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Abstract 

 

We address the problem of short-term scheduling of parallel batch reactors followed by continuously 

operating finishing trains to form work groups which is motivated by a real world problem at the Dow 

Chemical Company. The proposed MILP formulation is based on the recent planning model of Erdirik-

Dogan and Grossmann (2007), and features additional constraints for handling complex arrangements 

arising from the workgroups. Several examples are presented to illustrate the proposed model.  
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1. Introduction 

This work has been inspired by a real world application originating from the specialty chemicals 

business at the Dow Chemical Company which is characterized by the manufacture of a large product 

portfolio (see Erdirik-Dogan et al., 2007, 2008). The specialty chemicals business is subject to constant 

change with respect to the products in the portfolio. The relative demand for individual products can 

fluctuate widely over time as conditions change in the many markets that are served. The price and 

profitability among products varies greatly and can shift over time. New product introductions and 
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experimental product runs occur several times a year and must be worked into the production schedule. 

Many high margin products are subject to spot orders that are hard to forecast. All of these conditions 

create a challenging production scheduling environment. 

 

We address the short-term scheduling of a multi-product batch plant which consists of parallel batch 

reactors that are connected to continuously operating finishing trains to form work groups. Finishing 

operations in the specialty chemicals business are required to convert the outputs from the reactors to 

trade products for a diverse set of markets and customers. Depending on the business, finishing trains 

can simply purify the crude reactor grade product or they may include blending operations for additives. 

 

A complication that arises in this type of plant is that each time a product switch occurs, not only the 

reactors but also the finishing trains need to be cleaned up and made ready for the next product. Since 

these clean up operations involve sequence-dependent changeovers, determining the optimal sequence 

of production is of great importance for improving equipment utilization and reducing the costs. The 

main challenge of modeling this scheduling problem arises from the structure of the plant, where the 

work groups are not fixed, but are flexible in the sense that subsets of work groups can be selected by 

manipulating valves that interconnect the reactors with the finishing trains. Therefore, in addition to the 

challenge of determining the optimal production sequence given the sequence-dependent changeovers 

with high variance, there is also the challenge of regrouping the units periodically when the demand 

varies from one period to the next one, or when new products are introduced while maximizing profit.   

This problem is somewhat unique as it does not fit conventional batch scheduling problems that have 

been considered before in the literature (for a review see Shah, 1998; Kallrath, 2002; Mendez et al, 

2006). 

 

In order to address the aforementioned issues, we propose in this paper an MILP optimization model 

which is the extension of the recent work of Erdirik-Dogan and Grossmann (2007) for long-term 

planning of two-stage parallel batch reactors to the case of short-term scheduling of single stage, parallel 

batch reactors connected to continuously operating finishing trains. The paper is organized as follows. 

In the next section, we present the problem statement. This is followed by the proposed MILP 

formulation. In section 4, we present several examples to show the application and effectiveness of the 

model, and finally, section 5 summarizes some conclusions and recommendations for future work.  
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2. Problem Statement 

Given is a plant consisting of several identical batch reactors operating in parallel, and which are 

connected via valves to intermediate storage tanks dedicated to each finishing train, which in turn are 

connected to continuously operating finishing trains to from work groups. Each finishing train is 

connected to any of the dedicated storage tanks where products are stored. As seen in Figure 1, reactors 

R1 and R3 can be connected to finishing train A to form work group 1; Reactors R1, R2 and R5 can be 

connected to finishing train B to work group 2 and so on. 
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Figure 1. Schematic representation of the problem 
 

A combination of two intermediate storage tanks is dedicated to each finishing train to act as a buffer 

between batch reactors and continuously operating finishing trains as shown in Figure 1. Reactors and 

the associated intermediate storage tank are connected through a single valve. Hence the material 
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transfer from the parallel reactors to this tank occurs simultaneously. When a product switch occurs, one 

of the intermediate tanks is run dry, cleaned and made ready for the next product while the other tank is 

feeding the first product to the finishing train. After the processing of the first product is completed, 

both the finishing train and the tank feeding it are cleaned and made ready for the next product as well. 

Since the intermediate storage tanks do not represent a bottleneck in terms of capacity and since we are 

not concerned with the detailed timing of operations in this work, we have simplified the problem as 

shown in Figure 2 where the intermediate storage tanks are removed from the system. 
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Figure 2. System of reactors, finishing trains and dedicated storage tanks  
 

Each reactor can have potential connections with more than one finishing train. Hence each reactor can 

be involved with more than one work group. Moreover, the connection between a specific reactor and 
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potential finishing trains is flexible in the sense that one reactor can be connected to one finishing train 

during one period, but can be connected to another finishing train in the subsequent time period. In other 

words, assignment of a reactor to a work group is not fixed throughout the horizon, but can change from 

one time period to another. As an example consider Figure 2 where reactor R1 can be connected to 

finishing train A during time period t but can be connected to finishing train B during the subsequent 

time period, t+1. 

 

For this scheduling problem, we assume that the following information is given: 

(a) Potential connections between a reactor and a work group; (b) subset of products that each reactor 

can process; (c) batch times and batch sizes of each product for the corresponding units; (d) sequence-

dependent changeover times and costs; (e) operating costs, inventory costs, selling price associated with 

each product; (f) due dates and demands to be satisfied; (g) time horizon under consideration. 

 

The problem is then to determine optimum values of the following items so as to maximize the profit 

while satisfying production demands at the specified due dates: (i) allocation of units to potential 

workgroups during each time period (connection of each reactor to each finishing train during each time 

period); (ii) production sequence on each unit during each time interval; (iii) number of batches of each 

product in each unit during each time interval; (iv) production and inventory levels; (v) amounts of 

products sold at the end of each time period. The objective is to select these items in order to maximize 

the profit. 

 

3. Mathematical Model  

 

The mathematical model proposed for the problem described in this paper is based on the recent work 

by Erdirik-Dogan and Grossmann (2007) where a method for simultaneously determining the number of 

batches of each product together with their allocation and sequencing on the available units has been 

proposed. The proposed model explicitly accounts for sequence-dependent changeover times and costs 

by immediate precedence sequencing variables and sequencing constraints which correspond to a 

relaxation of the traveling salesman problem (Nemhauser and Wolsey, 1988).   We should note that the 

proposed model does not involve detailed timing variables as would be the case of a slot-based model 

(e.g. see Sundaramoorthy, A. & Karimi, I.A., 2005; Erdirik and Grossmann, 2008).  Main reason behind 
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this simplification is that the planning model by Erdirik and Grossmann (2007), which is used as a basis 

for this work, provides an exact schedule for single stage plants when there are no subcycles. 

 

 In this paper that work is extended to accommodate the case of parallel batch reactors connected to 

continuously operating finishing trains to form work groups. The extension involves the introduction of 

a new binary variable and several constraints which will be explained in detail in the problem 

constraints sub-section. Moreover, the model of Erdirik-Dogan and Grossmann (2007) has the potential 

drawback of generating solutions featuring subcycles. For the cases when subcycles are encountered, 

the model will not be able to generate a feasible schedule. In order to guard against such a case, we add 

subtour elimination constraints iteratively until feasible schedules are found. 

 

The following assumptions hold for this scheduling model: 

1. The model parameters are deterministic. 

2. Single stage production is assumed. 

3. Transfer time of material from the reactors to the finishing trains is negligible. 

4. The production process is non-preemptive. 

5. Each reactor can process a subset of products. However, the units are identical in terms of the 

batch times, batch sizes and production costs. 

6. Transition times and costs are sequence-dependent, but independent of the units.  

7. Connections between reactors and finishing trains can only change between time periods. 

  

Since the proposed formulation uses as a basic building block the work of Erdirik-Dogan and 

Grossmann (2007), for the sake of completeness, we first briefly outline that model. Next, we introduce 

the additional constraints and variables to be able to accommodate the extension to the connection with 

continuously operating finishing trains. And finally, we address the aforementioned subtour elimination 

constraints.  

 

3.1. Outline of the Erdirik-Dogan and Grossmann (2007) model 

 Material handled and capacity requirements: 

, , , , , , , ,i m t i m t i m t mFP Bound YP i I m t≤ ⋅ ∀ ∈   (1) 

Number of batches of each product: 
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, , , , , , ,i m t i m t i m mNB FP Q i I m t= ∀ ∈    (2) 

Mass Balances on the state nodes 

, , , , , , , , , , 1 ,
j i j i

j t j i i m t j t j i i m t j t j t
i PS m M i CS m M

P FP S FP INV INV j tρ ρ
−

∈ ∈ ∈ ∈

+ = + + − ∀∑ ∑ ∑ ∑   (3) 

Demands 

, , ,j t j tS D j t≥ ∀  (4) 

, , ,j t j tS D j t≤ ∀  (5) 

Demands can be defined as hard upper bounds, soft lower bounds or both where it is given by a range of 

values. The lower bounds represent fixed orders, whereas the upper bounds represent maximum 

projected demands that can be sold in the market during each time period. 

 Changeover times and costs 

We account for the sequence-dependent changeover times and costs through sequencing constraints 

similar to the ones from the traveling salesman problem and through time balances. The basic idea is to 

find the minimum transition time sequence within the assigned products within each period while 

maximizing the profit and satisfying the demands at the due dates. In order to do that, a cyclic schedule 

is first generated within each period that minimizes transition times amongst the assigned products. 

Next, one of the links in the cycle is broken to determine the optimal sequence (see also Birewar and 

Grossmann, 1990). 

The following constraints are proposed for generating cyclic schedules in each unit, each time period. 

'
'

, ,imt ii mt m
i

YP ZP i I m t= ∀ ∈∑  (6) 

' ' ' , ,i mt ii mt m
i

YP ZP i I m t= ∀ ∈∑  (7) 

Constraints (8) and (9) determine the location of the cycle to be broken. 

'
'

1 ,
m m

ii mt
i I i I

ZZP m t
∈ ∈

= ∀∑∑  (8) 

' ' , ' , ,ii mt ii mt mZZP ZP i i I m t≤ ∀ ∈  (9) 

Constraint (10) defines the total transition time within each time period ( ,m tTRNP ), which is given by the 

summation of the transition times ( , 'i iτ ) corresponding to each existing pair ( mtiiZP ' ) minus the transition 

time corresponding to the link that is broken ( mtiiZZP ' ).  
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, , ' , ', , , ' , ', ,
' '

,
m m m m

m t i i i i m t i i i i m t
i I i I i I i I

TRNP ZP ZZP m tτ τ
∈ ∈ ∈ ∈

= ⋅ − ⋅ ∀∑ ∑ ∑∑  (10) 

The following constraints (11)-(16) are introduced to be able to account for the transitions across 

adjacent time periods. The elements that correspond to the pair where the cycle is broken to form the 

sequence, represent the head, , ,i m tXF , and the tail, , ,i m tXL , of the sequence.  

', , , ', , ' , ,
m

i m t i i m t m
i I

XF ZZP i I m t
∈

≥ ∀ ∈∑  (11) 

, , , ', ,
'

, ,
m

i m t i i m t m
i I

XL ZZP i I m t
∈

≥ ∀ ∈∑  (12) 

, , 1 ,
m

i m t
i I

XF m t
∈

= ∀∑    (13) 

, , 1 ,
m

i m t
i I

XL m t
∈

= ∀∑    (14) 

, ', , , ,
'

, ,
m

i i m t i m t m
i I

ZZZ XL i I m t
∈

= ∀ ∈∑      (15) 

{ }, ', , ', , 1 ' , ,
m

i i m t i m t m
i I

ZZZ XF i I m t T t+
∈

= ∀ ∈ ∈ −∑  (16) 

Finally, through the time balances given by constraint (17), the total allocation of production times plus 

the total transition times is enforced not to exceed the available time for each unit. 

, , , , , ', , , '
'

,
m m m

i m t i m m t i i m t i i t
i I i I i I

NB BT TRNP ZZZ H m tτ
∈ ∈ ∈

⋅ + + ⋅ ≤ ∀∑ ∑∑  (17) 

Objective function 

The objective is to maximize the profit in terms of sales revenues, inventory costs, operating costs and 

changeover costs. 

, , , , , , ,

, ' , ', , , ', , , ', ,
'

( )
m

m m

p inv oper
j t j t j t j t i t i m t

j t j t i I m t

trans
i i i i m t i i m t i i m t

i I i I m t

Max Z cp S c INV c FP

c ZP ZZP ZZZ
∈

∈ ∈

= ⋅ − ⋅ − ⋅

− ⋅ − +

∑∑ ∑∑ ∑∑∑

∑∑∑∑
 (18) 

 

3.2. Constraints for the connection of parallel batch reactors to continuously operating finishing 

trains 

In order to model these constraints we will define the boolean variables , ,i m tYP and , ,m w tVY to represent 

assignment of product i to unit m during time period t and assignment of unit m to workgroup w during 
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time period t, respectively. We also define the subset mW  to represent the workgroups that can 

potentially include unit m. 

Assignment of any task i in unit m during period t, triggers the assignment of unit m to one of the 

potential workgroups w mW∈  it can belong to. 

According to the implication in constraint (19), if unit m is selected to operate during time period t, then 

one of the work groups which m can be a part of must also be selected. This implication can be 

mathematically written as shown in constraint (20), 

 

, , , , , ,
m

i m t m w t iw W
YP VY i m M t

∈
→ ∀ ∈∨    (19) 

, , , , , ,
m

i m t m w t m
w W

YP VY i I m t
∈

≤ ∀ ∈∑   (20) 

 

Assignment of unit m to workgroup w mW∈  during time period t, activates the assignment of all the 

other units belonging to workgroup w during time period t. 

Assignment of a unit to a work group w during time period t, implies that the work group w has been 

selected to operate during time t, which further implies that all the units associated with that work group 

must also be selected. This is represented in the implication (21) which is written mathematically as 

shown in constraint (22).  

 

, , ', ,'
'

, ,
w

m w t m w t mm M
m m

VY VY m w W t
∈
≠

→ ∀ ∈∧   (21) 

', , , , , ' , ', ,m w t m w t w wVY VY m M m M m m w t≥ ∀ ∈ ∈ ≠  (22) 

During each time period, unit m can operate as a part of at most one potential work group w mW∈ . 

Since the valves connecting units to finishing trains can be turned on or off only between time periods, 

each unit is dedicated to at most one work group during each time period. Therefore, if unit m is 

selected to operate during time period t, then it can operate as a part of at most one work group which is 

represented by constraint (23).    

 

, , 1 ,
m

m w t
w W

VY m t
∈

≤ ∀∑   (23) 
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The units belonging to a specific workgroup at any time period must have the same assignments and 

sequence on all units within that time period.  

In the previous paper, we did not consider the connections between reactors and finishing trains where 

any reactor could be directly connected to any of the storage tanks. Thus, the reactors were independent 

in the sense that the assignments of products and their sequences in each unit were allowed to be unique. 

However, taking into account the connection between reactors and finishing trains brings up a new 

issue. Specifically, since, materials are fed simultaneously from the reactors to the finishing trains, 

contamination in the finishing trains may occur. As an example consider the workgroup shown in Figure 

3, where product A is produced in reactor R1 while product B is produced in reactor R2. At the end of 

the production, transferring A and B simultaneously to the finishing train will cause A and B to mixed 

and will result in an off-specification product. In order to avoid the aforementioned problem, the units 

operating as a workgroup must be synchronized during that time period. 

Finishing train 

B B
t hours

AA A
t hours

R2

R1

Finishing train 

B B
t hours

B B
t hours

AA A
t hours

AA A
t hours

R2

R1

  
Figure 3. Contamination in the finishing trains due to a synchronized schedules   
  

The following constraint is proposed to ensure that the units operating as a part of the same work group 

will have the same product assignments during that time period. The implication in constraint (24) states 

that if product i is assigned to unit m during time period t, and unit m operates as a part of work group w 

during time period t, and if any other unit m’ is also operating as a part of work group w within that time 

period, then product i will also be assigned for production on unit m’ during that time period. Constraint 

(24) is then transformed into an inequality with 0-1 variables to yield constraint (25). 
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( ), , , , ', , , ', '( ), , ' , ', ,i m t m w t m w t i m t m m w wYP VY VY YP i I I m M m M m m w t∧ ∧ → ∀ ∈ ∩ ∈ ∈ ≠  (24) 

, ', , , , , ', , '2 ( ), , ' , ', ,i m t i m t m w t m w t m m w wYP YP VY VY i I I m M m M m m w t≥ + + − ∀ ∈ ∩ ∈ ∈ ≠  (25) 

We should note that enforcing the same product assignments within all units associated with a work 

group is not sufficient to obtain the same sequences in all the units involved with that work group. This 

is due to the fact that the reactors operating in parallel in one time period could be coupled with other 

reactors, and could have different product assignments in the subsequent time period. Hence, for the 

sake of minimizing transitions across adjacent weeks, different sequences could be assigned to units 

belonging to the same work group unless that condition is explicitly enforced. This is illustrated in the 

example of Figure 4. Units R1 and R2 are connected via the same finishing train in the first week but 

the connection is severed in the second week and new connections between R1 and R3 and R2 and R4 

are made. Since the product assignments change for both R1 and R2 from week 1 to week 2, the model 

yields different schedules in the first week for R1 and R2 in order to minimize the transitions across 

adjacent weeks. 
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Figure 4. Transitions across adjacent periods for units belonging to different workgroups in 
adjacent periods 
 

In order to ensure that the units operating as a work group have the same sequence within a given time 

period, we must enforce the condition that the cycles generated for the units under consideration are 

broken from the same location. This is because of the way we handle the sequence of production. 
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Specifically, the order of products in the generated cycles will be the same for all the units that have the 

same product assignments since the goal is to minimize the total transition time. However, according to 

the location of the link to be broken, different cycles can be obtained. As an example consider Figure 5 

where the same cycle of three products can lead to three different sequences according to the location of 

the link to be broken. 

 

Hence, by enforcing the cycle to be broken at the same location, or in other words, enforcing that the 

generated sequences have the same heads ( , ,i m tXF ) and tails ( , ,i m tXL ) through constraints (26) and (27), 

we ensure that units connected to the same finishing train at a given period will have the same 

sequences.  
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C B A
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?
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Figure 5. One cycle, three different sequences 
 

Constraints (26) and (27) are derived in analogy to constraint (24), and can be written mathematically as 

shown in constraints (28) and (29), respectively. 

( ), , , , ', , , ', '( ), , ' , ', ,i m t m w t m w t i m t m m w wXF VY VY XF i I I m M m M m m w t∧ ∧ → ∀ ∈ ∩ ∈ ∈ ≠  (26) 

( ), , , , ', , , ', '( ), , ' , ', ,i m t m w t m w t i m t m m w wXL VY VY XL i I I m M m M m m w t∧ ∧ → ∀ ∈ ∩ ∈ ∈ ≠  (27) 

, ', , , , , ', , '2 ( ), , ' , ', ,i m t i m t m w t m w t m m w wXF XF VY VY i I I m M m M m m w t≥ + + − ∀ ∈ ∩ ∈ ∈ ≠  (28) 

, ', , , , , ', , '2 ( ), , ' , ', ,i m t i m t m w t m w t m m w wXL XL VY VY i I I m M m M m m w t≥ + + − ∀ ∈ ∩ ∈ ∈ ≠  (29) 

 

3.3. Subcycle elimination constraints 

The formulation given by constraints (1)-(17), (20), (22), (23), (25), (28), (29), and objective in (18), 

might exhibit subcycles. Although, for asymmetric sequence-dependent changeovers the likelihood of 

subcycles is small (Pekny and Miller, 1992), there is no guarantee that this will be the case. In this 
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subsection, we will discuss the addition of constraints that will ensure obtaining sequences without any 

subcycles. 

  

The first alternative is to introduce general subtour elimination constraints as shown in inequality (30)  

which are similar to the subtour elimination constraints used in the traveling salesman problem (see also 

Birewar and Grossmann, 1989). 

, ', , '
' '

1 ( ),

, , '
m m

i i m t i i
i Q i Q

m m m m m m

ZP m M M t

Q I Q Q Q N
∈ ∈

≥ ∀ ∈ ∩

⊂ ≠∅ + =

∑ ∑
 (30) 

where Qm is a subset of products such that the cardinality of Qm is strictly less than Nm and it is not an 

empty set. Im is the set of all Nm products and Q’m is the complement of Qm. While including constraint 

(30) in the formulation will guarantee that the optimal solution is free of any subcycles, it increases the 

number of constraints by (2 2)mN M T− ⋅ ⋅ . 

The second alternative is instead of adding subtour elimination constraints given in (30) for all possible 

subcycles, to introduce these constraints iteratively for only the set of products involved in the various 

subcycles until the solution is free of subcycles as shown in constraint (31). 

, ', , '
' '

1 2

1 ( ),

, ,........, , '
m m

s

i i m t i i
i Q i Q

m N m m m

ZP m M M t

Q S S S Q Q N
∈ ∈

≥ ∀ ∈ ∩

= + =

∑ ∑
 (31) 

where S1,…..SN are the sets of products that are involved in the corresponding subcyles, Q’m is the 

complement of set Qm, and mN  is the set of products that can be processed on unit m. 

 

Constraint (31) forces the model to break one of the links in each subcycle Qm and Q’m and to form at 

least one connection between set Qm and set Q’m. After the addition of constraint (31), if the solution 

does not contain any subcycles the procedure is stopped. Otherwise, constraint (31) for the new 

subcycles is added iteratively until the model does not introduce new subcycles. We should also note 

that this procedure will not guarantee the global optimum solution since all we are aiming for is a 

feasible sequence. 

4. Examples 
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In this section we present three different examples to illustrate the application of the proposed model. It 

should be noted that all the models presented in this paper have been implemented in GAMS 22.3 and 

solved with CPLEX 10.1 on an 2X Intel Xeon 5150 at 2.66 GHz machine. 

4.1. Example 1 

The first example consists of six products, A-F, four reactors, R1-R4, and five finishing trains, FT1-FT5 

whose structure is shown in Figure 6. Each reactor can process only a subset of products. Namely, 

Reactor R1 can process products A, B, C and F; R2 can process A, B, C, D, E; R3 can process A, B, and 

C; and finally R4 can process D, E and F. The potential connections between reactors and the finishing 

trains are as follows. Reactors R1 and R3 can be connected to FT 1 to form work group 1, R2 and R4 

can be connected to FT 2 to form work group 2, R2 and R3 can be connected to W3 to form work group 

3, R1, R2 and R3 can be connected to FT 4 to from work group 4, and finally, R1 and R4 can be 

connected to FT 5 to form work group 5. The data used for this example is presented in Appendix A. 

We should note that, the product demand is assumed to be flexible in the sense that it is bounded by a 

soft upper bound and a hard lower bound as shown in Table A4.  
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Figure 6. Schematic representation for Example 1 
 

When the model is solved for a horizon of 3 weeks, it contains 1291 constraints, 858 continuous 

variables and 573 binary variables. The model yields the profit of $ 2,585,544 in 0.64 CPUs. Table 1 

illustrates the computational performance of the model with respect to increasing time horizons. As can 

be seen, the time required to solve the problem increases dramatically with increasing time horizons. In 
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fact, for the case of the 12 week horizon, the model failed to terminate in 10,000 CPUs yielding only a 

feasible solution of $ 10,791,100. 

 
Table 1. Model and Solution Statistics for Example 1 for 3-12 Weeks 

time
horizon

number of 
binary 

variables

number of 
continuous 
variables

number of 
equations

time
(CPU s)

solution 
($)

3 weeks 573 858 1291 0.64 2,585,544
6 weeks 1164 1728 2611 29.82 5,478,987
12 weeks 2292 3468 5251 10,000* 10,791,100*
*Search terminated, best feasible solution posted  
  

Figure 7 shows the optimal work groups for Example 1 which is for a horizon of 3 weeks. As can be 

seen, while for the first two weeks, reactors R1 and R3 connected to FT1 to form work group 1, and R2 

and R4 connected to FT2 to form work group 2. In the third week these connections were severed and 

new connections were made between R2 and R3 to form work group 3 and R1 and R4 to form work 

group 5. 

R1

R2

R3

R4

FT 1

FT 2

FT 1

FT 5

FT 3

FT 2

week 1 week 2 week 3

R1

R2

R3

R4

FT 1FT 1

FT 2

FT 1FT 1

FT 5

FT 3

FT 2

week 1 week 2 week 3  
Figure 7. Optimal solution for work groups for Example 1 
Figure 8 shows the optimal sequence obtained for each reactor as well as the finishing trains for each 

week. The numbers shown in parentheses represent the number of batches of each product. Since no 

subcycles were encountered in the solution, the schedule obtained corresponds to the actual schedule.     
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Figure 8. Optimal schedule obtained for Example 1 for 3 weeks 
 
4.2. Example 2 

In this example, we consider 10 products, A-K, 6 reactors, R1-R6 and a time horizon of 4 weeks. Each 

reactor can process only a subset of the products. Specifically, R1 can process A, B, C; R2 is capable of 

processing A, B, C, H, J, K; R3 can process C, H, J, K; R4 can process D, E, F, G, H, J, R5 can process 

D, E, F, G, K, and finally R6 is capable of processing D, E, F and G. The potential connections between 

the reactors and the finishing trains are shown in Figure 9.   
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Figure 9. Schematic representation for Example 2 
 
 
Table 2 shows the model and solution statistics for this example. The formulation consisted of 1992 

binary variables, 2904 continuous variables and 6183 constraints. The optimal schedule with a profit of 

$7,986,674 was obtained in 644 CPUs.  

Table 2. Model and Solution Statistics for Example 2 

number of 
binary 

variables

number of 
continuous 
variables

number of 
equations

time
(CPU s)

solution 
($)

1992 2904 6183 644 7,986,674  
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Figure 10 shows the optimal connections between the reactors and the finishing trains for each time 

period. As can be seen, during weeks 1, 3 and 4 reactors R1 and R2; R3 and R4; and R5 and R6 

operated as work groups, while in the second week only R1 and R2 continued to operate as a work 

group, and new connections were made between R3 and R5 to connect to FT4 and between R4 and R6 

to connect to FT5.  
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R6

week 1 week 2 week 3 week 4
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FT1FT1

FT4FT4

FT5FT5
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FT3FT3

FT6FT6

FT1FT1

FT3FT3

FT6FT6

 
Figure 10. Optimal work group selection for Example 2 
 
Figure 11 shows the optimal sequence and the number of batches of each product obtained for each 

reactor for each time period. We should note that the same sequences apply for the corresponding 

finishing trains. We should also note that no subcycles were encountered in the solution; hence the 

schedule obtained corresponds to the actual schedule.     
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Figure 11. Optimal schedule obtained for Example 2 for 4 weeks 
 
4.3. Example 3 

The purpose of this example is to show the application of subcycle elimination constraints. The problem 

presented here is in essence the same as the one shown in Example 2 with the exception of the transition 

time and cost matrices. Since the likelihood of observing subcycles is higher in the presence of 

symmetric transition matrices, we have manipulated the transition time and cost values between 

products E and F and between products D and E as shown in Appendix A. 
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Figure 12. Optimal schedule obtained for Example 3  
 

While there has been no change in the optimal work group selection, there have been some changes in 

the optimal production schedule. As can be seen from Figure 12, the solution exhibits subcycles, 

specifically, { }1 ,S E F= and { }2 ,S D G=  for units R5 and R6 in the first week and for units R4 and R6 

in the second week. 

 

In order to eliminate these subcycles and to obtain a feasible production sequence, the formulation is 

resolved with the addition of the following four subcycle elimination constraints. 

 

, , 5, 1 , , 5, 1 , , 5, 1 , , 5, 1 1D E R T D F R T G E R T G F R TZP ZP ZP ZP+ + + ≥  (32) 

, , 6, 1 , , 6, 1 , , 6, 1 , , 6, 1 1D E R T D F R T G E R T G F R TZP ZP ZP ZP+ + + ≥  (33) 
 

, , 4, 2 , , 4, 2 , , 4, 2 , , 4, 2 1D E R T D F R T G E R T G F R TZP ZP ZP ZP+ + + ≥  (34) 
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, , 6, 2 , , 6, 2 , , 6, 2 , , 6, 2 1D E R T D F R T G E R T G F R TZP ZP ZP ZP+ + + ≥  (35) 
 

Figure 13 illustrates the optimal schedule obtained with the subcycle elimination constraints. Clearly, 

the solution is free of any subcycles. 
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 Figure 13. Optimal schedule obtained for Example 3 after introducing subcycle elimination 
constraints  
 
Table 3. Model and Solution Statistics for Example 3 

Model

number of 
binary 

variables

number of 
continuous 
variables

number of 
equations

time
(CPU s)

solution 
($)

original
formulation 1992 2904 6183 299 8,462,343
formulation with
subcycle elimination
constraints 1992 2904 6187 91 8,284,540  
 

Table 3 shows the model and solution statistics for this example. The first row represents the solution of 

constraints (1)-(18), (20), (22), (23), (25), (28), and (29), whereas in the second row constraints (32)-
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(35) are also introduced. As can be seen the profit drops from $ 8,462,343 to $ 8,284,540 which means 

that in the worst case the schedule in Figure 13 has an optimality gap of 2 %. 

 
5. Conclusions 

This research note presented an MILP model for the short-term scheduling of parallel batch reactors 

followed by continuously operating finishing trains to form work groups. While, the recent work of 

Erdirik-Dogan and Grossmann (2007) has been used as a basis for the formulation given in this paper, 

several additional constraints and variables have been introduced to be able to accommodate this 

challenging problem. As has been shown with the numerical results, the computational requirements of 

the proposed formulation are reasonable. However, to extend this work to mid to long time horizons, a 

specialized solution strategy capable of dealing with the problem size would be required. Another 

possible extension of the application in future work is to deal with the detailed timing of production 

which would result in several additional challenges such as ensuring sufficient inventory levels in the 

intermediate storage tanks to avoid undue delays. 
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Appendix A 

Data for Example 1: 

Table A1. Batch Sizes and Times for Example 1 
Batch Size (lb)
R1 R2 R3 R4

A 80,000 80,000 80,000 0
B 96,000 96,000 96,000 0
C 120,000 120,000 120,000 0
D 0 100,000 0 100,000
E 0 150,000 0 150,000
F 80,000 0 0 80,000

Batch Time (hrs)
R1 R2 R3 R4

A 16 16 16 0
B 10 10 10 0
C 25 25 25 0
D 0 20 0 20
E 0 15 0 15
F 16 0 0 16  
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Table A2. Selling Price and Cost Data for Example 1 

Product
operating
costs ($/lb)

selling
price ($/lb)

inventory
costs ($/lb w)

A 0.35 0.95 0.01496
B 0.34 0.99 0.01339
C 0.36 0.9 0.01418
D 0.37 1.1 0.01539
E 0.3 0.85 0.01618
F 0.35 0.95 0.01496  

Table A3. Changeover Times and Changeover Costs for Example 1 
Product A B C D E F

A 0 25 30 20 35 15
B 22 0 42 8 40 10
C 25 5 0 15 32 16
D 22 12 28 0 17 8
E 29 4 45 21 0 6
F 6 25 30 20 35 0

A 0 250 300 200 350 150
B 220 0 420 90 400 100
C 250 50 0 150 320 160
D 220 120 280 0 170 80
E 290 40 450 210 0 60
F 60 250 300 200 350 150

Transition times (hrs)

Transition costs ($/1000)

 

Table A4. Upper and Lower Bounds for Demands for Example 1 

Product time period 1 time period 2 time period 3
A 640,000 720,000 160,000
B 480,000 480,000 384,000
C 600,000 480,000 480,000
D 500,000 500,000 500,000
E 450,000 750,000 600,000
F 640,000 480,000 480,000

Product time period 1 time period 2 time period 3
A 160,000 0 80,000
B 196,000 0 0
C 240,000 0 0
D 0 200,000 0
E 0 300,000 0
F 0 0 80,000

Lower Bounds

                                  Demand (lb/w)
Upper Bounds
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Data for Example 2: 

Table A5. Batch Sizes and Times for Example 2 

R1 R2 R3 R4 R5 R6
A 80,000 80,000 0 0 0 0
B 96,000 96,000 0 0 0 0
C 120,000 120,000 120,000 0 120,000 0
D 0 0 0 100,000 100,000 100,000
E 0 0 0 150,000 150,000 150,000
F 0 0 0 80,000 80,000 80,000
G 0 0 0 90,000 90,000 90,000
H 0 90,000 90,000 90,000 0 0
J 0 125,000 125,000 125,000 0 0
K 0 120,000 120,000 0 120,000 0

R1 R2 R3 R4 R5 R6
A 16 16 0 0 0 0
B 10 10 0 0 0 0
C 15 15 15 0 15 0
D 0 0 0 20 20 20
E 0 0 0 15 15 15
F 0 0 0 16 16 16
G 0 0 0 9 9 9
H 0 12 12 12 0 0
J 0 15 15 15 0 0
K 0 10 10 0 10 0

Batch Size (lb)

Batch Time (hrs)

 

Table A6. Selling Price and Cost Data for Example 2 

Product
operating
costs ($/lb)

selling
price ($/lb)

inventory
costs ($/lb w)

A 0.35 0.95 0.01496
B 0.34 0.99 0.01339
C 0.36 0.9 0.01418
D 0.37 1 0.01539
E 0.3 0.85 0.01618
F 0.35 0.95 0.01496
G 0.37 1.2 0.01339
H 0.37 1 0.01339
J 0.36 0.99 0.01839
K 0.36 1 0.02339  
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Table A7. Changeover Times and Changeover Costs for Example 2 
Product A B C D E F G H J K

A 0 5 13 20 35 15 12 10 9 25
B 22 0 4 8 40 10 13 20 10 10
C 25 5 0 15 32 16 10 15 15 5
D 22 12 18 0 7 8 12 16 22 17
E 29 4 25 21 0 6 10 20 12 15
F 0 25 10 20 35 0 6 17 25 23
G 12 6 5 14 20 33 0 13 5 6
H 6 10 23 12 20 10 4 0 11 19
J 15 4 19 18 28 18 6 7 0 3
K 12 17 6 10 8 3 5 6 12 0

A 0 50 130 200 350 150 120 100 90 250
B 220 0 40 80 400 100 130 200 100 100
C 250 50 0 150 320 160 100 150 150 50
D 220 120 180 0 70 80 120 160 220 170
E 290 40 250 210 0 60 100 200 120 150
F 0 250 100 200 350 0 60 170 250 230
G 120 60 50 140 200 330 0 130 50 60
H 60 100 230 120 200 100 40 0 110 190
J 150 40 190 180 280 180 60 70 0 30
K 120 170 60 100 80 30 50 60 120 0

Transition times (hrs)

Transition costs ($/1000)

 

Table A8. Upper and Lower Bounds for Demands for Example 2 

Product time period 1 time period 2 time period 3 time period 4
A 560,000 560,000 320,000 480,000
B 480,000 480,000 288,000 480,000
C 240,000 480,000 480,000 480,000
D 500,000 400,000 400,000 500,000
E 450,000 450,000 600,000 600,000
F 320,000 160,000 480,000 480,000
G 540,000 270,000 180,000 540,000
H 540,000 630,000 540,000 540,000
J 625,000 625,000 750,000 625,000
K 600,000 600,000 480,000 480,000

Product time period 1 time period 2 time period 3 time period 4
A 0 0 0 0
B 0 0 0 0
C 0 0 0 0
D 0 0 0 0
E 0 0 0 0
F 0 0 0 0
G 0 0 0 0
H 0 0 90,000 0
J 0 0 125,000 0
K 0 0 0 0

Upper Bounds

Lower Bounds

                                  Demand (lb/w)
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Data for Example 3: 

Table A9. Changeover Times and Changeover Costs for Example 3 
Product A B C D E F G H J K

A 0 5 13 20 35 15 12 10 9 25
B 22 0 4 8 40 10 13 20 10 10
C 25 5 0 15 32 16 10 15 15 5
D 22 12 18 0 10 8 12 16 22 17
E 29 4 25 21 0 1 10 20 12 15
F 0 25 10 20 1 0 6 17 25 23
G 12 6 5 14 20 33 0 13 5 6
H 6 10 23 12 20 10 4 0 11 19
J 15 4 19 18 28 18 6 7 0 3
K 12 17 6 10 8 3 5 6 12 0

A 0 50 130 200 350 150 120 100 90 250
B 220 0 40 80 400 100 130 200 100 100
C 250 50 0 150 320 160 100 150 150 50
D 220 120 180 0 100 80 120 160 220 170
E 290 40 250 210 0 10 100 200 120 150
F 0 250 100 200 10 0 60 170 250 230
G 120 60 50 140 200 330 0 130 50 60
H 60 100 230 120 200 100 40 0 110 190
J 150 40 190 180 280 180 60 70 0 30
K 120 170 60 100 80 30 50 60 120 0

Transition times (hrs)

Transition costs ($/1000)

 

Nomenclature 
Indices 
, 'i i  tasks 
j  products 
m  units 
t   time periods 
t  last time period 
w  work groups 
Sets 
I  set of tasks 

mI  set of tasks that can be processed in unit m 

jPS  set of tasks that produce product j 

jCS  set of tasks that consume product j 

M  set of units 

iM  set of units that can process task i 
W  set of work groups 

mW  set of work groups that can involve unit m 
 
Parameters 
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imtBound  maximum amount of material that can be processed by task i in unit m during 
time period t  

,i mBT  batch processing time of task i in unit m 

,i mQ  batch size of task i in unit m 

jiρ  mass balance coefficient for the production of product j by task i 

jiρ  mass balance coefficient for the consumption of product j by task i 

,j tD  demand for product j at the end of time period t 

,i mTR  minimum changeover time for task i in unit m 

, ',i i mτ  changeover time required to change the operation from task i to task i’ in unit m 

tH  duration of the tth time period 

,i mTRC  minimum changeover cost for task i in unit m  
oper
itc  operating cost of task I in unit m 
inv
jtc  inventory cost of product j at the end of time period t 

jtcp  selling price of product j at the end of time period t 

, ',
trans
i i mc  changeover costs of changing the production from task i to i’ in unit m 

Variables 
, ,i m tYP  binary variable denoting the assignment of task i to unit m at each period t 

 , ,m w tVY  binary variable denoting the assignment of unit m to work group w at period t 
 imtNB  integer variable denoting number of each batches of each task i in each unit m at each       

period t 
imtFP  amount of material processed by each task i 

jtINV  inventory levels of each product j at each time period t 

jtP  the total amount of purchases of product j during time period t 

,j t
S  sales of product j at the end of time period t 

,m tU  maximum of the minimum changeover times of products assigned to unit m during time t 

,m tUT   maximum of the minimum changeover costs of products assigned to unit m during time t 

'ii mtZP  binary variable becomes 1 if product i precedes product i’ in unit m at time period t, 0 
otherwise 

'ii mtZZP  binary variable which becomes 1 if the link between products i and i’ is to be broken, 
otherwise it is zero 

,m tTRNP  total changeover time for unit m within each period 

, ,i m tXF  binary variable denoting the first task in the sequence 

, ,i m tXL  binary variable denoting the last task in the sequence 

, ', ,i i m tZZZ  changeover variable denoting the changeovers across adjacent periods 
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