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Abstract
In this work, a Mixed-Integer Nonlinear Programming (MINLP) mod-

eling framework for integrating short-term Crude-oil Scheduling (CS) and
mid-term Refinery Planning (RP) has been developed and effectively solved
by a proposed Lagrangean Decomposition (LD) algorithm. The principles
of this integration are based on the fact that both Crude-oil Schedul-
ing and Refinery Planning have their economic net values as their objec-
tives, and that they are physically linked by the Crude Distillation Unit
(CDU). A multi-scale approach is proposed in the framework to aggregate
continuous- and discrete-time formulations in CS and RP, respectively.
Compared to hierarchically solving the non-integrated CS and RP, com-
putational results show significant improvement regarding the economic
objective values. Moreover, the proposed LD approach requires less CPU
time converging to a small (1%-5%) optimality gap when compared to the
monolithic approach using state-of-the-art MINLP solvers.

1 Introduction
In petrochemical or crude-oil refinery industries, two major decision-making
problems have been the mid-term Refinery Planning (RP) and the short-term
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Crude Oil Scheduling (CS). The former problem is typically defined as a mid-
term downstream unit operating and flowsheet logistic optimization problem for
refinery downstream processes, including the crude oil distillation, intermediate
separation, reaction processes, and petrochemical product blending. In this
problem, it is often assumed that there are several types of crude oil available
on stock with certain amounts of volume, so that the optimization can be solved
to satisfy the demands of various petrochemicals to maximize the total net sales
profit. The latter problem can be defined as a short-term upstream crude-
oil inventory management optimization, where the crude transfer volume and
tank inventories are optimized in a complex system of vessels, tanks, and crude
distillation units (CDUs), in order to minimize the total cost of crude purchasing
and/or tank inventory as well as to satisfy the crude demand at CDUs and non-
overlapping processes.

In practice, the decision-making process is commonly performed as follows:
1) solve the RP problem maximizing the total product sales; 2) solve the CS
problem satisfying the demand feedstocks of RP and minimizing total cost; 3)
determine the total Net Present Value (NPV) by the sales objective in RP
subtracted from cost objective in CS. However, from an integrated perspective
of the whole refinery, the solutions obtained through this procedure can be
suboptimal. To clarify this suboptimality, consider the following scenario of
the decision-making processes in a refinery plant. In the RP problem, there is
only one distillation unit that has the same capacity generating naphtha and
kerosene where the market price of naphtha is higher on the horizon. There are
two crude-oil candidates available on stock where Crude A yields more naphtha
and Crude B otherwise. Since the purchasing price for Crude A and B are the
same, the planner solves the RP problem and decides to produce more naphtha
than kerosene by requiring only Crude A without B at feedstocks. Then, in the
CS problem, there is only a small amount of Crude A available for charging
the distillation unit, where most Crude A is saved in the storage level, but
there is plenty of Crude B available. However, the crude transferring rules and
the limited number of crude tanks do not allow the scheduler to transfer the
required amount of Crude A available for charging in such a short time. Because
the feedstocks are fixed by the decision of the planner, the scheduler has to
come up with a bad decision of purchasing some immediate costly Crude A.
In a refinery-level perspective, the optimal decision is apparently to allow some
amount of Crude B until Crude A are available after the crude transferring
processes. Indeed, this suboptimality arises because the planner and scheduler
make decisions in each of their subsystems without a global view.

Given the recent developments in large-scale optimization algorithms and
computing capabilities, there is a large gap between the development of an in-
tegrated modeling framework and an integrated solution strategy, which means
optimizing simultaneously both the RP and the CS problems.

In this work, these challenging issues are addressed with the following two
questions: i) How to perform the integration to connect the crude feedstocks
information in terms of volume and time? ii) Once the integration is obtained,
what is the most efficient approach to solving the integrated problem to optimal-
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Figure 1: Simplified flowsheet of a crude oil refinery. Adapted from [18].

ity? To address the first challenge, we consider a real-world refinery problem,
stated in Section 3, where the CS is modeled as a continuous-time MINLP in
Section 3.2, and RP is modeled as a discrete-time NLP in Section 3.1. In Section
4 we propose an integration including the RP and the CS formulations, as well as
their integrated formulation, which contains a set of linking constraints for con-
necting operating volumes, and a multi-scale modeling approach for connecting
operating time. This large-scale full-space formulation is the second challenge
we want to address. We propose a Lagrangean Decomposition algorithm to
iteratively update the primal/dual objective bounds based on the decomposi-
tion of the full-space problem down to scheduling and planning subproblems.
Computational experiments are performed in Section 5 on three refinery case
studies in terms of different time horizons. In Section 6 the advantage of using
the proposed Lagrangean Decomposition is shown from the results, in terms of
CPU time and optimality gap. This advantage is significant especially in cases
with longer time horizons, as compared to directly using state-of-the-art global
MINLP solvers (monolithic approach).

2 Literature Review
Crude oil refineries are complex systems with multiple operations that rely on
the properties of feedstocks and desired products. Typically, a crude oil refin-
ery consists of three segments that make up the production system: a) crude
oil management; b) crude-to-fuel transformation (process operations); and c)
blending operations, as shown in Figure 1.

The first segment is related to crude oil management and begins with the
arrival of crude oil, usually via ships or pipelines. The oil is stored in storage
tanks to be further mixed, sent to the feed tanks, and used as feed to the crude
oil distillation unit [18]. In the second segment, several unit operations based on
physical and chemical transformations such as atmospheric and vacuum distilla-
tion, catalytic reforming, fluid catalytic cracking, delayed coker, hydrocracking,
hydrotreating, debutanizer, depropanizer, superfractionator, among others, are
used to crack the crude oil into smaller and lighter fractions, as well as to im-
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prove the quality of the final products [6]. In the third segment, known as
blend-shops, the final products are blended to meet market specifications re-
garding their properties, such as specific gravity, sulfur content, octane number
for gasoline, cetane number for diesel, among others.

2.1 Crude Oil Scheduling
The crude oil scheduling problem, often referred to as part of the upstream
operations (crude oil management in Figure 1), includes crude oil unloading
from ships or vessels to tanks, transfer from storage to charging tanks to prepare
the CDU feed, and feeding operations from the charging tanks to the CDU.
The decisions over the scheduling operations are related to continuous CDU
charging through the time horizon, with given vessel arrival times, tanks and
CDU capacities, crude properties, and non-overlapping constraints of certain
operations. The scheduling problem is solved to maximize the gross margin of
the crude charging to the CDU and to minimize the cost of inventories. Lee
et al. [21] consider an objective of minimizing the cost of tank inventory and
vessel demurrage, while Mouret et al. [28] apply another objective of maximizing
the gross margin of the amount of crude charged and distilled in the CDU, with
the gross margin value estimated by subtracting the purchase value from the
potential final product sales in the refinery planning level.

Lee et al. [21] model the crude oil scheduling problem as a discrete-time
Mixed-Integer Linear Programming (MILP) formulation using time intervals
and the bilinear mixing constraints are avoided by introducing component flows.
This model is tested in four cases of different problem sizes, showing advantages
in terms of solvability and optimality. Alternatively, a continuous-time MILP
formulation has also been developed using continuous event points [16]. Further,
continuous-time formulation MINLP models are also developed in [17] and [28]
based on event points and priority slots, respectively, and solved with lineariza-
tion based algorithms. The latter formulation shows advantages in terms of the
computational solution time as it requires fewer binary variables. Mouret et al.
[28] formulate an MINLP based on priority slots, and use a two-stage solution
in which a relaxed MILP is first solved without the bilinear blending constraints
followed by the NLP with fixed binary variables from the MILP. Further, Castro
and Grossmann [4] developed a single time grid-based continuous-time formu-
lation and made a comparison between event point and priority slots.

2.2 Refinery Planning
The RP problem concerns the downstream operations, including the process-
shops and blend-shops (segments 2 and 3 in Figure 1), and there is an over-
lap at the CDU level for these problems, including the inventory and time
as well. Although many commercial tools such as GRTMPS (Haverly Sys-
tems), PETRO-SIM (KBC), PIMS (Aspen Tech), and RPMS (Honeywell Hi-
Spec Solutions)[25] have been developed to effectively solve this problem, most of
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them are simulation-based, do not perform rigorous optimization using equation-
based models and/or cannot address multi-period optimization problems [3].
Therefore, optimization-based modeling tools represent a potential benefit when
properly used to solve the refinery planning problem.

As it is shown in Figure 1, the process-shop operations begin with the dis-
tillation unit, which is one of the most important parts in the refinery planning
modeling. This task is usually performed using a fixed-yield linear programming
(LP) model, in which the yields and properties of distillates are obtained from
the true boiling point (TBP) curve from the crude oil assay profile. The distil-
lates are sent to the other processing units for further processing. The catalytic
reforming aims at cracking low octane heavy naphtha into lighter fractions with
a higher octane number. In the fluid catalytic cracking, the vacuum gas oil is
processed under heat, pressure, and catalyst to produce lighter fractions (mostly
gasoline and LPG). The delayed coker thermally processes vacuum residue gen-
erating coke and some light fractions. The debutanizer is used to stabilize
light naphtha and separate it from light gases such as fuel gas and liquefied
petroleum gas. Similarly, the depropanizer separates propane and propylene
from butane. The superfractionator (propane-propylene splitter) separates the
propane-propylene mix into individual components. Hydrocracking converts
heavy gas oil molecules into lighter ones under the presence of hydrogen and
catalyst. Hydrotreating is performed to purify the products either before the
final blending and specification steps or before units that have requirements re-
garding their feed properties. The final streams are then blended into the final
products to meet specifications and stored in pools for further distribution.

2.3 Integration Planning-Scheduling
Both crude oil scheduling and refinery planning problems aim at an economic
objective and are linked by the CDU so that there is an incentive to solve an
integrated problem, which guarantees global mass flow balances and operating
times. Moreover, optimizing the integrated problem will result in improved so-
lutions compared to optimizing each one separately. One of the main challenges
in this approach is the time scale difference between these two problems. Ier-
apetritou and Floudas [16] proposed a rolling horizon integration for planning
and scheduling, and successfully solved the problem by a hierarchical decompo-
sition approach. Besides, it is also challenging to solve the large-scale MINLP of
the integrated planning and scheduling problem. Lagrangean decomposition has
shown its potential advantages in [23]. Further, Mouret et al. [30] integrated a
crude oil scheduling model with a continuous-time formulation and a conceptual
refinery planning model using an Artificial Neural Network (ANN) for the CDU
modeling [12]. In [30], the advantages of considering an integrated approach of
the crude oil scheduling and refinery planning problem were shown by achiev-
ing a computationally-efficient framework for these problems using Lagrangean
decomposition, which will be further described in Section 6. Mouret et al. [29]
proposed a new Lagrangean Decomposition approach with a hybrid formulation
in the dual problem of updating the Lagrangean multipliers. Oliveira et al.

5



[31] further improved the subgradient formulation in the dual problem by a
trust-region approach.

3 Problem Statement
The problem addressed in this work can be defined in three parts: 1) Crude-
oil Scheduling, 2) Refinery Planning, and 3) an integrated framework to link
CS and RP. These three parts are discussed in Section 3.1, Section 3.2, and
Section 3.3, respectively. Furthermore, the integrated problem is defined and
the challenge of modeling the difference of time representation is discussed in
Section 3.3.

3.1 Refinery Planning problem
The RP problem considered in this work involves the process-shops and blend-
shops in the crude oil refining process and uses as input the CDU feed infor-
mation provided by the crude oil scheduling solution. The main decisions are
volumetric flow rates between the operating units including CDU, but in a time
aggregate level, e.g., volume per week, per two weeks, or longer. The operations
include the following information: (i) process units such as atmospheric, flash
and vacuum distillation, debutanizer, depropanizer, propane-propylene super-
fractionator, fluid catalytic cracking, catalytic reforming, hydrotreating, delayed
coker, and blenders; (ii) blending pools to store intermediate and/or final prod-
ucts; (iii) inlet and outlet flows between process units and blending pools.

Besides, the following parameters are given for the refinery planning problem:
(a) length of the time horizon and number of discrete time steps; (b) feedstocks
availability and properties; (c) CDU operational mode(s); (d) capacity of each
processing unit as well as holdups for tanks; (e) lower and upper bounds for the
flowrates; (f) demands for final products as well as their property specifications.
The objective function in the refinery planning is to maximize NPV, with con-
tinuous decisions regarding all the flows and properties tracked throughout the
process as well as binary decisions regarding operational modes.

3.2 Crude Oil Scheduling problem
The crude oil scheduling is presented in Figure 2 which will be used later in the
case studies. Crude vessels are represented by r1 to r3, storage tanks as r4 to
r6, and charging tanks as r7 to r9. Crude unloading operations are represented
by v1 to v3, transferring/blending operations as v4 to v10, and charging opera-
tions to the crude distillation unit (CDU) as v10 to v14. The given information
and parameters are: (a) scheduling time horizon; (b) vessel arrival times, initial
capacities and compositions; (c) tanks capacities, initial inventories and com-
positions; (d) maximum transfer flowrates; (e) crude oil properties and their
specification for distillation; and (f) demands for each product. The scheduling
decisions are the starting and end times of each operation and the amount of
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Figure 2: Crude Oil Scheduling example [21]

crude to be transferred. Besides, the schedule of operations cannot violate any
of the following logic constraints: (i) only one unloading operation is allowed
for each vessel; (ii) simultaneous inlet and outlet operations are not allowed for
each tank; (iii) each tank can charge no more than one CDU at a time; (iv)
each CDU can be charged by no more than one tank at a time; (v) each CDU
needs to operate continuously through the time horizon. Regarding the objec-
tive function for the crude oil scheduling, it is typically any rational economic
value. The objective function considered in this work minimizes the total cost
of crude charged to the distillation unit.

3.3 Integrated Refinery problem
In this work, the crude oil scheduling and the refinery planning problems are
considered to be integrated into a single model that we denote as the full-space
problem. Besides the information from both problems, the full-space problem
also includes the link between them, which is the mass conservation in the
blender unit, which appears both at the end of Crude Oil Scheduling and at the
beginning of Refinery Planning. In this section, we discuss how the integration
of planning-scheduling is performed regarding different time scales, as well as
solution approaches to tackle the full-space problem.

The full-space problem is defined as the combination of 1) multi-period Re-
finery Planning continuous nonlinear model given in Section 4.1; 2) extended
drude-oil Scheduling MINLP model with multi-scale approach in Appendix A;
and 3) linking constraints given by Equations 20 and 21, yielding an MINLP
optimization model.
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3.4 Solution Approaches
There are three main solution approaches to tackle the Planning-Scheduling
problem. Conventionally, the refinery planning and the crude oil scheduling
problems are optimized sequentially in a strategy denoted as the hierarchical
approach. In contrast, to exploit the potential benefit of an integrated solution,
a single planning and scheduling model is optimized in a monolithic fashion.
However, the monolithic problem can be challenging to solve due to its large
size, and to integrate planning and scheduling operations at the same level
can be practically unnecessary as well as introduce issues of decoupling the
important decisions. Thus, in this work, we approach the problem through a
decomposition technique, in which the Lagrangean Decomposition method is
used to decompose an optimization problem with complicating constraints into
more easily solvable subproblems, which are solved separately in an iterative
fashion.

3.4.1 Hierarchical Approach

In the hierarchical approach, the Nonlinear Programming (NLP) optimization
problem for Refinery Planning is solved first, as the planning objective of the
product sales often dominates in the integrated objective. Then, the MINLP
problem for Crude Oil Scheduling model is optimized, with the CDU feed flows
fixed by using the Refinery Planning solution. This non-integrated approach
may return a suboptimal objective for the integrated problem, which is obtained
by adding up the planning and scheduling objectives. This suboptimality arises
from the fact that when considering the optimization problems independently,
the interaction between them through the constraints that involve variables
in both subproblems is disregarded. In some cases, when planning solutions
are fixed, the scheduling problem is either infeasible or there is a considerable
penalty term in its objective. The infeasibility may occur by 1) a mismatch
in CDU flows between RP level and CS level due to the time aggregation at
which capacities are considered, or by 2) the constraint requiring the flows
with respect to meeting the feedstock blends and properties. To avoid these
infeasibilities we allow the purchase of crude c in time period t feeding directly
to CDU r denoted by f immt,c,r , and the cost/penalty of using this crude is set to
be 3 times more than the nominal crude purchasing values. These penalties can
be avoided by considering the integrated problem, considering the constraints
simultaneously and obtaining coordinated operations of the RP and the CS.

3.4.2 Monolithic Approach

In the monolithic approach, the full-space MINLP model that integrates the RP
and CS models is optimized by using state-of-the-art MINLP solvers, includ-
ing convex optimization solvers such as DICOPT, Bonmin, and SBB, as well
as global solvers such as BARON, ANTIGONE, SCIP, LINDOGLOBAL, and
Couenne. A complete comparison and discussion about the solvers for MINLP
can be found in [20]. However, this large-scale MINLP model is challenging for
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the solvers due to a large number of binary variables and logic constraints in the
Crude Oil Scheduling as well as the large number of non-convex bilinear terms
in the Refinery Planning.

3.4.3 Lagrangean Decomposition Approach

The Lagrangean Decomposition approach used in this work is defined based on
[29], which can be considered as a primal-dual algorithm that uses an improved
subgradient formulation for the dual problem by exploiting a trust-region ap-
proach [31]. The problem is first initialized by defining the initial upper and
lower bound. As the linking constraints are the equalities of crude feed, the cor-
responding Lagrangean multipliers λt,c are indexed by time period t and crude
type c, corresponding to the linking constraints (Equations 20 and 21). They
are initialized by using crude purchasing cost V crudec . At each iteration of the
algorithm, the Lagrangean dual ZLD is first obtained by solving the decomposed
subproblems to optimality. ZLD is the tightest dual bound among Lagrangean
relaxation and other continuous relaxations [13]. Because of the nonconvexity
of the problem considered here, strong duality is not guaranteed and therefore
there might be a gap between the global optimal solution and the Lagrangean
dual which this algorithm may not be able to reduce to zero.

4 Modeling Methodology
The mathematical formulation for the full-space problem is developed in three
stages:

a) Multi-period discrete-time formulation for Refinery Planning, maximizing
the total NPV;

b) Priority-slot based continuous-time formulation for Crude-oil Scheduling
with multi-period extension, minimizing the total crude purchasing cost;

c) Set of linking variables and constraints of crude-oil feedstocks between
Crude-oil Scheduling and Refinery Planning, with the objective maximizing the
total NPV minus total crude purchasing cost;

4.1 Refinery Planning
4.1.1 Sets and Indices

The following sets are introduced for the Refinery Planning model.

• t ∈ T = {t1, t2, . . . tn} for n planning periods.

• j ∈ J = JC ∪ JL ∪ JU for all operating units, where JC is the subset
of CDUs CDU1, CDU2, JL is the subset of other major separation units
FLASH, TOWER, VDU, JU is the subset of other units.

• c ∈ C for crude-oil types.
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• k ∈ K = {C1C2, C3C4, LN, HN, K, LD, HD, ATR} for CDU cuts.

• ks ∈ KS = {SW01, SW02, SW03} for CDU swing-cuts.

• u ∈ U for all operating flows in the system.

• ui ∈ INj ⊂ U for inlet flows of unit j.

• uo ∈ OUTj ⊂ U for outlet flows of unit j.

• l ∈ L for all final products.

• p ∈ P = {SG, SUL} for two crude properties tracked, representing Specific
Gravity and Sulfur Content, respectively.

• mix ∈MIX, sep ∈ SEP , for set of mixers and separators.

4.1.2 Parameters

The following parameters are given.

• H is the planning horizon length in each time period t.

• V prodl is the sales value of product l.

• V blnb is the cost value of blending component b.

• Cj is the capacity of unit j.

• νunitj,uo is the yield of outlet flows u0 ∈ OUTj of unit j ⊂ JU .

• νcolj,uo,c is the crude-dependent yields of outlet uo ∈ OUTj of unit j ⊂ JL,
which is pre-computed from the micro-cut fractions of crude assay data.

• νcduj,k,c is the crude-dependent yield of outlet crude cut k ∈ K of CDU
j ⊂ JC , which is pre-computed from the micro-cut fractions of crude
assay data.

• νcduj,ks,c is the crude-dependent yield of outlet swing cut ks ∈ KS of CDU
j ⊂ JC , which is pre-computed from the micro-cut fractions of crude assay
data.

• Ql,p is the upper bound for property p for final product l.

4.1.3 Variables

The following optimization variables are introduced.

• F cdut,j,c is the volumetric flow rate of crude c to feed CDU j ⊂ JC in time
period t.

• FT cdut,j is the total volumetric flow rate of crude to feed CDU j ⊂ JC in
time period t.
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Figure 3: Flow rates in Simplified Refinery Planning example

• F cdut,j,k,c is the volumetric flow rate of crude type c in crude cut k in CDU
j ⊂ JC in time period t.

• FT cdut,j,k is the total volumetric flow rate of crude cut k in CDU j ⊂ JC in
time period t.

• F cdut,j,ks,c, FT
cdu
t,j,ks are the volumetric flow rate in crude type c and in total,

from swing cut ks in CDU j ⊂ JC in time period t.

• F cdu,lightt,j,ks,c
and F cdu,heavyt,j,ks,c

are the volumetric flow rate of light/heavy split
of swing-cut F cdut,j,ks,c, with FT cdu,lightt,j,ks

and FT cdu,heavyt,j,ks
being the total

volume over all crudes.

• F int,j,ui,c is the volumetric flow rate of crude c of the input flow ui of unit
j ⊂ INj in time period t, with FT int,j,ui being the total volume over all
crudes.

• F outt,j,uo,c is the volumetric flow rate of crude c of the output flow uo of unit
j ⊂ OUTj in time period t, with FT outt,j,uo being the total volume over all
crudes.

• FBlnt,b is the volumetric flow rate of blending component b used in time
period t.

• F prodt,l,c is the volumetric flow rate of crude c in final product l produced
in time period t, with FT prodt,l being the total volumetric flow rate of all
crudes.

Figure 3 presents a diagram explaining the variables within a simplified
example.

4.1.4 Constraints

Equation (1) restricts the total input volume of unit j under its capacity. As
the capacity Capj of unit j is given on a daily basis, the total capacity can be
calculated by multiplying it by the horizon length H.

∑
c

∑
ui∈INj

F int,j,ui,c ≤ Cj ·H t ∈ T, j ∈ J (1)
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Equation (2) represents the volumetric flow balance for the total input and
output for unit j.

∑
c

∑
ui∈INj

F int,j,ui,c =
∑
c

∑
uo∈OUTj

F outt,j,uo,c t ∈ T, j ∈ J (2)

Equations (3) to (5) state the balance for volumetric flow rate variables F
and total volumetric flow rate variables FT .

∑
c

F cdut,j,k,c = FT cdut,j,k t ∈ T, j ∈ JC (3)∑
c

F st,j,u,c = FT st,j,u t ∈ T, j ∈ JL ∪ JU , s ∈ (in,out) (4)∑
c

F prodt,l,c = FT prodt,l t ∈ T, l ∈ L (5)

Equations (6) and (7) are used to calculate the production for each unit.
The yield data νcolj,uo,c is crude-dependent and is calculated from the crude assay
information, while νunitj,uo is crude-independent.

F outt,j,uo,c =
∑

ui∈INj

νcolj,uo,c · F int,j,ui,c t ∈ T, c ∈ C, j ∈ JL, uo ∈ OUTj (6)

F outt,j,uo,c =
∑

ui∈INj

νunitj,uo · F int,j,ui,c t ∈ T, c ∈ C, j ∈ JU , uo ∈ OUTj (7)

Equation (8) and (9) represent the volumetric balance of mixing and sep-
arating operations, specifically, one or more out-coming flows uo from units j′
mixing to one in-coming flow ui towards its unit j for mixing operations, one
out-coming flow uo from its unit j separating to one or more in-coming flows
ui towards their j′ for separating, tracked for each crude type c in time period
t. Particularly, for simplicity and consistency in the modeling, the case where
one out-coming flow proceeds directly towards another one in-coming flow can
be treated as either a mixing or a separation operation.

∑
(j′,uo)∈mix

F outt,j′,uo,c = F int,j,ui,ct ∈ T, c ∈ C,mix ∈MIX, if(j, ui) ∈ mix (8)

F outt,j,uo,c =
∑

(j′,ui)∈sep

F int,j′,ui,ct ∈ T, c ∈ C, sep ∈ SEP, if(j, uo) ∈ sep (9)

Equations (10) to (12) impose specifications for the final products in order
to meet the specified demands. Furthermore, the trilinear terms are replaced
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by bilinear terms by introducing new variables that represent the product be-
tween the sulfur content and specific gravity terms. That strategy reduces the
computational effort during the optimization step.

QSGl ≤ QSGt,l ≤ QSGl t ∈ T, l ∈ L

(10)

QSULl · FT prodt,l ·QSGt,l ≤
∑
c∈C

F prodt,l,c ·Qcc,l,SG ·Qcc,l,SUL t ∈ T, l ∈ L

(11)∑
c∈C

F prodt,l,c ·Qcc,l,SG ·Qcc,l,SUL ≤ QSULl · FT prodt,l ·QSGt,l t ∈ T, l ∈ L

(12)

4.1.5 Planning Objective Function

The objective function for the refinery planning is to maximize Net Present
Value (NPV), which is the total product sales values subtracted by the total
cost of blending components, as shown in Equation 13.

maxNPV =
∑
t∈T

∑
l∈L

FT prodt,l · V prodl −
∑
t∈T

∑
b∈B

FT blnt,b · V blnb (13)

4.2 Crude Oil Distillation Unit Modeling
Both rigorous and surrogate representations can be used to predict outputs
of distillation processes. Despite the robustness and accuracy in the rigorous
predictions, these models demand high computational effort. On the other hand,
non-rigorous models are typically simple and have reasonable accuracy, being
commonly used in crude oil refineries [22]. Examples of distillation unit models
have been addressed by [35, 22, 1, 24, 25, 19, 9], among others. Three different
models have been considered in this work: Fixed-Yield (FY), Multiple Fixed-
Yield (MFY), and Swing-Cut (SC). The best performance was achieved using
the SC model so that its features and equations are presented as follows. For
further information about the FY and MFY features as well as their respective
models, please see Appendix B.

4.2.1 Swing-Cut

The swing-cuts are essentially internal modeling constructs, not necessarily
physically present in the tower. Three swing-cuts sc are created and their ad-
jacent cuts with respective set of micro-cuts CUTsc are shown in Table 1.

The mathematical model for the conventional swing-cut method is given
as follows. Equations (B.1) to (B.4) from the fixed yield model are used (see
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Table 1: Swing Cut design

Swing Cut Lighter Cut Heavier Cut Initial End
SW01 HN K CUT160 CUT190
SW02 K LD CUT250 CUT280
SW03 LD HD CUT350 CUT380

Appendix B), which represent a volumetric balance for the CDU, the flow calcu-
lation for each distillate and the volume- and mass-based balances, respectively.
However, it is important to note that the final cuts in the fixed yield model
are now the intermediate cuts in the swing-cut model, which will further be
blended with the swing-cuts to create the final cuts. Equation (14) represents
the volumetric flow balances for the swing-cuts, whereas Equations (15) and
(16) define the total flow variables which are identical to the aggregation of
their composition flow variables over all crude types, for the light and heavy
swing-cuts, respectively.

F cdut,j,ks,c = F cdu,lightt,j,ks,c
+ F cdu,heavyt,j,ks,c

∀ c = sw (14)∑
c

F cdu,lightt,j,ks,c
= FT cdu,lightt,j,ks

t ∈ T, j ∈ JC (15)∑
c

F cdu,heavyt,j,ks,c
= FT cdu,heavyt,j,ks

t ∈ T, j ∈ JC (16)

When the intermediate cuts are mixed with their respective swing-cuts, e.g.,
intermediate naphtha cut is mixed with the light fraction of the first swing-cut,
Equation (17) calculates the final cut flow while the nonlinear Equations (18)
and (19) calculate the volume- and mass-based properties for the final cut.

F cdut,j,fc =
∑
c

Ft,j,c,fc ∀fc (17)

PropSGt,j,c,k =

∑
c SGt,j,cFt,j,c,fc∑

c Ft,j,c,fc
∀fc (18)

PropSULt,j,c,k =

∑
c SULt,j,cSGt,j,cFt,j,c,fc∑

c SGt,j,cFt,j,c,fc
∀fc (19)

The conventional swing-cut method creates additional degrees of freedom
by allowing the optimization of each swing-cut amount flowing to the lighter
and heavier final distillates. Therefore, the search space for the optimization
becomes larger and at least an equivalent solution is expected when compared
to the (multiple) fixed yield methods.
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4.3 Crude Oil Scheduling with multi-period extension
The priority-slot based MINLP formulation of Crude Oil Scheduling problem,
proposed in [28], is used in this work. Specifically, we consider the Multi-
Operation Sequencing (MOS) time representation in [27], which allows several
operations assigned to one slot. To be integrated with the Refinery Planning
section of the model, we propose a new extension of the priority-slot based
formulation, discussed in Section 4.4.1, denoted multi-scale approach. The basic
idea is to add the dimension of planning period t to the original scheduling
formulation, meaning a short-term scheduling problem is solved in each planning
period t. The detailed mathematical formulation can be found in Appendix A.

4.4 Integrated full-space problem
The linking constraints are defined as Equations (20) and (21). The left-hand-
side scheduling variables yF represent the amount of crude c charged into CDU
r at time period t, while the right-hand-side planning variables F represent the
corresponding input flows which are the same flow modeled in scheduling as yF .
Thus, these two equations state the equivalency of those two types of variables.

yFt,r10,c = F int,j,u,c t ∈ T, c ∈ C, r ∈ r10, (j, u) ∈ (FLASH,FLASH-IN) (20)

yFt,r11,c = FCDUt,j,c t ∈ T, c ∈ C, r ∈ r11, j ∈ CDU2 (21)

The objective function for the full-space problem is the economic value com-
bining both objective values in crude oil scheduling and refinery planning, specif-
ically, maximizing the NPV in planning subtracted by crude purchase cost in
scheduling, as given by Equation (22).

maxNPV−
∑
r∈RC

∑
c∈C

V costc · yFrc (22)

4.4.1 A multi-scale modeling approach for different time represen-
tations

The difference in terms of time scales between planning and scheduling remains
a major challenge to be addressed. As mentioned in [34], there are not many
modeling frameworks that address the integration of “short-term” scheduling
and “mid-term” planning where the information between the scheduling-level
and planning-level can be connected effectively through their time scales. More
generally in [14] and [5], this challenge is considered as one future research
direction.

Given different time representation in crude oil scheduling (continuous) and
refinery planning (discrete), a multi-scale approach is proposed in this work,
illustrated by using an example as in Figure 4 (see Su et al. [33]), in which
there are three time planning periods, t1, t2, and t3 in the planning, as well as
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Figure 4: Multi-scale Approach for Planning-Scheduling Integration

three scheduling time slots, i1, i2, and i3 for each time slot in the scheduling.
The planning flow variables are indexed by the time period, where the start,
duration, and end time of a period are fixed as a parameter, while the scheduling
operations are assigned to slots where start, duration and end time of a slot
are variables to be optimized. The structure in Figure 4 shows the difference
between Planning and Scheduling in terms of time representation, which makes
it difficult to ensure simultaneous time consistency in the full-space problem. To
accomplish that task, the following steps are performed to generate the bottom
structure in Figure 4:

1. Add planning period t to scheduling slot i.

2. Add tank inventory balancing variables and constraints between periods.

All three steps are applied to the scheduling formulation. In step 1, the
dimension of planning period t has been added to the scheduling formulation
as in Appendix A. In step 2, as the scheduling is extended to multiple plan-
ning periods, the initial tank inventories of the future time periods after the
first period t1 need to be the same as the final inventory from the previous pe-
riod. The following inventory balance constraints are included in the multi-scale
scheduling.
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Lfttr = L0
r +

∑
i∈I,(v,r)∈IN

V ttiv −
∑

i∈I,(v,r)∈OUT

V ttivt = t1,∀r ∈ {R|V ES} (23)

Lfctrc = L0
rc +

∑
i∈I,(vr)∈IN

V ctivc −
∑

i∈I,(vr)∈OUT

V ctivc ∀t = t1,∀r ∈ {R|V ES},∀c

(24)

Lfttr = Lfct−1,r +
∑

i∈I,(vr)∈IN

V ttiv −
∑

i∈I,(vr)∈OUT

V ttiv ∀t 6= t1,∀r ∈ {R|V ES}

(25)

Lfctrc = Lfct−1,rc +
∑
i∈I

(vr)∈IN

V ctivc −
∑
i∈I

(vr)∈OUT

V ctivc ∀t 6= t1,∀r ∈ {R|V ES},∀c

(26)

Lttir = Lftt−1,r +
∑
ii∈I
ii<i

(vr)∈IN

V ttiv −
∑
ii∈I
ii<i

(vr)∈OUT

V ttiv ∀t 6= t1,∀i,∀r (27)

Lctirc = Lfct−1,rc +
∑
ii∈I
ii<i

(vr)∈IN

V ctivc −
∑
ii∈I
ii<i

(vr)∈OUT

V ctivc ∀t 6= t1,∀i,∀r, ∀c (28)

Lfttr =
∑
c∈C

Lfctrc ∀t, ∀i,∀r ∈ {R|V ES} (29)

4.5 Lagrangean Decomposition
The full-space MINLP is given by Equations (30)-(35), where we denote x and
f(x) as the planning variables and constraints, y and g(y) as the scheduling vari-
ables and constraints. Equation (33) represents the linking constraints, where
some variables in both planning x̂ and scheduling ŷ need to be equal.

Z = max
x,y

cx+ dy (30)

s.t. f(x) ≤ 0 (31)
g(y) ≤ 0 (32)
x̂ = ŷ, x̂ ⊆ x, ŷ ⊆ y (33)
x ∈ X (34)
y ∈ Y (35)
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In order to obtain the objective function predicted by the Lagrangean decompo-
sition (ZLD), the full-space MINLP must be first relaxed through a Lagrangean
relaxation, providing an objective function ZLR, by dualizing the linking con-
straint. In that case the problem becomes the one given by Equations (31),
(32), (34) and (35), in addition to Equation (36).

ZLR(λ) = max
x,y

cx+ dy + λ(ŷ − x̂) (36)

Note that the for a given λ, ZLR(λ) decomposes into two subproblems: one in
the space of the planning variables x (Equations (31), (34), and (37)), and the
other in the space of the scheduling variables y (Equations (32), (35), and (38)).

ZLR1
(λ) = max

x
cx− λx̂ (37)

ZLR2
(λ) = max

y
dy + λŷ (38)

where both subproblems are parametrized with respect to the multipliers.
Thus, ZLD is obtained by adding up the current two objective values ZLR1

and ZLR2 from the two subproblems. Since the full-space problem is a maxi-
mization problem, ZLD will be an upper bound to the original objective function
value Z. The Lagrangean dual, ZLD, can be obtained by minimizing, with re-
spect to the multipliers, the sum at ZLR1

(λ) and ZLR2
(λ), as shown in Equation

(39).

ZLD = min
λ≥0

(ZLR1
(λ) + ZLR2

(λ)) (39)

The bound provided by the Lagrangean dual is a relaxation of the original
objective function meaning that ZLD ≥ Z. However, given that there are
discrete variables in the models, they result in non-convexities in which strong
duality does not hold. Also, the failure to obtain strong duality can be caused
by non-convex constraints with bilinear terms from the blending equations. For
maximization problems, the upper (dual) bound at least satisfies ZLD > Z, and
this difference is defined as the duality gap. We aim at making the dual gap as
small as possible so that it can provide a tight relaxation, and therefore generate
a better heuristic solution, there is a need to search the space of Lagrangean
multipliers λ for the tightest ZLD(λ), i.e., the optimal multipliers. The problem
of finding optimal multipliers is denoted as the dual problem and is given by
Equations (40) to (43) at a given iteration K.
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Figure 5: Proposed Lagrangean Decomposition Framework

min
η,λ

η (40)

s.t. η ≥ cxk − dyk + λ(yk − xk) ∀k ∈ {1, 2, ...,K} (41)

λi ≥ λK−1i − α(ZKLD − LBK)
|yKi − xKi |
‖yK − xK‖22

∀i (42)

λi ≤ λK−1i + α(ZKLD − LBK)
|yKi − xKi |
‖yK − xK‖22

∀i (43)

where LB is a lower bound to the optimal objective function Z, α ∈ [0, 1] is the
step size for the multiplier update, and the superscripts denote the iteration for
the different quantities evaluated.

Since the lower bounds can be updated by any improved feasible heuristic
solution, the full-space problem with fixed binary variables is solved as an NLP
to obtain a feasible solution. The stopping criteria are set as the relative gap
between the upper and lower bounds being less than ε, or the current number of
iterations exceeding a maximum Kmax. If converged, the current lower bound is
reported as the optimal solution. If not, the algorithm solves the dual problem
to update the values of the multipliers and start a new iteration. The dual
problem is developed based on [29] and [31], which is a hybrid formulation of
cutting planes and sub-gradient step. Notice that the optimal solution of the
multipliers λ will be used in the new iteration K + 1 as λK . The main steps of
the Lagrangean Decomposition are shown in Figure 5.
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Figure 6: Example of a fully integrated refinery flowsheet (adapted from [8])

5 Case Studies
Three case studies for different horizon lengths, 12 days, 24 days, and 48 days are
proposed to represent from short-term to mid-term horizon of the integration.

The layout of the refinery configuration is based on Figure 6. Three feed-
stocks, three storage tanks and three charging tanks are the upstream oper-
ations for the scheduling whereas several unit operations such as blenders for
gasoline (GBLENDER), diesel (DBLENDER) and fuel oil (FOBLENDER), hy-
drotreaters for light cracked naphtha (LCNHT), coker light naphtha (CLNHT),
and diesel (DHT), fluidized catalytic cracking unit (FCCU), delayed coker unit
(DCU), stabilizer unit (STABILIZER), catalytic reforming unit (CRU), and
delayed coker (DCU), are the downstream operations for planning. The distil-
lation unit is composed of five towers: a flash distillation tower (FLASH), two
distillation units (CDU and CDU2), a vacuum distillation unit (VDU) and a
debutanizer unit (DEBUT).

The case data for Scheduling are shown in Table 2 and the data for Planning
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Table 2: Crude Oil Scheduling data

Scheduling Horizon 12 days

Vessels Arrival Time [day] Composition Amount of Crude [Mbbl]
Vessel 1 0 100% A 500
Vessel 2 3 100% B 470
Vessel 3 7.5 100% C 460

Storage Tanks Capacity [Mbbl] Initial Composition Amount of Crude [Mbbl]
Tank 1 [0,1000] 100% D 200
Tank 2 [0,1000] 100% E 200
Tank 3 [0,1000] 100% F 200

Charging Tanks Capacity [Mbbl] Initial Composition Amount of Crude [Mbbl]
Tank 1 (Mix X) [0,1000] 100% G 300
Tank 2 (Mix Y) [0,1000] 100% E 500
Tank 3 (Mix Z) [0,1000] 100% F 300

Crude Sulphur content [v/v] Gross Margin [105 $ /Mbbl]
C01 0.01 1
C02 0.085 6
C03 0.06 8.5
C04 0.02 2
C05 0.05 5
C06 0.08 8
C07 0.03 3

Crude Mixtures Sulphur content [v/v] Demand [Mbbl]
Crude Mix X [0.025, 0.035] [500,500]
Crude Mix Y [0.045, 0.065] [500,500]
Crude Mix Z [0.075, 0.085] [500,500]

Unloading Flowrate [Mbbl/day] [0,500] Transfer Flowrate [Mbbl/day] [0,500]

Distillation Flowrate [Mbbl/day] [50,500] N°of distillations 5

are shown in Tables 3 to 6.
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Table 3: Refinery Planning data: Crude-Oil

Crude ID Availability [Mbbl/day] Purchase Price [105 $ /Mbbl]
A 100 0.49
B 100 0.46
C 100 0.47
D 100 0.50
E 100 0.52
F 100 0.48
G 100 0.49

ATRa 100 0.45
ETOHa 100 0.45

ISOOCTANEa 100 0.45
a: those are treated as blending components

Table 4: Refinery Planning data: Units

Unit ID Capacity [Mbbl/day]
CDU1 80
CDU2 80
FLASH 100
TOWER 20
VDU 90
FCCU 100
DCU 100

FOBLN 100
DEBUTANIZER 100
SUPERFRAC 100

CLNHT 100
STABLIZER 100

CRU 100
LCNHT 100
GBLN 1000
DHT 100
DBLN 1000
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Table 5: Refinery Planning data: Yields for Process Units

Unit ID Output ID Yield
FCCU C1C2 0.15
FCCU C3C4 0.15
FCCU LCN 0.15
FCCU HCN 0.15
FCCU LCO 0.15
FCCU DO 0.25
DCU C1C2 0.05
DCU C3C4 0.05
DCU CLN 0.20
DCU CHN 0.05
DCU CLGO 0.15
DCU CMGO 0.10
DCU CHGO 0.17
DCU COKE 0.23

DEBUTANIZER C3C3G 0.5
DEBUTANIZER C4 0.5
SUPERFRAC C3G 0.4
SUPERFRAC C3 0.6
STABLIZER LN 0.4
STABLIZER HN 0.4
STABLIZER GO 0.2

LCNHT OUT 0.9
DHT OUT 0.9
CRU OUT 0.9

CLNHT OUT 0.9
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Table 6: Refinery Planning data: Sales Prices

Product ID Sales Price [105 $ /Mbbl] Maximum SG Demand Maximum SUL Demand [w/w]
FUELGAS 0.45 0.45 10−7

LPG 0.53 0.67 10−6

PROPYLENE 0.50 0.65 10−5

PROPANE 0.55 0.65 10−4

BUTANE 0.50 0.77 10−3

LN 0.62 0.80 10−3

GASOLINE 0.65 0.65 0.10
DIESEL 0.60 0.90 0.45
COKE 0.45 1.20 0.90

FUELOIL 0.55 1.00 0.70
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Table 7: Instances statistics

Horizon N° of Variables N° of Binary Variables N° of Constraints N° of Nonlinear Constraints
12 11119 84 5109 2784
24 22259 168 10215 5568
48 44539 336 20427 11136

Table 8: Crude-oil Scheduling cases in different time periods

Parameter Period 1 Period 2 Period 3 Period 4

Vessel Arrive Time (day)
v1 0.0 1.2 1.5 0.0
v2 3.0 3.5 3.0 4.0
v3 7.5 9.0 8.5 8.0

Vessel Carrying Volume [Mbbl]
v1 500 400 510 400
v2 470 580 420 450
v3 460 450 490 500

Vessel Carrying Volume in Crude [Mbbl]

v1 510 (C01) 400 (C05) 510 (C02) 400 (C01)
v2 470 (C02) 400 (C07) 200 (C06) 450 (C02)
v2 - 180 (C02) 220 (C03) -
v3 460 (C03) 400 (C04) 350 (C01) 500 (C03)
v3 - 50 (C05) 140 (C05) -

Note: C01,..., C07 refer to crude types c ∈ C

The model statistics can be found in Table 7.
In Table 8 we show the supply data at the scheduling level. The 12-day case

will consider the scenario only in Period 1. 24-day case will consider Periods 1
and 2, while the 48-day case considers all four periods in the table.

6 Computational Results
The computational experiments are performed in GAMS 28.1.0, in a Dell Pow-
erEdge T410 Ubuntu Server 16.04.2 LTS with an Intel® Xeon® CPU (24
cores) 2.67 GHz and a DIMM DDR3 Synchronous 1333 MHz (128 GB) RAM.
The solvers used in this comparison are ANTIGONE 1.1[26], BARON 18.5.8[32],
and SCIP 6.0[10] as global MINLP solvers. The solvers CONOPT 3.17[7] and
CPLEX 12.8[15] were used when solving NLP and MILP problems within the
solver DICOPT 2.0[11, 2]. In the implementation of the Lagrangean decom-
position algorithm, we solved the corresponding MILP and NLP solvers using
CPLEX and CONOPT, respectively.
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6.1 Overall Solution
The overall solutions of the three cases, 12-days, 24-days, and 48-days, are
presented in Table 9. The objective functions for both Monolithic and LD
approaches are larger than for the Hierarchical approach (75%, 60%, and 6%,
for the 12-days, 24-days, and 48-days cases, respectively), corroborating their
advantage.

The CPU time of Lagrangean Decomposition refers to the total time required
to obtain the bounds for all iterations. In all cases, the Hierarchical approach
resulted in the smallest CPU time, since it is a non-integrated approach that
does not consider the overall integrated CS and RP objective function. However,
this method returned an infeasible solution for the 48-days case. Furthermore,
even when a feasible solution was found, its objective function was much lower
compared to the Monolithic and Lagrangean Decomposition approaches as seen
in Table 9, as they aim to solve the integrated full-space problem and hence,
there is a wider search space in the optimization.

To have a fair comparison between the two integrated approaches, Monolithic
and Lagrangean Decomposition, the stopping criteria is set to be the optimality
gap lower than ε = 1%. Lagrangean Decomposition can also be terminated
when the iteration number exceeds Kmax = 100. Both approaches yield the
same solution in the 12-day case whereas in the 24-day and 48-day cases the
Lagrangean Decomposition converges to a slightly better near-optimal solution
and much faster than the Monolithic Approach, as it iteratively solves smaller
subproblems which is more efficient than considering the full problem at once.
The detailed iterative results are presented in Section 6.3.

The Gantt charts for the solutions of these three cases solved by Lagrangean
Decomposition are presented in Figures 7, 8, and 9. Notice that the total
number of iterations ranges between 33 and 78. The x-axis represents the full
refinery planning-scheduling time length (days), while the y-axis represents the
crude-oil transfer operations marked in Figure 2.The two pairs of CDU charging
operations, (v11, v12) towards CDU1 and (v13, v14) CDU2, are continuous. The
non-overlapping scheduling constraints are satisfied. Moreover, the operation
schedules in the first 12 days are different, which means that the inclusion of a
longer planning horizon affects the early decisions in the optimal schedule, even
if the scenario parameters for the first periods are identical for all three cases.

As can be seen in Figure 10, the production volumes are not constant through
time. This shows that the integrated optimization is reacting to the variation in
the crude oil availability from the scheduling part while maximizing the overall
economic objective.

6.2 Hierarchical and Monolithic approaches
For the Hierarchical approach, the sequence of solving the two sub-problems
CS and RP is a key decision. Both methods are tested in three cases and the
computational results are presented in Table 10. The two options are stated
as Scheduling-Planning and Planning-Scheduling, which explicitly represent the
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Table 9: General solution table

Horizon
length Approach Total

time [s]
Obj.
[105 $] Solver Gap

[%]

Dual
Bound
[105 $]

12 Hierarchical 2 14.45 CPLEX
BARON - -

12 Monolithic 72 27.04 BARON <10−8 27.04

12 Lagrangean
Decomposition 34 27.04 CPLEX

CONOPT 0.94 27.30

24 Hierarchical 3 infeas. CPLEX
BARON - -

24 Monolithic 21600+ 41.48 BARON 1.81 42.23

24 Lagrangean
Decomposition 4869 41.55 CPLEX

CONOPT 0.94 42.95

48 Hierarchical 17 infeas. CPLEX
BARON - -

48 Monolithic 21600+ 72.72 BARON 5.1 76.44
48 Monolithic 43200+ 75.18 BARON 1.65 76.44

48 Lagrangean
Decomposition 13113 76.44 CPLEX

CONOPT 2.74 78.60

Figure 7: Gantt Chart for 12-day case
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Figure 8: Gantt Chart for 24-day case

Figure 9: Gantt Chart for 48-day case
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Figure 10: Production of the main refinery products for each time period in the
48-day integrated planning optimal solution
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Table 10: Detailed Hierarchical solutions

Horizon Option CS Obj. (105 $) RP Obj. (105 $) Full Obj. (105 $)
12 Scheduling-Planning -58.79 73.24 14.45
12 Planning-Scheduling -235.86 162.25 -73.61
24 Scheduling-Planning -116.78 infeas. infeas.
24 Planning-Scheduling infeas. 324.51 infeas.
48 Scheduling-Planning -258.43 infeas. infeas.
48 Planning-Scheduling infeas. 649.02 infeas.

* experiments for 48-day cases are infeasible for both options

sequence applied for solving CS and RP. The objective value is determined by the
sum of the individual CS and RP objectives. The results in Table 10 show that
Scheduling-Planning is the best option in all cases. This reflects the fact that the
Scheduling constraints are tighter and their penalty cost for using extra crude in
the objective is higher than those in Planning. The full objective value returned
by the Planning-Scheduling option is a poor negative value in the 12-day case,
and in the 24-day and 48-day cases, infeasible solutions are obtained meaning
that in terms of the solving sequence Scheduling is predominant compared to
Planning, based on the three cases presented here.

For the Monolithic approach, the different alternative solutions come from
the state-of-the-art MINLP solvers that are used. The computational results
returned by a set of MINLP solvers are presented in Table 11. In the 12-
day case, all selected global MINLP solvers return the optimal solution with
an objective value of 2.704 million dollars, whereas the Outer-Approximation-
based convex solver DICOPT also returns the same objective value. Finding
an optimal solution for the 24-day and 48-day cases is computationally much
more expensive, as the optimality gap cannot be closed within the given time
limit of 6 hours using the global solvers. In the 24-day case, the solver DICOPT
was unable to find a solution to the problem given that the local NLP subsolver
CONOPT failed at optimizing the continuous relaxation of the MINLP. When
the termination condition is relaxed to be less than a ε = 5% relative gap, near-
optimal solutions are obtained within the time limit but still require a certain
computational effort.

6.3 Lagrangean Decomposition properties
To obtain a better understanding of Lagrangean Decomposition, detailed pri-
mal/dual bounds against Lagrangean iteration numbers are presented in Figures
11, 12, and 13. The Lagrangean Dual objective ZLD is obtained by solving the
dualized sub-problems and Upper Bounds are updated to be ZLD if it improves
the current Upper Bound. As the full problem is a maximization problem, the
Lower Bound is obtained by solving the full problem with the binary variables
fixed, yielding an NLP. All three cases show that the lower bounds updated at
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Table 11: Solution table for Monolithic approach with different MINLP solvers

Horizon Solver CPU time (s) Obj. (105 $) Gap % Dual Bound (105 $)
12 ANTIGONE 7 27.04 1.00 27.31
12 BARON 72 27.04 <10−8 27.04
12 DICOPT 3 27.04 - -
12 SBB 58 27.04 <10−8 27.04
12 SCIP 13 27.04 <10−8 27.04
24 ANTIGONE 21600+ 41.57 1.59 42.23
24 BARON 21600+ 41.48 1.80 42.23
24 DICOPT infeas. - - -
24 SCIP 21600+ 41.59 1.55 42.23
24 SBB infeas.
24 ANTIGONEa 48 41.33 5.00 43.34
24 BARONa 955 40.14 4.95 42.23
24 SCIPa 145 40.83 3.44 42.23
48 ANTIGONEa 15451 74.78 5.00 78.52
48 BARONa 27844 75.18 1.68 76.44
48 DICOPT infeas.
48 SCIPa 8420 73.52 3.98 76.44
48 SBB infeas.

a Termination relative gap set to be ε = 5%
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Figure 11: Computational results of bounds vs. Iteration Number in 12-day
case

around the fourth Lagrangean iteration are the optimal solution, although it
can not be guaranteed based on the bounds obtained at that point. In the fol-
lowing iterations, the upper bounds are efficiently improved by updating ZLD,
and the relative gap is closing to ε = 1% gap, which terminates the algorithm.
Note that the ZLD might eventually fail to improve the current upper bound
since the quality of ZLD is strongly dependent on the Lagrangean Multipliers
λKt,c that are used to formulate the Lagrangean sub-problems in the iteration K.
The multipliers λt,c are returned from solving the Dual Problem in iteration K
and there is no guarantee that they always update in a direction that improves
ZLD, given the non-convexity of the MINLP. The evolution of the multipliers
with respect to the iterations are shown in Appendix C (Figures C.1, C.2, and
C.3). In all cases, after changing abruptly in the first iterations, the multipli-
ers stabilize and converge in the final iterations. This behavior is desired since
the first exploration steps allow the solution algorithm to explore the different
feasible solutions while the last stable steps are there to find the optimality
guarantees.

To assess the efficiency of the approach considered in this manuscript, we
compare the time evolution of the lower and upper bounds predicted by the
Lagragean decomposition with the ones obtained by the global MINLP solver
BARON applied to the monolithic model. The bounds profiles for the cases
with time horizon of 12, 24, and 48 days are presented in Figures 14, 15, and
16, respectively. The Figures present a symmetrical logarithmic plot of the
difference with respect to the best solution found in with case for each bound.
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Figure 12: Computational results of bounds vs. Iteration Number in 24-day
case
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Figure 13: Computational results of bounds vs. Iteration Number in 48-day
case
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Figure 14: Computational results of bounds vs. CPU time in 12-day case

Notice that the y-axis values in the range of [−1, 1]×1000, 000 USD per Mbbl are
depicted as linear, while beyond it the axis is logarithmic. In all three cases, the
Lagrangean decomposition approach was able to obtain a feasible solution and a
valid relaxation (upper) bound in less than 100 seconds. Another observation is
that the best solution found was always found by the Lagrangean decomposition
approach. Notice that the relaxation gap for the Lagrangean decomposition is
steadily improving while using BARON provides good quality starting bounds
but these do not seem to improve considerably afterward. This is particularly
noticeable in the 48-day case, where the upper bound predicted by BARON is
virtually the same as the best solution found by the Lagrangean decomposition.
Although BARON is not able to find such a good quality solution, using the
validity of its bound we can conclude that the solution found by the Lagrangean
decomposition, in this case, is the global optimal solution. The Lagrangean
decomposition can converge to the desired optimality gap ε = 1% for the 12-
day case, and ε = 5% for the remaining cases, in significantly less time than
BARON.

7 Conclusion
In this paper, both Crude-oil Scheduling and Refinery Planning are formulated
as optimization problems and are integrated into a single full-space MINLP.
The integrated formulation is constructed based on the overlap between the
CDU charging operations in the scheduling level and the CDU feeding decisions
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Figure 15: Computational results of bounds vs. CPU time in 24-day case
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Figure 16: Computational results of bounds vs. CPU time in 48-day case
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at the planning level. An MINLP priority-slot based continuous-time Crude-
oil Scheduling formulation proposed by [28], and a multi-period discrete-time
NLP Refinery Planning formulation are used. A multi-scale framework has been
proposed to integrate different time representations, for which the Hierarchical,
Monolithic and Lagrangean decomposition solution approaches were tested.

Computational results were obtained on 12-day, 24-day, and 48-day cases
regarding the time horizon length, where a 12-day case represents a short-term
refinery planning and scheduling scenario, while 24- and 48-day represent the
mid-term scenarios. In all cases, the Monolithic and the Lagrangean Decom-
position approaches return better objective values compared to those returned
by the Hierarchical approach. Significant economic and operational gains could
be had by integrating the two-levels of decision making. Moreover, the pro-
posed Lagrangean Decomposition can yield near-optimal solutions much faster
compared to the Monolithic approach using global MINLP solvers.
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Appendix A Priority-slot continuous-time Crude
Oil Scheduling model

A.1 Sets
• T = {t1, t2, . . .} for time periods

• I = {i1, i2, . . .} for priority-slots

• W = {v1, v2, . . .} for all operations: W = WU ∪ WT ∪ WD including
unloading, transferring, and charging operations, respectively

• R = {r1, r2, . . .} for resources (i.e. tanks, units): R = RV ∪RS ∪RC ∪RD
including set of vessels, storage tanks, charging tanks, and CDU, respec-
tively

• INr ⊂W for inlet transfer operations on resource r

• OUTr ⊂W for outlet transfer operations on resource r

• C for crude oils

• K for crude oil properties (e.g. crude sulfur concentration)

A.2 Parameters
• H is the scheduling horizon

• [V tv , V
t
v ] are bounds on the total volume transferred during transfer oper-

ation v ; in all instances, V tv = 0 for all operations except unloadings for
which V tv = V tv is the volume of crude in the marine vessel

• [ND, ND] are the bounds on the number of distillations

• [FRv, FRv] are flowrate limitations for transfer operation v

• Sv is the minimum start time of unloading operation v ∈WU (i.e. arrival
time of the corresponding vessel)

• [xvk, xvk] are the limits of property k of the blended products transferred
during operation v

• xck is the value of the property k of crude c

• [Ltr, L
t
r] are the capacity limits of tank r

• Lt0r is the initial total level in tank r

• L0rc is the initial crude level in tank r for crude c

• V costc is the cost value of crude c
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A.3 Variables
• Ztiv ∈ {0, 1} t ∈ T, i ∈ I, v ∈W
Ztiv = 1 if operation v is assigned to priority-slot i in time period t,
Ztiv = 0 otherwise.

• Stiv ≥ 0, Dtiv ≥ 0, Etiv ≥ 0 t ∈ T, i ∈ I, v ∈W
Stiv, Dtiv, Etiv are the start time, duration, end time of operation v, re-
spectively, if it is assigned to priority-slot i in time period t, Stiv =
0, Dtiv = 0, Etiv = 0 otherwise.

• V ttiv ≥ 0 and Vtivc ≥ 0 t ∈ T, i ∈ I, v ∈W, c ∈ C
V ttiv is the total volume of crude transferred during operation v if it is
assigned to priority-slot i in time period t, V ttiv = 0 otherwise.
Vtivc is the volume of crude c transferred during operation v if it is assigned
to priority-slot i in time period t, Vtivc = 0 otherwise.

• Lttir and Ltirc t ∈ T, i ∈ I, r ∈ R, c ∈ C
Lttir is the total accumulated level of crude in tank r ∈ RS ∪ RC before
the operation assigned to priority-slot i.
Ltirc is the accumulated level of crude c in tank r ∈ RS ∪ RC before the
operation assigned to priority-slot i.

• yFtrc t ∈ T, i ∈ I, r ∈ RC , c ∈ C
yFtrc is the total accumulated level of crude c ∈ C charged into CDU r ∈ RC
in time period t.

A.4 Model

max
∑
t∈T

∑
r∈RC

∑
c∈C

(−V costc ) · yFtrc (A.1)

s.t. Stiv ≥ Sv · Ztiv t ∈ T, i ∈ I, v ∈WU (A.2a)
Etiv ≤ H · Ztiv t ∈ T, i ∈ I, v ∈W (A.2b)
Etiv = Stiv +Dtiv t ∈ T, i ∈ I, v ∈W (A.2c)

∑
i∈I

∑
v∈Or

Ztiv = 1 t ∈ T, r ∈ RV (A.3a)

ND ≤
∑
i∈I

∑
v∈WD

Ztiv ≤ ND t ∈ T, r ∈ RV (A.3b)

∑
i∈I

∑
v∈Or1

Etiv ≤
∑
i∈I

∑
v∈Or2

Siv t ∈ T, r1, r2 ∈ RV , r1 < r2 (A.4a)

∑
j∈T
j<i

∑
v∈Or1

Ztjv ≥
∑
j∈T
j≤i

∑
v∈Or2

Ztjv t ∈ T, i ∈ I, r1, r2 ∈ RV , r1 < r2 (A.4b)
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∑
i∈I

∑
v∈Ir

Dtiv = H t ∈ T, r ∈ RD (A.5)

V ttiv ≤ V tv · Ztiv t ∈ T, i ∈ I, v ∈W

(A.6a)

V ttiv ≥ V tv · Ztiv t ∈ T, i ∈ I, v ∈W
(A.6b)

V ttiv =
∑
c∈C

Vtivc t ∈ T, i ∈ I, v ∈W

(A.6c)

Lttir = Lt0r +
∑

j∈T,j<i

∑
v∈Ir

V ttiv −
∑

j∈T,j<i

∑
v∈Or

V ttiv t ∈ T, i ∈ I, r ∈ R

(A.6d)

Ltirc = L0rc +
∑

j∈T,j<i

∑
v∈Ir

Vtivc −
∑

j∈T,j<i

∑
v∈Or

Vtivc t ∈ T, i ∈ I, r ∈ R, c ∈ C

(A.6e)

Lttir =
∑
c∈C

Ltirc t ∈ T, i ∈ I, r ∈ R

(A.6f)

FRv ·Dtiv ≤ V ttiv ≤ FRv ·Dtiv t ∈ T, i ∈ I, v ∈W (A.7a)

xvk · V ttiv ≤
∑
c∈C

xtckVtivc ≤ xvk · V ttiv t ∈ T, i ∈ I, v ∈W,k ∈ K (A.7b)

Ltirc
Lttir

=
Vtivc
V ttiv

t ∈ T, i ∈ I, r ∈ R, v ∈ Or, c ∈ C (A.8)

Ltr ≤ Lttir ≤ Ltr t ∈ T, i ∈ I, r ∈ RS ∪RC

(A.9a)

0 ≤ Ltirc ≤ Ltr t ∈ T, i ∈ I, r ∈ RS ∪RC , c ∈ C
(A.9b)

Ltr ≤ Lt0r +
∑
i∈I

∑
v∈Ir

V ttiv −
∑
i∈I

∑
v∈Or

V ttiv ≤ Ltr t ∈ T, r ∈ RS ∪RC

(A.9c)

0 ≤ L0rc +
∑
i∈I

∑
v∈Ir

Vtivc −
∑
i∈I

∑
v∈Or

Vtivc ≤ Ltr t ∈ T, r ∈ RS ∪RC , c ∈ C

(A.9d)
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∑
v∈W ′

Ztiv ≤ 1 t ∈ T, i ∈ I,W ′ ∈ clique(GNO) (A.10)

∑
v∈W ′

Eti1v +
∑
i∈I

i1<i<i2

∑
v∈W ′

Dtiv

≤
∑
v∈W ′

Sti2v +H · (1−
∑
v∈W ′

Zti2v)

t ∈ T, i1, i2 ∈ T, i1 < i2,W
′ ∈ clique(GNO)

(A.11)

Ztiv ≤
∑
v′∈W

NOvv′=1

Zt(i−1)v′ t ∈ T, i ∈ I, i > 1, v ∈W (A.12)
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Supplementary material

Appendix B Crude-Oil Distillation Unit Model-
ing

To calculate CDU yields using non-rigorous models, the temperature distribu-
tion from the crude oil TBP curve may be used. The TBP curve, also known as
crude oil assay, represents how the crude oil yields and properties (such as spe-
cific gravity and sulfur content) vary with the distillation temperate [19]. Due
to operational limitations regarding the reflux rate and the number of stages,
there is an overlap in the TBP boiling ranges of adjacent fractions in distillation
columns [22], as can be seen in the TBP distillation curve presented in Figure
B.1. Besides, an example of crude oil assay data in which the temperature
range is discretized in 89 small sections of 10 ºC each (micro cuts) is presented
in Figure B.2. This data can be used to calculate how much material would be
produced in each micro-cut range as well as its respective properties.

Figure B.1: Crude oil TBP (true boiling point) distillation curve (Fu and Ma-
halec, 2015).

Figure B.2: Example of crude oil assay data with eighty nine micro cuts for
yield and specific gravity.
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Table B.1: Fixed-Yield initial and end microcuts

Crude Cut Initial End
FG CH4 C2H5
LPG C3H8 NC4H10
LN IC5H12 CUT130
HN CUT140 CUT170
K CUT180 CUT260
LD CUT270 CUT360
HD CUT370 CUT430
ATR CUT440 CUT850

B.1 Fixed-Yield modeling
When the fixed-yield formulation is addressed, the crude oil assay data presented
in Figure B.2 is used to calculate the yields and properties for the final cuts.
Hence, the distillates are assigned to a certain range of micro-cuts, as shown in
Table B.1.

In Equation B.1, the inlet flows for each crude oil c incoming to the CDU
are summed to calculate the overall feed flow to the CDU.

QFCDU =
∑
c

Qc,CDU (B.1)

The yield for cut k from crude c can be calculated as a summation of micro-
cuts cp which are assigned to cut k in Equation B.2. The set CUTk can be
determined from Table B.1 and represents the final cut flows (fuel gas (FG),
liquefied petroleum gas (LPG), liquid and heavy naphtha (LN and HN), kerosene
(K), light and heavy diesel (LD and HD), and atmospheric residue (ATR)).

Y IELDc,k =
∑

cp∈CUTk

FRACc,cp∀c, k (B.2)

Volume- and mass-based mixing rules are used to calculate the properties of
cut k from crude c. Equation B.3 represents the volumetric rules for SG, and
Equation B.4 represents the mass rules for SUL. The implementation of these
constraints includes a product of the property with the flow given that they are
weight-based measurements.

PropSGc,k =

∑
cp∈CUTk

SGc,cpFRACc,cp∑
cp∈CUTk

FRACc,cp
∀c, k (B.3)

PropSULc,k =

∑
cp∈CUTk

SULc,cpSGc,cpFRACc,cp∑
cp∈CUTk

SGc,cpFRACc,cp
∀c, k (B.4)

Therefore, both yields and properties (volume- and mass-based) for the final
cuts can be calculated from the crude oil assay data using Equations B.1 to B.4.
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Table B.2: Refinery Planning data: CDU fixed yields

Cutpoint ID FHN MNS CBD HNG
AG1 0.0000 0.0005 0.0013 0.0000
LG1 0.0001 0.0045 0.0128 0.0000
LN1 0.0004 0.0153 0.0317 0.0345
MN1 0.0286 0.0716 0.0944 0.0841
NK1 0.0049 0.0256 0.0231 0.0266
KE1 0.0552 0.0726 0.0737 0.0734
KD1 0.0235 0.0233 0.0213 0.0221
LD1 0.0887 0.0700 0.0719 0.0746
HD1 0.1593 0.1220 0.1073 0.1128
LV1 0.1070 0.0662 0.0554 0.0587
HV1 0.1267 0.0964 0.0680 0.0830
VV1 0.1567 0.1384 0.1381 0.1304
VR1 0.2440 0.2885 0.3035 0.2947
LOSS 0.0050 0.0051 0.0039 0.0050

B.2 Multiple Fixed-Yield modeling
For the multiple fixed-yields method, three distinct operational modes are cre-
ated and their respective binary variables are introduced in the model. There-
fore, the model becomes an MINLP, in which the number of binaries is equal to
the number of operational modes. In addition to Equations B.1 to B.4, an addi-
tional constraint must be created in order not to allow simultaneous operations
of different modes, as shown in Equation B.5.∑

mεM

ym ≤ 1 (B.5)

Regarding the operational modes, Md01 refers to a standard mode (same
yields as in the FY model) whereas Md02 refers to a mode which prefers lighter
crude (higher yields for lighter cuts) and Md03 refers to a mode which prefers
heavier crude (higher yields for heavier cuts). In Figure B.3, the yields for each
cut in the three modes are given for crude C01. Yields for other crude are
calculated in the same way. For the study case presented here, the fixed yield
coefficients are presented in Table B.2.

B.3 Distillation unit modeling and optimization
To compare the performance of these CDU models, single-period optimizations
are performed, which are expected to showcase the advantages and disadvan-
tages of the methods previously described. In general, the following assumptions
are considered in the modeling:

47



Md01 Md02 Md03
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

Y
ie
ld

FG LPG LN HN K LD HD ATR

Figure B.3: Yield assay data of crude oil 1 for each operational mode

1) The time horizon length is compound by a 1-day single period;
2) There are seven crude oil feedstocks and their assay data was generated

using the process simulator PetroSIM;
3) Each crude availability is 40 Mbbl/day;
4) The CDU processing capacity is 100 Mbbl/day;
5) Two properties are tracked, specific gravity (SG), as a representative of

volume-based properties, and sulfur content (SUL), as a representative of mass-
based properties;

6) The objective function maximizes the total net present value of the eight
distillates (to each one has been assigned a potential value).

Three sets of potential values for the distillates are used: Normal-Producing
(NP), Light-Crude-Dominated (LCD), and Heavy-Crude-Dominated (HCD), as
shown in Table B.3. These three cases aim to be representative of real-world
scenarios, such as seasonal changes of the crude marketing value. The models are
implemented in the General Algebraic Modeling System (GAMS) version 25.1.3,
using a standard machine with macOS High Sierra, 2.2 GHz 6-core Intel Core
i7, and 16 GB Memory. Commercial state-of-the-art nonlinear solver BARON
18.5.8 has been used to provide global solutions. The models have around 100
variables and 100 constraints, and the optimizations are performed within 1
second returned by BARON.

The objective value for the three CDU models in each scenario is compared
in Figure B.4. The x-axis refers to the NP, LCD, and HCD scenarios while
the y-axis refers to the objective value of NPV. In general, the bar chart shows
that the NPV is strongly determined by different cases, which refer to different
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Table B.3: Distillate seasonal value in three cases

Distillate Name NP LCD HCD
FG Fuel Gas 10 40(+30) 01(– 9)
LPG LPG 38 58(+20) 18(–20)
LN Light Naphtha 57 67(+10) 47(–10)
HN Heavy Naphtha 53 53(+ 0) 53(+ 0)
K Kerosene 63 53(–10) 73(+10)
LD Light Distillate 65 45(–20) 85(+20)
HD Heavy Distillate 55 25(–30) 85(+30)
ATR Atmospheric Residue 0 0 0

NP LCD HCD

4,000

4,200

4,400

4,600

4,800

5,000

5,200

5,400

5,600

N
et

P
re
se
nt

V
al
ue

($
10
00
/d

ay
)

FY MFY SC

Figure B.4: Computational results of Net values
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Figure B.5: Computational results of cut volumes in the case NP

producing seasons. Given the nature of the selected 7 crude candidates from
the assay data, the refinery will make more profit in the case of the Heavy-
Crude-Dominated market. Besides, to compare three CDU models, we can see
that the FY model returns the lowest value in all cases. MFY and SC return
better values than FY, and SC is slightly better than MFY. If we independently
analyze each case. In NP, the difference between MFY and SC is very close,
while on LCD, the difference is more considerable.

In Figure B.5, we give the crude cut solution profile in the NP case. The
optimal solutions of crude cut volumes vary in three CDU models. The SC
model decided to lose some production volume of HN and HD so that the CDU
could contribute more to producing LD, which is more valuable in this case of
NP. That’s how SC could return the best objective NPV. As seen in Figure B.4,
MFY, and SC perform better than FY, because the freedom of CDU operating
condition is allowed in MFY and SC. Since a binary decision of mode selection
is considered in MFY, and a continuous flow rate swinging is considered in SC,
it is difficult to see how well MFY and SC will perform in different cases. As
SC has a better performance in all three cases, this model will be embedded in
our full-space refinery problem.

Appendix C Multipliers Plots for the Lagrangean
Decomposition Approach

The multiplier plots for the Lagrangean decomposition for the three cases pro-
posed in this work (one, two and four periods) are shown as follows.

Notice that in all cases, the multipliers representing the equality constraint
between each crude supplied by the CS and the feed to each one of the CDUs
for every time period stabilize within the iterations required to achieve the
convergence of the bounds in the Lagrangian decomposition approach.
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Figure C.1: Lagrange Multipliers vs. Iteration Number in 12-day case
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Figure C.2: Lagrange Multipliers vs. Iteration Number in 24-day case
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Figure C.3: Lagrange Multipliers vs. Iteration Number in 48-day case
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