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Abstract

Motivated by reliability/availability concerns in chemical plants, this paper proposes MINLP
models to determine the optimal selection of parallel units considering the trade-off between
availability and cost. Assuming an underlying serial structure for availability, we consider
first a case where the system transitions between available and unavailable states, and second
the case with an intermediate state at half capacity. Two non-convex MINLP models maxi-
mizing net profit are introduced for the two cases. In addition, a bi-criterion MINLP model
is proposed to maximize availability and to minimize cost for the first case. It is shown that
the corresponding epsilon-constrained model, where the availability is maximized subject to
parametrically varying upper bound of the cost, can be reformulated as a convex MINLP.
Availability is also incorporated in the superstructure optimization of process flowsheets.
The performances of the proposed models are illustrated with a methanol synthesis and a
toluene hydrodealkylation process.
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1. Introduction

Plant availability has been a critical consideration for the design and operation of chemi-
cal processes, for it represents the expected fraction of normal operating time, which impacts
directly the ability of meeting demands. Currently, discrete event simulation tools are used
to evaluate reliability/availability of selected alternatives to simulate the behavior of every
asset in a plant using historical maintenance data and statistical models (Sharda and Bury,
2008). However, this approach does not systematically consider all the alternatives as it
would be the case in an optimization approach.

The goal of evaluating and optimizing reliability/availability quantitatively for various
kinds of engineering systems and plants, has led to the development of the area of reliability
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engineering, whose aim is to rationally consider the ability of a system to function prop-
erly. According to Zio (2009), major questions that are addressed include how to measure
and evaluate system reliability, to detect the causes and consequences of system failures,
strategies of system maintenance, and reliability-based design optimization (RBDO), which
is relevant to the work in this paper.

One of the major challenges is the complexity of the system, which is the result of multi-
state behaviors that occur frequently in production plants, and topological complexities
primarily faced by distributed service systems such as communication and transportation
networks. Lisnianski et al. (2010) provide a comprehensive introduction to the study of
multi-state system behaviors. Specifically, it addresses the use of Markov chain theory on
both statistical and analytical methods. Petri-net based models have been widely used
for the performance analysis of computer systems (Malhotra and Trivedi, 1995). Bayesian
network is another accepted tool for the analysis of failure propagation in complex networks
(Weber et al., 2012).

Compared with the other major research aspects in reliability engineering, reliability-
based design optimization (RBDO) arises at the early stages for determining the topology
and parameters of a system. Kuo and Prasad (2000) give an comprehensive review of
this area. Aside from continuous parameter selections, discrete decisions regarding parallel
redundancies are an important part of RBDO. Various types of methods have been used
to obtain the optimal or suboptimal configurations, such as genetic algorithms (Coit and
Smith, 1996), Monte Carlo simulation (Marseguerra et al., 2005) and heuristics (Hikita et al.,
1992).

Research has also been done in chemical engineering to quantitatively analyze the relia-
bility of the chemical plants. Rudd (1962) discusses the estimation of system reliability with
parallel redundancies. Henley and Gandhi (1975) suggest using a minimal path method
to evaluate failure propagation and the sensitivity of system reliability to unit reliability.
Van Rijn (1987) provides a systematic overview of reliability, availability and maintenance
and their industrial applications. (Thomaidis and Pistikopoulos, 1994, 1995) integrate flexi-
bility and reliability in process design, but does not consider the possibility of having standby
units in order to improve the availability of a system. Pistikopoulos et al. (2001) and Goel
et al. (2003b) formulate an MILP model for the selection of units with different reliability
and the corresponding production and maintenance planning for a fixed system configura-
tion. Aguilar et al. (2008) address the reliability issue in utility plant design and operation
by considering some pre-specified alternatives for redundancy, and for which they formulate
and MILP model considering a limited number of failure scenarios. Terrazas-Moreno et al.
(2010) formulate an MILP model using Markov chains to optimize the expected stochastic
flexibility of an integrated production site by the selection of pre-specified alternative plants
and the design of intermediate storage. Lin et al. (2012) model a simple utility system
using Markov chain and carry out RAM (reliability, availability & maintainability) analysis
iteratively to decide the optimal reliability design.

However, it is fair to state that, while a number of mixed-integer optimization models
have been proposed to address various aspects of reliability, there are virtually no general
rigorous mixed-integer programming models are specifically aimed at systematically selecting
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the type and number of parallel units for the optimal design of reliable chemical processes.
In response to this gap, this work proposes a general optimization model to select parallel
units in order to maximize availability and to minimize cost in serial systems, providing
basic model properties.

In section 2, a motivating example is introduced, followed by problem statement in section
3 and nomenclature in section 4. In section 5, two non-convex MINLP models maximizing
net profit are presented with/without intermediate states, respectively. In addition, con-
sidering maximizing availability and minimizing cost separately, a non-convex ε-constraint
MINLP model is formulated that can be convexified for the basic case. Illustrative examples
for these models are presented in section 6, along with applications to process synthesis
problem.

2. Motivating example

To better focus on the parallel unit selection problem, we consider an air separation unit
(ASU) shown in Figure 1 as a motivating example. Air is fed to a compressor followed by
the after-cooler, and then the pre-purifier to remove impurities. After that, air is cooled by
the gas product of nitrogen and liquid product of oxygen. Further refrigeration is provided
by expansion through a turbine before entering the cold box.

Figure 1: Typical flowsheet of air separation units

The failure of any one of the operations can result in the failure of the entire system,
which will prevent it from producing liquid and gas products, and hence satisfying customer
demands. To increase the system availability, design alternatives are proposed for some op-
eration stages. The availability superstructure is formulated as a serial system of sequential
stages shown in the block diagram of Figure 2.

For example, we can choose to install one full-capacity unit for main air compression,
whose failure will lead to system failure. Or it can have two half-capacity units instead, in
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which case the system maintains 50 percent of designed capacity when one of the two units
fails. However, the second option might be more expensive.

Figure 2: The diagram of ASU reliability design alternatives. Each block represents a parallel unit with
certain rate of capacity shown in the block

3. Problem statement

With the motivating example in mind, we define a general modeling framework for
production systems with underlying serial structures for availability evaluation (Figure 3).
Our goal is to determine design decisions regarding which potential parallel units to install,
in order to maximize the system availability (i.e. probability that the system performs
without failures), and hence sales revenue, while minimizing the total cost of the system.

Figure 3: A serial system

Before presenting detailed mathematical representations, we will describe in this section
the basic logic followed by the two cases being investigated.

One of them is the basic case where all the stages need only one unit to work properly.
A set of potential units j ∈ Jk for each stage k are given with:
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• Availabilities, i.e. the probability of each unit being available.

• Operating priorities (indicated by j), which means that a unit can only become active
when all installed units that have higher priorities have failed.

• Cost rates, including installation and repair.

Based on the parameters provided above, the relationship between the availability of stage
k and the selection of parallel units is established. The processing stages are divided into
two kinds:

• Stages where potential parallel units are identical (k ∈ Kiden).

• Stages where potential parallel units have the same capacities, but are distinct in terms
of availability or cost (k ∈ Knon).

In addition to the basic case, another type of design alternatives is applied. For example,
the second design alternatives of the main air compression in the motivating example (see
Figure 2) is to have two half capacity compressors, such that when one of them is failed,
there is still half of the original output left. System availability is also redefined to capture
the new behavior when having partial capacity.

4. Nomenclature

Indices

k Stage
j Parallel unit, smaller j has priority over larger j
l Dummy variable for j

Sets

K Set of processing stage (e.g. absorption)
Kiden Set of stages with identical parallel units
Knon Set of stages with non-identical parallel units (Kiden and Knon is a partition of K)
Jk Set of parallel units for each state
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Parameters

nk Number of potential parallel units in stage k
pik Availability of single units in stage k with identical parallel units
pnk,j Availability of single unit j in stage k with non-identical parallel units
ci instk Investment for single units in stage k with identical parallel units
ci repak Repair cost for single units in stage k with identical parallel units
cn instk,j Investment for single unit j in stage k with non-identical parallel units
cn repak,j Repair cost for single unit j in stage k with non-identical parallel units
cost Upper bound of total cost
rv Revenue rate of final product
pn Penalty rate for not meeting lower bound of availability
bn Bonus rate for exceeding upper bound of availability
A lo The lower bound of system availability arranged in the contract
A up The upper bound of system availability arranged in the contract

Variables

yk,j Binary variable that indicates whether unit j of stage k is selected
Pk Availability of stage k
Ek Expectancy of units being repaired of stage k
C repak Total repair cost for single units in stage k
Ck Total cost for stage k
Ctot Total cost of system
RV Expected revenue
PN Expected penalty
BN Expected bonus
NP Net profit
w1, w2, w3 Binary variable that indicate which one of the ranges A falls in
A1, A2, A3 Components of A for corresponding range
PN1, PN2, PN3 Components of PN for corresponding components of A
BN1, BN2, BN3 Components of BN for corresponding components of A

5. Model Formulation

5.1. Binary state model

As mentioned in section 3, we will first consider the basic case where the system has only
two states and introduce the corresponding MINLP model (SO).

Constraint (1) requires that for each stage k at least one unit j should be installed.

nk∑
j=1

yk,j ≥ 1, k ∈ K (1)
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Constraint (2) is a symmetry breaking constraint for stages k ∈ Kiden, which requires
that a unit can only be selected if the one with higher priority is selected.

yk,j+1 ≤ yk,j, k ∈ Kiden, j ∈ Jk (2)

The availability of a stage depends on the number of installed parallel units and the
corresponding availabilities. Considering the fact that the redundancies for one stage are
usually no more than a few, we enumerate all possible cases for each stage to evaluate the
availablity.

(a) Stage with identical units (b) Stage with distinct units

Figure 4: Sample diagrams for single stages

Consider the diagram in Figure 4(a) as an example, where all the units are identical. If
we introduce symmetry breaking constraints (2), unit j in stage k being selected means that
all the potential units with higher priorities are selected. Considering all design alternatives,
i.e. installing unit 1, installing unit 1 and 2 or installing unit 1, 2 and 3, there are 3 possible
cases that the stage is functioning: Unit 1 is active; Unit 2 is active while unit 1 has failed;
Unit 3 is active while unit 1 and 2 have failed. It is obvious that whether a case happens
depends only on the existence of the unit that is active in it, and the probability for a
possible case to take place depends on the availabilities of that particular unit and all the
potential units with higher priorities. Thus, we have the following linear constraints:

P1 = p1y1,1 + (1− p1)p1y1,2 + (1− p1)2p1y1,3

which can be easily generalized to equation (3).

Pk = pk

nk∑
j=1

yk,j(1− pk)j−1, k ∈ Kiden (3)

The diagram in Figure 4(b) represents a stage k ∈ Knon with non-identical parallel
units, which are not restricted by symmetry breaking constraints. Hence, we cannot avoid
nonlinearity by enumerating all the cases where the system is available as it was done for
identical standby stages, which contributes to increasing the complexity of the analysis. The
availability is represented by substracting the probabilities of unavailable cases (Goel et al.,
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2003a).

Pk = 1−
∏
j∈Jk

(1− pk,jyk,j), k ∈ Knon (4)

For example, for the stage shown in Figure 4(b), we have

P1 = 1− (1− p1,1y1,1)(1− p1,2y1,2)(1− p1,3y1,3)

Notice that multi-linear terms of 0-1 variables are introduced, which will be linearized as
shown in the next section. Based on equations (3) and (4) , the availability of the system
consisting of stages k ∈ K is given by equation (5)

A =
∏
k∈K

Pk (5)

The total cost of each stage is the summation of investment and repair costs.

Ck = (ci instk + ci repak)

nk∑
j=1

yk,j, k ∈ Kiden (6)

Ck =

nk∑
j=1

yk,j(c
n instk,j + cn repak,j), k ∈ Knon (7)

The total cost of the entire system is then given by equation (8)

Ctot =
∑
k∈K

Ck (8)

5.1.1. Profit maximization

A typical way availability impacts the net profit is considered below, where system avail-
ability is reflected in revenue, penalty and bonus, and net profit is the summation of the
three terms minus the summation of total costs.

max NP = RV − PN +BN − Ctot (9)

The total revenue is proportional to the availability of the system.

RV = rvA (10)

Since RV is positive and maximized in the objective function (9), equation (10) can be
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relaxed as follows.

RV ≤ rvA (11)

which can be combined with (5) and converted to (12):

lnRV −
∑
k∈K

lnPk ≤ lnrv (12)

Since lnRV is concave separable, and −
∑

k∈K lnPk is convex, replacing (10) with (12)
improves the quality of the convex underestimations for the spatial branch and bound search
for global optimization.

Generally, in the contract between the plant and the customer, two reference bounds are
set for the availability of the plant. As shown in Figure (5), if the actual availability of the
plant does not meet the lower bound, the plant that provides products for the customer
will be charged a penalty proportional to the difference. On the other hand, if the actual
availability exceeds the upper bound, the customer will reward the plant with bonus that is
also proportional to the difference.

Figure 5: Definition of penalty and bonus functions

The penalty and bonus are described by equation (13) and disjunction (14).

W1 YW2 YW3 (13)
W1

A ≤ A lo
PN = (A lo− A)pn

BN = 0

 ∨


W2

A lo ≤ A ≤ A up
PN = 0
BN = 0

 ∨


W3

A ≥ A up
PN = 0

BN = (A− A up)bn

 (14)

The convex-hull reformulation (Balas, 1985) of (14) yields (15) - (26), where w1, w2 and
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w3 are binary variables for boolean variables W1,W2 and W3.

A = A1 + A2 + A3 (15)

PN = PN1 + PN2 + PN3 (16)

BN = BN1 +BN2 +BN3 (17)

A1 ≤ w1A lo (18)

w2A lo ≤ A2 ≤ w2A up (19)

A3 ≤ w3A up (20)

PN1 = (A low1 − A1)pn (21)

PN2 = 0 (22)

PN3 = 0 (23)

BN1 = 0 (24)

BN2 = 0 (25)

BN3 = (A3 − A upw3)bn (26)

Constraints (16), (17) and (21)−(26) can be reduced to (27) and (28)

PN = (A low1 − A1)pn (27)

BN = (A3 − A upw3)bn (28)

Thus, the linear equations(inequalities) (13), (15), (18)−(20) and (27)−(28) define the
convex hull of (13) and (14).

In summary, the single objective MINLP (SO) maximizes net profit (9) subject to
(1)−(8), (12), (13), (15), (18)−(20) and (27)−(28). This is a non-convex MINLP due to the
nonconvexity of (5), which is involved in the objective (9).

5.1.2. Bi-criterion optimization and convexified formulation

Instead of maximizing net profit, we now consider problem (P1) that maximizes system
availability (29) and minimizes total cost (30) subject to constraints (1)−(8), which has the
interesting property that it can be reformulated as a convex MINLP problem.

maxA (29)

minCtot (30)

The bi-criterion optimization problem (P1)((1)−(8) and (29)−(30)) is solved through
reformulation to the ε-constraint optimization problem (P1’)((1)−(8), (29) and (31)), which
maximizes system availability (29) subject to the upper bound of total cost as shown in
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equation (31). The upper bound of total cost is varied parametrically to generate a Pareto-
optimal curve.

Ctot ≤ cost (31)

As mentioned before, equation (4) for nonidentical units in (P1) involves multi-linear
terms, and so does the objective function of (P1’), which causes the problem to be nonlinear
and non-convex. In problem (P1’L), which is to be described in this section, we propose to
linearize constraint (4) and convexify the objective function. In order to do so, the products
over linear terms in (4) are expanded as summations over multi-linear terms, which are
then linearized. Since in (4), the multiplication is done over the set Jk, we first propose the
following new sets and parameters to enumerate the subsets of Jk.
Set:
Sk,m Subset m of Jk
Sk The power set of Jk: Sk = {S|S ⊆ Jk}

For example, if there are 3 potential units in stage 1 (J1 = {1, 2, 3}), then the number of
subsets in the power set S1 is 23 = 8, S1 = {∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}.

The binary parameter αj,S is defined to indicate whether unit j belongs to subset Sk,m:
αj,k,m = 1 means that unit j belongs to subset Sk,m. Again, consider J1 = {1, 2, 3} as an ex-
ample, then for S1,4 = {1, 2}, α1,1,4 = 1, α2,1,4 = 1, α3,1,4 = 0. Table 1 gives a comprehensive
example to show how αj,k,m is defined for each alternative.

Table 1: An example of the corresponding relationship between Sk,m and αj,k,m in stage k

αj,k,m

j
m 1 2 3
1 0 0 0
2 1 0 0
3 0 1 0
4 1 1 0
5 0 0 1
6 1 0 1
7 0 1 1
8 1 1 1

To guarantee that all and only subsets of Jk are included in Sk, without any repetition
or omission, we use the following equation to generate the subsets.

αj,k,m = bmod(m− 1, 2j)

2j−1 c, k ∈ Knon

We can consider αj,k,m as the digit on the jth place of the binary form of m − 1. The
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following binary variables are then defined based on the above definition of S:

zk,m =
∏

j∈Sk,m

yk,j, k ∈ Knon, Sk,m ∈ Sk

The following logic conditions hold for zk,m (Glover and Woolsey, 1974),

zk,m ⇔
( ∧

j∈Sk,m

yk,j

)
, k ∈ Knon, Sk,m ∈ Sk, S 6= ∅

zk,m = 1, k ∈ Knon, Sk,m = ∅

which can be reformulated as the following linear inequalities (Raman and Grossmann,
1991),

zk,m ≤ yk,j, k ∈ Knon, j ∈ Sk,m, Sk,m ∈ Sk, Sk,m 6= ∅ (32)

zk,m ≥
∑

j∈Sk,m

yk,j − |Sk,m|+ 1, k ∈ Knon, Sk,m ∈ Sk (33)

Based on the above definitions of the subsets Sk,m, the power set Sk and the variable
zk,m, equation(4) is then reformulated as the following linear equations:

Pk = 1−
∏
j∈Jk

(1− pk,jyk,j), k ∈ Knon

= 1−
∑

Sk,m∈Sk

(
∏

j∈Sk,m

(−pk,jyk,j))(
∏

j∈Jk\Sk,m

1), k ∈ Knon

= 1−
∑

Sk,m∈Sk

(
∏

j∈Sk,m

(yk,j))(
∏

j∈Sk,m

−pk,j), k ∈ Knon

= 1−
∑

Sk,m∈Sk

zk,m
∏

j∈Sk,m

(−pk,j), k ∈ Knon

(34)

As an example, the diagram shown in Figure 4(b) that has 3 distinct parallel units yields

P1 = 1− (z1,1 + z1,2(−p1,1) + z1,3(−p1,2) + z1,4(−p1,1)(−p1,2) + z1,5(−p1,3)
+ z1,6(−p1,1)(−p1,3) + z1,7(−p1,2)(−p1,3) + z1,8(−p1,1)(−p1,2)(−p1,3))

Thus, the equations Pk, k ∈ K are linear in model (P1L). On the other hand, let

A′ = lnA = ln(
∏
k∈K

Pk) =
∑
k∈K

lnPk (35)

Since logarithmic functions are monotone, maximizing A′ is equal to maximizing A. The
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original objective function (29) can thus be replaced by (36).

maxA′ =
∑
k∈K

lnPk (36)

Since each term in the above summation is concave, A′ is concave. Maximizing the con-
cave function is equivalent to minimizing a convex function. Thus, the reformulated problem
(P1’L) ((1)−(3), (5)−(8) and (31)−(36)) is a convex MINLP (i.e. the relaxed NLP of (P1’L)
is convex).

5.2. Multi-state model

The models presented in the previous sections are based on the assumption that all of
the stages as well as the entire system transitions between binary states, on and off, which
means that for each single stage to be available, the fewest number of available units is 1.
However, in practice, there is another strategy for increasing availability that is equally used
as the simple back-up strategy considered previously. It is to let a few units (usually 2) share
the workload. For example, in the typical case we consider in model (TS), in addition to
the full capacity back-up pattern, some stages can have two units that both work at half of
the designed capacity, and if one of them fails, the system can still operate at half capacity).
The objective of model (TS) is to maximize the net profit based on the contracts production
described in section 5.1.1.

For the augmented case, we define the following new indices, variables and parameters.

l,m Aliases of j
cpk,j Capacity level of unit j in stage k
yFk,j Binary variable representing the existence of the jth candidate unit in full

capacity group of stage k
yHk,j Binary variable representing the existence of the jth candidate unit in half

capacity group of stage k
P F
k Probability of stage k ∈ K working in full capacity
PH
k Probability of stage k ∈ K working in half capacity
AF Probability of the whole system working in full capacity
AH Probability of the whole system working in half capacity

As shown in Figure 6, stage k may have two groups of potential units with full capaci-
ties and half capacities, respectively. Like what was done for the basic case in section 5.1,
these units are numbered by index j in the order of operation priorities. It is also obvious
that full capacity units, if they exist, will always have higher priorities than half capacity
units.
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Figure 6: Potential units of stage k

For the stage to have enough capacity in normal conditions, we have constraint (37).∑
j∈JF

k

cpk,jy
F
k,j +

∑
j∈JH

k

cpk,jy
H
k,j ≥ 1, k ∈ K (37)

The probability of stage k having half capacity is calculated in equation (38).
∏

j∈JF
k

(1− pFk,jyFk,j)
is the probability that all full capacity units are failed, which is the premise of having half
capacity. It reduces to 1 when full capacity units are not installed and yFk,j = 0. Then we
calculate the conditional probability that only one unit j from the half-capacity group is left
available, by enumerating all possible cases based on the available unit j. The expression
means that, in the case where j is the only available unit, all potential units with higher
operational priorities are failed (if selected), and all potential units with lower operational
priorities are not selected.

PH
k =

∏
j∈JF

k

(1− pFk,jyFk,j)
∑
j∈JH

k

{pHk,jyHk,j[
∏

l∈JH
k ,l<j

(1− pHk,lyHk,l)][
∏

m∈JH
k ,m>j

(1− yHk,m)]}, k ∈ K

(38)

The probability of stage k to work at full capacity is calculated in equation (39), which
is based on similar idea with that of equation (4) in section 5.1. However, in addition to the
probability of total failure, probability of having half capacity also has to be deducted from
1.

P F
k = 1−

∏
j∈JF

k

(1− pFk,jyFk,j)
∏
j∈JH

k

(1− pHk,jyFk,j)− PH
k , k ∈ K (39)
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The probability of working with full capacity is the product of that of each stage.

AF =
∏
k∈K

P F
k (40)

The probability for the entire system to work under half throughput is represented as
the probability for the system not to fail minus the probability of working with full capacity.

AH =
∏
k∈K

(P F
k + PH

k )− AF (41)

To account for partial capacity states, the availability of the system is redefined through
the integration:

A =
E
u∈U

(
∫ T

0
CP (u, t)dt)

CP fT

A conceptual graph is shown in Figure 7, where the availability equals the purple area over
the rectangle area under the dashed line of full capacity. [0, T ] is the time horizon that is
being considered. CP f is the full capacity of the system, and CP (t) is the system capacity
at time t. However, only one scenario of the availability curve is shown in the figure, whereas
in the defining equation, a probabilistic expectation is calculated, where u stands for each
scenario and U stands for their set.

Figure 7: Sketch of an availability curve

Thus, we can use equation (42) to estimate the system availability.

A = AF + AH/2 (42)

In summary, the proposed non-convex MINLP model (TS) maximizes the net profit (9)
subject to constraints (6)−(8), (13), (15), (18) − (20), (27) − (28) and (37)−(42).
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6. Illustrative examples

In this section, several examples are presented and discussed in order to illustrate the
applications of the models.

In section 6.1, we examine a system where all the stages have only two states, which was
utilized to formulate a problem that maximizes the net profit, and a problem that maximizes
reliability while minimizing cost. The single objective model (SO) was solved directly as a
non-convex MINLP, and the multi-objective problem was solved by reformulating into its
ε- constrained model (P1’), a non-convex MINLP, and then reformulated it as the convex
MINLP (P1’L). In section 6.2, we formulate model (TS) to maximize the net profit for an
ASU process where some of the stages may have three states, giving rise also to a non-convex
MINLP. In section 6.3, availability evaluation is incorporated into the flowsheet superstruc-
ture optimization problem of methanol synthesis process and HDA (hydrodealkylation of
toluene) process.

All models were implemented in GAMS 24.4.1 on an Intel(R) Core(TM) i7, 2.93GHz.
Commercial solvers BARON 14.4.0 and DICOPT(based on CONOPT 3.16D and CPLEX
12.6.1.0) were used.

6.1. Binary state system

Figure 8 displays a simple serial system that has 4 stages with up to 3 units at each stage.
Each rectangle represents a single processing unit. The parallel units in stage 1 and 2 are
identical, respectively, while those in stages 3 and 4 are distinct. All of the stages are with
binary states, giving rise to a total of 441 possible designs. Major parameters, including the
availability, installation cost, and repair cost of each potential unit are given in Table 2.

Figure 8: Example 1
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Table 2: Parameters for example 1

Availability Installation cost (K$ per year) Repair cost (K$ per year)
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3

j=1 0.97 0.97 0.97 j=1 65 65 65 j=1 5 5 5
j=2 0.97 0.97 0.97 j=2 40 40 40 j=2 4 4 4
j=3 0.95 0.92 0.9 j=3 100 90 85 j=3 10 8 6
j=4 0.98 0.94 0.9 j=4 196 156 124 j=4 14 12 10

6.1.1. Net profit optimization

Model (SO) introduced in section 5.1.1 is applied to the above example and generates
29 equations, 26 variables with 13 discrete variables. It was solved by BARON in 0.405 s.
The parameters for revenue, penalty and bonus to formulate the problem that maximizes
the net profit are given in Table 3.

Table 3: Additional parameters for single objective model

rv (k$/yr) pn (k$/yr) bn (k$/yr) A lo A up
1000 800 800 0.988 0.996

The design decisions for maximizing the net profit are shown in Figure 9. A colored box
indicates that the unit is selected to install, while a vacant space means that the unit is not
selected.

Figure 9: Optimization result of example 1

The optimal design has an availability of 0.944, which is below the lower limit and incurs
a $52.3k/yr penalty. The system is expected to earn $944.4k/yr of revenue with 0 bonus and
$52.3k/yr penalty, and to spend $557k/yr on investment(including installation and repair),
which results in the net profit of $335.1k/yr.
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6.1.2. ε-constrained model and its linearized formulation

Table 4 shows the Pareto results for the bi-criterion optimization problem. Two groups of
MINLP’s, the non-convex MINLP’s (P1’) and their linearized version, the convex MINLP’s
(P1’L)(described in section 5.1.2), were solved to identical results with the upper bound of
the total cost varying by $60K/yr from $460K/yr to $820K/yr respectively. Since the design
decisions are discrete, the calculated values of Ctot might be less than the limit value.

Table 4: Pareto results

cost (K$/yr) 460 520 580 640 700 760 820
Ctot (K$/yr) 436 480 571 622 692 692 819

A 0.849 0.900 0.947 0.951 0.975 0.975 0.993

Each point in Figure 10 corresponds to one of the six subproblems solved to maximum
system availability under certain upper bound of total cost. The small chart next to each
data point indicates the selected design decisions.

Figure 10: Pareto curve

It is shown that as the upper bound of the cost increases, the maximum system avail-
ability increases as well. From Figure (10), we can also see the impact of the budget on the
selection of the units for each stage. Generally speaking, the optimal designs for larger bud-
gets have more units than those for smaller budgets. However, it is not merely a process of
adding on units. As the upper bound of the total cost increases, some units are added, while
some are discarded. Also note that the kinks in the Pareto curve are due to the changes in
system configuration, and more fundamentally, the discrete nature of the problem. Table 5
compares the sizes and mean computational times of the models (P1’) and (P1’L).

18



Table 5: Computational statistics of (P1’) and (P1’L)for example 1

No. Eq. No. Var No. Dis. Vars Solver Mean time
P1’ 21 22 12 BARON 0.27s
P1’ 21 22 12 SCIP 0.11s

P1’L 97 50 40 DICOPT 0.61s
P1’L 97 50 40 SBB 0.88s

For an expanded system (example 1’) with 12 stages and 3 potential units for each stage
giving rise to possible designs, the computational results are shown in Table 6.

Table 6: Computational statistics of (P1’) and (P1’L) for example 1’

No. Eq. No. Var No. Dis. Vars Solver Mean time
P1’ 51 72 42 BARON 1.57s
P1’ 51 72 42 SCIP 1.08s

P1’L 317 170 140 DICOPT 0.77s
P1’L 317 170 140 SBB 3.28s

Both (P1) and (P1’L) and their expanded system are solved using different solvers. As
shown in the above tables, the size of (P1’L) is always larger than that of (P1’). From table
6, the mean solution time of (P1’L) on example 1 is longer than that of (P1’), regardless of
solvers. However, the mean solution time of (P1’L) by DICOPT on the expanded example
1’ is shorter than that of (P1’) by either BARON or SCIP, which proves that the convexity
of (P1’L) brings time efficiency for larger problems. The convexity of (P1’L) also guarantees
that DICOPT can provide the global optimal solution. The solver SBB on the other hand
is not able take advantage of convexity, for its computational time increases more rapidly
with the number of binary variables as the NLP subproblems have to be solved at each
node of the branch and bound tree. This example shows that the sacrificing of simplicity in
exchange for convexity is not effective for all solvers.

6.2. Multi-state system (ASU)

As it can be seen, the motivating example of ASU units described in section 2 features
multi-state behaviors (see Figure 11). Therefore, in this section, we will use it to illustrate
the non-convex MINLP model (TS) (section 5.2).
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Figure 11: The diagram of ASU reliability design alternatives

6.2.1. Optimal design

The model is first solved with the parameters shown in Table 7.

Table 7: Parameters for example 1

Availability Installation cost (M$/yr) Repair cost (k$/yr)
j =1 j =2 j =3 j =4 j =1 j =2 j =3 j =4 j =1 j =2 j =3 j =4

MAC 0.977 0.975 0.973 MAC 2 1.2 1.1 MAC 40 24 22
PPF 0.995 0.993 0.991 PPF 1.6 1.5 1.4 PPF 32 30 28
HEX 0.998 0.996 0.994 0.992 HEX 1.4 1.3 0.8 0.7 HEX 28 26 16 14

PUMP 0.968 0.966 0.965 PUMP 0.4 0.22 0.20 PUMP 8 4 4
rv = $120M/yr, pn = $130M/yr, bn = $130M/yr, A lo = 0.988, A up = 0.996

Figure 12 shows the optimal configuration, which has a net profit of $105,898,000/yr and
an availability of 0.970. The model has 29 equations, 38 variables with 16 discrete variables
and was solved by BARON in 0.07 s

Figure 12: Optimum reliability design for multi-state ASU
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6.2.2. Sensitivity Analysis

Unit availabilities
First, the values of unit availabilities are varied parametrically to evaluate their impact

on the optimal design and the profitability of the system.

Figure 13: Net profit & system availability change with unit availabilities

In Figure 13 above, nominal value refers to the set of unit availability values used in
section 6.2.1, Table 7. It is shown that as the availability values of single units are scaled
down, the optimal net profit and system availability also decrease. The optimal designs are
also changing in that more parallel units tend to be installed as unit availabilities decrease.
A few representative structures are shown in the range considered for scaled availabilities.

When availabilities of single units in Table 7 increase by 0.02%, the optimal flowsheet
does not differ from that with nominal values. However, since the units are more reli-
able, the optimal system availability and net profit do increase from $105,898,000/yr to
$106,891,000/yr, and from 0.970 to 0.974, respectively.

When unit availabilities decrease by 1%, a standby heat exchanger is added on the flow-
sheet showed in Figure 14, with a system availability of 0.961 and net profit of $102,438,000/yr.
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Figure 14: Optimal flowsheet of ASU when availabilities decrease by 1% of nominal values

When unit availabilities decrease by 2% to 7%, the optimal flowsheet shown in Figure 15
has one more pump with half capacity than that shown in Figure 14. The optimal system
availabilities for 2%, 5%, and 7% are 0.952, 0.918, and 0.894, with corresponding net profits
of $99,810,000/yr, $91,384,000/yr, and $85,335,000/yr.

Figure 15: Optimal flowsheet of ASU when availabilities decrease by 2%-7% of nominal values

When unit availabilities decrease by 8%, a standby heat exchanger is added on the flow-
sheet showed in Figure 14, with a system availability of 0.884 and net profit of $82,240,000/yr.

Figure 16: Optimal flowsheet of ASU when availabilities decrease by 8% of nominal values
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Contract-based penalty and bonus
Second, we analyze model sensitivity with respect to the contract-based penalty rate pn

and bonus rate bn (first used in section 5.1.1). The trade-off between plant availability and
investment is affected in the way that the higher these parameters are, the more important
it becomes to increase plant availability, and thus, the more parallel units are to be installed.

When pn and bn are increased by 4 times, a pump with half capacity is added to the
flowsheet, leading to a net profit of $116,464,000/yr with an availability of 0.971.

Figure 17: Optimal flowsheet of ASU for pn = $520M/yr, bn = $520M/yr

When pn and bn are increased by 8 times, a standby heat exchanger is added on the
flowsheet showed in Figure 17, leading to a net profit of $116,696,000/yr with an availability
of 0.972.

Figure 18: Optimal flowsheet of ASU for pn = $1040M/yr, bn = $1040M/yr

When pn and bn are increased by 16 times, one more air compressor of full capacity is
added, leading to a net profit of $116,733,000/yr with an availability of 0.973.
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Figure 19: Optimal flowsheet of ASU for pn = $2080M/yr, bn = $2080M/yr

The above results show that higher penalty and bonus factors makes the flowsheets with
higher availability more preferable.

6.3. Application to process synthesis problems

As stated in section 3, the previous models are based on a fixed serial diagram, and the
availability of the system is simply the product of the availabilities of each stage (5) or the
linear combination of the products (42). However, in this section, the reliability model is
integrated in the superstructure optimization of process synthesis problems. In other words,
the existence of some of the unit operations depends on the selection of a particular process
flowsheet. A general disjunctive programming representation of a process synthesis problem
(PS) is given as follows (Grossmann and Trespalacios, 2013):

min Z =
∑
i

ci + f(x)

s.t.

g(x) ≤ 0 Yi
hi(x) ≤ 0
ci = γi

 ∨
 ¬Yi
Bix = 0
ci = 0

 i ∈ D (PS)

Ω(Y ) = True

x ∈ Rn, c ≥ 0, Y ∈ {True, False}m

In (PS), Yi are boolean variables associated with the selection of certain equipment, x
stand for continuous variables such as flowrates, temperatures and pressures, ci represent
fixed costs and f(x) are costs related to x. g(x) and hi(x) represent the equations and
inequalities of the process.

To integrate reliability evaluations, each equipment in (PS) is considered as a stage, and
parallel units are assigned for certain stages i ∈ DR. Let the Boolean variables W and their
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corresponding binary variables w represent the existence of the parallel units. Ω(Y ) = True
becomes Ω(Y,W ) = True, where logical constraints relating the selection of stages and
their parallel units are added; i.e., if the stage is not selected, its parallel units are not
selected either. The availability evaluation model is represented by mixed-integer equations
ci = γi(w) and AVi = Pi(w), where AVi is the availability of stage i. Below is the general
formulation of a process synthesis problem considering reliability (PSR).

min Z =
∑
i

ci + A · f(x)

s.t.

g(x) ≤ 0 Yi
hi(x) ≤ 0
ci = γi

 ∨
 ¬Yi
Bix = 0
ci = 0

 i ∈ D\DR (PSR)


Yi

hi(x) ≤ 0
ci = γi(w)
AVi = Pi(w)

 ∨

¬Yi

Bix = 0
ci = 0
AVi = 1

 i ∈ DR

Ω(Y,W ) = True

W ↔ w

A =
∏
i∈DR

AVi

x ∈ Rn, c ≥ 0, Y ∈ {True, False}m,W ∈ {True, False}l

6.3.1. Methanol synthesis

In this section an example is presented to show the implementation of the availability
modeling in the process design based on flowsheet superstructure optimization.
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Figure 20: Superstructure of methanol synthesis process

The process synthesis problem of methanol synthesis process was formulated and solved
as an MINLP by Türkay and Grossmann (1996) without reliability considerations based
on the superstructure shown in Figure 20. Single choices have to be made regarding two
feeds and two reactors. Feed 2 is more expensive but has less inert species than Feed 1.
Reactor 2 is more expensive but has higher conversion than reactor 1. In addition, it has
to be determined whether to use a single-stage compressors, or a two-stage compressor with
intercooling for pressurization of the feed and the recycling stream respectively. The cor-
responding MINLP problem has 269 equations, 280 variables and 6 discrete variables and
was solved with DICOPT (based on CONOPT 3.16D and CPLEX 12.6.1.0) in 0.343s for an
optimal profit of $3,684,468/yr. The corresponding optimal flowsheet (without guarantee of
global optimality) is shown in Figure 21. According to the solution, Feed 1 is selected over
Feed 2, and Reactor 1 is chosen rather than Reactor 2. In addition, one-stage compressor
train is selected for the feed, and two-stage compressor train is selected for the recycling
stream.
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Figure 21: Optimal flowsheet of original methanol synthesis problem

In order to incorporate the availability evaluation, several candidate parallel units are
assigned to each equipment with reliability considerations, such as compressors, heat ex-
changers and valves. Table 8 shows the equipment and parallel units, their capacities, and
parameters of availabilities and costs. The equivalent reliability superstructure has 14 po-
tential stages, with each of them having 3 to 4 potential parallel units, giving rise to a total
of over 4 million design alternatives. The extended problem has 408 equations, 451 variables
and 72 discrete variables and was solved by DICOPT in 0.452s to the optimal profit of
$3,404,302/yr. and an availability of 0.971.

Table 8: Availability evaluation module for methanol process
Equipment Installation costs (k$/yr) Repair costs (k$/yr) Availability Capacity(%)

COMP1 to COMP6
1 0.132*power (kw) + 13.5 4 0.977 100
2 0.145*power (kw) + 10.9 2.4 0.975 50
3 0.145*power (kw) + 10.9 2.4 0.973 50

HEC1 to HEC4

1 0.027*heat (kw) + 39.2 2.8 0.998 100
2 0.027*heat (kw) + 39.2 2.8 0.996 100
3 0.030*heat (kw) + 21.2 1.6 0.994 50
4 0.030*heat (kw) + 21.2 1.6 0.992 50

HEH1 to HEH3

1 0.027*heat (kw) + 39.2 2.8 0.998 100
2 0.027*heat (kw) + 39.2 2.8 0.996 100
3 0.030*heat (kw) + 21.2 1.6 0.994 50
4 0.030*heat (kw) + 21.2 1.6 0.992 50

V
1 1 0.2 0.999 100
2 1 0.2 0.999 100
3 1 0.2 0.999 100

The solution to the optimization model with availability evaluation is shown in Figure 22.
Compared to the original design shown in Figure 21, the compressor train of recycling stream
is changed from two stage to single stage to save fixed cost and reduce failure. In terms of
parallel unit selection, a parallel unit of half capacity is selected for the feed compressor.
Also, all three parallel units for the pressure reducing valve are used because of low costs.
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Figure 22: Optimal flowsheet of methanol synthesis process considering reliability

It is interesting to note that the profit drops significantly after reliability is incorporated
in the model. With the same reliability data, the availability of the optimal configuration
in Figure 21 without redundant units is 0.923, and its real profit considering failure is
$3,353,900/yr. This is 1.5% ($50,402/yr) lower than that of the optimal design in Figure 22
with the incorporation of reliability ($3,404,302/yr) which has an availability of 0.971.

6.3.2. Hydrodealkylation of toluene (HDA)

In this section another example is presented to show the incorporation of the availability
modeling in the flowsheet superstructure optimization.
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Figure 23: Super structure of HDA process

The process synthesis problem of hydrodealkylation of toluene (HDA) process was ad-
dressed by Kocis and Grossmann (1989) without reliability considerations based on the
superstructure shown in Figure 23. An optimal flowsheet was obtained as shown in Figure
24. According to the solution, the hydrogen feed is purified before mixing with toluene feed.
The isothermal reactor is selected rather than the adiabatic reactor. The separation train
of the products includes stabilizing column, benzene column and flash 3. And the overhead
of flash 1 rich with hydrogen is directly recycled without any further purification, while the
hydrogen in the overhead of the stabilizing column is purged with methane. The problem
has 719 equations, 726 variables and 16 discrete variables and was solved with DICOPT in
2.62s, yielding a profit of $4,317,054/yr.
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Figure 24: Optimal flowsheet for HDA original problem

In order to apply availability evaluation, several candidate parallel units are assigned to
each equipment with reliability consideration, such as compressors, heat exchangers, pumps
and valves. Table 9 shows the equipment, their capacities, and parameters of availabilities
and costs. The equivalent reliability superstructure has 19 potential stages, with each of
them having 2 to 4 potential parallel units, giving rise to a total of over 400 million design
alternatives. The extended problem has 893 equations, 955 variables and 108 discrete vari-
ables and was solved with DICOPT (based on CONOPT 3.16D and CPLEX 12.6.1.0) in
10.14s, yielding a profit of $3,972,785/yr.
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Table 9: Additive availability evaluation module
Equipment Installation costs (k$/yr) Repair costs (k$/yr) Availability Capacity(%)

COMP1 to COMP4
1 0.132*power(kw) + 13.5 4 0.977 100
2 0.145*power(kw) + 10.9 2.4 0.975 50
3 0.145*power(kw) + 10.9 2.4 0.973 50

HEC1 to HEC2

1 0.027*heat (w) + 39.2 2.8 0.998 100
2 0.027*heat (kw) + 39.2 2.8 0.996 100
3 0.030*heat k(w) + 21.2 1.6 0.994 50
4 0.030*heat (kw) + 21.2 1.6 0.992 50

HEH1 to HEH4

1 0.027*heat (kw) + 39.2 2.8 0.998 100
2 0.027*heat (kw) + 39.2 2.8 0.996 100
3 0.030*heat (kw) + 21.2 1.6 0.994 50
4 0.030*heat (kw) + 21.2 1.6 0.992 50

HEX
1 0.027*heat (kw) + 39.2 2.8 0.988 100
2 0..027*heat (kw) + 39.2 2.8 0.988 100

PUMP1 to PUMP2
1 1*flowrate(kg-mol/min)+1 0.2 0.968 100
2 1.1*flowrate(kg-mol)+0.5 0.2 0.966 50
3 1.1*flowrate(kg-mol)+0.5 0.2 0.964 50

V1 to V6
1 1 0.2 0.999 100
2 1 0.2 0.999 100

The optimal solution to the model with availability evaluation is shown in Figure 25,
with a profit of $3,972,785/yr and an availability of 0.942. The original problem with a
profit of $4,317,054/yr and not accounting for reliability, drops to a profit of $3,817,535
considering failures (availability of 0.9045), which is 4% lower than the $3,972,785/yr by the
extended model. A half capacity standby is selected for COMP2. In addition, HEX, HEC1,
V2, and V3 each has one full capacity standby unit. Comparing to the result shown in
Figure 24, the purification step for hydrogen feed is skipped. Presumably, it is because the
more complex routes do not provide enough additional profit that can balance the loss from
higher possibility of failures and the costs from installing more parallel units. Therefore,
the system tends to select simpler flowsheet structures to reduce failure and to retain sales
revenue as much as possible.
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Figure 25: Optimal flowsheet for HDA process considering reliability

7. Conclusion

This paper has presented MINLP models for selecting designs in serial systems to opti-
mize their availability, where single units are given with fixed probabilities of being available.
Two cases are investigated. For the first case, all the stages need only one unit to work prop-
erly. For the other case, some of the stages have two units sharing the workload. These
stages provide half of the normal capacity when only one unit is left available, which gives
the system an intermediate state besides merely up and down states.

Two non-convex MINLP models for maximizing system net profit were presented re-
garding the two cases. In addition, a non-convex ε-constraint MINLP model maximizing
availability and minimizing cost separately was formulated for the first case, which can be re-
formulated as a convex MINLP. The application of these models was illustrated with several
small examples. Furthermore, the availability evaluation was incorporated into flowsheet
superstructure optimization problems for methanol synthesis process and hydrodealkylation
process.

This work provides rigorous mixed-integer models for the general problems of optimal
structural design of a reliable chemical process. The performance of the model on several
examples has illustrated the potential of application on practical problems. On the other
hand, the model has certain limitations, a most significant one of which is that it considers
no maintenance. In regards to that, the authors will address in future work the approaches
that are more simulation oriented in order to incorporate such issues.
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