
ones in (A7), but they are left out for simplicity. After a similar procedure is applied as in the
derivation of (A7), namely disaggregation of the continuous variables, substitution and

simplification, the following mixed integer convex hull formulation is obtai ned:
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Xore = X + Xre
Qi =Qj +Qj
O M O6) X + 0, MR O6) T X, <[ 06) + 0, Bt () X + 0, Dt () X, +aw,
Axtl,nz + Bxx : T CQit < ijt
CO, =y w,
CE, =a,QE; +
QE, <Uz,
2 sijt
Xenz SUW,
Q;; sUw,
X SUL- W)
Qs 2<u(- W)
Z;, SWy

it =

x,Q,QE,CE,CO>0, zwo{o1} (A9)

Finally consider the outer diunction in (DLP) with (A9):

O Y, D D 7Y, D
Q]t1+QE]tDD|ﬁ]tXt OD
E (A9) H EQJI_OE

Although it is not shown above, the same variables are set to zero on the right hand side
disunction as in the formulation of (A9), but they are set to zero for al time periods. After
disaggregation of variables, substitution and simplification, the constraints outside the
disiunctions are added and logical propositions are expressed in algebraic form to give the fina
(MILP) formulation, model (DMILP):

min  $300, +33CE +35CX

subject to
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9" (x) +0, 97" ()" (x —x)<0 Ot

Dx, <d Ot
B O X 0, )T < ) =0, )T X 0, ()T, —alw,
Oj,t,kOK'!

AX, + Bx,, +CQj, <bw, 0j,t
Xenz = Xemz + Xng Ot
Xenz SUW, 0j,t
X SU@=w,) 0j,t
X, SUwy, 0j,t
Q, =Q; +Q} 0j,t
Qj, sUw, 0j,t
QisU@-w,) Oj, t
CE, =a,QE, + [,z Oj,t
CO, =y, w, 0j,t
Q, =Q,.. +QE, 0j,t
QE, -Uz, <0 Oj, t
y, < Zth 0j
w, <y, 0jt
Wy, < sz, 0j,t
z, SwW 0j,t
Ey<e
CE,CO,Q,QE, x>0, y,w,z0{03}

Appendix B: Derivation of the convex hull for the MILP master problems in the bilevel

decomposition

Upper level design problem:
The convex hull for this problem is the same as (DMILP), except that the design variable, vy, is
used to drive variables to zero, and the binary variables for operation and expansion planning are

relaxed using either integer relaxation or the following relaxations:

38



Wy 2 (BY
Xt,ur)per
w, > kOK (B2)
it T ok
X,
QE;
2= (B3
QEit,uerer
E.
z, 2 Q—'kt kOK (B4)
QE;

where K is the number of major iterations between (DP) and (OEP). For (B1) and (B3), upper

bounds are used, while the values obtained in the previous (OEP) problem are used in (B2) and

(B4). The values on the right hand sides of the expressions above will always be less or equal

than 1, and this is therefore a relaxation of the original problem.

After substituting these relaxations, the MILP master problem for (DP) is as follows (MIPDP):
min 3300, +33CE +350x

subject to
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98 (x)+0, 9" () (% —x)<0 [t

Dx, <d Lt
O, ()T + 0, ()T %, <= () =0, (X)X + 0, hil (x) 7%, —aly,
Oj,t  kOK!

AX,, +Bx , +CQ, by, 0j,t
S Ot
Xtl,nz = Uy] DJ ,t
X SU@-yY)) 0j,t

2 sUy, 0j,t

E.
CE, 2a,QE, +, O 0j.t
QEit,umer

E.

CE, 2a,QE, + B, © = 0j.t
QEj

co, =y, 2 Oj t

,upper

co, =y, % 0j t

Q“ =an“l +QE|t Djlt

QE, -Uy, <0 Oj,t
Ey<e

CE, CO,Q, QE, x>0, yDo{o3}

For the lower level planning problem, the formulation is the same as for (A9), except that the y
values are fixed and with the addition of the expansion equations. The MILP master formulation
is as follows (MIPOEP):

min ZZCOH-'-ZZCEjt-l-tZZQtXit

subject to
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9/ () +0, 9 ()" (% —x)<0 [t

Dx <d it

Xone = X * X Ct
Q. =Q; +Q; 0Oj,t

O, h ) X + 0, M) X%, < |- h () + 0, h () x5 + 0, i ()T X, +ajw
0j,t, k0 K)

A, +Bx,, +CQj <bw, 0j,t
CO, =y, w, 0j,t
CE, =a,QE, + 8,2, 0j,t
Q, =Q, 4 +QE; 0j,t
QE, <Uz, Oj,t

X, <Uw, 0, t

X ne SUW, 0j,t
Q;, sUw, 0j,t

X SUL-w,) 0j,t
QJ-ZISU(l—th) 0j,t
Yi fixed S szt 0j
Wit < Y} fiea 0j,t
{

w, <z, 0j,t
zZ, sv% 0, t
Fw< f
x,Q,QE,CE,CO=0, z,w{o1}
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