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Abstract

Motivated by the reliability/availability concerns in the design and operation of air separation
plants, this paper proposes an MINLP model that represents the stochastic process of system
failures and repairs as a continuous-time Markov chain, based on which it optimizes the selection
of redundancy and the frequency of inspection and maintenance tasks for maximal overall profit.
The model explicitly accounts for every possible state of the system, which gives it the potential
of incorporating various types of design and operational decisions while causing difficulties in
scaling up. Therefore, effective decomposition and scenario reduction methods are also proposed
in the paper. A small example with two processing stage is solved to demonstrate the impact
of incorporating maintenance considerations. In contrast to directly solving the original MINLP
model, the decomposition and scenario reduction methods are applied to this example and is shown
to have drastically improved the computational efficiency. Moreover, a larger example with four
stages, which is not directly solvable, is also successfully dealt with using the proposed algorithm.
Lastly, we show that the proposed model and algorithm is capable of solving the practical problem
of the air separation process, which features multiple stages, potential units and failure modes.
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1. Introduction

Plant availability has been a critical consideration for the design and operation of chemical pro-
cesses as it represents the expected fraction of normal operating time, which directly impacts the
ability of making profits. In practice, discrete-event simulation tools are used to examine the avail-
ability of a few selected designs of different redundancy levels under various maintenance and spare
parts inventory policies (Sharda and Bury, 2008). However, the best plan selected through simu-
lation is usually suboptimal because the list of design alternatives is often not exhaustive. Thus,
there is a strong motivation for systematic optimization tools of redundancy design considering
operational factors.

Several works have been reported regarding reliability considerations at the design phase.
Thomaidis and Pistikopoulos (1994, 1995) integrate flexibility and reliability in process design
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without considering the possibility of having standby units. Aguilar et al. (2008) address the re-
liability issue in utility plant design and operation by considering some pre-specified alternatives
for redundancy, and for which they formulate an MILP model considering a few number of failure
scenarios. Ye et al. (2017) propose a general mixed-integer framework for the optimal selection of
redundant units bearing reliability concerns.

In order to obtain a more comprehensive optimal design, it is important to consider the impact
of operational factors on plant availability and their costs. For example, maintenance, especially
predictive maintenance (PM), is a major strategy to improve the availability of units (Ding and
Kamaruddin, 2015). There have been many works reported on the modeling and optimization
of maintenance (Sharma et al., 2011). Lee and Cha (2016) describe a preventive maintenance
optimization model under the assumption that the failure process follows a generalized Poisson
process. Pistikopoulos et al. (2001) and Goel et al. (2003) formulate MILP models for the selection
of units with different reliability and the corresponding production and maintenance planning
for a fixed system configuration. Also, these works optimize the maintenance schedule balancing
maintenance costs and the benefits from availability increase (Vassilliadis and Pistikopoulos (1999),
Cheung et al. (2004), Nguyen and Bagajewicz (2008)).

Markov chain is a powerful mathematical tool that is extensively used to capture the stochastic
process of systems transitioning among different states. Shin and Lee (2016) formulate the planning
level problem of a procurement system as an Markov Decision Process to account for exogenous
uncertainties coming from lead time and demand, and integrate it with the scheduling level problem.
Shin et al. (2017) uses dynamic programming to learn the value function of the Markov Decision
Process of a wind farm microgrid. Its value functions penalize the objective functions of the
two-stage stochastic programs for daily schedules. Bloch-Mercier (2002) models the deterioration
process of a system as continuous-time Markov chain to optimize inspection intervals. Lin et al.
(2012) model a simple utility system using Markov chain and carry out RAM (reliability, availability
& maintainability) analysis iteratively to decide the optimal reliability design. However, to our
best knowledge, there has not been work reported in chemical engineering community that uses
Markov chain as an uncertainty modeling tool for superstructure optimization.

Given the aforementioned research gaps and knowledge basis, this work extends our recent
mixed-integer framework (Ye et al., 2017) and introduces a systematic approach to model the
stochastic process of system failures and repairs as a continuous-time Markov chain. The new
framework explicitly accounts for the long term property of each possible reliability scenario. There-
fore, it is able to incorporate various kinds of decision making processes. In this work, the impact
of maintenance is incorporated in order to find the optimal selection of parallel units.

In section 2, a motivating example is introduced to outline the model scope. Section 3 gives a
formal problem statement, including detailed explanation of the modeling assumptions and basic
logic, as well as a brief introduction to Markov chain. The mathematical formulation of the model is
presented in section 4, while section 5 explains the decomposition and scenario reduction methods.
Finally, section 6 demonstrate the model performance with several case studies.

2. Motivating example and problem description

Consider an air separation unit (ASU) shown in Figure 1 as a motivating example. Air is fed
to a compressor followed by an after-cooler, and then the pre-purifier to remove impurities such as
CO2. After that, the air is compressed again by the booster air compressor and cooled by the gas
product of nitrogen and liquid product of oxygen. To better utilize the cold utility, the air feed

2



is usually split as follows: about two thirds of the air remains in gas phase, whose temperature is
further reduced by a gas turbine before being fed into the high pressure column. The rest of the
air is cooled down to be partial-liquid-partial-gas in the heat exchanger, which is then split into
two streams and fed into low pressure column and high pressure column separately. It is worth
to mention that the liquid O2 comes out from the bottom of the low pressure column, therefore,
a pump is needed to bring the stream out, while the liquid N2 product comes out from the high
pressure column and does not need to be pressurized.

Figure 1: Typical flowsheet of air separation units

The failure of any one of these processing stages can result in the failure of the entire system,
which will compromise its ability to meet customer demands. In order to effectively increase the
system availability, two strategies are considered.

The first strategy is to install parallel units for the critical stages. In Figure 2, the availability
superstructure is formulated as a serial system of sequential stages, where each stage has several
potential design alternatives. For example, for the main air compressor, we can install two full-
capacity units with one of them as standby, which is more expensive than installing only one unit,
but the standby compressor can become active when the primary unit fails and thus avoid losses
caused by unavailability.
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Figure 2: The diagram of ASU reliability design alternatives. Each block represents a parallel unit with certain
availability and cost rates

The second strategy is to carry out periodic inspections, and conditional maintenance if the
inspection result indicates that the equipment is going to fail shortly. A longer lead time is then
allowed for the spare parts to arrive while the equipment is still functional. On the other hand, to
repair after the failure actually happens often leads to a longer equipment downtime, or a higher
cost to expedite the shipping of spare parts if no spare parts are kept on site. Naturally, there are
also costs associated with each inspection or maintenance task.

In summary, there are two levels of trade-offs in this decision making process. The first level
is the trade-off between the costs incurred and the revenue gained from the availability increasing
strategies. The second level is the allocation of the availability improving budget between the two
strategies addressed above and among the processing stages. The ultimate goal is to achieve the
optimal overall net profit for the system.

3. Problem statement

With the motivating example in mind, we define a general modeling framework for production
systems with underlying serial structures for availability evaluation as shown in Figure 3. For
each stage k, a set of potential parallel units Jk are available for selecting at the design phase.
The availability parameters of each unit is known. Our goal is to determine design decisions
regarding the number of parallel units to install, as well as operation decisions regarding the length
of inspection intervals tik for maintenance. The objective is to optimize the system availability
(i.e. probability that the system performs without failures) so as to maximize the profit, i.e. sales
revenue minus investment costs and maintenance costs.
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Figure 3: A serial system

Next in section 3.1, the failure and repair processes of single equipment with single failure mode
are characterized (for multiple failure modes see Appendix D), based on which the system logic
and modeling details will be further discussed in section 3.2. In section 3.3, an example is used to
show how Markov chain is applied to the system being studied.

3.1. The failure and repair processes of single units

The reliability of a unit is reflected by the random process of its failures, which can be char-
acterized in various ways. One of them is to examine the probability distribution followed by its
lifetime, i.e., the time between two consecutive failures. The probability density function is usually
referred to as f(t).

A more common characterization is the complementary cumulative distribution function of
f(t):

R(t) =

∫ ∞
t

f(s)ds = 1−
∫ t

0
f(s)ds (1)

R(t) can be interpreted as the probability of a unit surviving beyond time point t. A widely accepted
assumption applied above is

∫∞
0 f(s)ds = 1, which means that an equipment will ultimately fail

given long enough time.
Based on these two characterizations, one can identify the failure rate, or hazard function of

an equipment as:

h(t) =
f(t)

R(t)
(2)

The most widely used lifetime distribution in reliability analysis is the Weibull distribution (Weibull
et al., 1951), which assumes that the length of the time period between time point 0 and the first
failure obeys the following probability density function:

f(λ, β, t) = λβ(λt)β−1e−(λt)β , λ, β, t > 0 (3)

λ and β are denoted as scale and shape parameters, respectively. λ indicates the equipment’s
potential of failure. The greater λ is, the faster the equipment tends to fail. β indicates the shape
of the distribution curve:
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• When β = 1, the Weibull distribution reduces to an exponential distribution:

f(t) = λe−λt, R(t) = e−λt

where the failure rate does not change with time,

h(t) = λ

• When β 6= 1,

R(t) = e−(λt)β

h(t) = βλβtβ−1

If β < 1, the failure rate decreases with time, but if β > 1, the failure rate increases with
time.

Figure 4: Failure rate against time with λ = 1 and different β’s

From the standpoint of conceptual design, the average behavior of equipment matters the most.
Therefore, it is reasonable to assume that failure rate does not change with time, therefore, the
focus is only on the scale factor λ:

P (lifetime ≥ t) = R(t) = e−λt (4)

f(t) = λe−λt (5)

On the basis of an exponential lifetime distribution, the mean time between failure (MTBF) can
also be calculated as follows:

MTBF =

∫ ∞
0

tf(t)dt =
1

λ
(6)

We also know that the failure rate is λ. For example, if MTBF is 1000 days for a certain piece of
equipment, the failure rate will be 0.001.
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Once a unit breaks down, repair has to be carried out, which is a more controllable process,
though still subject to uncertainties coming from cause detection, spare part shipping, etc. Fol-
lowing from the above discussion of failure processes, the repair process is described by a separate
exponential distribution with repair rate µ as its rate parameter:

P (repairtime ≥ t) = R(t) = e−µt (7)

The mean time to repair (MTTR) thereby equals to
1
µ .

3.2. Operation rules and decisions identification

Before presenting the detailed mathematical formulations, we describe in this section the basic
logic followed by the system being studied. Each stage k has a set of potential units j ∈ Jk. For
unit j in stage k, the following information is given:

• Availability parameters without interference, i.e. λ0
k,j and µ0

k,j .

• Operating priority level within stage k (indicated by the order of j). A unit becomes active
if all installed units with higher priority levels have failed.

• Cost data, including installation, inspection, maintenance, and repair.

The parallel units in one stage would come into operation according to their operating priority
levels. When a unit fails, a parallel unit with lower operating priority, if it is selected to be installed
into the system, might be able to fill in the place to avoid unavailability.

Equipment deterioration can be detected by scheduled inspections in a certain period T dk before
it happens, which is referred to as delay time (Christer, 1999), or PF-interval (Moubray, 1997). As
shown in Figure 5, it is called deterioration period in this work. For each stage k, inspections are
scheduled for active units at a certain time period to be determined, tik, called inspection interval.
If the inspection indicates that the equipment presents deterioration, a predictive maintenance
task will be carried out in time. In that case, catastrophic failures could be prevented, and there
will be enough time to order the spare parts, and hence reduce the shipping costs. Therefore, a
maintenance before failure causes lower costs and a shorter and more predictable downtime than
a repair upon failure. As shown in Figure 5, in this paper, we consider the time between failure
to be prolonged with inspections and maintenance added, and calculate separately the downtime
and costs caused by maintenance.
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Figure 5: The timeline sketch illustrates how inspection and maintenance tasks affect unit availabilities

In conclusion, the reliability of stage k depends on the selection of parallel units yk,j and the
inspection intervals of each processing stage tik.

3.3. Example: Construct a Markov chain and solve for the availability

As the units fail or are repaired, the system being studied transitions randomly among a finite set
of states. Moreover, since it is assumed that the time a single unit needs to fail or be repaired
follows an exponential distribution, this random state-transitioning process can be represented by
a continuous-time Markov chain. The definition and properties of continuous-time Markov chain
can be found in Appendix A. In this section, we explain through an example how to represent
the Markov chain of a system and solve for its availability. Figure 6(a) shows a system with two
independent units 1 and 2. Figure 6(b) shows the state space diagram that include the 4 states,
(1)no failure, (2)failure in unit 1, (3)failure in unit 2, and (4)failures in both unit 1 and 2. They
constitute the state space S of the Markov chain of this system, which are all possible values of
the system state at any time t, X(t).

(a) System configuration (b) State space diagram

Figure 6: A simple 2 unit system
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The failure times and repair times of unit 1 and unit 2 follow independent exponential distri-
butions, which is the essential condition for the system to be modeled as a Markov process. λ1

and λ2 are the failure rates of unit 1 and unit 2 respectively, while µ1 and µ2 are the repair rates
of unit 1 and unit 2, respectively.

We define matrix P (t) where the element in row i, column j (i, j ∈ S) is denoted as pi,j(t),
the probability of the system being in state j at time t (continuous) given that its initial state is
i, which is described in equation (8). For the case where i = j, pi,i(t) is the probability of the
system remaining in state i until time point t. Therefore, for the example shown in Figure 6,
p1,1(t) = e−λ1te−λ2t (see equation (4)). It can be inferred that pi,i(0) = 1, pi,j(0) = 0, ∀j 6= i, so we
have equation (9). In addition, the Markov property requires that the condition in (10) holds for
the matrix P (t), where both s and t are time variables.

pi,j(t) = Pr{X(t) = j|X(0) = i} (8)

P (0) = I, lim
t→0
P (t) = I (9)

pi,j(s+t) =
∑
k∈S

pi,k(s)pk,j(t) (Chapman-Kolmogorov equation for continuous Markov chain) (10)

Following from pi,j(t) in (8), pi,j is defined in equation (11),where T1 is the first time point that a
state change happens.

pi,j = Pr{X(T1) = j|X(0) = i} (11)

Still looking at the transitions out of state 1, there is p1,2/p1,3 = λ1e−λ1T1e−λ2T1

λ2e−λ2T1e−λ1T1
= λ1/λ2 (see

equations (4) and (5)), and p1,2 + p1,3 = 1 , thus, we obtain p1,2 = λ1
λ1+λ2

, p1,3 = λ2
λ1+λ2

.
Based on the P matrix, we introduce the transitional rate matrix (transition matrix) Q (the

element in row i, column j (i, j ∈ S) of Q is denoted as qi,j) defined by equation (12). Again,
the special case where i = j is easy to calculate. Following from the expression of p1,1(t), we have
q1,1 = −λ1 − λ2.

Q = P ′(0) (12)

As a matter of fact, qi,j , i 6= j can be calculated with the help of qi,i and pi,j as shown in equation
(13) (which is non-trivial to derive, and for proof we refer to Sericola (2013)), which gives us
q1,2 = λ1, q1,3 = λ2. Similarly, we can obtain the other elements of the transition rate matrix
through (14).

qi,j = −qi,ipi,j , i 6= j (13)

Q =


1 2 3 4

1 −λ1 − λ2 λ1 λ2 0
2 µ1 −µ1 − λ2 0 λ2

3 µ2 0 −µ2 − λ1 λ1

4 0 µ2 µ1 −µ2 − µ1

 (14)

It can be noticed from (14) that qi,j(i 6= j) is equal to the rate parameter from state i to state j
marked on the state space diagram of Fig 6, and qi,i is just the opposite number of the sum of all
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other elements in row i. In fact, the Q matrix is not only very convenient to construct, but also a
powerful tool in representing and characterizing the continuous-time Markov process.

The stationary probability of each state i ∈ S, πi is an important measurement of a continuous-
time Markov chain, which is also what we pursue throughout this work. For each stationary
probability, equation (15) holds. It can be interpreted based on the fact that the realization of
a state j is the result of transitions from all states in the space to it. Therefore, the probability
of each state i times the transition probability from i to j is the contribution of state i to the
probability of a state j.

πj =
∑
i∈S

πipi,j(t),∀j ∈ S (15)

The matrix form is as shown in equation (16):

π> = π>P (t) (16)

Now we show how this important equation of π based on the probability matrix P (t) can be
transformed to a more useful equation of π based on the transition rate matrix Q. First, we left
multiply (12) by π> to obtain (17)

π>Q = π>P ′(0) = lim
t→0

π>
P (t)− P (0)

t
(17)

Substituting (9) into (17) yields (18)

π>Q = π> lim
t→0

P (t)− I
t

(18)

Finally, substituting (16) allows us to obtain equation (19). A qualitative explanation of (19) is that
the long-term rate of leaving state j, −πjqj,j (notice that qj,j are negative) equals the long-term
rate of going into state j from other states,

∑
i 6=j πiqi,j .

π>Q = lim
t→0

π> − π>

t
= 0 (19)

In addition, since π stands for the probabilities of all possible states, it is required that all of
its elements sum to 1. Therefore, after obtaining the Q matrix, we can solve the linear system
comprised of equations (20) and (21) for the stationary probability vector π,

π>Q = 0 (20)

π>1 = 1 (21)

which is all we need to figure out the system availability. In the example of this section, the
stationary probability vector can be expressed analytically with the failure rates and repair rates
as follows.

π =


µ1µ2

(λ1+µ1)(λ2+µ2)
λ1µ2

(λ1+µ1)(λ2+µ2)
λ2µ1

(λ1+µ1)(λ2+µ2)
λ1λ2

(λ1+µ1)(λ2+µ2)

 (22)
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Thus, the availability of the system is equal to (1 - the probability of state 4), which is (1 −
λ1λ2

(λ1+µ1)(λ2+µ2)). It can been seen from above that the ”Q matrix” is all we need to describe a
continuous-time Markov chain. In the following sections, we will analyze how the two availability
strategies, which are parallel units and inspections, impact the transition matrix of the system,
and thus the system availability.

4. Mathematical formulation of the MINLP model

In this section, it is shown how to build the MINLP model for a serial system with |K| stages
based on continuous-time Markov Chain. λk,j is the failure rate of unit j in stage k, and µk,j is
the repair rate. We will elaborate on the identification of the transitional rate matrix of a single
stage in section 4.2, then in section 4.3 we introduce how to construct the extended CTMC of the
entire system using the transitional rate matrix of single stages. In section 4.5, we discuss how the
selection of inspection intervals affect equipment failure rates. The relationship between system
availability and its profitability will be covered in section 4.6.

4.1. Logic constraints

The logic constraints regarding the design decisions need to be applied. Constraint (23) requires
that for each stage at least one unit should be installed.∑

j∈Jk

yk,j ≥ 1, ∀k ∈ K (23)

4.2. CTMC of a single stage

A single unit can have 3 possible states during the entire time horizon: standby, active, and
begin repaired. Since the selection of potential units is to be determined, a stage k has a set of
potential designs Hk. Each design h ∈ Hk generates a sub state space Tk,h, which is the set of the
combined states of the single units being selected in this design h. The union of Tk,h of stage k is
called the pseudo state space of stage k, which is denoted as Sk. The word ”pseudo” is to distinguish
it from an actual irreducible state space where all the states are directly or indirectly connected,
while in a pseudo state space, two states from different potential designs have no connecting path.

For example, stage k with three full capacity units shown in Figure 7 has 14 potential states in
Sk, which has 3 subspaces Tk,1, Tk,2 and Tk,3 generated by the three design decisions, respectively.
The correspondence between the design decisions and the potential states are shown in Table 1. To
keep the main text succinct, it is assumed here that each single unit has one failure scenario called
”being repaired”. However, the situation of having multiple failure modes can also be captured
similarly by duplicating the states with failures shown in Table 1 and replacing ”begin repaired”
with the various failure modes or the combinations of them, which is discussed in Appendix D.
The model to be introduced in the following sections can accommodate this extension from single
failure mode to multiple failure modes without significant change.
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Figure 7: A single stage k

Table 1: State enumeration for a stage with identical redundancies

Design decisions/subspace States unit 1 unit 2 unit 3

Sk

Tk,1: unit 1
state 1 active
state 2 being repaired

Tk,2: unit 1 and 2

state 3 active standby
state 4 active being repaired
state 5 being repaired active
state 6 being repaired being repaired

Tk,3: unit 1, 2 and
3

state 7 active standby standby
state 8 active standby being repaired
state 9 active being repaired standby
state 10 active being repaired being repaired
state 11 being repaired active standby
state 12 being repaired active being repaired
state 13 being repaired being repaired active
state 14 being repaired being repaired being repaired

As shown in the example in section 3.3, a transitional diagram can be generated for each design
decision. The transition rate from a state to its communicating state is equal to the rate parameter
of the state changing action. For example, the action that causes the transition from state 1 to
state 2 is the failure of unit 1, whose rate parameter is λ1. The state transition diagram is as
shown in Figure 8, where (a) corresponds to the case where only unit 1 is selected, (b) corresponds
to when units 1 and 2 are selected, while (c) is for where all 3 units are selected.
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(a)
subspace1(Tk,1)

(b) subspace2(Tk,2) (c) subspace3(Tk,3)

Figure 8: State transition diagram for the states in Table 1

The state transition diagram of stage k shown in Figure 8 is also reflected in the ”pseudo” transition
matrix Qk, with the transitions involving failure states in bold. It can be seen that the matrix is
block diagonal. Only one of these blocks will become the actual transition matrix of the system,
and that is the one selected by the optimization model.

Qk =

Tk,1 Tk,2 Tk,3

Tk,1
1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 −λ1 λ1

2 µ1 −µ1

Tk,2

3 −λ1 λ1

4 µ2 −λ1 − µ2 λ1

5 µ1 −λ2 − µ1 λ2

6 µ1 µ2 −µ1 − µ2

Tk,3

7 −λ1 λ1

8 µ3 −λ1 − µ3 λ1

9 µ2 −λ1 − µ2 λ1

10 µ2 µ3 −λ1 − µ2 − µ3 λ1

11 µ1 −λ2 − µ1 λ2

12 µ1 µ3 −λ2 − µ1 − µ3 λ2

13 µ1 µ1 µ2 −λ3 − 2µ1 − µ2 λ3

14 µ1 µ2 µ3 −µ1 − µ2 − µ3

As discussed and shown above, the existence of subspace Tk,h of stage k, design h, and the
block it supports depends on the selection of units yk,j . Below we explain how these connections
are realized in the model with propositional logic.

Binary variable zk,h (boolean variable Zk,h) is defined through the logical proposition (24) to
indicate the existence of Tk,h based on the values of unit selection binary variable yk,j (boolean
variable Yk,j ):

Zk,h ⇔ (
∧

(j,k,h)∈D

Yk,j)(
∧

(j,k,h)/∈D

¬Yk,j), ∀k ∈ K,h ∈ Hk (24)

where Hk is the set of potential designs of stage k. D is the set of the index tuples (j, k, h) where
design decision h ∈ Hk includes unit j ∈ Jk in stage k.

For example, if there are 3 potential units in stage 1 (J1 = {1, 2, 3}), then the number of designs
is 23 − 1 = 7. The subset of D involving k is {(1, k, 1), (2, k, 1), (1, k, 3), (2, k, 3), (3, k, 4), (1, k, 5),
(3, k, 5), (2, k, 6), (3, k, 6), (1, k, 7), (2, k, 7), (3, k, 7)}.
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Table 2: The correspondence of j and h in stage k

h
1 2 3 4 5 6 7 8

j
1 0 1 0 1 0 1 0 1
2 0 0 1 1 0 0 1 1
3 0 0 0 0 1 1 1 1

Since one and only one of the subspace will be realized, we also have the following logical
condition (25):

Y
h∈Hk

Zk,h, ∀k ∈ K (25)

The logical conditions are then converted to linear constraints (26) - (29).

zk,h ≤ yk,j , (j, k, h) ∈ D (26)

zk,h ≤ 1− yk,j , (j, k, h) /∈ D (27)

zk,h ≥
∑

(j,k,h)∈D

yk,j +
∑

(j,k,h)/∈D

(1− yk,j)− |Jk|+ 1, k ∈ K,h ∈ Hk (28)

∑
h∈Hk

zk,h = 1, ∀k ∈ K (29)

4.3. Construction of the extended state space

After the ”pseudo” transitional rate matrices are constructed for single stages Qk , in this
section, the ”pseudo” transition matrix of the entire system is calculated based on them. Consider
a serial system with |K| stages. Let n1, n2, . . . , n|K| be the dimensions of the square transition
matrices Q1, Q2, . . . , Q|K| of the single stages. Let W be the ”pseudo” transitional rate matrix
of the extended CTMC that describes the stochastic process of the entire system. Following
the conventional notations, I(d) are identity matrices of dimension d. Following from the results
described in Appendix B, we have the formula shown in (30) ,1

W = I(n|K|)⊗(I(n|K|−1)⊗· · ·⊗(I(n3)⊗(I(n2)⊗Q1+Q2⊗I(n1))+Q3⊗I(n1n2))+· · ·+Q|K|−1⊗I(n1n2...n|K|−2))

+Q|K| ⊗ I(n1n2...n|K|−1)

= I(n|K|n|K|−1...n2)⊗Q1+I(n|K|n|K|−1...n3)⊗Q2⊗I(n1)+I(n|K|n|K|−1...n4)⊗Q3⊗I(n2n1)+· · ·+

I(n|K|) ⊗Q|K|−1 ⊗ I(n|K|−2n|K|−3...n1) +Q|K| ⊗ I(n|K|−1n|K|−2...n1)

(30)
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With Sk representing the state space of stage k ∈ K, let S̄ be the state space of the extended
CTMC. According to the properties of the Kronecker product, we have,

|S̄| =
∏
k∈K
|Sk| (31)

A system state s̄ ∈ S̄ is the combination of |K| stage states s ∈ Sk from every processing stage
k ∈ K. For example, consider a system with two stages shown in Figure 9, where unit 1 is selected
for stage 1 and units 1&2 for stage 2 (units of solid lined boxes in shades are selected).

Figure 9: A single stage k

The state space of stage 1, S1 = {1, 2}, and the state space of stage 2, S2 = {3, 4, 5, 6} (refer to
Table 1). The cardinality of the extended state space, |S̄| = 8. State s̄ = 29 for example, means
having state 1 in S1, and state 3 in S2. The corresponding relationships for the entire set are
displayed in Figure 10.

1”⊗” is an operation on two matrices of arbitrary dimensions. A⊗B is called the Kronecker product of matrices
A and B. If A is of dimension a1 × a2, B is of dimension b1 × b2, then A⊗B is of dimension a1b1 × b1b2.

A⊗B =

 A11B A12B · · · A1a2B
...

...
...

Aa11B Aa12B · · · Aa1a2B


Kronecker product satisfies the associative law of addition:

A⊗B + A⊗C = A⊗ (B + C)
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Figure 10: Example on the correspondence between stage state s ∈ Sk and system state s̄ ∈ S̄

As indicated in Figure 10, the index of s̄ in S̄ are arranged in the order of the corresponding
indices s in Sk, with larger k as prior dimensions. SC is the set of the index tuples where s in Sk
corresponds to s̄ in S̄, which can be calculated by (32).

SC = {(k, s, s̄)|s = d
mod(s̄− 1,

∏
l∈K,l≤k |Sl|) + 1∏

l∈K,l≤k−1 |Sl|
e, k ∈ K, s ∈ Sk, s̄ ∈ S̄} (32)

Particularly, the set of failed states in stage k is denoted as Sfk , and similarly, the set of system

states that fails is denoted as S̄f .

S̄f = {s̄ ∈ S̄|∀k ∈ K, ∃s ∈ Sfk , s.t. (k, s, s̄) ∈ SC} (33)

Continuing with the example shown in Figure 9, the transition matrix of the two stages are Q1

and Q2 as shown below. The transition matrix of the extended CTMC is W .

Q1 =

[ 1 2

1 −λ1,1 λ1,1

2 µ1,1 −µ1,1

]
, Q2 =


3 4 5 6

3 −λ2,1 λ2,1

4 µ2,2 −λ2,1 − µ2,2 λ2,1

5 µ2,1 −λ2,2 − µ2,1 λ2,2

6 µ2,1 µ2,2 −µ2,1 − µ2,2


W = I(4) ⊗Q1 +Q2 ⊗ I(2) =



(1,3) (2,3) (1,4) (2,4) (1,5) (2,5) (1,6) (2,6)

(1,3) −λ1,1λ2,1 −λ1,1λ2,1

(2,3) −µ1,1λ2,1 −µ1,1λ2,1

(1,4) λ1,1µ2,2 −λ1,1µ2,2 − λ1,1λ2,1 λ1,1λ2,1

(2,4) µ1,1µ2,2 −µ1,1λ2,1 − µ1,1µ2,2 µ1,1λ2,1

(1,5) λ1,1µ2,1 −λ1,1µ2,1 − λ1,1λ2,2 λ1,1λ2,2

(2,5) µ1,1µ2,1 −µ1,1µ2,1 − µ1,1λ2,2 µ1,1λ2,2

(1,6) λ1,1µ2,1 λ1,1µ2,2 −λ1,1µ2,1 − λ1,1µ2,2

(2,6) µ1,1µ2,1 µ1,1µ2,2 −µ1,1µ2,1 − µ1,1µ2,2



Directly establishing the connection between stage states and system states in the model can re-
sult in a very large number of equations. Therefore, we circumvent this problem by only connecting
the stage sub state spaces and system sub state spaces (see Figure 11)
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Figure 11: The relationship between the stage-wise indices and the system-wise indices

As shown in Table 1, stage k has several mutually exclusive subspaces denoted by Tk,h:{1, 2},
{3, 4, 5, 6}, {7, 8, 9, 10, 11, 12, 13, 14}, whose existence is determined by the unit selection yk,j of
stage k. Accordingly, we define mutually exclusive subspaces T̄h̄ of the system, which are each
generated by a different system design h̄.

As mentioned above, each system state s̄ ∈ S̄ corresponds to a state s ∈ Sk from each stage
k. Similarly, each system design h̄ ∈ H̄ has a corresponding design h ∈ Hk from each stage k.
Moreover, the system subspace T̄h̄ generated by design h̄ contains those system states s̄ such that,
for each stage k, the corresponding state s of s̄ belongs to the subspace Tk,h generated by h̄’s
corresponding stage design h.

Similarly to SC in equation (32), we can calculate the set HC through (34):

HC = {(k, h, h̄)|h = d
mod(h̄− 1,

∏
l∈K,l≤k |Hl|) + 1∏

l∈K,l≤k−1 |Hl|
e, k ∈ K,h ∈ Hk, h̄ ∈ H̄} (34)

The mathematical definition of the system state subspace T̄h̄ is then as defined in equation (35):

T̄h̄ = {s̄ ∈ S̄|∀k ∈ K, ∃h ∈ Hk, s ∈ Tk,h, s.t. (k, h, h̄) ∈ HC, (k, s, s̄) ∈ SC} (35)

Now we consider again the system shown in Figure 9, but without the design decisions specified.
Thus, H1 = {1, 2, 3}, H2 = {1, 2, 3}, H̄ = {1, 2, 3, 4, 5, 6, 7, 8, 9}
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Figure 12: Example on the correspondence between h ∈ Hk and h̄ ∈ T̄

The system states are grouped into mutually exclusive blocks T̄h̄ whose existence are subject
to the subspaces Tk,h of single stages k. Only one of the nine large blocks in the middle will be
the actual state space of the two stage system we have been discussing. For example, in this case
where the design is ”unit 1 for stage 1 and unit 1&2 for stage 2”, then block 4 is the actual state
space.

The existence of Tk,h, which is indicated by the binary variable zk,h, determines that of T̄h̄.
The logical condition between z̄h̄ and zk,h is expressed as follows,

Z̄h̄ ⇔
∧

(k,h,h̄)∈HC

Zk,h (36)

(37) and (38) are the linear constraints reformulated from the logical condition.

z̄h̄ ≤ zk,h, ∀(k, h, h̄) ∈ HC (37)

z̄h̄ ≥
∑
k∈K

zk,h − |K|+ 1, ∀(k, h, h̄) /∈ HC (38)

Equation (39) requires that subspace T̄h̄ exists simultaneously with all its elements.

zzs̄ = z̄h̄, ∀s̄ ∈ T̄h̄ (39)

4.4. Solve for stationary probability vector

As described in section 3.3, the ”pseudo” transition rate matrix of the entire system, W , is used to
calculate the stationary probabilities π through the following linear system (40), which is adapted
from equations (20) and (21) with the generic notation for transition matrix, Q replaced with W :

π>W = 0 (40)

π>1 = 1 (41)
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Disjunction (42) requires that if a system state s̄ does not exist, its stationary probability πs̄ should
be zero, otherwise, it is less than or equal to 1:[

ZZ s̄
0 ≤ πs̄ ≤ 1

]
∨
[
¬ZZ s̄
πs̄ = 0

]
(42)

(42) is translated into the inequality (43).

πs̄ ≤ zzs̄, s̄ ∈ S̄ (43)

Having the above constraint is equivalent to eliminating the non-existing rows in W . In addition
to that, the columns in W corresponding to the non-existing states need to be eliminated, which
means that the corresponding equations in the linear system π>W = 0 need to be relaxed. Let s̄
be row index and r̄ be column index of W , we have disjunction (44),[

ZZ r̄∑
s̄ πs̄W (s̄, r̄) = 0

]
∨
[

¬ZZ r̄∑
s̄ πs̄W (s̄, r̄) <∞

]
(44)

which is translated into constraints (45) - (46) through the big-M reformulation (Grossmann and
Trespalacios, 2013),∑

s̄

πs̄W (s̄, r̄) ≤M(1− zzr̄), ∀r̄ ∈ R̄ (45)

∑
s̄

πs̄W (s̄, r̄) ≥M(zzr̄ − 1), ∀r̄ ∈ R̄ (46)

Figure 13 sketches what happens to the non-existing rows and columns in W .

Figure 13: Row and column eliminations. Equation (43) removes the black blocks, while Equations (45) - (46) remove
the white columns

Finally, the availability of the system is one minus the sum of the stationary probability of all
failed states:

A = 1−
∑
s̄∈S̄f

πs̄ (47)

19



4.5. Inspections and maintenance

In the previous sections, a modeling framework has been presented based on Markov process,
focusing on the impact of system configuration on production availability, where failure rates and
repair rates serve as key reliability parameters. However, the reliability parameters can be varied by
operational factors such as maintenance activities. Especially, the idea of predictive maintenance
is to carry out maintenance tasks according to equipment conditions, which depends on real-time
condition monitoring and periodical inspections. If a unit is maintained more frequently, its failure
rates (λ) will decrease. In fact, in practical plant operations, carrying out maintenance is an
effective strategy for improving the reliability of the system and thus, profitability. However, they
also add up to operational costs. Therefore, in order to determine the overall optimum, it is
essential to assess the impact of maintenance policy on the failure rates.

Multiple articles about inspection modeling from both academia and industry are based on
the assumption that the deterioration causing a failure can be detected by scheduled inspections
within a certain time period before it happens, called delay time (Christer, 1999), or PF-interval
(Moubray, 1997) of length T dk . Figure 14 shows the concept of delay time or PF-interval, which is
denoted as deterioration time in this paper for clarification purposes. Also, in this work, perfect
inspections are assumed, which means that if an inspection happens within the delay time before
a failure, the failure will be diagnosed.

Figure 14: The deterioration time for a failure

Recall the discussion in section 3.2, for each stage k, inspections are scheduled for active equip-
ment at a certain time period tik to be determined, called inspection intervals, which is recounted
after each inspection, maintenance or repair. If the inspection result indicates that the equipment
will fail shortly, then a maintenance task will be carried out in time.

The time needed for a repair process is subject to the shipping of spare parts. However, if the
failure is predicted and a maintenance task is carried out before it happens, there will be enough
time to order the spare parts and hence, reduce the costs.
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Figure 15: The timeline sketch illustrates how inspections and maintenance affect the availability of unit j in stage k

Figure 15 shows the impact of inspection-maintenance on the equivalent failure rates. With
periodical inspection, some of the potential failures can be detected during the deterioration time
(green bars), so that predictive maintenance can be scheduled accordingly and avoid the failure.
Therefore, the time between failure can be prolonged, and the failure rate is reduced. The more
frequent inspections are carried out, the more the failure rate is expected to be reduced.

Let the ”time to failure” of a unit after last inspection, maintenance or repair be random
variable tf . Then, the probability of an inspection being successful is given by equation (48),

P (tik ≤ tf ≤ tik + T dk ) =

∫ tik+T dk

tik

λ0
k,je
−λ0

k,jtdt = e−λ
0
k,jt

i
k − e−λ

0
k,j(t

i
k+T dk ), ∀k ∈ K, j ∈ Jk (48)

where λ0
k,j is the original failure rate of equipment. The expected number of successful inspections

during the entire time horizon T is then given by (49),

(e−λ
0
k,jt

i
k − e−λ

0
k,j(t

i
k+T dk ))

T

tik
(49)

where λ0
k,j is the original failure rate of equipment and λk,j is the equivalent failure rate under the

impact of inspections and maintenance, which are used in the transitional rate matrices mentioned
in previous sections.

If an inspection successfully identifies the failure, then the unit will undergo a predictive main-
tenance to avoid the repair later on. Thus, as shown in equation (50) the original expected number
of repairs, λ0

k,jT , minus the expected number of successful inspections gives the expected number
of repairs that actually happen, λk,jT :

λ0
k,jT − (e−λ

0
k,jt

i
k − e−λ

0
k,j(t

i
k+T dk ))

T

tik
= λk,jT, ∀k ∈ K, j ∈ Jk (50)

Following from the above equation, the equivalent failure rate λk,j of unit j in stage k is represented
as in equation (51). It can be seen that the shorter the inspection interval tik is, the more the
equivalent failure rate λk,j is reduced compared to the original failure rate λ0

k,j .

λ0
k,j − λk,j = (e−λ

0
k,jt

i
k − e−λ

0
k,j(t

i
k+T dk ))/tik, ∀k ∈ K, j ∈ Jk (51)
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Considering the executability of the inspection plan as well as to simplify the model formulation,
the range of possible inspection intervals tik is discretized into a finite set of choices T il , l ∈ L. The
selection of inspection intervals for each stage k is represented with binary variables xk,l, where
xk,l = 1 when time length T il is selected for stage k. Equation (52) requires that exactly one choice
is selected for each stage. Equation (53) shows that the value of tik is expresses in terms of the
values of T il depending on which one is selected.∑

l∈L
xk,l = 1, ∀k ∈ K (52)

tik =
∑
l∈L

xk,lT
i
l , ∀k ∈ K (53)

With (52) and (53), equation (51) can be rewritten as (54), which is linear.

λ0
k,j − λk,j =

∑
l∈L

xk,l(e
−λ0

k,jT
i
l − e−λ

0
k,j(T

i
l +T dk ))/T il , ∀k ∈ K, j ∈ Jk (54)

Each stage k has its own inspection method that suits the equipment, and hence a correspond-
ing cost c inspk. Equation (55) The inspection cost for stage k is proportional to its inspection
frequency and cost rate.

inspCost =
∑
k∈K

c inspk
∑
l∈L

xk,l
T

T il
(55)

The repair cost is calculated according to the failure states. The repair cost in each state s̄ ∈ S̄ is
equal to the frequency of s̄, −W (s̄, s̄)πs̄, where W (s̄, s̄) are the diagonal elements of the transition
matrix, which are negative (see equation (14)), times the summation of the repair costs of all the
units that are failed in state s̄. Since W (s̄, s̄) is subject to the equivalent failure rates of single
units, the state frequency, −W (s̄, s̄)πs̄ is a bilinear term, introducing non-linearity in the model.

repaCost = −T
∑
s̄∈S̄

W (s̄, s̄)πs̄
∑

k,j∈KJfs̄

c repak (56)

The number of times for predictive maintenance to take place in a single unit relative to its number
of repairs is calculated by the relative difference between the equivalent failure rate and the original
failure rate. In equation (57) We let the maximum relative number of maintenance times among
all selected units(indicated by binary variable yk,j) be the relative number of maintenance times
of the stage.

mainRatiok ≥ yk,j(λ0
k,j − λk,j)/λk,j , ∀j ∈ Jk (57)

(58) follows the same logic as in (56) to calculate costs according to failure states. Here, c repak
is replaced by c maink times mainRatiok, which is the number of predictive maintenance relative
to the number of repairs.

mainCost = −T
∑
s̄∈S̄

W (s̄, s̄)πs̄
∑

k,j∈KJfs̄

mainRatiokc maink (58)
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In addition to the costs, maintenance also causes downtime, which will result in the decrease
of availability. Similar but slightly different from Equation (58), Equation (59) calculates the
downtime caused by maintenances in terms of the failure states s̄ ∈ S̄f and those stages that fail
in s̄. The net system availability Anet is calculated as A minus the ratio of downtime caused by
maintenances to the entire time horizon T .

mainT ime = −T
∑
s̄∈S̄f

W (s̄, s̄)πs̄
∑
k∈Kf

s̄

mainRatiokT maink (59)

Anet = A− mainT ime

T
(60)

4.6. Objective function: income and expenses

As shown in equation (61), the objective to be maximized is the net profit NP , which is the
sum of the revenue, penalty and bonus minus the sum of all the costs,

max NP = RV − PN +BN − instCost− repaCost− inspCost−mainCost (61)

where instCost is the investment cost for installing the units depending on binary variables yk,j ,

instCost =
∑
k

∑
j

yk,jc instk,j (62)

and the other costs, i.e., repaCost, inspCost and mainCost are already described in section 4.5.
The revenue, RV , penalty, PN and bonus, BN are impacted by the system availability as

discussed in Ye et al. (2017). For convenience of the readers, the detailed equations and explanations
can be found in Appendix C.

In conclusion, the MINLP model optimizes (61) subject to equations or inequalities (23), (26)-
(29), (37)-(39), (43), (45)-(47), (52)-(60), (62), (C.1)-(C.2) and (C.8)- (C.12), with nonlinearities
in equations (45)-(46), and (56) -(59)

5. Model decomposition and scenario reduction

An advantage of the model presented above is that it explicitly accounts for every possible state
in the system. However, it can also become a drawback when it comes to computational efficiency,
especially with the failure rates treated as variables of inspection decisions. For example, the
number of variables and equations are already in the order of 1012 when a system of 4 stages each
with 3 distinct parallel units is considered. Therefore, we propose the following decomposition and
reduction methods to control the model complexity.

5.1. Model decomposition

As shown in Figure 16, the model can be decomposed by the two types of independent decisions,
design decisions and maintenance decisions. In the MINLP with fixed design decisions, the dimen-
sion of the system transition matrix is greatly reduced, while in the MILP with fixed inspection
intervals, the entries of system transition matrix become parameters, therefore the non-linearities
are removed. Thus, solving any of the subproblems requires much less effort than directly solving
the original MINLP.
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In the initialization stage, the most and the least frequent inspection plans are determined by
solving the reduced MINLP with the design decisions fixed to the fewest number of units and the
full design, respectively. They are then used respectively to fix the failure rates (matrix W in
equations (45), (46), (56), (58) and (59)) and inspection frequency (xk,l, t

i
k, λk,j and mainRatiok

in equations (52) - (55), and (57) - (59)) in the model and convert it into an MILP. This MILP
model not only gives an optimistic estimation (upper bound) of the net profit, but also balances
between reliability and cost consideration the influence of the inspection-maintenance strategy on
the unit selection. The upper bound generating MILP and the lower bound generating MINLP
are solved iteratively. Unless the gap closes, the iteration continues by adding integer cuts of the
previously selected designs to the upper bound generating MILP.

Figure 16: Decomposition framework

5.2. State space reduction

By excluding states with very low probabilities, the size of the transition rate matrix of the
system can be further reduced without compromising the accuracy of the solution of the model. To
be specific, recall that in section 4.2, we show in an example how the state spaces are constructed,
which covers all possible states with positive probabilities when certain design is selected. In
particular, there are 8 possible states when all three potential units in a stage are selected. The
transition matrix Qf (renamed for the convenience of this particular example) is as follows:
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7 8 9 10 11 12 13 14

Qf =

7 −λ1 λ1

8 µ3 −λ1 − µ3 λ1

9 µ2 −λ1 − µ2 λ1

10 µ2 µ3 −λ1 − µ2 − µ3 λ1

11 µ1 −λ2 − µ1 λ2

12 µ1 µ3 −λ2 − µ1 − µ3 λ2

13 µ1 µ1 µ2 −λ3 − 2µ1 − µ2 λ3

14 µ1 µ2 µ3 −µ1 − µ2 − µ3

Since the physical meaning of λ1, λ2, λ3 and µ1, µ2, µ3 are the failure rates and repair rates of
potential units in one stage, it is reasonable to assume that λ1, λ2, λ3 are of the same order of
magnitude, denoted as O(λ), and µ1, µ2, µ3 of O(µ). We assume the repair rate to be two orders
of magnitudes larger, that is O(µ) = 102O(λ). With that, we examine the order of magnitude
of the stationary probability vector of this isolated system by solving the linear system {π>fQf =
0,π>f 1 = 1}. As seen in Figure 17, the stationary probability of states 8, 10, 12, 14 are of

O(10−6)). Therefore, excluding them should still allow us to account for states whose sum has at
least a probability of 0.99996 of all situations. Also, notice that states 7, 9, 11, 13 still consist a
closed transitioning loop.

(a) Order of magnitude estimation (b) Transition diagram with low
probability states

(c) Reduced transition
diagram

Figure 17: States with low probabilities are eliminated

6. Case studies

The examples in this section are all solved in GAMS 24.8.5 on an Intel R© CoreTM i7-7700 CPU
at 3.60GHz with 4 Cores and 8 Logical Processors.

6.1. The impact of incorporating maintenance

In this section, a small example is solved to show the significance of incorporating maintenance.
The superstructure being examined is shown in Figure 18, which has 3 non-identical potential units
for stage 1 and 2 non-identical potential units for stage 2. The parameters are shown in Table 3.
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Figure 18: A small example

Table 3: Parameters for the small example

Stage Unit MTBF (day) MTTR(day) Installation cost
(k$)

Repair cost rate
(k$ per time)

1 1 50 7 200 12
1 2 45.5 7.7 160 12
1 3 41.7 8.3 120 12
2 1 66.7 2.6 240 10
2 2 50 2.8 200 10

Revenue
rate(k$)

Penalty
rate(k$)

Bonus
rate(k$)

Availability lower
bound

Availability
upper bound

700 1000 1000 0.988 0.998

Without maintenance consideration
When considering no maintenance or spare parts, only constraints and equations (23), (26)-

(29), (37)-(39), (43), (45)-(47), (62), (C.1)-(C.2) and (C.8)- (C.12) are applied, and the transition
matrices are based on λ0

k,j . Moreover, in the objective function (61), the cost terms repaCost,
inspCost and mainCost all equal to 0. With that, the model reduces to an MILP, which has 951
equations and 466 variables with 39 binary variables. The MILP model is solved with CPLEX
12.7.1.0 in 0.047 CPUs. The optimal design corresponds to having units 1 and 2 in stage 1, and
units 1 and 2 in stage 2, as shown in Figure 19.
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Figure 19: Optimal design considering no maintenance

The expected system availability is 0.989, and the net profit is $4,148,300, with a revenue of
$6,922,500 k and zero penalty and bonus. $800,000 is spent on unit investment, and $1,974,200 is
spent on repair.

With maintenance consideration
With the MTBF and MTTR in Table 3 as baseline, and the supplementary parameters shown in

Table 4, the problem is solved again considering maintenance and variable failure rates and repair
rates ((23), (26)-(29), (37)-(39), (43), (45)-(47), (52)-(60), (62), (C.1)-(C.2) and (C.8)- (C.12)).
The options for inspection intervals are 14 days, 30 days (a month), 60 days (two months), 183
days (half a year) and 365 days (a year).

Table 4: Supplementary parameters for maintenance consideration

Stage Inspection cost
rate (k$ per time)

Maintenance cost
rate (k$ per time)

Maintenance time
(day)

Deterioration
time (day)

1 0.1 0.6 1 10
2 0.1 0.5 1 12

The MINLP model has 44,938 equations, 44,458 variables with 49 binary variables, and is solved
with the global solver BARON 17.4.1 in 638.9 CPUs, and the non-global solver SBB yielding the
same result in 62.3 CPUs. For other MINLP solvers, DICOPT reports integer infeasiblity, and
ANTIGONE did not solve for 6 hours). The optimal design is to have units 1 and 3 in stage 1,
and units 1 and 2 in stage 2, as shown in Figure 20.
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Figure 20: Optimal design considering maintenance

The expected system availability is 0.995. The expected net profit is $5,320,500, with a revenue
of $6,967,400 and no bonus or penalty. $760,000 is spent on unit investment, $52,100 is spent
on inspections, $46,500 is spent on maintenance, and $788,300 on repair. Other results including
inspection intervals, equivalent MTBF’s and equivalent MTTR’s are shown in Table 5.

Table 5: Optimization results considering maintenance

Stage Inspection interval (day) Equivalent MTBF (day)

1 14 Unit2: 98.0; Unit3: 86.2
2 14 Unit1: 181.8; Unit2: 117.6

From the above results we can see that when maintenance is considered, the model suggest
additional costs on inspection and maintenance, while spending less on the unit investment and
repair, which leads to a higher availability (from 0.989 to 0.995), and a significantly overall higher
net profit (from $4,148,300 to $5,320,500).

6.2. Computational performance improvement from model decomposition and scenario reduction

Resolve the small problem
This section reports the result of solving the model using the decomposition scheme and scenario

reduction. Like what is shown in section 5.2, 4 states of stage 1 for the design with all 3 units
are eliminated, which reduces the number of elements in the system transition matrix by 30%.
After one iteration, the problem converges (ε = 0.1%) to the same solution as solving the original
problem by BARON. As shown in Figure 21, the optimal design is identical to the design shown
in Figure 20.
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Figure 21: Optimal design by decomposition

The expected system availability is 0.995. The expected net profit is $5,320,500, with a revenue
of $6,967,400 and no bonus or penalty. $760,000 is spent on unit investment, $52,100 is spent
on inspections, $46,400 is spent on maintenance, and $787,900 on repair. Other results including
inspection intervals and equivalent MTBF’s are shown in Table 6. Notice here that the small
discrepancy between the two sets of results are mainly due to data transferring accuracy issues in
the implementation of the decomposition method.

Table 6: Optimization results considering maintenance

Stage Inspection interval (day) Equivalent MTBF (day)

1 14 Unit2: 98.0; Unit3: 86.2
2 14 Unit1: 181.8; Unit2: 117.6

More importantly, the computational performance is improved by two orders of magnitude,
both in terms of the model size and total CPU time, which is shown in Table 7. The MILP models
are solved with CPLEX 12.7.1.0, and the MINLP models are solved with BARON 17.4.1.

Table 7: Computational results of the decomposition method

No. Equations No. Variables No. Discrete variables CPUs

MILP 877 406 39 0.235
MINLP 324 329 13 0.06

A larger example
Next, the MINLP model based on Markov chain is applied to a larger system, which has 4

stages and 3 non-identical potential units for each stage. The superstructure is shown in Figure
22. Parameters are listed in Table 8, 9 and 10.
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Figure 22: A larger example with 4 stages and 3 non-identical potential units for each stage

Table 8: Reliability and installation cost parameters

Stage Unit MTBF (day) MTTR(day) Installation cost(k$)

1
1 500 7 200
2 455 7.7 160
3 417 8.3 120

2
1 667 2.6 240
2 500 2.8 200
3 450 2.9 180

3
1 625 4.2 150
2 588 4.3 130
3 556 4.5 110

4
1 1000 3.8 230
2 667 4.5 210
3 500 5.6 170

Table 9: Repair and maintenance parameters

Stage Repair cost
rate (k$ per
time)

Inspection cost
rate (k$ per
time)

Maintenance
cost rate (k$
per time)

Maintenance
time (day)

Inspection
window (day)

1 12 0.1 1.2 1 5
2 10 0.1 1 1 6
3 10 0.1 0.8 1 6
4 12 0.1 0.6 1 5
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Table 10: Profitability parameters

Revenue
rate(k$)

Penalty
rate(k$)

Bonus
rate(k$)

Availability lower
bound

Availability
upper bound

700 1000 1000 0.988 0.998

The original problem is too large to be solved directly since the computer memory would run
out to generate the model. Therefore, only the results from using the decomposition scheme and
scenario reduction will be presented. Like what is shown in section 5.2, for each stage, 4 states
of the design with all 3 units installed are eliminated, which reduces the number of elements in
the system transition matrix by 75%. The algorithm converges in 7 iterations (ε = 1.7%) to the
flowsheet shown in Figure 23.

Figure 23: A larger example with 4 stages and 3 non-identical potential units for each stage

The expected system availability is 0.987. The expected net profit is $5,897,800, with a revenue
of $6,907,700 and a penalty of $11,900. $800,000 is spent on unit investment, $84,300 is spent
on inspections, $6,900 is spent on maintenance, and $106,700 on repair.Other results including
inspection intervals and equivalent MTBF’s are shown in Table 11.

Table 11: Optimization results considering maintenance

Stage Inspection interval (day) Equivalent MTBF (day)

1 60 Unit2: 490; Unit3: 448
2 14 Unit3: 775
3 14 Unit3: 952
4 14 Unit1: 1542

Figure 24 shows the iterations of the decomposition method. The optimal solution is actually
found at the first iteration. However, the relaxation of the upper bound generating MILP’s is not
very tight, therefore, the gap remains fairly large.
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Figure 24: The iteration curve for the 4-stage example

Computational results are shown in Table 12. The MILP models are solved with Xpress 29.01,
and the MINLP models are solved with BARON 17.4.1. The total CPU time of the MINLP’s is
124.3s, and 1634.5s for the MILP’s.

Table 12: Computational results of the 4-stage example

MINLP MILP

No. Eqs No. Vars No. Disc. Vars CPUs No. Eqs No. Vars No. Disc. Vars CPUs

1

1108 1142 23

2.9 714294

236716 2444

274.5
2 2.56 714295 250.3
3 14.8 714296 243.3
4 18.4 714297 312.4
5 21.3 714298 301.8
6 39.4 714299 265.2
7 24.9 714300 261.5

Total 124.3 1634.5

6.3. Solve the motivating example: Air separation unit

Finally, the model is applied to the motivating example of ASU (air separation unit) introduced
in section 2, where the compressors have six failure modes and at least 2 units are needed for the
pre-purifier. The flowsheet and the superstructure diagram are shown in Figure 25. A time horizon
of 10 years is considered.
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(a) Typical flowsheet of an air separation unit with potential
parallel units

(b) The diagram of ASU reliability design alternatives.
Each block represents a parallel unit with certain avail-
ability and cost rates

Figure 25: The motivating example-ASU

The LO2 pump stage is a regular stage like the ones in sections 6.1 and 6.2. The main air
compressor and the booster air compressor each have 6 failure modes (root causes of failure):
rotor, bearing/seals, gearbox, lube oil system, motor, and motor bearing. Appendix D explains
how the model changes in the case of multiple failure modes. For the pre-purifier, at least 2 units
are required for normal operation, which leads to different state space and transitional relationship
than those of the example in section 4.2. The state space where all 3 parallel units are installed
for the pre-purifier stage is shown in Table 13 as an example.

Table 13: The state space where all 3 parallel units are installed for the pre-purifier stage

Design decisions/subspaces States unit 1 unit 2 unit 3

Tk,4: unit 1, 2 and
3

state 13 active active standby
state 14 active active being repaired
state 15 active being repaired active
state 16 active being repaired being repaired
state 17 being repaired active active
state 18 being repaired active being repaired
state 19 being repaired being repaired active
state 20 being repaired being repaired being repaired
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Table 14 shows the failure modes considered for each processing stages. Out of confidentially
consideration, the real failure modes are disguised with alias.

Table 14: Failure modes of each processing stage

Stage Failure mode Stage Failure mode Stage Failure mode Stage Failure mode

FMC1

Pre-purifier FMPF1

FMC1

LO2 Pump FMP1

Main FMC2 Booster FMC2
air FMC3 air FMC3

compressor FMC4 compressor FMC4
FMC5 FMC5
FMC6 FMC6

Relevant cost and reliability parameters of the units need to be concealed as well. Mean time
between failures (MTBF) range from 5-25 years. Mean time to repair (MTTR) range from 8 - 1080
hours. Capital cost of each unit range from $140k - $1250k. Repair costs range from $2k - $20k
per time. Inspection costs range from $0.05k - $0.5k per time. Maintenance costs range from $1k
- $10k per time. Maintenance times range between 1 and 2 days. Inspection window lengths range
between 5 and 6 day. Table 15 shows the profitability parameters used in the model.

Table 15: Profitability parameters

Revenue
rate(k$)

Penalty
rate(k$)

Bonus
rate(k$)

Availability lower
bound

Availability
upper bound

3000 30000 1000 0.988 0.998

In order to reduce the model size, low probability states generated from the two-unit design
of the MAC and the BAC, and the three-unit design of the pre-purifier stage and the LO2 pump
stage are eliminated. The reduce state space for the MAC and the BAC are shown in Table 16,
and the pre-purifier in Table 17. The LO2 pump stage is the same as the example described in
section 5.2 and will not be reiterated.

Table 16: The reduced state space generated from the two-unit design of the MAC and BAC stages

Design decisions/subspaces States unit 1 unit 2

unit 1 and 2

state 15 active standby
state 16 active FMC6
state 17 FMC1 active
state 18 FMC2 active
state 19 FMC3 active
state 20 FMC4 active
state 21 FMC5 active
state 22 FMC6 active
state 23 FMC6 FMC6
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Table 17: The reduced state space generated from the three-unit design of the pre-purifier stage

Design decisions/subspaces States unit 1 unit 2 unit 3

unit 1, 2 and 3

state 13 active active standby
state 14 active active being repaired
state 15 active being repaired active
state 16 active being repaired being repaired
state 17 being repaired active active

Again, the original model is too large to be solved directly. Therefore, only the results from
using the decomposition scheme and scenario reduction are presented. The algorithm converges
in 7 rounds (ε = 1.7%) to the flowsheet shown in Figure 26. Only the least number of units are
selected for each stage. For the main air compressor and the booster air compressor, more reliable
and expensive units are selected, while for the LO2 pump, the solution goes for the cheapest one.

(a) The flowsheet representation

(b) The block diagram representation

Figure 26: The optimal design of the ASU example

The expected system availability is 0.9866. The expected net profit is $25466.9k, with a revenue
of $29597.8k and a penalty of $421.9k. $3390k is spent on unit investment, $262.7k is spent on
inspections, $7.4k is spent on maintenance, and $48.9k on repair. The inspection intervals are
shown in Table 18. Qualitatively speaking, this solution tends to spend more efforts on reducing
the failure rates for failure modes with longer repair time.
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Table 18: Inspection interval decisions

Stage Unit Failure mode Inspection interval (day)

Main air compressor 1

FMC1 14
FMC2 14
FMC3 14
FMC4 365
FMC5 14
FMC6 14

Pre-purifier
1

FMPF1 14
2

Booster air compressor 1

FMC1 14
FMC2 14
FMC3 14
FMC4 365
FMC5 14
FMC6 14

LO3 Pump 2 FMP1 365

Figure 27 shows the iteration process, where the optimum is found at the second solve.

Figure 27: The iteration curve for the 4-stage example

Computational results are shown in Table 19. The MILP models are solved with Xpress 29.01,
and the MINLP models are solved with SBB 25.1.1. The total CPU time of the MINLPs is 492.01s,
and 748.82s for the MILPs. Note that arguably, the optimal solution cannot be guaranteed as SBB
is not a global solver.
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Table 19: Computational results of the 4-stage example

MINLP MILP

No. Eqs No. Vars No. Disc. Vars CPUs No. Eqs No. Vars No. Disc. Vars CPUs

1 346524 346577

73

511.9 490151

163230 282

100.66
2 86911 86965 60.14 490153 130.30
3 86911 86965 86.39 490154 99.85
4 86911 86965 72.69 490155 103.59
5 86911 86965 72.04 490156 115.92
6 86911 86965 62.84 490157 88.47
7 86911 86965 60.59 490158 110.03

In addition, we look into an extreme case where the availability lower bound is pushed from 0.988
up to 0.995, and the optimal design is as shown in Figure 28. The expected system availability is
0.9925. The expected net profit is $24438.9k, with a revenue of $29776.3k and a penalty of $737.3k.
$4390k is spent on unit investment, $200.0k is spent on inspections, $4.0k is spent on maintenance,
and $56.1k on repair.

(a) The flowsheet representation

(b) The block diagram representation

Figure 28: The optimal design of the ASU example

Comparing to the original case, the second booster air compressor is added to the flowsheet.
Regarding this change, Table 20 lists the lump sum probability of failure scenarios involving each
processing stage for the normal case and the extreme case. It can be seen that both MAC and
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BAC are the weak points of the first design. When facing extremely high availability requirement,
a unit from the cheaper stage, BAC is added, leading to a sharp decrease of its failure time.

Table 20: Probability distribution among failure scenarios

Availability lower bound 0.988 0.995
Actual availability 0.9866 0.9925

Probabilities

MAC 0.006 0.006
PPF 0.001 0.001
BAC 0.006 1.27*10−5

LO2 pump 2.34*10−4 2.34*10−4

7. Conclusions

This paper extends our recent work (Ye et al., in press) which proposes a general mixed-
integer framework for the optimal selection of redundancy bearing reliability concerns based on
fixed probability of failure for single potential units. In this paper, the stochastic process of
system failures and repairs is modeled as a continuous-time Markov chain, moreover, the impact
of maintenance is incorporated.

With a general air separation unit as the motivating example, two strategies are considered
to increase the availability of the system. The first strategy is to install parallel units for certain
processing stages, such that when the primary unit fails, the other units can fill in its place in
order to reduce system downtime. The second strategy is to carry out periodic inspections, and
conditional maintenance if the inspection result indicates that the equipment will fail shortly. By
that strategy the system can aviod a number of repairs, which are more costly than maintenance
in terms of both time and money. A non-convex MINLP model is proposed accordingly. When
inspections and conditional maintenance are not considered, the model reduces to an MILP. A
small superstructure with two stages is solved directly with global solvers to show that disregarding
maintenance can reduce computing time but yields inferior solutions in terms of system availability
and net profit.

The non-convex MINLP model does not scale well, and has a large number of bilinear and
multilinear terms. In order to overcome these computational difficulties, a decomposition scheme
is proposed to reduce the size of the model and the computational time. Moreover, scenario
reduction, i. e., pre-process the scenarios and eliminate those with consistently low probabilities, is
also applied to reduce the model scale. The specialized solution method is applied to the two-stage
problem and reaches global optimum in orders of magnitude less time than the global solvers.
The method is also successfully applied to a system that is too large to be solved directly, which
has 4 stages and 3 non-identical units for each stage. Finally, the motivating example of the air
separation unit is solved with the proposed specialized solution method.
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8. Nomenclature

Index
k stages
l options of inspection intervals
j Units
s States of single stages
r Alias of s
s̄ States of the entire system
r̄ Alias of s̄
h Designs of single stages
h̄ Designs of the entire system

Set
K Set of all stages
Jk Set of potential units of stage k
Sk Pseudo state space of stage k
S̄ Pseudo state space for the entire system
Hk Set of potential designs of stage k
H̄ Set of potential designs of the entire system
S̄ Set of system states
S̄f Set of system states that are failed
SC Set of the index tuples where s in Sk corresponds to s̄ in S̄
HC Set of the index tuples where h in Hk corresponds to h̄ in Hk

Parameter
µk,j Repair rate of unit j in stage k
Qk Pseudo transition rate matrix of stage k
W Pseudo transition rate matrix of the entire system
c instk,j Investment cost of single unit j in stage k
c repak Repair cost of single units in stage k
rv Revenue rate of final products
pn Penalty rate for not meeting lower bound of availability
bn Bonus rate for exceeding upper bound of availability
A lo The lower bound of system availability arranged in the contract
A up The upper bound of system availability arranged in the contract
λ0
k,j Failure rate of unit j in stage k without maintenance

T il Options of inspection interval
T dk Deterioration time of equipment in stage k
c inspk Inspection cost (per time) of single units in stage k
c maink Maintenance cost (per time) of single units in stage k
c repak Repair cost (per time) of single units in stage k
T maink Downtime of single maintenance of stage k

Variable
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xk,l Binary variable that indictate whether an inspection interval of stage k is
selected

tik Inspection interval of stage k
λk,j Failure rate of the units in stage k
yk,j Binary variable that indicate whether to install unit j of stage k
zk,h Binary variable that indicate whether design h in stage k is selected
zzk,s Binary variable that indicate whether state s of stage k exist
z̄h̄ Binary variable that indicate whether design h̄ is selected
zzs̄ Binary variable that indicate whether state s̄ exist (modeled only as positive

variable with bounds)
πs̄ Stationary probability of state s̄
inspCost Inspection cost
mainCost Maintenance cost
repaCost Repair cost
mainT ime Maintenance downtime

A Availability of the system
Anet Availability of the system considering downtime caused by maintenance
RV Expected revenue
PN Expected penalty
BN Expected bonus
NP Net profit
w1, w2, w3 Binary variables that indicate the range that A lies in
A1, A2, A3 Components of the system availability A for corresponding ranges
PN1, PN2, PN3 Components of the expected penalty PN for corresponding ranges
BN1, BN2, BN3 Components of the expected bonus BN for corresponding ranges

Appendix A Continuous-time Markov chain (CTMC)

Continuous-time Markov chain theory has been used in plenty of previous works to describe
systems where the failures/repairs of single units are subject to independent stochastic processes.
In this section, a formal definition of a continuous-time Markov chain (CTMC) based on Bayesian
statistics is given.

For a system that transitions randomly among a finite set of states, if the time it spends in
one state follows an exponential distribution, this state-transitioning process is a continuous-time
Markov chain. An important property of the Markov chain, also called the Markov property, is
that future behaviors of the system depend only on the current state of the model, but not on
its historical behavior. Specifically, let S = {1, 2, . . . , } be the state space of a random process
X = {X(t), t ≥ 0}, which means that X will be varying among the states included in S, as shown
in Figure A.1. If for any time points 0 ≤ T1 ≤ T2 ≤ · · · ≤ Tn+1, and states i1, i2, . . . , in+1 ∈ S,
there is equation (A.1)

Pr{X(Tn+1) = in+1|X(0) = i0, X(T1) = i1, . . . , X(Tn) = in} = Pr{X(Tn+1) = in+1|X(Tn) = in}
(A.1)

then the random process X = {X(t), t ≥ 0} is called a continuous-time Markov process. Further-
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more, if for any s, t ≥ 0, i, j ∈ S, there is equation (A.2)

Pr{X(s+ t) = j|X(s) = i} = Pr{X(t) = j|X(0) = i} (A.2)

then X = {X(t), t ≥ 0} is time-homogeneous (i.e. the transitional behavior does not change with
time), which we are going to focus on.

Figure A.1: An example for continuous-time Markov chain

Appendix B Extended continuous-time Markov chain

The superstructure discuss in this work contains several of the small system shown in section
4.2, for which the time and efforts needed to enumerate over the entire state space and to construct
theQmatrix grow geometrically. Actually, the CTMC of the entire system can be formulated based
on the CTMC of each single stage, which only requires duplication of what is done in section 4.2.
The system CTMC is called the extended CTMC of stage CTMC’s.

B.1 CTMC and Phase-type distribution (PH-distribution)

In this section we introduce a class of probability distribution that is closely connected to CTMC,
phase-type distribution (Neuts, 1981). The concept of PH-distribution and its applicability in
constructing extended Markov process are fundamentally important to the model formulation in
this article.
Given a CTMC on the state space {1, . . . ,m+ 1} with generator

Q =

[
T T 0

t t0

]
(B.1)

where T is of dimension m×m, and T 0 is of dimension m× 1.According to the properties of the
generator stated in section 3.3, we have

Te+ T 0 = 0 (B.2)
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which means that T 0 is known once T is determined.
If the initial probability(the probability of a state to be the starting state) vector is given by
[α, αm+1], we say that the probability distribution F (·) of the time until first reaching state m+ 1
follows the PH-distribution with representation (α,T ) of order m. The probability distribution is
given by

F (t) = 1−αexp(T t)e (B.3)

Note that the initial probability distribution has to satisfy that

αe+ αm+1 = 1 (B.4)

Thus, α gives full information of the initial state. Consider the example in section 3.3, given the
initial probability vector [α, α4] of the 4 states, the probability distribution F (·) of the time until
reaching state 4 follows the PH-distribution with representation (α,T ) of order 3, where

T =


1 2 3

1 −λ1 − λ2 λ1 λ2

2 µ1 −µ1 − λ2 0
3 µ2 0 −µ2 − λ1

 (B.5)

Also, the fourth column of Q in (B.1) with the fourth row suppressed is T 0, which indicates the
transition rate from the first 3 states to the broken state.

T 0 =


4

1 0
2 λ2

3 λ1

 (B.6)

B.2 From PH-distribution to extended CTMC

Let X and Y be independent random variables with PH-distributions F (·) and G(·) as shown
in Table B.1.

Table B.1: Information about X and Y

Random variable cdf. Representation Order
X F (·) (α,T ) m
Y G(·) (β,S) n

Let H(·) be the probability distribution of Z = max(X,Y ), then H(·) is also a PH-distribution.
H(·) has the representation (γ,L) of order mn+m+ n, given by (Neuts, 1981)

γ = [α⊗ β, βn+1α, αm+1β] (B.7)

L =

T ⊗ I + I ⊗ S I ⊗ S0 T 0 ⊗ I
0 T 0
0 0 S

 (B.8)
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It is evident that the representation of H can be adapted to a transition rate matrix that describes
the behavior of a system with two subsystems whose time-to-break(the time from starting point
to the first break down) follows independent phase-type distributions F (·) and G(·)
First we manipulate L into a more compact form:
(1) Exchange the 2nd and the 3rd column blocks and the 2nd and the 3rd row blocks respectively.

L′ =

Imn×mn 0 0
0 0 In×n
0 Im×m 0

L
Imn×mn 0 0

0 0 Im×m
0 In×n 0

 =

T ⊗ I + I ⊗ S T 0 ⊗ I I ⊗ S0

0 S 0
0 0 T


(B.9)

(2) Split L′ into T part and S part.

L′ =

T ⊗ I T 0 ⊗ I 0
0 0 0
0 0 T

+

I ⊗ S 0 I ⊗ S0

0 S 0
0 0 0


=

[T T 0

0 0

]
⊗ In×n 0

0 T

+

I(m+1)×(m+1) ⊗ S
[
Im×m ⊗ S0

0n×m

]
0 0

 (B.10)

(3) Do row and column operations to bring [T ,T 0] and [S,S0] together respectively:
Let the manipulating matrices V and U be

V =

 Im×m ⊗
[
In×n 0n×1

]
0mn×n

0n×m(n+1) In×n[
0m×n e1 0m×n e2 · · · 0m×n em

]
0m×n

 (B.11)

U =


Im×m ⊗

[
In×n
01×n

]
0m(n+1)×n



0n×m
e1

0n×m
e2

...
0n×m
em


0n×mn In×n 0n×m


(B.12)

Then

L′′ = UL′V =

T ⊗ I(n+1)×(n+1) T 0 ⊗
[
In×n
01×n

]
0 0

+

Im×m ⊗ [S S0

0 0

]
0

0 S

 (B.13)

According to (B.2),

[
L′′ L0

]
=

[[
T T 0

]
⊗ I(n+1)×(n+1)

0

]
+

Im×m ⊗ [S S0

0 0

]
0

0
[
S S0

]
 (B.14)
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Then [
L′′ L0

0 0

]
=

[
T T 0

0 0

]
⊗ I(n+1)×(n+1) + I(m+1)×(m+1) ⊗

[
S S0

0 0

]
(B.15)

Note that both

[
T T 0

0 0

]
and

[
S S0

0 0

]
are the generator of CTMC’s. We can then come to the

conclusion that, a system with two independent elements that following independent CTMC’s
generated by Q1 and Q2 follows an extended CTMC, which is generated by Q = Q1⊗I+I⊗Q2.

Appendix C Revenue, penalty and bonus

The total revenue is considered proportional to the availability of the system.

RV = rvAnet (C.1)

Generally, in the contract between the plant and the customer, two reference bounds will be set for
the availability of the plant (Ye et al., 2017). As shown in Figure (C.1), if the actual availability
of the plant does not meet the lower bound, the plant that provides products for the customer will
be charged a penalty proportional to the difference. On the other hand, to encourage the plant
to increase its availability, if the actual availability exceeds the upper bound, the customer will
reward the plant with bonus that is also proportional to the difference.

Figure C.1: Definition of penalty and bonus functions

Thus, the penalty and the bonus are described by the equation (C.2) and the disjunction (C.3).

w1 + w2 + w3 = 1, w1, w2, w3 = {0, 1} (C.2)
w1 = 1

Anet ≤ A lo
PN = (A lo−A)pn

BN = 0

 ∨


w2 = 1
A lo ≤ Anet ≤ A up

PN = 0
BN = 0

 ∨


w3 = 1
Anet ≥ A up
PN = 0

BN = (Anet −A up)bn

 (C.3)
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Applying the convex-hull reformulation (Balas, 1985), let

Anet = A1 +A2 +A3 (C.4)

PN = PN1 + PN2 + PN3 (C.5)

BN = BN1 +BN2 +BN3 (C.6)
w1 = 1

A1 ≤ A lo
PN1 = (A lo−A1)pn

BN = 0

 ∨


w2 = 1
A lo ≤ A2 ≤ A up

PN2 = 0
BN2 = 0

 ∨


w3 = 1
A3 ≥ A up
PN3 = 0

BN3 = (A3 −A up)bn

 (C.7)

Then, the linear relaxation of equations (C.2) and (C.8) - (C.12) gives the convex hull of (C.2) and
(C.3)

PN = PN1 = (w1A lo−A1)pn (C.8)

BN = BN3 = (A3 − w3A up)bn (C.9)

A1 ≤ w1A lo (C.10)

w2A lo ≤ A2 ≤ w2A up (C.11)

A3 ≤ w3A up (C.12)

Appendix D Extension to the circumstance of multiple failure modes

In practice, it is common for a processing unit to fail in not just one way. For example, a
compressor can fail because of the deterioration of its motor, rotor, or gearbox, etc., and each of
these failures can have different failure rates and repair rates. Therefore, it is necessary to consider
multiple failure modes for this kind of units. In this appendix we show how multiple failure modes
can be captured by the transition matrix with a small example and how the model can be slightly
adapted to accommodate this extension. Consider the example stage shown in Figure D.1 with
two potential units.

Figure D.1: A single stage k

Instead of the simple ”being repaired”, now the unit is considered to have two independent
failure modes, ”failure A” and ”failure B”. The state space considering single failure mode and
multiple failure modes are respectively shown in Table D.1 and Table D.2.
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Table D.1: State enumeration for a stage with identical redundancies

Design decisions/subspace States unit 1 unit 2

Tk,1: unit 1
state 1 active
state 2 being repaired

Tk,2: unit 1 and 2

state 3 active standby
state 4 active being repaired
state 5 being repaired active
state 6 being repaired being repaired

Table D.2: State enumeration for a stage with identical redundancies

Design decisions/subspace States unit 1 unit 2

Tk,1: unit 1
state 1 active
state 2 failure A
state 3 failure B

Tk,2: unit 1 and 2

state 4 active standby
state 5 active failure A
state 6 active failure B
state 7 failure A active
state 8 failure B active
state 9 failure A failure A
state 10 failure A failure B
state 11 failure B failure A
state 12 failure B failure B

Figure D.2 and Figure D.3 show the corresponding state transition diagrams for the example
stage discussed in section 4.2

(a) subspace1(Tk,1) (b) subspace2(Tk,2)

Figure D.2: State transition diagram with single failure mode
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(a) subspace1(Tk,1) (b) subspace2(Tk,2)

Figure D.3: State transition diagram with two failure modes

It can be seen from Figure D.2 and Figure D.3 that compared to single failure mode, having
multiple failure modes adds complexity to constructing the state space and transition matrices of
single stages, which however, is independent with the connections between single stages and the
entire system, and how the system availability is represented. Therefore, the model equations and
inequalities remain largely unchanged except for the correlation between maintenance and failure
rates described in section 4.5:

• A new index is added: f for failure modes. New sets are added: Fk is the set of failure modes
of stage k. FAILUREs̄ is redefined as the set of tuples of (k, j, f) where unit j of stage k is
in failure mode f at state s̄.

• As is reflected in Figure D.3, to distinguish the failure rates and repair rates between different
failure modes of single units, the parameters λ0

k,j , µ
0
k,j and variable λk,j are rewritten as λ0

k,j,f ,

µ0
k,j,f and λk,j,f , respectively.

• Inspections are failure modes specific. Therefore, parameter T il , T
d
k and c inspk are rewritten

as T il,f , T dk,f and c inspk,f . An inspection interval tik is determined for each processing stage

k and each failure mode f that stage k has, hence variables tik, xk,l are rewritten as tik,f and
xk,f,l, respectively. Accordingly, equations (52), (53), (54) and (55) are modified as (D.1),
(D.2), (D.3) and (D.4) in order to detail down to failure mode level.∑

l∈L
xk,f,l = 1, ∀k ∈ K, f ∈ Fk (D.1)

tik,f =
∑
l∈L

xk,f,lT
i
l,f , ∀k ∈ K, f ∈ Fk (D.2)

λ0
k,j,f−λk,j,f =

∑
l∈L

xk,f,l(e
−λ0

k,j,fT
i
l,f − e−λ

0
k,j,f (T il,f+T dk,f ))/T il,f , ∀k ∈ K, j ∈ Jk, f ∈ Fk (D.3)

inspCost =
∑
k∈K

∑
f∈Fk

(c inspk,f
∑
l∈L

xk,f,l
T

T il,f
) (D.4)
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• Similarly, repair costs, maintenance costs and downtime caused by maintenance are related to
specific failure modes in this case. Parameters c repak, c maink and T maink are rewritten
as c repak,f , c maink,f and T maink,f , respectively. It is worth mentioning that variable
mainT imesk, which is the ratio of the number of times of maintenance to the number of times
of repair carried out for stage k also breaks down to failure mode level and is rewritten as
mainT imesk,f . Accordingly, equations (57), (56), (58) and (59) are modified as (D.5),(D.6),
(D.7) and (D.8) respectively.

mainRatiok,f ≥ yk,j(λ0
k,j,f − λk,j,f )/λk,j,f , ∀j ∈ Jk (D.5)

repaCost = −T
∑
s̄∈S̄

W (s̄, s̄)πs̄
∑

(k,j,f)∈FAILUREs̄

c repak,f (D.6)

mainCost = −T
∑
s̄∈S̄

W (s̄, s̄)πs̄
∑

(k,j,f)∈FAILUREs̄

mainRatiok,fc maink,f (D.7)

mainT ime = −T
∑
s̄∈S̄f

W (s̄, s̄)πs̄
∑

(k,f)∈FAILUREs̄

mainRatiok,fT maink,f (D.8)
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